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Abstract

A new framework is presented for both understanding and developing graph-cut based combinatorial
algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently
encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear
programming in order to provide an alternative and more general view of state-of-the-art techniques
like the a-expansion algorithm, which is included merely as a special case. Moreover, contrary to
expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much
wider class of problems, e.g. even for MRFs with non-metric potentials. In addition, they are capable of
providing per-instance suboptimality bounds in all occasions, including discrete Markov Random Fields
with an arbitrary potential function. These bounds prove to be very tight in practice (i.e. very close to
1), which means that the resulting solutions are almost optimal. Our algorithms’ effectiveness is demon-
strated by presenting experimental results on a variety of low level vision tasks, such as stereo matching,

image restoration, image completion and optical flow estimation, as well as on synthetic problems.
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. INTRODUCTION

A large variety of important tasks in low-level vision, image analysis and pattern recognition
can be formulated as labeling problems, where one seeks to optimize some measure related to
the quality of the labeling [1]. For example, such is the case in optical flow estimation, stereo

matching, image restoration, to mention only a few of them. Therefore, an issue of paramount



importance, that has attracted a significant amount of computer vision research over the past
years, is how to solve this class of labeling problems efficiently and accurately.

The Metric Labeling Problem (or ML for short), that has been introduced by Kleinberg and
Tardos [2] recently, can capture a broad range of these classification problems that arise in early
vision. According to that problem’s definition, the task is to classify alseif n objects by
assigning to each object a label from a given Setf labels. To this end, we are also given a
weighted graply = (V, £, w), where the set of edge&srepresents the pairwise relationships be-
tween the objects, with the weight,, of an edgepq representing the strength of the relationship
between objectp, ¢q. Each labeling of the objects M is represented by a functiofi: V — L
and is also associated with a certain cost, which can be decomposed into terms of 2 kinds.

On one hand, for each € V, there is aabel costc,(a) > 0 for assigning labet:= f, to p.
Intuitively, the label costs express the likelihood of assigning labels to objects. On the other hand,
for each pair of objectg, ¢ that are related (i.e. connected by an edge in the giplthere
is a so-calledseparation cosfor assigning labels = f,, b= f, to them. This separation cost is
equal tow,,d(a,b), where, as already mentioned, the edge weight represents the strength
of the relationship between ¢, while d(a,b) is a distance function between labels, measuring
how similar two labels are. The intuition behind this definition of the separation cost is that
objects which are strongly related to each other should be assigned similar labels. This helps
in preserving the spatial coherence of the final labeling. To simplify notation, we assume that
all edges share a common distanke, b), but in fact each edggg could have its own unique
distanced,,(a, b). Also, in the original formulation of Metric Labeling, the distand:, b) was
assumed to be a metric, i#(a,b) =0<a=0b, d(a,b)=d(b,a)>0, d(a,b) <d(a,c)+d(c,b), but
here we will relax this assumption. Based on these definitions the total cost of a lapelquagls:

COST(f) = L elfp) +2. wedlfp fo)
and the goal is to find a labeling with the minimum total cost.

The Metric Labeling problem is directly connected to the theory of Markov Random Fields
(MRFs). In fact, optimizing the cost in the Metric Labeling problem is essentially equivalent to
minimizing the energy of a discrete MRF, with the potential function of the MRF to be now
replaced by the distance function between labels [2]. Due to this connection to MRFs, solving the
Metric Labeling problem is (in general) NP-hard and therefore one can only hope for methods

that provide approximate solutions. To this end, two are the main classes of methods that have



been proposed so far: those based on combinatorial optimization [1], [3], [4], [5], [6], as well as
those based on linear programming [2], [7], [8]. Methods of the first class are efficient and have
been applied with great success to many problems in vision. However, up to now, they have been
interpreted only as greedy local search techniques. On the other hand, methods of the second
class possess good theoretical properties, but their main drawback is the intolerable computational
cost due to that they formulate Metric Labeling as an equivalent integer program with a very

large number of variables. E.g. one such formulation, introduced in [7], is the following:

minz Z cp(a)zy(a) + Z Wy Z d(a,b)xp,(a,b) (1)

pEY acl (p,q)€€ a,bel

s.t. Z zp(a) =1 VpeV (2)
Y zplab)=x,(b)  VbeL, (pg)€E 3)
Zb Tpe(a,b) = xy(a) Vael, (pq € E 4)

p(+)s pg(-s-) € {0, 1}

The {0, 1}-variable z,(a) indicates that vertey is assigned labet, while the {0, 1}-variable

xp,(a, b) indicates that vertices, ¢ are assigned labels b respectively. The variables,,(a, b),

x4 (b, a) therefore indicate the same thing. So, in order to eliminate one of them and reduce the
number of variables, we assume (without loss of generality) that only ofye @f, (¢, p) belongs

to £ for any neighbors, ¢. The notation ) ~ ¢” will hereafter denote thap, ¢ are neighbors,

i.e. “either only(p,q)e € or only (q,p)€e&”. The first constraints (2) simply express the fact
that each vertex must receive exactly one label, while constraints (3), (4) maintain consistency
between variables,(-), z,(-) andz,,(-,-), in the sense that it,(a) = 1 andz,(b) = 1 holds

true, then these constraints foreg,(a,b) = 1 to hold true as well.

To overcome the limitations of current state-of-the-art methods, a new framework [9], [10] is
proposed in this paper, which provides novel global minimization algorithms for the approximate
optimization of the Metric Labeling problem (and thus of a very wide class of MRFs frequently
encountered in computer vision). It makes use of the primal-dual schema of linear programming
in order to derive efficient (i.e. combinatorial) approximation techniques with guaranteed opti-
mality properties, thus bridging the gap between the two classes of approximation algorithms

mentioned above. The major contributions of the proposed framework are the following:
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Fig. 1: (a) The difficulty of the ML problem depends critically on the type of chosen label distdfice (b) A

comparison of our framework with respect to state-of-the-art optimization methods that are based on graph-cuts.

1) It turns out that the difficulty of the Metric Labeling problem depends critically on the type
of the chosen distanag(, -) between labels (see Figure 1(a)). Up to now, one limitation of the
state-of-the-artv-expansion method was that it had to assume that this distance was a metric,
i.e. it satisfied the triangle inequality. However, this case often does not hold in practice, thus
limiting the applicability of thea-expansion method. On the contrary, the algorithms derived in
the proposed framework only require a non-metric distance function that sati&fiés = 0 <
a=b, d(a,b) =d(b,a) > 0, which is a weaker assumption.

This opens the way for applying our techniques to a wider class of MRFs with more general
energy functions. Given that MRFs are ubiquitous in computer vision, this also implies that these
algorithms can handle many more instances of a large variety of computer vision tasks (including
stereo matching, image restoration, image completion, optical flow estimation etc.). For all these
problems, the use of more sophisticated MRF priors is allowed based on our framework, thus
leading to a better modeling of the problem at hand. This is important, since it is well-known
that the choice of the prior plays a very significant role for the quality of the generated solutions.

2) Furthermore, the quality of these solutions also depends critically on how close they are to
the true optimum of the MRF energy function. Another contribution of our framework is that,
even in the case of a non-metric distance, it can still guarantee that the generated solution will
always be within a known factor of the global optimum, i.e. a worst-case suboptimality bound
can be provided in this case (see Figure 1(b)). This is in contrast to local MRF optimization

methods, such as the ICM algorithm or the Highest Confidence First method, for which no such

1In fact, the assumption of a symmetric distance is not used by any of the theorems in this paper and so our algorithms can han-
dle any distance for whicti(a, b)) =0< a=», d(a, b) > 0. The term “non-metric” will thus refer just to these conditions hereafter.

Furthermore, our framework can be easily extended to even handle certain distances fodwhigh=0<a=b is not true.



theoretical guarantees (i.e. no such analysis) can be provided. We should also note that, although
any algorithm (e.g. thev-expansion) can be converted to handle non-metric distances without

a loss in the worst case bounds (e.g. by replacing non-metric terms with Potts terms, see [1]),
this completely misses any structure of the non-metric distance function. On the contrary, our
method can handle both metric as well as non-metric costs naturally.

3) In fact, in practice, the resulting solutions are much closer to the true optimum than what the
worst-case approximation factors predict, i.e. they are nearly optimal. This can be verified thanks
to our algorithms’ ability of also providing per-instance suboptimality bounds, a property com-
mon to any other primal-dual or LP-rounding based algorithm as well [2], [7], [11]. Moreover, in
our case, these bounds can be derived without having to solve large linear programs to optimality,
and they also prove to be very tight (i.e. close to 1) in practice. They can therefore be used to
access the optimality of the generated solutions and thus are very useful in deciding the ability of
the chosen MRF to model the problem under consideration (e.g., the existence of a nearly optimal
solution that does not look intuitively good, implies that a different MRF should be chosen).
Moreover, since these per-instance bounds are updated throughout the algorithm’s execution,
they can be also used in assessing its convergence, thus possibly reducing the total running time.

