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Abstract
We describe a content based speech discrimination algorithm in
broadcast news based on the time-varying information provided
by the modulation spectrum. Due to the varying degrees of re-
dundancy and discriminative power of the acoustic and mod-
ulation frequency subspaces, we first employ a generalization
of SVD to tensors (Higher Order SVD) to reduce dimensions.
We further select the optimal principal axes in each subspace
based on mutual information. Projection of modulation spectral
features in these axes results in a compact feature set at a very
low cost for subsequent classification with SVMs. We present
experimental comparison between our algorithm and MFCCs
using the same classifier and dataset.
Index Terms: audio classification, modulation spectrum,
speech discrimination, feature selection, mutual information.

1. Introduction
Speech/non-speech segmentation can be formulated as a pat-
tern recognition problem where the optimal features and the
classifier built on them are application-dependent. In broadcast
news nonspeech consists of music, various sound sources, and
silence although its duration is usually reduced to a minimum.
Methods that work well on speech/music discrimination usually
do not handle efficiently other non-speech classes. It has been
shown that for successful audio segmentation and classification,
the classification unit has to be a segment, i.e., a sequence of
frames rather than a single frame [1, 2, 3].

Reviewing relevant past work, many approaches in the lit-
erature have examined various features and classifiers. Mel-
frequency cepstral coefficients - the most commonly used fea-
tures in speech and speaker recognition systems - have also been
successfully applied in audio indexing tasks [1, 2].

In this work we compare modulation spectral features [4] to
MFCC features. Dynamic information provided by the modu-
lation spectrum capture fast and slower time-varying quantities
such as pitch, phonetic and syllabic rates of speech, tempo of
music, etc. However the use of modulation spectral featuresin
pattern classification is prevented by their large dimensionality.
An efficient way to address this issue is a generalization of SVD
to tensors (Higher Order SVD [5]) - a technique which has been
applied in auditory-based features with multiple scales oftime
and spectral resolution [3]. Joint acoustic and modulationfre-
quencies can be projected on the retained singular vectors in
each subspace to obtain the multilinear principal components
(PCs) of the sound samples. Next we spot near-optimal PCs for
classification among those contributing more than1% through
an incremental search method based on mutual information [7].

The organization of the paper is as follows: Section 2

briefly reviews the modulation frequency analysis framework.
The multilinear dimensionality reduction method and the mu-
tual information-based feature selection are presented inSec-
tion 3. In Section 4 we describe the experimental setup, the
database and the results. Finally in Section 5 we present our
conclusions.

2. Modulation Frequency Analysis
The most common modulation frequency analysis framework
[4] for a discrete signalx(n), initially employs a short-time
Fourier transform (STFT)Xk(m)

Xk(m) =

∞
X

n=−∞

h(mM − n)x(n)W kn
K , (1)

k = 0, . . . , K − 1,

whereWK = e−j(2π/K) andh(n) is the acoustic frequency
analysis window. Subband envelope detection - defined as the
magnitude|Xk(m)| or square magnitude of the subband - and
their frequency analysis with Fourier transform are performed
next:

Xl(k, i) =

∞
X

m=−∞

g(lL − m)|Xk(m)|W im
I , (2)

i = 0, . . . , I − 1,

whereg(m) is the modulation frequency analysis window;k
andi are referred to as the “Fourier” (or acoustic) and “modula-
tion” frequency, respectively. Tapered windowsh(n) andg(m)
are used to reduce the sidelobes of both frequency estimates.

A modulation spectrogram representation then, displays
modulation spectral energy|Xl(k, i)| in the joint acous-
tic/modulation frequency plane. Length of the analysis window
h(n) controls the trade-off between resolutions in the acoustic
and modulation frequency axes. The degree of overlap between
successive windows sets the upper limit of the subband sam-
pling rate during the modulation transform.

