Introduction to R

R basics #2

Outline

- Univariate analysis
 - Testing for normality
- Bivariate analysis
 - Correlation
 - Regression
- Multivariate analysis
 - Correlation
 - Partial correlation
 - Regression

Dramatic increase in the amount of untrue statistics...

Univariate analysis

- Looking 1 variable ...
 - Histogram: single numerical variable

myDataset				
V1	V2	٧3	:	Vn
0,1	4	0,8	2	Male
0,2	6	1,2	З	Female
0,8	8		6.3	Male
0,1	1	0,2	1	Male

- hist(V1) # histogram of V1 for all classes (Male and Female)
- hist(V1[Vn=='Male']) # for Females only!
- Density plot
 - plot(density(V1[Vn=='Male'])) # empirical distribution
- Boxplot: relationship between a numerical and categorical variable
 - boxplot(V1~Vn, myDataset, main = '...')

Testing for normality

- Open R
- Plot the histogram of the length of the Petals for the versicolor
 - hist()
- Plot the density plot
 - lines(density())
- Does Petals.Length follow a normal distribution?
 - Using Density plots: compare visually the empirical density curve with the theoretical
 - increase the adj. parameter to smooth your density curve
 - Plot simultaneously the theoretical density curve that corresponds to the mean and sd of your data
 - Generate normally distributed data using rnorm(N data, mean, sd)
 - lines(density(), col="green")
 - Using qqplot: plot the theoretical vs the estimated quantiles
 - qqnorm(V1)
 - qqline(V1)
 - Normality tests
 - Shapiro.test(V1)
 - Null hypothesis: the distribution follows a normal distribution
 - Alternative: the distribution is different from a normal distribution
 - If p<0.1 we can accept the Alternative hypothesis therefore the distribution is significantly different from normal distribution
 - Kolmogorov-Smirnov test
 - ks.test(x, "pnorm", mean, sd)
 - Similar to Shapiro.test(V1) but mean and sd are different from the sample mean and sd
 - Test if the Sepal.Length follows a normal distribution of mean=8 and sd=1

Bivariate analysis

- Looking 2 variables ...
 - Testing for normality: Kolmogorov-Smirnov
 - x= Sepal.Length for setosa, y= Sepal.Length for versicolor
 - Test if x and y follow the same distribution
 - Check if the distribution of x is stochastically smaller than that of y
 - Hint: Choose alternative = "greater" or alternative = "less"
 - Support visually your answer
 - » plot the ecdf(x) and ecdf(y) in the same plot
 - Pairs? Did you forget already?
 - pairs()
 - Are my variables correlated?
 - cor.test(V1, V2)
 - Null hypothesis: my data are not correlated, correlation = 0
 - Alternative: Correlation is non-zero
 - Is there a significant correlation between Petal.Length and Petal.Width?

Bivariate - Regression

- Can we predict Petal.Width given the Petal.Length?
 - Make a scatterplot of the two variables
 - plot(V2~V1 , pch=20, col=as.numeric(Vn))
 - Fit a line
 - abline(V2~V1)
 - Use summary(lm(V2 ~ V1)) to
 - Write the equation of your model!
 - See the significance of your model
- Did my model fit correct the data?
 - Regression residuals should be approximately normallydistributed
 - residuals(lm(V2 ~ V1))
 - But I know how to check for normality now!
 - Choose and apply one method

Multivariate analysis

- cor.test() for pairs of variables
- Partial correlation
 - Is x and y really correlated or is there a hidden z that affects both?
 - Example:
 - z ~N[0,1] k~N[0,2]
 - x=2z+5+0.2k
 - y=-3z+1
 - » Find the correlation between x and y
 - Use a qqplot and the cor.test
 - Is there any correlation between x and y after we perform correction??
 - Perform correction...
 - the residuals of linear regressions between the two variables should be uncorrelated
 - If they are still correlated then there is a true correlation between them
 - cor.test(residuals(lm(y ~ z)), residuals(lm(x ~ z)))

Multivariate-Regression

- Can we predict Sepal.Width given the Petal.Length?
 - summary(Im(z ~ x))
- Can we predict Sepal.Width given the Petal.Length and the Petal.Width?
 summary(lm(z ~ x+y))
- Can we predict Sepal.Width given the Petal.Length, Petal.Width and the Sepal.Length?
 - summary(lm(z ~ y+x+p))
- Is the predictive equation significantly affected when adding predictors?
 - Adding Petal width increases R² by 0.2024-0.1282= 0.0244 => 2.4%
 - Adding Sepal length increases R^2 by 0.5142-0.2024= 0.3118 => 31%
- Which of the three models is the best predictor of Sepal.Width?
 - m1 = lm(z ~ x)
 - $m2 = lm(z \sim y+x+p)$
 - a <- anova(m1, m2)</p>
- Plot the residuals of the two models in the same graph and check for normality