4) The generality and power of our framework is exhibited by presenting various algorithms,
just one of which is proved to be equivalent to theexpansion graph cut technique (i.e. a
method which is currently considered state-of-the-art). Our framework therefore provides an
alternative and more general view of these very successful graph-cut techniques, which can now
be interpreted not merely as greedy local search, but in terms of principles drawn from duality
theory of linear programming, thus shedding further light on their essence (e.g. a connection
betweenn-expansion and the belief propagation algorithm TRBP [11], which also tries to solve
exactly the same dual LP relaxation, can thus be established). This is an important advance which,
we believe, may open the way for new related research and can thus lead to even better MRF
optimization algorithms in the future. Moreover, the primal-dual schema, a powerful optimization
tool, that was already known to people in combinatorial optimization (since it has already been
used for tackling many LP problems [12], e.g. for providing an alternate way to derive Dijkstra’s
algorithm, Ford-Fulkerson’s algorithm, the Hungarian method, etc.), is now also introduced to
the field of computer vision, which can prove to be a great benefit too.

The rest of the paper is organized as follows. We review related work in section Il. In section



[l the primal-dual schema is presented, which will guide the design of all of our approximation
algorithms. These algorithms are described in sections IV - VI. More specifically, to handle
the various cases of the distance function, we will progressively present 3 different families of
primal-dual algorithms, which are thus named PD1, PD2 and PD3 respectively. Algorithm PD1
forms the base for deriving and understanding the other two types of algorithms and so the main
points of that algorithm are described thoroughly in section IV. In section V, we derivg, PD2
(based on PD1), which is the second family of primal-dual algorithms and are parameterized by
a variabley. Unlike algorithm PD1, all algorithms in this family can be applied only to metric
MRFs. Furthermore, we show that the well-knowrexpansion technique is equivalent to just
one member of this family of algorithms. In particularexpansion arises if we simply set= 1,

i.e. it is equivalent to algorithm PD2;. In section VI, we present algorithms PD3, which make

up the third family of our primal-dual methods. These algorithms manage to extend, as well
as generalize the-expansion method (i.e. algorithm P[22) to the case of non-metric MRFs.

In addition, despite this generalization, these algorithms manage to maintain the theoretical
approximation guarantees of the PD2 algorithm. Experimental results are shown in section
VII, while we conclude in section VIII. We note that, for reasons of clarity (as well as space),

not all technical proofs of the theorems are presented here, but they can all be found in [10].

Il. RELATED WORK

There is a vast amount of computer vision methods on how MRFs can be optimized. Such
methods include for example the ICM-algorithm, the Highest-Confidence-First heuristic, multi-
scale MRFs, relaxation labeling, graduated nonconvexity and mean field annealing, to mention
just a few of them. However, all of the above-mentioned methods, as well as the great majority
of the methods in the literature are only able to provide a local minimum that can be arbitrarily
far away from the true optimum, thus giving no guarantees about the quality of the resulting
solutions (i.e. how close these are to the true optimum). Most closely related to our work are
those (few) approaches that do provide such guarantees about the optimality of their solutions.

One such class of approximation algorithms [2], [7], [8] is based on formulating MRF opti-
mization as a natural integer program. A linear programming relaxation of that integer program
is then solved and a randomized rounding technique is being used to extract a near the optimum

integer solution. Different authors choose different linear programs or rounding techniques for



that purpose. Although these algorithms appear to have good theoretical properties, they are still
impractical to use in problems of early vision, since, in that case, the linear program to be solved
becomes extremely large. Moreover, in order to provide any guarantees about the suboptimality
of their solutions, they usually need to further assume that the MRF potential function is a metric.

Another class of approximation algorithms is based on combinatorial optimization. Out of
these algorithms, a very popular one is thexpansion graph cut method [1], [3]. This can
be interpreted as an iterative local search technique which, at each iteration, tries to extract a
better solution (i.e. one with lower energy) by finding the minimum cut in a suitable graph. This
state-of-the-art method has proved to be very efficient in practice and has been applied with
great success to many problems in computer vision [13], [14]. Its drawback, however, is that it
is only applicable to MRFs with a metric potential function. In fact, for some of these metrics,
graph-cut techniques with better optimality properties seem to exist as well [5].

Related toa-expansion is also the-3-swap algorithm [1]. Although this is a more general
method, as it applies to non-metric potentials as well, it does not seem to be as effective as
expansion. This mainly has to do with the fact that it provides no guarantees about the optimality
of its solutions and thus may very well get stuck to a bad local minimum. Finally, we should note
that, for a certain class of MRFs, there also exist graph cut based methods which are capable of
extracting the exact global optimum [4], [6]. These, however, require the potential function to
be convex, as well as the labels to be one-dimensional, a fact which restricts their applicability.

Finally, we should also mention that there also exist those optimization algorithms that are
based on belief propagation [15]. Although they impose no restrictions on the type of the MRF
potential function to be chosen, their theoretical optimality and convergence properties are not
yet well understood. However, significant progress has been made with respect to this issue
over the last years. In particular, the tree-reweighted max-product BP algorithm [11] can be
implemented in a way that will provably converge [16] and can also be used to obtain bounds
on the optimal solution. In fact, it was recently shown that for certain instances of the stereo

problem it can even find the global minimum [17].

I1l. THE PRIMAL-DUAL SCHEMA

Let us consider the following pair of primal and dual linear programs:
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(a) The primal-dual principle (b) The primal-dual schema

Fig. 2: (a) By weak duality, the optimal cost”x* will lie between the costb”y andc”x of any pair(x,y) of
integral-primal and dual feasible solutions. Therefordy’ify andc”x are close enough (e.g. their ratipis < f),

so arec”x* and c’x (e.g. their ratiory is < f as well), thus proving thak is an f-approximation tox*. (b)
According to the primal-dual schema, dual and integral-primal feasible solutions make local improvements to each
other, until the final coste”y?, cTx? are close enough (e.g. their ratiodsf). We can then apply the primal-dual

principle (as in Fig. (a)) and thus conclude thdtis an f-approximation tax*.

PRIMAL: min c¢’x DUAL: max b’y
st. Ax=b,x>0 st. ATy <c

Here A = [a;;] represents am x n rectangular matrix, whilé, c are column vectors of size

m,n respectively. We would like to find an optimal solution to the primal program under the
additional constraint that its components are integer numbers. Due to this integrality requirement,
this problem is in general NP-hard and so we need to settle with estimating approximate solutions.

A primal-dual f-approximation algorithm achieves that by use of the following principle:

Primal-Dual Principle. If x andy are integral-primal and dual feasible solutions satisfying:
c'x< f-bly (5)
thenx is an f-approximation to the optimal integral solutiatr, i.e. c’x* < ¢fx < f- cT'x*

The reason that this principle holds true is rather simple and is illustrated graphically in
Figure 2(a): in particular, due to weak duality it will hold that the coSk* of the optimal
integral solution will always lie between the dual cdsty and the primal cost’x, i.e.
bly < cTx* < c'x. If we therefore manage to bring the two quantitieSy and c’x close
to each other (e.g. by making their ratip = c’x/b”y less or equal tof, as in (5)), then we
will also have succeeded in bringing the costs* andc’x close to each other as well (e.g. the
ratio ry = c’x/cTx* will also be less thary), thus proving thak is indeed anf-approximation

to x*. Put otherwise, what the above principle does is to make use of the fact that the primal



LP gives a lower bound to the primal IP (integer program) and thus the dual of the LP, which
is (by weak duality) always a lower bound to the primal LP, will also give a lower bound to
the primal IP as well (i.e. dual-LR primal-LP<primal-IP). This also implies that the quality

of solutionx will depend on how tight the LP relaxation is with respect to the IP.

The above principle lies at the heart of any primal-dual technique. In fact, the various primal-
dual methods mostly differ in the way that they manage to estimate gxpait) satisfying the
fundamental inequality (5). One very common way for that (but not the only one), is by relaxing
the so-called primal complementary slackness conditions [18]:

Theorem (Relaxed Complementary Slackness)f the pair (x, y) of integral-primal and dual
feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

Vox; >O:>§:aijyi >l
=1
then (x,y) also satisfies the Primal-Dual Principle witfi = max; f; and thereforex is an
f-approximation to the optimal integral solution.

To prove this, one must simply combine the relaxed complementary slackness conditions with
the fact that solutions, y satisfy the feasibility conditions of the primal and dual program respec-
tively (fundamental inequality (5) then follows trivially). Thus, based on the above theorem, the
following iterative schema is usually applied during a primal-dfr@pproximation algorithm:

Primal-Dual Schema. Keep generating pairs of integral-primal, dual solutiof(sc*, y*)}:_,,
until the elementsx!, y' of the last pair are both feasible and satisfy the relaxed primal
complementary slackness conditions.

