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Abstract
State of the art objective measures for quantifying voice quality
mostly consider estimation of features extracted from the mag-
nitude spectrum. Assuming that speech is obtained by excit-
ing a minimum-phase (vocal tract filter) and a maximum-phase
component (glottal source), the amplitude spectrum cannot cap-
ture the maximum phase characteristics. Since voice quality is
connected to the glottal source, the extracted features should
be linked with the maximum-phase component of speech. This
work proposes a new metric based on the phase spectrum for
characterizing the maximum-phase component of the glottal
source. The proposed feature, the Phase Distortion Deviation,
reveals the irregularities of the glottal pulses and therefore, can
be used for detecting voice disorders. This is evaluated in a
ranking problem of speakers with spasmodic dysphonia. Re-
sults show that the obtained ranking is highly correlated with
the subjective ranking provided by doctors in terms of overall
severity, tremor and jitter. The high correlation of the suggested
feature with different metrics reveals its ability to capture voice
irregularities and highlights the importance of the phase spec-
trum in voice quality assessment.
Index Terms: Voice quality, Phase Distortion, Glottal shape,
Dysphonia

1. Introduction
Reliable voice quality evaluation involves the conduction of
subjective listening tests, a task which is considered time con-
suming and costly. Thus, the necessity of developing objec-
tive measures highly correlated with the subjective evaluations
is necessary.

Depending on the application, various objective measures
have been proposed for speech quality evaluation. For exam-
ple, in speech modeling the distortion metrics used are based
on time-domain features (Signal-to-Error Reconstruction Ratio,
Signal-to-Noise Ratio) or frequency domain features extracted
from the amplitude spectrum (Spectral Distance, Cepstrum dis-
tance measures). For the quality assessment of natural speech,
besides amplitude-spectrum-based features computed on the
speech signal (i.e. Harmonic-to-Noise Ratio), many techniques
focus on glottal features [1] and amplitude-spectrum based fea-
tures computed on the glottal signal (HRF [2], H1-H2 [3]) as
they are linked to speech quality [4, 5, 6]. In voice pathology
the estimation of these features becomes more complex. The
feature extraction in time or in frequency domain from a non-
harmonic amplitude spectrum is a difficult problem for disor-
dered voices [7], while the glottal source estimation is a rather
complex and delicate problem [8].

This work proposes a different objective measure for voice
quality assessment based on the Phase spectrum. Phase is sys-
tematically neglected by the minimum phase assumption in

speech processing, even though previous studies have shown
the link of the maximum-phase component of speech with the
glottal source [9, 10, 11, 12] and its importance on maintain-
ing the perceived quality of speech [13, 14, 15]. Reasons that
contribute to the slight of the phase, is the phase wrapping due
to the linear phase shift [13], which prevents the disclosure of
the phase structure. However, in [13] the notion of the center
of gravity has been introduced as an attempt to remove the lin-
ear phase mismatch which is attributed to the excitation phase
and reveal the phase structure in speech, leading to its success-
ful incorporation in various applications [16, 17]. Moreover,
in [18] the phase difference between two frequency components
has been shown to have perceived characteristics. Furthermore,
in [19] the Phase Distortion (PD) is used to characterize the
shape of periodic pulses of the glottal source independently
of other source-filter characteristics, like the duration of glot-
tal pulse, the position of analysis window and the influence of
minimum phase component of speech. As the glottal shape is
connected with voice quality, the phase distortion could then be
used as quality assessment metric.