3. Description of the method
3.1. Multilinear Analysis of Modulation Frequency Fea-
tures

Every signal segment in the training database is represented in
the acoustic-modulation frequency space as a two-dimensional
matrix. By stacking all training matrices we obtain a data tensor.
A generalization of SVD to tensors referred to as Higher Order
SVD (HOSVD) [5] enables the decomposition of a tensorD to
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Figure 1:Total number of retained PCs in each subspace as a
function of threshold on contribution percentage. The vertical
axis indicates the number of PCs in each subspace that have
contribution (eq.5) greater than the threshold

its mode−n singular vectors:

D = S ×1 Ufrequency ×2 Umodf req ×3 Usamples (3)

whereUfrequency , andUmodf req are the orthonormal ordered
matrices of the corresponding subspaces of acoustic and modu-
lation frequencies; these contain subspace singular vectors, ob-
tained by unfoldingD along its corresponding modes. Samples
subspace matrix,Usamples, is ignored. TensorS is the core ten-
sor with the same dimensions asD. S ×n U wheren = 1, 2, 3
denotes then− mode product of tensorS ∈ RI1×I2×I3 by
the matrixU ∈ RJn×In . For n = 2 for example, it is an
(I1 × J2 × I3) tensor given by

(S ×2 U)i1j2i3 =
X

i2

si1i2i3uj2i2 . (4)

Each singular matrix can be truncated then by setting a pre-
determined threshold so as to retain only the desired number
of principal axes in each mode. The contribution of thejth

principal component (PC) of subspaceSi whose corresponding
eigenvalue isλi,j , is defined as:

αi,j =
λi,j

PNi

j=1 λi,j

(5)

whereNi is the dimension ofSi - 65 for acoustic frequency and
125 for modulation frequency. Figure 1 presents the number of
PCs in these two subspaces as a function ofαi,j .

Joint acoustic and modulation frequenciesBmod[f, t] ex-
tracted from new sound samples are first normalized by their
corresponding standard deviation (estimated from the whole
training set) before they are projected on the truncated orthonor-
mal axes of interest,U ′

freq andU ′

modf req

Z = B ×1 U ′

freq
T
×2 U ′

modf req
T

(6)

The resulting matrixZ whose dimension is equal to the prod-
uct of retained singular vectors in each mode contains thus the
multilinear PCs of a sound sample.

Next, we detect the near-optimal projections (principal
components) of features among those contributing more than
1% based on mutual information [7]. That is, we examine the
relevance to the target class of the first50 PCs in the acous-
tic frequency subspace and the first25 PCs in the modulation
frequency subspace.
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Figure 2:Mutual information between each of the first50 × 25
PCs and the speech/non-speech class variable.

3.2. Mutual Information Estimation

The mutual information between two random variablesxi and
xj is defined in terms of their joint probability density function
(pdf) Pij(xi, xj) and the marginal pdf’sPi(xi), Pj(xj). Mu-
tual information (MI)I [Pij ] is a natural measure of the inter-
dependence between those variables:

I [Pij ] =

Z

dxi

Z

dxjPij(xi, xj) log2

»

Pij(xi, xj)

Pi(xi)Pj(xj)

–

MI is invariable to any invertible transformation of the individ-
ual variables [8].

It is well-known that MI estimation from observed data
is non-trivial when (all or some of) the variables involved are
continuous-valued. EstimatingI [Pij ] from a finite sample re-
quires regularization ofPij(xi, xj). The simplest regulariza-
tion is to defineb discrete bins along each axis. We make an
adaptive quantization (variable bin length) so that the bins are
equally populated and the coordinate invariance of the MI is
preserved [9]. The precision of features quantization alsoaf-
fects the sample size dependence of MI estimates [8]. Entropies
are systematically underestimated and mutual informationis
overestimated according to:

Iest(b, N) = I∞(b) + A(b)/N + C(b, N) (7)

whereI∞ is the extrapolation to infinite sample size and the
termA(b) increases withb [9]. There is a critical value,b∗, be-
yond which the termC(b, N) in (7) become important. We have
definedb∗ according to a procedure described in [9]: when data
are shuffled, mutual informationIshuffle

∞ (b) should be near
zero forb < b∗ while it increases forb > b∗. I∞(b) on the
other hand increases withb and converges to the true mutual in-
formation nearb∗. Although the given sample size (N = 7200)
permits even greater values forb∗, we have setb∗ = 12 for
reasons of computational efficiency. Figure 2 presents MI esti-
mates between each of the first50×25 PCs and the speech/non-
speech class variable for the training set. The subspace spanned
by the first 3 acoustic frequency PCs and the first 13 modulation
frequency PCs appear to be the most relevant with much lower
peaks elsewhere.