This schema is illustrated graphically in Figure 2(b). At each iteration, based just on the current
dual feasible solutiory*, we perturb the current primal feasible solutigh, so that its primal
costc”x* comes closer to the dual cdsty”. This is also applied in reverse (ig* is perturbed
as well) and a new primal-dual pair, sey* !, y**1), is thus generated. This is repeated until the
costs of the final primal-dual pair are close enough. The remarkable thing with this procedure is
that the two processes (i.e. the primal and the dual) make local improvements to each other and
yet they manage to achieve an approximately global objective at the end. Also, it is worth men-
tioning thatone can thus devise different approximation algorithms, merely by specifying a differ-
ent set of complementary conditions (i.e. differéfteach timewhich is exactly what we will do

for the case of Metric Labeling and thus derive 3 different types of algorithms PD1, PD2 and PD3.
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A. Applying the primal-dual schema to Metric Labeling

For the case of Metric Labeling, our primal linear program will be integer program (1), after
first relaxing its{0, 1}-constraints tar,(-) >0, z,,(-,-)>0. The dual of that LP will then be:

max z” -1 (6)

stz < mi? h, (m%l h, takes the elementwise minimum between vectors h,) (7)
ac ac

Ypg(@) + Ygp(b) < wped(a,b)  Va,be L, Y(p,q)eE (8)

In this case, dual variables consist bf:a vectorz = { z, } ) with one component per vertex Gf
2) an auxiliary vectoth,={h,(a)},cyv per labela (eachh, has one component per vertex@y,
3) as well as a vectoy containing all variableg,,(-), v,,(-), called the'balance variables”here-
after. Also, any 2 variableg,,(a), y,,(a) will be referred to asconjugate balance variables”
The variablesh,(-) are named théheight variables” and are just auxiliary variables which

implicitly depend on the balance variables as follows:

) =6() + Zq:qu Ypa () 9)
The reason for giving this name to thg(-) variables, as well as for introducing these redundant

variables in the first place, will become clear in the sections that are following. Also, note that,

due to (6) and (7), the, variables should always be set as follows:

z = minh, | (20)

a€eLl

and so we do not have to worry about constraints (7) or how to estimatg Wagiables any more.
Furthermore, for defining a dual solution, only the balance variallgs) must be specified,
since the height variablées,(-) can then be computed by (9).

Since we will be considering only feasibl@, 1}-primal solutions, instead of the variables
zp(+) and z,,(+, -), a primal solutionx will hereafter simply refer to a set of labels, },cv,
wherez, denotes the label assigned to verfexthenz,(a) = 1 is equivalent tar, = a, while
Zpe(a,b) =1 meanse, = a,z, = b and so, under this notation, it is not difficult to see that the

complementary condition related to a non-zetda) variable reduces to:

>Cp Tp /fl"*’z ypq xp ) (11)
while the complementary condition related to a non-zema, b) variable reduces to:
Tp F Tq = Ypg(Tp) + Yp(Tg) 2 wped(p, T4)/ f2 (12)

Ty = 2q = a = Ype(a) + ygpla) =0 (13)



11

1: x < INIT_PRIMALS( ); y «<INIT_DUALS( ); LabelChange-0 [ 6 if x # x then LabelChange-1

2: for each labek in £ do 7. x—x,y«—y;

3. y < PREEDIT.DUALS(c,X,y); 8: end for

4:  [x',y’] < UPDATE.DUALS_PRIMALS(c,X,y); 9: if LabelChange: 1 then goto 2;

5. y’ «+POSTEDITDUALS(c,x',y"); 10: if algorithm# PD1then y™* «DUAL _FIT(y);

Fig. 3: The primal dual schema, as applied by algorithms PD1, PD2 and PD3.

Our objective will therefore be to find feasible solutiaxgy satisfying the above conditions
(11), (12) and (13) for specific values ¢f and f,. Conditions (13) simply say that conjugate
balance variables are opposite to each other. For this reason, we set by definition:

Yop() = —Upe(1) ¥V (@) €E (14)
and so we do not have to worry about conditions (13) hereatfter.

Most of our primal-dual algorithms will achieve an approximation factoy"agf,:zifﬁ (i.e.
max{ f1, fo} = fapp), Whered,i, =min,z, d(a, b) andd,,.x =max,, d(a, b). Their basic structure
can be seen in Figure 3. The initial primal-dual solutions are generated imSmeRIMALS
andINIT _DUALS. During an inner iteration (line$-8 in Figure 3), a labet is selected and a new
primal-dual pair of solutiongx’,y’) is generated by updating the current pait;y). During
this iteration, among all balance variablesyofi.e. y,,(.)), only the balance variables of the
labels (i.e. y,,(c)) are modified. We call this a-iteration of the algorithm|£| such iterations
(one c-iteration for each labet in the set£) make up an outer iteration (lin€s9 in Figure 3)
and the algorithm terminates if no vertex changes its label during the current outer iteration.

During an inner iteration, the main update of the primal and dual variables takes place inside
UPDATE_DUALS_PRIMALS, While PREEDIT.DUALS andPOSTEDITDUALS modify the dual vari-
ables before and after the main update. DlvaL _FIT routine, which is used only in algorithms

PD2 and PD3, serves only the purpose of applying a scaling operation to the last dual solution.

IV. THE PD1ALGORITHM

An intuitive view of the dual variables, that will prove useful for designing our approximation
algorithms, is the following: for each vertex we consider a separate copy of all labelsCinlt
is then assumed that all these labels represent balls, which float at certain heights relative to a
reference plane. The role of the height variables is then to determine the balls’ height (see Figure
4(a)). E.g. the height of label at vertexp is given by the dual variable,(a). Expressions like
“label a at p is below/above labeb” imply h,(a) < h,(b). Furthermore, balls are not static,

but may move in pairs through updating pairs of conjugate balance variables. E.g., in Figure
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- hy(Q)f-emsrmmmee oc |M@p0

hy(C) - 0 h ()0 =X

(a) 1% type of dual variables: height variables (b) 2" type of dual variables: balance variables
Fig. 4: Visualization of the dual variables for a graghwith verticesp, ¢, » and labelsC = {a, c¢}. (a) A copy of
labels{a, c} exists for each vertex and all these labels are represented as balls floating above a reference plane. The
role of the height variables is to specify the balls’ heigh). Furthermore, balls are not static, but may move in pairs
by updating conjugate balance variables. E.g., herectalp is pulled up by+é (due to increase afy,(c) by +9)

and so balt atg moves down by-¢ (due to decrease af,(c) by —d). Active labels are drawn with a thicker circle.

4(b), labelc at p is raised by+d (due to adding+é to y,,(c)) and so labet at ¢ has to move
down by —§ (due to subtracting-¢ from y,,(c), so that conjugate variables remain opposite
to each other). Therefore, the role of balance variables is to raise or lower labels. In particular,
due to (9), the height of label at p may change only if at least one of the balance variables
{ype(@)}4:q~p Changes as well. The value of balance variaplga) thus represents the partial
raise of label: at p due to edgepg, while the total raise of. at p equals the sum of all partial
raises due to edges @hincident top. Note that eacly,,(-) represents net raise (called just raise
hereafter) and not relative raise. E.g., in Fig. 4(b), labat p has relative raise-g, but its (net)
raise isy,,(c)+dJ, wherey,,(c) is the previous value of the balance variable.

Before proceeding to PD1, let us define some terminologyxlgtbe a pair of integral-primal,
dual solutions. We call the label thatassigns to (i.e. x,) the active label atp. The sum of
heights of all active labels is called thApproximate Primal Function”(or APF for short), i.e.
APF*Y =3 hy(z,). This function’s name comes from the fact thatxify satisfy the relaxed
slackness conditions, then it is easy to prove that APF approximates the primal objective function.
Also, any balance variable of an active labepdte. any variable i{y,,(z,) }4:4~p) Will be called
anactive balance variable at vertgx The "load” between neighbots ¢ (denoted byload,,) is
then defined abad,; = y,e(2,)+yqp(24) (i.€. as the sum of 2 active balance variables, ) and
represents the partial raises of active labels, atdue to edgeyq. If relaxed slackness conditions
(12) hold, then, due to (12) and (8), it is easy to seethat(x,, x,)/ f> < load,, < w,d(z,, z4)
and so the load g, ¢ can be also thought of asvartual separation costvhich approximates the
actual separation cost,,d(z,,x,) of p,q (this will prove useful later for our PD3 algorithms).