The main goal of this paper is to reveal the importance of
the phase in voice quality assessment with application in voice
pathology. Specifically, this work suggests a new phase rep-
resentation which can automatically detect voice irregularities.
The suggested methodology is based on Phase Distortion pro-
posed in [18] but the estimation of the phase features is done by
a harmonic model, thus giving to PD similar to the group-delay
characteristics [20, 21, 22, 17]. In our work, the estimation of
the instantaneous phases is performed by the adaptive Harmonic
Model (aHM) [23]. Then, for revealing the phase structure of
speech, the linear phase shift [13, 14] and the Phase Distortion
(PD) [19, 24, 25, 18] are estimated on the signal after remov-
ing its minimum phase component. The PD alleviates the phase
wrapping effect and, after the removal of the minimum-phase
component, is also highly correlated to the maximum-phase
component [19, 24]. Our proposed feature which describes
voice disorders better than PD, is its standard deviation com-
puted over time for each harmonic. PDD describes the phase
variability of the voice source [26] which is more evident in
pathological voices. The advantage of the proposed technique
over other phase-based techniques [17] is that eliminates the
necessity of reliable estimation of the glottal closure instants
(GCI). PDD is evaluated in two databases consisting normo-
phonic and dysphonic speakers with spasmodic dysphonia [27].
The database of the normophonic speakers is used as a learn-
ing database to derive an one-dimensional description of PDD,
namely the Regularity Ratio (RR), which can quantify normo-
phonicity. Then, the Regularity Ratio is used to objectively rank
the severity of dysphonic speakers.

This paper is organized as follows. Section 2 presents the
algorithm description of PDD. Section 3 evaluates PDD on nor-



mophonic and dysphonic speakers and compares the efficiency
of PDD with another amplitude-spectrum-based metric [28].
Section 4 discusses the results and finally Section 5 concludes
the paper.

2. Estimation of the Phase Distortion from
a harmonic model

Analysis of the signal is performed, using the adaptive Har-
monic Model [23], to extract the instantaneous amplitudes ak
and the instantaneous phases φk of each harmonic k from the
speech waveform s(t):

si(t) =

Ki∑
k=1

aik · ej(kφ0(t)+φ
i
k) (1)

where i is the frame index, Ki = b fs
2f0(ti)

c, fs the sampling
frequency and φ0(t) is the integral of f0(t):

φ0(t) =

∫ t

ti
ω0(τ)dτ ω0(t) = f0(t) · 2π/fs (2)

In this work the fundamental frequency curve f0(t) is computed
by STRAIGHT. From the estimated features {ak, φk, f0} we
need to extract features that can describe the maximum-phase
component of speech. To that purpose, we use a phase model
similar to [29]:

φik = θik + k

∫ ti

tic

ω0(τ)dτ + ∠V i(kω0(ti)) (3)

where the extracted phases φk from the speech waveform in (1),
are modeled as a summation of i) the phase of the glottal pulses
θk, ii) the linear phase imposed by the delay of the center of the
analysis window tc and the position of the glottal pulse and iii)
the minimum phase component which models the vocal tract in-
fluence, ∠V (kω0(t)). Aiming on describing the source shape,
the minimum phase component should be eliminated. To re-
move the influence of the vocal tract, the amplitude spectral en-
velope is first estimated through linear interpolation across fre-
quency of the amplitude parameters ak of the harmonic model
in (1). Then, the minimum phase response corresponding to
this amplitude spectral envelope is estimated through cepstrum
liftering [30] and subtracted from the measured phase φk using
subtraction in log-spectral domain (i.e. deconvolution in time
domain). The phases φ̃k that derive from the subtraction of the
minimum phase component from the estimated instantaneous
phases φk are given by:

φ̃ik = θik + k

∫ ti

tic

ω0(τ)dτ (4)

The linear phase k
∫ ti
tic
ω0(τ)dτ is still present, preventing the

phase structure of the glottal pulse to appear. In [13, 14] the
relative phase shift (RPS) has been suggested as the appropri-
ate metric which discards this linear phase component. Using
the definition of RPS and applying it on φ̃k the linear phase is
discarded:

R̃PS
i

k = φ̃ik − kφ̃i0 (5)

=θik + k

∫ ti

tic

ω0(τ)dτ +−k · (θi1 +

∫ ti

tic

ω0(τ)dτ)

=θik − kθi1

The obtained phase still depends on the harmonic index k. This
dependency should be removed otherwise the variance of RPS
will increase for the higher frequencies. To that purpose, the
finite difference of RPS is used, namely the Phase Distortion
(PD, [19]):

PDi
k =∆

k
R̃PS

i

k = (φ̃ik+1 − (k + 1)φ̃i1)− (φ̃ik − kφ̃i1) (6)

=θik+1 − θik − θi1

The advantage of using PD is that it is related to the shape of
the glottal source without the need of accurate glottal source
estimation.