3.3. Max-Relevance and Min-Redundancy

The maximal relevance(MaxRel) feature selection criterion
simply selects the features most relevant to the target class c.
Relevance is usually defined as the mutual informationI(xj ; c)
between featurexj and classc. Through a sequential search



which does not require estimation of multivariate densities, the
top m features in the descent ordering ofI(xj; c) are selected
[7]. “Minimal-redundancy-maximal-relevance” (mRMR) crite-
rion, on the other hand, spots near-optimal features for classifi-
cation optimizing the following condition:

max
xj∈X−Sm−1

2

4I(xj ; c) −
1

m − 1

X

xi∈Sm−1

I(xj; xi)

3

5 (8)

whereI(xj; xi) is the mutual information between featuresxj

andxi andSm−1 is the initially given set ofm−1 features. The
mth feature selected from the setX − Sm−1 maximizes rele-
vanceand reduces redundancy. The computational complexity
of both incremental search methods isO(|S|M) [7].

In our case, the HOSVD technique has already addressed
redundancy reduction. Therefore, mutual informationI(xj; xi)
between pairs of reduced features is rather small. Nevertheless,
we used both methods to selectn sequential feature setsS1 ⊂
. . . ⊂ Sk ⊂ . . . ⊂ Sn.

3.4. System evaluation

Classification of segments was performed using support vector
machines. SVMs find the optimal boundary that separates two
classes maximizing the margin between separating boundary
and closest samples to it (support vectors). We have used SVM-
light [6] with a Radial-Basis-Functions kernel. We have defined
an hierarchy of classes similar to [2] for resolving conflicts that
arise due to the overlap of segments: frames are classified as
non-speech if they are part of any segment that was classifiedas
non-speech; otherwise, they are classified as speech.

We evaluate system performance on the test set using the
detection error trade-off curve (DET) between false rejection
rate (or speech miss probability) and false acceptance rate(or
false alarm probability). Since both classes have equal prior
probabilities in our data sets and the costs of miss and false
alarm probabilities are considered equally important, themini-
mum value of the detection cost function,DCFopt, is;

DCFopt = min
“

Pmiss+Pfalse

2

”

. (9)

4. Experiments
4.1. Data Collection

We tested the algorithms described in section 3 on audio data
collected from Greek TV programs (TV++) and music CDs.
Speech data consists of broadcast news and TV shows recorded
in different conditions such as studios or outdoors; also, some
of the speech data have been transmitted over telephone chan-
nels. Non-speech data consists of music (25 %), outdoors noise
(moving cars, crowd noise, etc), claps, and very noisy unin-
telligible speech due to many speakers talking simultaneously
(speech babble). Music content consists of the audio signals at
the beginning and the end of TV shows as well as songs from
music CDs. Audio data are all mono channel and 16 bit per
sample, with 16 kHz sampling frequency. The database has
been manually segmented and labeled at Computer Science De-
partment, UoC. Speech signals have been partitioned into 30
minutes for training, 30 minutes for validation, and 60 minutes
for testing. Each file has been partitioned into 500 ms segments
for long-term feature analysis. We extract evenly spaced over-
lapping segments every 250 ms producing 7200 samples for
training and validation, and 14400 samples for testing.
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Figure 3:Detection Error Trade-off curves and minimum detec-
tion cost function (markers) for the validation set (see Section
4.1) when retaining PCs with contribution greater than:1%
(circle), 1.25% (triangle), 1.5% (+), 1.75% (square) and2%
(hexagram)