Our first algorithm, called PD1, assumes th#t, -) is merely a non-metric distance and
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then tries to find feasible, y satisfying complementary conditions (11), (12) with=1 and

fo = fapp (recall thatf,,, = 2%==x). If f; = 1, then condition (11) becomes, > h,(z,) and

dmin
So, sincez, = min, h,(a) (due to (10)), complementary condition (11) finally reduces to:
hp(ap) = min hy(a) (15)
Also, if f, = fapp, then complementary condition (12) reduces to:
Tp # Tq = loadyg > wped(p, T¢)/ fapp (16)

Furthermore, to ensure feasibility ¢ PD1 enforces (for any label):
Ypg(@) < Wpglmin /2 (17)
To see that (17) ensures feasibility, one suffices to observe th@t) + 4, (0) < 2wpgdmin/2 =

Wypedmin < wp,d(a,b) and so the dual constraints (8) hold true.

Therefore, the goal of PD1 is to find,y satisfying conditions (15)-(17). To this end, it
ensures that conditions (16), (17) always hold true (which is easy) and then iteratively drives
x,y towards satisfying (15) as well, by alternating between updates of primal and dual variables.
For this, it also maintains the following invariam@ictive balance variables are nonnegative.:

Vp €V, ypglx,) >0 (18)
To see then how the update of primal and dual variables should proceed, one simply needs to
reinterpret conditions (15)-(17) based on the dual variables’ aforementioned interpretation. E.g.:
¢ (15) simply says that, at each vertex, the active label should have the lowest height,
¢ (16) requires that any 2 active labels should be raised proportionally to their separation costs,
e and, finally, (17) says that there is an upper bound on how much we can raise a label.
Based on these, and assuming that (16), (17) already hold true at the current (outer) iteration,
the update of the primal and dual variables for the next (outer) iteration proceeds as follows:
DUAL VARIABLES UPDATE : Given the current active labels (i.e. the current primal), any non-
active label (which is below the corresponding active label) is raised (by increasing the appro-
priate balance variables), until it either reaches the active label, or attains the maximum raise
allowed by (17). Note that conditions (16) still hold true, since no active labels have moved.
PRIMAL VARIABLES UPDATE : Given the new heights (i.e. the new dual), there might still be
vertices violating (15), i.e. their active labels are not at the lowest height. For each such vertex
p, we select a non-active label, which is belay but has already reached the maximum raise
allowed by (17). That label, say is then made the new active labelfi.e. we setr, = c. One

can then show that conditions (16) will still hold for the new active label. To see that, it suffices
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to observe that, becaugehas reached its maximum raisezatthen for any neighbog it will

hold thaty,(c) = “x4g=ix, which is > “egmis d0t) — Lttt This, in conjunction with the
nonnegativity of any variable,,(z,) (due to (18)), thus proves that condition (16) will still hold.
This way, since we keep assigning lower active labels to vertices, one may easily show that
conditions (15) will finally hold true in the end, i.e. after a finite humber of outer iterations.
During an outer iteration, the update of the dual variables takes place in groups, one group
per inner iteration. In particular, during an inneiteration, only the heights of thelabels are
rearranged, so that as many of these labels as possible are raised above the corresponding active
labels. To this end, solutiop is changed into solutiog’ by changing only variableg,,(c) (i.e.
the balance variables of attlabels) intoy,, (c). This way, the new heights, (c) are produced.
We must be careful, though, during this update of ¢Heeights. E.g., in Figure 4(a), we would
like the c-label atp to move at least as high as=a (the c-label atq is already abover,=a,
while thec-label atr does not need to move at all, as it is already the active labél éfowever,
if we raise labelc at p until it reachesz,, say by increasing,,(c), then labelc at ¢ will go
belowz,, due to the decrease of the conjugate varighléc), thus breaking condition (15) far.
It turns out that the optimal update of théneights can be simulated by pushing the maximum
amount of flow through a directed gragh = (V¢, £¢,C¢). Capacitie<* of this graph depend on
x,y, While its nodes’c consist of all nodes of graph (theinternal nodes) plus 2xternalnodes,
the sources and the sink. Furthermore, all nodes @i are connected by two types of edgies,
terior andexterioredges, which are constructed using the following simple rules (see also Fig. 5):
Interior edges: For each edgép, q) € G, we insert 2 directed interior edggg andgp in graph
G°. Flows f,, (throughpq), f,, (throughgp) will represent respectively the increase, decrease
of balance variabley,,(c). The net change af,,(c) will therefore bef,, — f,,., i.e.:
Upo(©) = Upal€) + fog = fup (19)
Similarly, the net change of,,(c) will be f,, — f,, and soy, (c) = —y;,(c), i.e. conjugate
balance variables remain opposite to each other, as they should.
Due to (19), it is obvious that capacityp,,, of edgepq determines the maximum allowed value
of y,,(c) (attained atf,, = cap,,, fo, =0), While a similar conclusion holds famp,, andy; (c).
But, e.g.y,,(c) represents the new partial raise of labedt p due to edgeyg. Therefore, if the
c-labels atp, ¢ aren’t active (i.ex,#c, r,#c) and may thus move, thermp,,, cap,, are set so

that theser-labels cannot raise too much and violate (17), i.e. they are set sg,ffal, v (c)
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Fig. 5: Four simple rules for constructing graphi: (a) if ¢ atp is belowz,, we connect nodg to sources and flow

[» throughsp represents the total relative raisecfand alsccap,, =y, (2, )-hy(c)). (b) if ¢ is abover,,, we connect
nodep to sinkt and flow f, atpt equals the total relative decrease in the height @ndcap,, = h,(c)—h,(;))- (C)
if c is the active label gt, it need not movei.e. flow f, throughsp should bed) and we thus setap,,, =cap,, =0

(and by conventiorap,, =1). (d) Capacities of interior edges are set so that constraints (17) always hold true.

can't exceediwpqdmin, thus ensuring that (17) holds true for new dual solutyéras well (see
also Fig. 5(d)): CaPyg + Ypqg(€) = 5 Wpgtlmin = CaDg, + Ygp(€) (20)
On the other hand, it is already the active label of (or ¢), then labelc at p (or ¢) need not
move (from their current positions) and $g,(c), y,,(c) should equaly, (c), y;,(c), i.e. (see
also Fig. 5(c)): T, =c Or I,=cC= cap,, = cap,, =0 (22)
Exterior edges: Each internal node connects to either the source nager the sink node
t (but not to both of them) through an exterior edge. We have 3 possible cases to consider:
— CASE 1(c is “below” =, i.e. h,(c) < h,(z,)): we would then like to raise label as
much as needed so that it reaches lahe(e.g. see Fig. 5(a)). To this end, we connect source
nodes to nodep through a directed edg®. The flow f, through that edge will then represent
the total relative raise of label i.e.? 1/ (c) = hy,(c) + f, (22)
Therefore, based on (22), capacityp,, of edgesp will represent the maximum allowed
relative raise in the height af Since we need to raiseonly as high as the current active label
of p, but not higher than that, we therefore setp,, = h,(z,) — h,(c) (see Fig. 5(a)).
— CASE 2(cis not “below” z,,, i.e. h,(c) > hy,(z,), and not the active label of, i.e.c # z,):
we can then afford a decrease in the height et p, as long as: remains “above™,. To this

end, we connech to the sink node through directed edget (e.g. see Fig. 5(b)). This time the

2To verify (22), it suffices to combine (19) with the flow conservation at npdehich reduces tg, = Zq:qu(qu — fap)-

It then holds:fy(€) + £ 2 (¢3(€) + X gy Upa(©)) + o = (0(0) + orgrp 900(0) ) + X g (Foa = Fan) = (en(e) +

5 g Ura(©)) + gy (U5 (€) = 000 (0)) = 6(0) + X ey Uhal©) 2 ()
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flow f, through edgept will equal the total relative decrease in the heightcofe.:
i (e) = hy(e) = f, (23)

and socap,,, will represent the maximum value of such a decrease. Therefore, based on the fact
thatc has to remain above,, we setcap,, = h,(c) — h,(x,) (see Fig. 5(b)).

— CASE 3(c is the active label op, i.e.c = :c,,): we then want to keep the height ofixed
at the current iteration. As in case 1, we again connect the source sntm@odep through
directed edgesp (see Fig. 5(c)). This time, however, the flow for any interior eggeor ¢p
incident top will be zero (due to (21)). Thereforg, = 0 as well (due to flow conservation at

p) and soh; (c) = h,(c) (see (22)), as it was intended. By convention wecset, = 1.