2.1. Introducing the Deviation of the Phase Distortion

The relation of PD with the shape of the pulses of the glot-
tal source suggest that PD can be a good quality indicator for
voice signals. A first analysis on a normophonic and a dys-
phonic speaker enforces this argument. Figure 1 shows the es-
timation of PD on a sustained vowel /a/ uttered by a normo-
phonic (Fig.1a) and a dysphonic (Fig.1b) speaker who suffers
from spasmodic dysphonia [27]. The PD spectrum of the nor-
mophonic speaker appears stable, with stable values across har-
monics and across time. On the contrary, in the case of the
dysphonic speaker (Fig.1b), PD varies across time and harmon-
ics. This suggests that the variance of the PD may be a better
descriptive characteristic than PD for the voice regularity. In
the context of sustained vowels, the variance of phase distortion
is more interesting than the phase distortion itself: in sustained
phonation the variance of the PD should be close to zero as the
shape of the glottal pulse is preserved in time. Therefore, we
propose a new metric, namely the Phase Distortion Deviation
which is defined by the following equation taking into account
the circular domain of the phase [31]:

σiPDk
= std

i
(PDi

k) =

√
−2 ln

∣∣∣ 1

M

∑
m∈Bi

ejPD
m
k

∣∣∣ (7)

where Bi is a window centered at sample i and M is the size
of the windowBi. The above equation computes the short-term
standard deviation in time of the PD values estimated on the
sliding window M for each harmonic separately. Specifically,
the term 1

M

∑
m∈Bi

ejPD
m
k is the center of gravity [13] of the

phase distortion values on the z-plane. If the PD values inside a
window of size M are low, the modulus of the center of gravity
approaches to 1, resulting on a low PDD. In the opposite case,
if the PD values are significant and variable inside the window
M, the modulus of the center of gravity will approach to zero,
resulting in a high PDD. Therefore, PDD as define above can
capture the variance of the PD.

Figure 2 shows the deviation of the PD depicted in Fig.1,
for a fixed window of 100ms duration. Compared to Fig.1,
Fig.2 is more informative as it shows the time characteristics
of the PD for each harmonic. Unlike the dysphonic speaker,
the normophonic speaker has almost zero PDD, revealing the
correlation of PDD with the deviation of the glottal shape in
time.

3. Evaluations
PDD seems to be an appropriate metric of the voice quality,
as Fig. 2 suggests. To enforce this argument, the evaluation of
the PDD is performed in a ranking task of disordered speech
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Figure 1: The Phase Distortion (PD) on sustained phonation
/a/: (a) normophonic male speaker (f0 = 125Hz) and (b) dys-
phonic male speaker (f0 = 142Hz)
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Figure 2: The Phase Distortion Deviation (PDD) on sustained
phonation /a/ using a fixed window of 100ms: (a) normophonic
male speaker (f0 = 125Hz) and (b) dysphonic male speaker
(f0 = 142Hz)

samples. Unlike binary classification, ranking is a more rigor-
ous task. The advantage of ranking vs. classification is that it
does not require a big dataset. The corpora used for our evalua-
tion consist of two databases, one database of 16 normophonic
subjects and one database of 20 speakers with spasmodic dys-
phonia. It should become explicit that no classification is made
between normophonic and dysphonic speakers. However, the
database of normophonic speakers is used to learn which are the
PDD values that characterize normophonicity. Then, the objec-
tive ranking performed by PDD on the database of dysphonic
speakers is compared with the subjective ranking performed by
medical doctors1 [27].

3.1. Objective PDD ranking method

Evaluation of PDD is performed on a database of sustained
vowels uttered by speakers who suffer from spasmodic dyspho-
nia [27]. Speakers with voice disorders are evaluated by doc-
tors on sustained phonation, since the deviation of features in
an entire phoneme can characterize voice pathologies. In or-
der to capture such changes in the entire phoneme, the window
length M in the calculation of PDD (Eq.(7)) is chosen to be
the maximum possible. Small window would lead to an under-
estimation of the standard deviation of the PD. As the speech
signals have variable length, the window length is proportional
to the duration of the speech signal and specifically its length is
chosen as the 1/3 of the signal duration. This window length
is the maximum possible, since there is an order restriction im-
posed by our zero-phase moving average filter that implements
the summation in Eq.(7). An example of the estimated PDD