4.2. Feature Extraction and Classification

The modulation spectrogram has been calculated using Modula-
tion Toolbox [11]. For every 500 ms block modulation spectrum
features were generated using a 128 point spectrogram with a
Gaussian window. The envelope in each subband was detected
by a magnitude square operator. To reduce the interference of
large dc components of the subband envelope, the mean was
subtracted before modulation frequency estimation. One uni-
form modulation frequency vector was produced in each one
of the 65 subbands. Due to a window shift of 32 samples, each
modulation frequency vector consists of 125 elements up to 250
Hz. All features were normalized by their corresponding stan-
dard deviation estimated from the entire training set to reduce
their dynamic range. They were projected on the truncated or-
thonormal axesU ′

freq, andU ′

modf req according to eq. (6).
Figure 3 presents the Detection Error Trade-off (DET)

curves and minimum detection cost function (DCFopt) for the
validation set when retaining PCs with contributions greater
than1%, 1.25%, 1.5%, 1.75% and2% (see Figure 1). The di-
mensionality of the reduced features is respectively50 × 25 =
1250, 21 × 16 = 336, 13 × 11 = 143, 9 × 7 = 63 and
7 × 6 = 42. DCFopt is better for the configurations of 63
and 42 dimensions:6.49% and6.61%, respectively. increase
in dimensionality beyond 143 features induces poor generaliza-
tion as seen in Figure 3 whereas for less than42 features, the
performance is significantly worse (not shown).

It is known that “them best features are not the bestm
features” [7]. As seen in Figure 4, MaxRel feature sets produce
smaller errors than mRMR features, for everyk ∈ [1, n], so in
the rest of the paper the MaxRel approach will only be used. We
combine Max-Rel with a wrapper using the backward feature
selection scheme into a two-stage algorithm according to [7].
The first31 most relevant features led to aDCFopt = 5.69%;
we recall that the bestDCFopt was6.49% using the[9×7] PCs.
By setting our initial feature set toS31 then, we exclude one
feature at a time from the current feature setSk and estimate the
respective error rateek−1 = DCFoptk−1

; the feature that leads
to the greatest error reductionek−1 which is not worse thanek,
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Figure 4: SVM classifier equal error rate using mRMR and
MaxRel features.

is removed. The procedure terminates when we have considered
every feature in the row without no gain in classification error.
For Max-Rel and the validation dataset, the wrapper obtained
the lowest errorDCFopt = 5.1% by selecting 22 out of the 31
features.

We also present a comparison to results for the same
dataset, using mean and standard deviation of MFCCs for seg-
ment parameterization [12]. 13th order MFCCs were extracted
from 25 ms audio frames with a 10 ms frame rate. Critical-band
analysis of the power spectrum with a set of triangular band-
pass filters was performed as usual; also an auditory-like spec-
trogram was derived by applying equal-loudness pre-emphasis
and cube-root intensity-loudness compression according to Her-
mansky [10]. The mean and standard deviation of MFCCs over
50 frames resulted in a 26-element feature vector per 500 ms
segment.

Figure 5 and Table 1 present the DET curves and the respec-
tive optimal values ofDCF , Pmiss andPfalse for the systems
tested. MaxRel+ denotes the combination of backward selec-

Table 1:DCFopt, Pmissopt andPfalseopt on test set

MFCC MFCC∗ MaxRel+ 63 PCs Fusion

DCF 9.54 4.96 5.10 6.49 3.99
Pmiss 6.24 4.07 4.47 6.31 3.06
Pfalse 12.84 5.84 5.72 6.67 4.92

tion with MaxRel features, which retained 22 out of the first 31
MaxRel features. MFCCs∗ are MFCC features extracted after
loudness equalization and cube root compression accordingto
[10]; the results for both MFCCs∗ and common MFCC features
are based on the same dataset using SVM classifier and have
been previously reported in [12]. ”Fusion” refers to the com-
bined feature set of MaxRel+ and MFCCs∗; the concatenated
48-features vector improves the bestDCFopt by ∼ 20%.

5. Conclusions

We presented a novel and alternative to the commonly used
MFCC feature set for the discrimination of speech from non-
speech sounds of broadcast news. We have found that the pro-
posed feature set performs much better than the simple MFCC
features while they perform equally well with the perceptu-
ally enhanced MFCCs. Moreover, the fusion with perceptual
MFCCs further improves classification accuracy which indi-
cates that the two feature sets provide complimentary informa-
tion for the speech signal.
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Figure 5: DET curves andDCFopt for mean and variance of
13 ”perceptual” (◦) or base MFCCs(⋄), [9 × 7] PCs(�) , 22
MaxRel features(∗) and their fusion with MFCCs∗ (△).
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