A. Main routines for updating primal and dual variables during-dteration
We are now ready to summarize the main actions executed during anciieeation of PD1:
PREEDIT.DUALS: This routine’s role is to edit current solution before the construction of

the graphgc. In the case of the PD1 algorithm, no such editing is needed.
UPDATE_DUALS_PRIMALS: The primal-dual pairx’,y’ is generated here. For generating

the graphg is constructed and a maximum flow algorithm is applied to it. The resulting flows

are used in updating only the,(c) variables as explained in the previous section (see (19)),
e y;/oq(c> = Ypq(€) + fpg — fap (24)
Therefore, due to (22), (23), only theheights will change as follows:

[, if p is connected to node
ho(c) = hy(c) + (25)
—f, if p is connected to node

Based on the new heights, we now need to updait@o x’, i.e. assign new active labels. As
only thec-heights have changed (i.e. onifabels may have gone above or below an active label),
this amounts to deciding whether a vertex keeps its current active label or is assigned the label

This can again be achieved by considering only the flong‘iand applying the following rule:

REASSIGN RULE. Labelc will be the new label op (i.e.z), = ¢) < 3 unsaturated path between
the source node and nodep. In all other casesp keeps its current label i.e;, = z,,.
Intuitively, on one hand, this rule ensures that # x,, then (after the heights’ update) the

“lowest” of ¢, x,, is assigned to (i.e. it ensures property A below, so that conditions (15) finally

SA path is unsaturated ifffow < capacity” for all forward arcs and flow > 0” for all backward arcs
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indicate new positions of-labels.(Right) Associated graplg¢ and resulting flows responsible for the update of
balance variables in the left figure (current balance variables were assumed to be 0). Based on the reassign rule,
only vertexp will have to change its active label intg since only edgep of G¢ is unsaturated, whereas any path to

g or r is not. This is indeed the right choice, since, as can be seen, (after the updatgwatligave labelc below

its previous active labet. Also, as expected, flowg,, f,, f- at exterior edges equal the total relative movement

of the c-labels atp, ¢, r respectively. (The Potts distance has been used in this example A.6.= d(a,b) = 1).

hold true). To see that, assume e.g. pgthn Fig. 5(a) is unsaturated, i.¢, <cap,,. But then,
since f, equals the total relative raise of(i.e. f,=h; (c)—h,(c)), andcap,,= h,(z,)—hy(c), it
follows thath (c) <hp(a:p)x’iéch;(xp). l.e. labelc should indeed be assignedjtoas it is “lower”
than previous active label, (see also labet at p in Fig. 6 for another such example).
On the other hand, this rule also ensures thatsfthe new label assigned tothenc has raised
high enough so that (16) still holds. This is ensured by property B below (togethegftt}) >
0 from (18) and the definition aofap,,, in (20)). The reason property B holds is because, e.g. in the
previous example, ifp is unsaturated, then forward grg, as well as backward argp must both
be saturated (or else an unsaturated path fsxdm¢ can be shown to exist, which is impossible
by max-flow min-cut). But thery,,=cap,,, f;,= 0 and so property B arises due to (24).
Due to “reassign rule”, these 3 properties can thus be proved [10] for the new sok{tigh$
(A) H,(ah) =min{h,(z,), Wo(c)},  (B) @)= Aal =yl (a)) = cappy +pe(c),  (C) x#X =
APF¥Y < APF*Y. The last one (i.e. property C) proves the algorithm terminates (assuming
integer capacities), and the intuition for being true is due to the reassign rule, which ensures that
a new active label has always lower height than the previous active labél; (26, <h,(z,,).
POSTEDIT.DUALS: This routine’s role is to restore invariant (18) for the next iteration. It thus
changes/’ so that its active balance variables arezall, while neither the APF nor any “load”
is altered during this change. For PD1, one can show that only=fz; (and never ifz) # ;)

may then (18) not hold, in which cageSTEDITDUALS simply setsy, (z;,) =y, (z;)=0.

“The reassign rule, and thus properties (A), (B) and (C), apply not only to PD1, but to our other primal-dual algorithms as well.
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INIT _PRIMALS : initialize x by a random label assignment || INIT _-PRIMALS: initialize x at random

INIT _DUALS INIT _DUALS
ey=0 ey=0
o for all (p,q) € € with =, # =, do {impose (17) o for all (p,g) € € with z, £ 2, do {impose (26)

Ypa(Tp) = —Yap(Tp) = Wpqdmin/2=Yqp(Tq) = —Ypq(Tq) () = —tap () = fit0pqd(p, ) /2
e z=min, h, {impose (10} Ypa\Tp) = —Yap\Tp) = HWpqQ(Tp, Tq

Yap(Tq) = —Ypq(Tq) = pwped(zp, Tq)/2

PREEDIT_DUALS: y <y {no change needed foy} ez=min,ha {impose (10)
UPDATE_DUALS _PRIMALS {generatex’,y’} PREEDIT_DUALS {edity}

ox'=x,y =y

o Apply max-flow toG° and compute flows,, fpq

hd y;,q(c) =Ypq(c) + fra — far V¥P,a:D~4q

e Vp eV, z, = ¢« 3 unsaturated path ~ p in G°

e for each(p, q) € € with z, # ¢, 24 # ¢ do

Yap(€) = —Yqp(€) = pwpqd(2p, ¢) — Ypqg(Tp)

POSTEDIT_DUALS {edity’}

POSTEDIT_DUALS {edity’} e edity’ so that its active balance variables ared
e for all (p,q) € € with 2, =z, =c do {impose (18) ez =min,h, {impose (10)

if ypq(c) <0 or y,(c) <0 then y,,(c) = yip(c) =0
ez =min,h, {impose (10} DUAL FIT: yfit = -

Fig. 7: Left: Pseudocode of PDRight: Pseudocode of PD2 The routineUPDATE_.DUALS_PRIMALS iS common
to both algorithms (and is thus shown only for PD1). Also, regarding the constructigf, dhe only difference
between the 2 algorithms is that a subset of the edger’ afre assigned different capacities (see (29), (30)).
Based on the above analysis (see also pseudocode in Fig. 7), the next theorem can thus be
proved [10], asserting that PD1 always leads tofgp-approximate solution:
Theorem IV.1. The final primal-dual solutions generated By 1 satisfy all conditions (15)-(17)

and thus they satisfy the relaxed complementary slackness conditiong, with, f; = fapp.

V. THE PD2ALGORITHM

Algorithm PD2 (unlike PD1) applies only if(-, -) is a metric. In fact, PD2 represents a family
of algorithms parameterized by a variable[ﬁ 1]. PD2, will achieve slackness conditions
(11), (12) with fi=p fapp and fo=f,,,. The reason fop > ﬁ is becausg; <1 can never hold.

A main difference between algorithms PD1 and Ri¥that, PD1 always generates a feasible
dual solution at any of its inner iterations, whereas PBy allow any such dual solution to be-
come infeasible. However, PR2nsures that the (probably infeasible) final dual soluticimd
too far away from feasibility” This practically means that if that solution is divided by a suitable
factor, it will become feasible again. This method (i.e. turning an infeasible dual solution into a
feasible one by scaling) is also known“asial-fitting” [18] in the linear programming literature.

More specifically, PD2 generates a series of intermediate pairs, all of them satisfying com-

plementary condition (12) as an equality with= i ie.:
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T, # v, = load,, = pwyd(z,, z,) (26)
In addition, using a similar strategy with PD1, PD@rives the last intermediate pair towards
satisfying complementary condition (11) with = 1 again, i.e.:
hy(,) = min by (a), (27)
while, also like PD1, it tries to maintain nonnegativity of active balance variables, i.e. (18).
However, unlike PD1, the dual solution of the last intermediate pair may be infeasible, since,
in place of constraints (8), it can be shown to satisfy only the following conditions:
Ypa(@) + Ygp(0) < 2pwpgdiae  Va,bEL, ¥(p,q) €L (28)
Nevertheless, these conditions ensure that the last dual solutiowy, ssyot “too far away

from feasibility”. This means that by replacingwith yfit = uf , we can then show that:

b) (28) 2 Amax 2 dmax
ylf)i;(a) i ycf;;(b) _ Ypa (@) + Yqp(D) < HWpq _ 2:‘Ziwpq y
:ufapp ,ufapp :u max/ min

meaning thaty'® satisfies constraints (8) and is thus feasible. Furthermore, the primal-dual

- wpqdmin < wpqdab ;

pair (x,y') (x is the last primal solution) satisfies complementary conditions (11), (12) with

J1 = ifapps fo = fapp, thus leading to arf,,,-approximate solution as well. Indeed, it holds that:

it — “p_ (19) min, h,(a) 27 hy(zp) — ¢p(p) + ZQ¢QNP Ypq (p) _ Cp Tp) Z i

P Mfapp :ufapp :ufapp Mfapp fapp q:q~p ’
fi fit _ Ypa(Tp) + Ygp(T4) _ loady, (26) [Wpgd(2p, T4) _ Wyed(Tp, Tq)
ypq(xp) + yqp(xq) - - - -
[ fapp [ fapp 14 fapp fapp

The generation offi* (giveny) is exactly what thedoUAL _FIT routine does.