1In the paper, medical doctors refer to doctors specialized on quanti-
fying the quality of voice i.e., otorhinolaryngologists trained for judging
voice quality.

can be seen in Fig.3 for normophonic and dysphonic speakers.
In this representation the deviation of the PD for each harmonic
is more prominent. The two dimensions of PDD create an in-
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Figure 3: The Phase Distortion Deviation (PDD) on sustained
phonation /a/ estimated with the maximum possible window
length: (a) normophonic male speaker (f0 = 125Hz) and (b)
dysphonic male speaker (f0 = 142Hz)

formative visualization tool. However, it is difficult to manip-
ulate a 2-D representation for ranking. Therefore, we propose
an one-dimensional metric that describes the PDD feature. This
feature is called Regularity Ratio and is based on the PDD dis-
tribution. Specifically, instead of using the PDD estimations of
the whole spectrum, only the first 4 harmonics are considered
to provide reliable estimations. Then, the distribution of PDD
values in time for the 4 harmonics is estimated. Figure 4 shows
the time-harmonic distribution of PDD (4 harmonics) computed
in sustained vowels (/a/) of sixteen healthy subjects. The major-
ity of the PDD values gather from [0, 0.4]. This area is defined
as the normophonic area where the PD has low variance, while
(0.4,∞) is characterized as the noisy area with high variance
of PD. The Regularity Ratio (RR) is defined as:

RR = log10

( P1∑∞
i=2 Pi

)
, 1 ≤ i <∞ (8)

where i is the bin index with width 0.4. P1 is the probabil-
ity of the first bin in the histogram which corresponds to in-
terval [0, 0.4] and the rest of bins cover the area (0.4,∞) of
PDD values. The 0.4 value of the bin width is selected as the
biggest possible value that gathers in the first bin the majority
of PDD values for the normophonic speakers with a restriction
imposed by the denominator of RR which should not be zero,
giving infinite score of RR. For all the normophonic speakers
of our database, RR is positive. In case of high variance of PD,
we expect that RR will take negative values and will be able
to rank patients according to their severity of spasmodic dys-
phonia. Indeed, Fig.4b depicts a typical distribution of PDD
for a dysphonic speaker. PDD is much higher for the dyspho-
nic speaker than in the normophonic case and the RR value is
negative (RR = −4.723).

3.2. Performance evaluation

Evaluation of PDD is performed on a database of sustained
vowels uttered by speakers who suffer from spasmodic dys-
phonia [27]. Subjective evaluations were performed by medical
doctors who ranked the patients according to three features:
• Jitter: the cycle-to-cycle period perturbation. It is evalu-

ated objectively by [27] using Ampex software [32] and
the speech samples are ranked from high to low jitter.

• Tremor: rhythmic change in pitch and loudness. Tremor
is subjectively estimated by medical doctors and the
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Figure 4: The distribution of Phase Distortion Deviation (PDD)
on sustained phonation /a/: (a) 16 normophonic speakers and
(b) a typical distribution in case of spasmodic dysphonia.

speech samples are ranked from high to low tremor
value.

• Overall severity of spasmodic dysphonia of the speech
samples in a descending order as evaluated by the doc-
tors

For each patient, RR is estimated on sustained vowels /a/.
The goal is to propose an objective ranking of the speech sam-
ples of the patients using RR and examine if our proposed ob-
jective measure is correlated with the three features described
above. Moreover, RR is compared with another objective met-
ric, called WMTV [28], which quantifies the severity of spas-
modic dysphonia. The metric is based on tremor estimation
on the speech signals and is extracted from minimum phase
component of speech. Table 1 shows the correlation between

Jitter
(Ampex) Tremor Overall

Severity
S P S P S P

RR -0.65
(0.0082)

-0.78
(0.0006)

-0.68
(0.005)

-0.70
(0.0037)

-0.81
(0.003)

-0.82
(0.0002)

WMTV 0.50
(0.0585)

0.44
(0.0991)

0.75
(0.0012)

0.72
(0.0024)

0.67
(0.0066)

0.68
(0.0053)

Table 1: Pearson’s (P) and Spearman’s (S) correlation coef-
ficient of the ranking of RR and WMTV with the ranking of
subjective evaluations (Tremor, Overall severity) and objective
evaluations (Jitter) provided by [27]. 15 speakers are ranked.