A. Main routines for updating primal and dual variables during-dteration
PD2, routines (see Fig. 7) are mostly similar to those of PD1. The main difference (which
is also the only difference regarding the constructiorGtf is the definition of capacity for all
interior edgespq, gp whose endpoints have labejs ¢ at the start of current-iteration, i.e.
z,=a7#c andz,=b#c. In place of (20), we then define:
cap,, = pwyg(d(a,c) + d(c,b) — d(a,b)) (29)

cap,, =0 (30)
Furthermore, in this cas®REEDIT-DUALS editsy so that:y,,(a) + y,,(c) = pwyd(a, ).
The above difference is because, in PD1, the “reassign rule” needed to ensuteadhat

satisfied (16), whereas ndwad,,, must fulfill (26), even if new labels are assigned:Byi.e. x’ #
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x), which is exactly the rationale behind definitions (29), (30), as weHlREEDIT_DUALS. TO see

that, assume e.g’ assigns a new labelto q (i.e. z, = c# ,), but not top (i.e. 2}, =z, # ), then:

(30)
capg, + Yap(C) = Ygp(c)

/ ! __ —
, xp7ﬁc 1 \Tp=T a=

y;q(zp) = ypq(xp) = pypq(zp)

Combining these with the definition GfREEDIT.DUALS immediately proves that (26) remains

T ty B
="ypg(a) and  y (z7) Propetty

true in this case (with other cases being handled similarly as well). Finally, as in PD1, the role
of POSTEDITDUALS is again to restore (18), i.e. nonnegativity of active balance variables. Also,

note that (29) explains why(-,-) must be a metric (or else it would hotdp,,, < 0).

B. Equivalence of algorithms P[)2, and a-expansion

It can thus be shown that PD2ndeed generates afy,,-approximate solution. Furthermore,
it holds that all PDZ, algorithms withy < 1 are non-greedy algorithms, meaning that neither the
primal (nor the dual) objective function necessarily decreases (increases) per iteration. Instead, it
is APF which constantly decreases (see property C in section 1V-A), but giirdeis always kept
close to the primal function, the decreaseARF is finally reflected to the values of the primal
function as well. In fact, a notable thing happeng i 1. In that case, due to (26), the load of any
p, ¢ equals exactly their separation cose. load,, = w,,d(x,, z,)) and it can then be shown that
APF coincides with the primal function, i.APF =PRIMAL, whereas in any other case’F <
PRIMALL. Furthermore, it turns out that, duringcateration, PD2_; chooses axx’ that mini-
mizesAPF with respect to any otherexpansion, sax, of current solutiorx (to see that, recall
that APF is the sum of active labels’ heights and PD2always tries choosing the “lowest” label

amongz, andc, see property A). All these can be formally summarized in the next lemma [10]:

Lemma V.1. Let (x',y’) = next primal-dual pair due te-iteration,x = c-expansion of current
primal. Then:PRIMALX = APF*¥ < APF*¥ <PRIMAL*, (PRIMAL* = primal cost of x)

But this, due taPRIMAL* < PRIMAL¥, actually proves that theexpansion algorithm in [1]

(that was interpreted only as a greedy local search technique up to now) is equivalent,tq!PD2

Theorem V.2 ([10]). The label assignment selected during a-iteration of PD2,_, has smaller

primal cost than any other label assignmentvhich is ac-expansion of current solutior.

VI. PD3: EXTENDING PD2TO THE NON-METRIC CASE

By modifying PD2,, three different variations (PDQ3 PD3, PD3) may result, that are

applicable even ifd(-,-) is a non-metric distance function. For simplicity, we will consider
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only the ;. = 1 case, i.e. only variations of P[D2,. We also recall a fact that will prove to be
useful for explaining the rationale behind the algorithms’ definiti@P{IMALITY CRITERION)

the load between any, g represents a virtual separation cost, which should be equal to the
actual separation cost qf, g, if the current primal-dual solutions are optimal.

The main difficulty of extending PD2; to the non-metric case relates to all edgeswith
capacity defined by (29) during @iteration, i.e. all interior edgesg whose endpointg, ¢ are
currently assigned labelg c (i.e. z, = a # ¢, z, = b # c) while, in addition, the following
inequality holds:d(a,b) > d(a,c) + d(c,b). Hereafter, we will call any such paifp,q) a
“conflicting pair” and the corresponding labgls, b, ¢) a “conflicting label-triplet”. Depending
on the way we deal with such a “conflicting pair”, three different variations of Rbfhay arise.

PD3, algorithm: We choose to setap,, = 0 in place of (29). In this case, it can be shown
that if x’ assigns the pair of labelsb to the objects, ¢ respectively, then the resulting load of
p, ¢ Will be wy, (d(a,b) —d(a,c)), i.e. it will be greater than the actual separation eggti(c, b)
of p, ¢, becausel(a, b) > d(a,c)+d(c,b) as(a,b,c) is a “conflicting label-triplet”. Equivalently,
this says that the virtual separation cospof overestimates their actual separation cost, contrary
to the OPTIMALITY CRITERION above (in all other cases, one can prove that there is no such
overestimation). Therefore, in this case)STEDITDUALS modifies the dual variables so that
the equality between the load and the actual separation cost is restored and thus the violation of
the OPTIMALITY CRITERION is canceled by the start of the next iteration. No other differences
between PD2-; and PD3 exist.

One may also view this cost overestimation as an equivalent overestimation of the correspond-
ing distance between labels. In the above case, for example, we saw that iklalerle assigned
to p,q by x/, then, instead of the actual separation cogfd(c, b), the resulting overestimated
cost would have beem,,d(c,b) with d(c,b) = d(a,b) — d(a,c). This is equivalent to saying
that the algorithm has assigned the virtual distadeeb) > d(c, b) to labelsc, b instead of their
actual distancel(c, b). On the other hand, ifa,b) or (a,c) are assigned tp, ¢ by x’, then no
cost overestimation takes place and so the virtual distances for these labels coincide with their
actual distances, i.el(a,b) = d(a,b),d(a,c) = d(a,c). Sinced(a,c) + d(c,b) = d(a,b), one
could then argue that, by replacingwith d, what PD3, actually did was to overestimate the
distance between labetsb in order to restore the triangle inequality for the current “conflicting

label-triplet” (a, b, c). Put otherwise, it is as if a “dynamic approximation” of the non-medtic
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by a varying metricd is taking place, with this metrid being constantly modified. Note also
that, for restoring the triangle inequality, we could have instead designed our algorithm so that
it overestimates the distance between lakels in place of that between, b. Not only that,

but we could have also defined an application-dependent functiomrsagLVE, which would
decide (based on the current “conflicting pair”) which one of the two distancesi(uec) or
d(c,b)) should be overestimated each time.

Based on these observations, it can be shown [10] that the primal-dual solutions generated
by both PD3 and PD2_, satisfy exactly the same conditions (26)-(28) and so PB3always
guaranteed to lead to gfy,,-approximate solution as wellherefore,PD3, directly generalizes
PD2,_; (i.e. thea-expansion) to the case of a non-metric distance function). We should
note here that, recently, Rother et al. [19] have also described an extensionceERpansion
technique, which can be applied to the non-metric case and seems related to our PD3 method.

PD3, algorithm: We choose to setap,,, = +oco and no further differences between R2®id
PD2,-, exist. This has the following important effe¢he solutionx’, produced at the current
iteration, can never assign the pair of labels to the object, ¢ respectively (due to this fact
we will call labelsc, b the “excluded labels®). To prove this, it suffices to recall the “reassign
rule” and also observe that the directed eggecan never become saturated by increasing its
flow (sincecap,, = +oc). Therefore, if labek is assigned te by x’ (which, by the “reassign
rule”, means that there is an unsaturated pathk p) then labelb can never be assigned o
since, in that case, the path p — ¢ would also be unsaturated (sincep,, = +oc) and, by
the “reassign rule” againy would have to be assigned labehs well. Put otherwise, it is as if
an infinite overestimation of the distanéé:, b) between labels, b takes place by the algorithm
and so those labels are implicitly prevented from being assigned to the “conflicting pair”. The
price for that is that no guarantees about the algorithm’s optimality can be provided. The reason
is that the balance variables may now increase without bound (singe = +oc) and so we
cannot make sure that the generated dual solutions satisfy a “not too far away from feasibility”
condition like (28). This in turn implies that no dual-fitting technique can be applied in this case.

However, PD3 has a nice interpretation in the primal domain due to the following theorem:

®Note that, as in PD3 we can modify PD8 so that a functiorRESOLVE chooses which labels (i.€a,c) or (c,b)) are

“excluded” each time. MoreoveRESOLVE could perhaps be defined based on a priori knowledge about each specific problem.
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Theorem VI.1. [10] The solutionx’, selected byPD3, during a c-iteration, has the minimum
primal cost among all solutions that result afterceexpansion of current solutior, except for

those that assign “excluded labels” to “conflicting pairs”.

This theorem designates the price we pay 46r-) not being a metric: in the metric case
we can choose the best assignment among-@dpansion moves (see theorem V.2), whereas in
the non-metric case we are only able to choose the best one among a certain subset of these
c-expansion moves. Despite this fact, the considered subset contains an exponential number of
c-expansion moves, which makes the algorithm a perfect candidate as a local minimizer.
Algorithm PD3.: PD3. first adjusts (if needed) the dual solutigrso that, for any 2 neighbors
p, ¢, it holds:load,, <w,,(d(a,c)+d(c,b)). After this initial adjustment, which is always easy to
achieve, PD3proceeds exactly as P2, except for the fact that the tertd{a, b) in (29) is re-
placed with the distancé(a, b), which is defined asi(a, b) = %. Obviouslyd(a, b) < d(a, c)+
d(c,b) and socap,,, in (29) is valid, i.e.cap,, > 0. PD3, PDZ,_, have no other differences.
It is now interesting to examine what happeng,if is a “conflicting pair” with current labels
a,b (i.e. z,=a#c,x,=b+#c). In that case it also holds thd{a, c) + d(c,b) < d(a,b) and so:

da.b) = load,, - Wpy(d(a, c) + d(c, b)) - wyed(a, )

= d(a,b)

Wpq Wpq Wpq
Furthermore, it is easy to show that if noneof; is assigned a new label by (i.e. they both
retain their current labels, b), then the resulting load will be equal t0,,d(a,b), i.e. it will
underestimate the actual separation eogti(a, b), sinced(a,b) < d(a,b) as was shown above
(in all other cases, the load will coincide with the actual separation cost).

Based on these observations, one can then see that theaRjo8thm works in a complemen-
tary way to the PD3 algorithm: in order to restore the triangle inequality for the “conflicting
label-triplet” (a, b, ¢), instead of overestimating the distance between either ldbgisor (a, ¢)
(like PD3, did), it chooses to underestimate the distance between laéhéls Again, one may
view this as a “dynamic approximation” of the non-met#fiby a constantly varying metrid,

this time, however, we set(a,b) = 2% < d(a,b), d(a,c) = d(a,c) andd(c,b) = d(c, b).

It can be shown that the intermediate primal-dual solutions generated by algorithmaiRiD3
PD2,-, satisfy exactly the same conditions, except for condition (26). In place of that condition,

the intermediate solutions of PD3atisfy:

A

load,, > wyd(zy, z4) , (31)
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where d(a,b) = min.ez(d(a,c) + d(c,b)). By applying then the same (as in PD2) dual
fitting factor to the last dual solution of PD3one can easily prove that PD8ads to an

!/ H H .
~pp-approximate solution where:

. d(a,b)
fz;pp = fapp o With ¢o = ril;lg( d(a, b) (32)

Finally, we should note that if,, is a metric, then PD3 PD3,, PD3. all coincide with PD2_;.

VIlI. EXPERIMENTAL RESULTS

We first describe certain properties of the proposed algorithms that prove to be very useful
in practice (Section VII-A). We then proceed and demonstrate our algorithms’ effectiveness in
MRF optimization. To this end, we apply them to a variety of low level vision tasks, such as
stereo matching (Sections VII-A, VII-B), image restoration (Section VII-C), image completion
(Section VII-C), as well as optical flow estimation (Section VII-D). Finally, to further analyze
their performance, results on synthetic problems are shown in Section VII-E. We note that, in
each experiment, identical settings (i.e. parameters and initial solution) have been used for all

algorithms and, in addition, initialization was chosen randomly.

A. Per-instance suboptimality bounds

An important advantage of any primal-dual algorithm is that, after its execution, it can always
tell (for free) how well it performed with respect to any given instance of Metric Labeling. In
particular, as implied by the Primal-Dual Principle of section lll, given any paiy) of integral-
primal, dual-feasible solutions, then the ratie- c’x /b’y of their costs automatically provides
a new suboptimality bound, in the sense tkat then guaranteed to be arapproximation to
the optimal integral solution. This leads to the following consequence:

By considering all primal-dual solutionéx*, y*}¢ _, generated during the primal-dual schema,
the quantityminy, r,, (Wherer, = c”'x*/bTy*) defines a new per-instance suboptimality bound.

In practice, this per-instance bound turns out to be much tighter (i.e. much closer to 1) than
the worst-case bound predicted in theory and so this allows one to have a much clearer view
about the goodness of the generated solution. This has been verified experimentally by applying
our algorithms to the stereo matching problem. In this case, labels correspond to image pixel
disparities and they can be chosen from aset {0, 1, ..., K} of discretized disparities, where

K denotes the maximum allowed disparity. The vertices of the gtaptie the image pixels
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Fig. 8: (a) Tsukuba imageb) Disparity estimated by PDIc) and PDZ.—; algorithm. The Potts distance (a
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metric) was used and so PR3P D3, PD3. produced the same result with P[22. No tuning of parameters took
place in (b) and (c)(d) Our result when using same parameters as in [21] (following the notation of [21], we
have usets = 50, T'=4, P = 2).

and the edges of connect each pixel to its 4 immediate neighbors in the image. During our

tests, the label cost for assigning disparityo the image pixep has been set equal to:

¢p(@) = [Lignt(p — @) — Liett ()], (33)
where I, Iiigns represent the intensities of the left and right images respectively.

We have applied our algorithms to the well-known Tsukuba stereo data set [20], setting the
maximum disparity value equal th = 14, based on the provided ground truth data. A sample
from the results produced, when using our algorithms, are shown in Fig. 8. We should note
that no special tuning of parameters took place and all edge weighthave been set equal
to each other, instead of properly adjusting their values based on image intensity edges (which
would improve the results considerably for this specific example, e.g. see Fig.8(d) for one such
result produced with our method). The reason for this, as well as for using the very simple
label cost presented in (33), is because our main goal was not to produce the best possible
disparity estimation, but to test the tightness of the suboptimality bounds that are provided by our
algorithms, i.e. to test the effectiveness of these algorithms in minimizing the objective function.

To this end, 3 different distance’-, -) have been used during our experiments. These are the
Potts distancel; (a metric), the truncated linear distanée (also a metric) and the truncated
guadratic distancds (a non-metric), defined as follows (whekedenotes some constant):

di(a,b) =1Va#b, dya,b) =min(\, |a—b|), ds(a,b) =min(A, |a — b|?)
Each experiment consisted of selecting an approximation algorithm and a distance function, and
then using them for computing disparities for each one of the Tsukuba stereo pairs. The average
values (over all Tsukuba stereo pairs) of the obtained suboptimality bounds are displayed in

PD2,— .
table I. The columng D!, fapp =", fad®, fana, fansoe of that table list these averages for the



26

Distance ‘ o ‘ app | fED3a | faRS | fEDse ‘ fapp
Potts 1.0104| 1.0058 | 1.0058| 1.0058| 1.0058| 2
Trunc. Linear*=® | 1.0226 | 1.0104 | 1.0104| 1.0104| 1.0104| 10
Trunc. quad>=> | 1.0280 - 1.0143| 1.0158 | 1.0183| 10

TABLE I: Average suboptimality bounds (colums 2-6) obtained over all Tsukuba stereo pairs. As expected, these
bounds are much closer to 1 than the theoretical suboptimality bofjpdslisted in the last column, and thus a
nearly optimal solution is obtained in all cases. Note that RR2Zan be applied only if distancg., -) is a metric

and in that case PD2,, PD3,, PD3, and PD3 (as well as their bounds) coincide.

algorithms PD1, PD2.;, PD3,, PD3, and PD3 respectively. In addition, the last column lists
the value of the corresponding approximation facgftgy,, which, as already proved, makes up a
worst-case suboptimality bound for most of the above algorithms. By observing table I, one can
conclude that the per-instance suboptimality bounds are often much tighter (i.e. much closer to
1) than the worst-case bounds predicted in theory. In our stereo experiments, this was true for all
combinations of algorithms and distances, and so in this particulartiteaggesented algorithms
were able to extract a nearly optimal solution even when a non-metric distance was used.
Besides the tightness of the per instance suboptimality bounds, another important issue is their
accuracy, i.e. how well these bounds predict the true suboptimality of the generated solutions. To
investigate this issue, we modified our experiments in the following way: we applied our stereo
matching algorithms to one image scanline at a time (instead of the whole image). In this case,
the graphg reduces to a chain and the true optimum can be easily computed using dynamic
programming. This, in turn, implies that we are able to compute the true suboptimality of a
solution. By using this fact, we have thus constructed table II. Its coluffRs, fio=", f-D3

true v Jtrue !

foud fiD3e contain the true average suboptimality of the solutions of PD1,PDPD3,, PD3,
and PD3 respectively, where the average is taken over all image scanlines. By examining that
table, one may easily conclude that (for this particular experiment) the true suboptimality of an
algorithm’s solution was close to the corresponding estimated suboptimality bound, meaning that
these bounds were relatively accurate and therefore reliable for judging the solution’s goodness.
Furthermore, in this way, we can decide if a bad generated solution is the result of a bad optimiza-
tion procedure, or a bad modeling of the problem at hand. At this point, however, we should also
note that one must be careful in extrapolating results on scanlines to that on grids. One potential
issue is that in the former case the integrality gap is 1, while in the latter it may be greater than

1, which may contribute to the inaccuracy of the suboptimality bound for graphs with loops.
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Fig. 9: These 3 plots show how the primal-dual ratios vary during the first 4 outer iterations (or equivalently the
first 60 = 4 - 15 inner iterations) using the Tsukuba sequence as in(heft) The Potts function(Middle) the
trunc. linear function andRight) the trunc. quad. function have been used respectively as label dist&nce

Notice how rapidly the ratios drop in all cases (i.e. they get very close to 1 just after a few inner iterations).