RR and WMTV with the subjective evaluations provided by the
medical doctors, except the Jitter estimation which is computed
objectively by Ampex software, as reported above. For compar-
ison reasons with WMTV, 15 out of the 20 dysphonic speakers
are ranked as some speech samples had less than 1s duration
and WMTV imposes the restriction of at least 1s duration of
the speech signal in order to extract the tremor characteristics.
Two correlation coefficients are used to evaluate our proposed
metric, Pearson’s correlation coefficient (P acronym on the Ta-
ble 1) and Spearman’s rank correlation coefficient (S acronym
on the Table 1). The advantage of the latter is that it captures the
monotonic relation between variables, even if their relationship
is not linear. As we can see from Table 1, the ranking based on
our proposed objective measure RR is significantly correlated
with the subjective ranking of Tremor and Overall severity of
spasmodic dysphonia (p values are provide in parenthesis). The
objective measure based on PDD outperforms WMTV by 14%
(rS,RR = −0.82 vs rS,WMTV = 0.68) on the estimation of
the overall severity of spasmodic dysphonia. Moreover, RR is
significantly correlated with jitter whereas WMTV is not, re-
vealing that PDD can detect various features of voice irregu-

larity. Another merit of RR vs. WMTV is that it can be es-
timated in speech signals independent of duration. Therefore,
Table 2 shows the correlation between RR with the subjective
evaluations provided by medical doctors for all 20 patients. The
correlation between our ranking and subjective ranking on the
overall severity of spasmodic dysphonia is significant; the cor-
relation coefficient is−0.82 and the p-value is less than 0.0001.

Jitter
(Ampex) Tremor Overall

Severity
S P S P S P

RR -0.62
(0.0033)

-0.71
(0.0004)

-0.59
(0.0067)

-0.64
(0.0023)

-0.82
(<0.0001)

-0.82
(<0.0001)

Table 2: Pearson’s (P) and Spearman’s (S) correlation coeffi-
cient of the ranking of RR with the ranking of subjective evalu-
ations (Tremor, Overall severity) and objective evaluations (Jit-
ter) provided by [27]. All speakers are ranked.

4. Discussion
This work emphasizes the importance of the phase spectrum as
an objective measure for voice quality assessment. The phase
information has not received much attention as a quality indi-
cator in the literature. The linear phase influence due to mis-
alignments of the glottal closure instants with the position of
the window analysis, contributed to the noisinesses and inco-
herence of the phase spectrum. Removing these linear phase
terms [13] and the phase contribution of the vocal tract, the re-
maining phase spectrum can provide useful information about
the regularity of the glottal signal. The idea of the Phase Distor-
tion proposed in [19] is combined with an adaptive Harmonic
Model [23] to derive our propose scheme. Analysis on nor-
mophonic and dysphonic speakers revealed that the time devia-
tion of PD is an efficient descriptor for voice pathologies. Even
though no classification is performed between normophonic and
dysphonic speakers, the evaluation of our proposed metric is
performed on a more difficult and by more useful task, that of
the objective ranking among speakers of the same category, that
is dysphonic speakers who suffer from spasmodic dysphonia.
The high correlations with the subjective evaluations indicate
that PDD not only captures but also quantifies the noisy and
harmonic part of speech, suggesting that PDD may be extended
on other applications like speech synthesis.

5. Conclusions
In this paper the information of the phase spectrum is used to de-
scribe the level of voice pathology in speakers with spasmodic
dysphonia. The proposed phase representation is the time de-
viation of the Phase Distortion (PDD). PDD is free from the
linear phase influence and the phase contributions of the vocal
tract and therefore, can characterize the regularity of the glottal
source. The advantage of the proposed technique is that elimi-
nates the necessity of detection of the GCI or reliable estimation
of the glottal source through inverse filtering and can be used for
voice detection irregularities. PDD is evaluated in a database of
dysphonic speakers with spasmodic dysphonia. The objective
ranking performed by PDD is highly correlated with the sub-
jective ranking from medical doctors.
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