For the Tsukuba sequence, on average 4 outer iterations (or equivaénty4 - 15 inner
iterations) are needed for the algorithms to terminate. The corresponding running time is 46
secs (measured on a 2.4GHz CPU). The plots in Figure 9 show how the primal-dual ratios vary
during the execution of our algorithms (for the Tsukuba data set). For the first two plots a metric
distance between labels has been used, whereas for the last one a non-metric distance has been
chosen. It is worth noticing how rapidly the primal-dual ratios drop in all cases. They come
very close to 1 just after a few inner iterations, meaning that the algorithms converge really fast,
while computing an almost optimal solution at the same time. Based on this observation, one
may also use the values of these ratios to control the algorithms’ convergence (e.qg. if the ratios
are close to 1 and do not vary too much per iteration, one may decide that convergence has been

reached). This way, one may further reduce the running times.
B. Stereo matching

Besides the Tsukuba dataset, we have also applied our algorithms to image pairs from the SRI

tree image sequence (Fig. 10(a)). The selected pairs had a maximum disparity of 11 pixels. Given

[ ostence [| iy | s [ g [ s [ s [ [ai | s [ i [ sam |
Potts 1.0098 | 1.0036 | 1.0066 1.0004 || 1.0066 | 1.0004 | 1.0066| 1.0004 || 1.0066 | 1.0004
Trunc. Linear || 1.0202 | 1.0107 || 1.0115 1.0021 || 1.0115| 1.0021 || 1.0115| 1.0021 || 1.0115| 1.0021
Trunc. quad. || 1.0255| 1.0130 - - 1.0135| 1.0011 || 1.0144| 1.0020|| 1.0160 | 1.0036

TABLE II: The average suboptimality bounds (columns 2-4-6-8-10), obtained when applying our stereo matching
algorithms to one scanline at a time (instead of the whole image). In this case, we are also able to compute the true
average suboptimality (columns 3-5-7-9-11) of the generated solutions, using dynamic programming. As can be
seen, by inspecting the table, the suboptimality bounds approximate the true suboptimality relatively well, meaning

that they can be safely used as a measure for judging the goodness of the generated solution in this case.
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Fig. 10: (a) One image from the SRI tree image sequer{b¢.Computed disparities when using PPand the

distanced, with (k,\) = (2, 10). (c) Disparities computed by the-3-swap algorithm using the same distance.

our algorithms’ ability to handle both metric and non-metric distances equally well, the following
non-metric distance has been used in this cdsét, b) = |a — b| if |a — b] <= &, otherwise
ds(a,b) = X. We always assume < \. In this specific example, we have used \) = (2, 10).
The rationale behind this distance is that it assigns a low penalty to smak(kg.changes in
disparity (thus allowing surfaces with smoothly varying disparity, like the slanted ground in the
SRI image), but assigns a high penakyto large disparity gaps. Despite the fact tiatis not
a metric, our algorithms did not face any problem in efficiently minimizing the corresponding
objective function and thus localizing the trees, as well as the slanted ground in the SRI image.
The resulting disparity is shown in Figure 10(b). The average running time to convergence has
been 33 secs. We have also applieddhg-swap algorithm [1] to the SRI dataset, using exactly
the same settings. Although this graph-cut based algorithm is applicable even in the case of a
non-metric label distance, its disadvantage is that it may get trapped to a bad local minimum,
i.e. it cannot make any guarantees about the optimality of the solutions it generates. This is
indeed the case here, since, despite the fact that exactly the same objective function has been
minimized by both algorithms, the final energy producedaby-swap was 8.3% higher than
the energy estimated by our method. The corresponding disparity is shown in Figure 10(c).

As a further example, we illustrate how one could favor disparities that are not violating the
uniqueness constraint, just by use of an appropriate non-metric disténde This can possibly
lead to a better handling of occlusions as well, in some cases. To this end, an extra label for
occlusions, say, is introduced first, whose label cost is equatjdor all pixels, i.e.c,(0) = c;.
Assuming (without loss of generality) that image scanlines coincide with the epipolar lines, we
then introduce additional horizontal edges in the gr@pkve connect any pixelz, y) in the left

image to theK pixels to its right(x + 1,y), ... (x + K,y), where K is the maximum disparity
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(see Fig. 11(a)). For measuring the separation cost between the lalielsyof (x + &, y), we

will use the distance functiohdist®. We will therefore useX different distance functions in

total for all the horizontal edges. On the other hand, no additional vertical edges are introduced
and so any pixel will be connected only to its immediate vertical neighbors, as before, with
vdist! denoting the common distance function for all these edges.

Distanceshdist!, vdist' (which are related to edges connecting pixels adjacent in the image)
will be used for enforcing the smoothness of the disparity field, as before. E.g. both can be set
equal to the Potts metrididist' = vdist' = d;. The rest ofhdist” will be used just for assigning
an extra penaltyl/ to all pairs of labels violating the uniqueness constraint. For all other pairs
of distinct labelshdist® then simply assigns a very small distancéwith ¢ < M):

b=a+k = hdist’(a,b)=M, b#a+k & b#a=hdist"(a,b)=¢, b=a= hdist*(a,b)=0
A result of applying this distance (withy, = 23, M = 10, = 0.01) to the map stereo pair,
appears in Fig. 11(d). Error statistics are displayed in Fig. 11(b).

C. Image restoration and image completion

In image restoration, we are given as input a corrupted (by noise) image and the objective is to
extract the original (uncorrupted) image. In this case, the labels represent intensities (or colors),
while the label cost for assigning intensityto pixel p can be set equal ta,(a) = |I(p) — al,
where I represents the array of intensities of the input image. The géaphat will be used
when solving the Metric Labeling problem, coincides again with the image grid.

The example of Fig. 12 illustrates the importance of using non-metric distaiiceson the
task of image restoration as well. The original image (Fig. 12(a)) consists of 2 identical patterns
placed vertically. Each pattern’s intensity is kept constant along the horizontal direction and
increases linearly with step 2 from top to bottom. The input image is then formed by corrupting

the original image with white noise (Fig. 12(b)). Although our algorithms managed to restore

e SRR O

hdistK

Percentage of pixels with absolute error > 1
in non-occluded regions
vdistf®Y)  (FLy) (x+2y)  (x+Ky) | peycentage of missed occluded pixels
(X,y+1) in occluded regions

1.14%

12.31% | - ¢

(a) Additional edges i (b) Error statistics for thémap’ pair (c) Left image (d) Estimated disparity

Fig. 11: Red pixels in (d) indicate occlusions
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Metricd(-,") Non-metric d(+,*)

41.4% pixels with error| 8.2% pixels with error

1.12 avg. intensity error|0.21 avg. intensity error

(@) (b) © (d) (€)

Fig. 12: (a) Original uncorrupted imagéb) Noisy input image(c) Restored image using non-metric distaniGe
with (k,\) = (2, 30) (d) Restored image using truncated linear metkiowith A=30. (e) Error statistics
the original image with only a few errors, by use of the non-metric distahjc@~ig. 12(c)),
this wasn’t the case when the truncated linear mefsidor the potts metric) has been used,
despite tweaking tha parameter. The best obtained result with such a metric (after tweaking
is shown in Fig. 12(d). The error statistics for this restoration example are shown in table 12(e).

Another non-metric distance, which is very commonly used in image restoration problems, is
the truncated quadratic distanéga, b) = min(|a—b|?, ). That distance with. = 200 was used
in the restoration of the contaminated (with Gaussian noise) image of Fig. 13(a). In this case,
the following function (which is more robust against outliers) has been used for the label costs:
¢,(a) = Nomin(|I(p) — al?, A1), with Ay = 0.05, \; = 10*. Notice that our algorithm managed
not only to remove the noise completely (see Fig. 13(b)), but also to maintain the boundaries
of the objects at the same time.

The same distance (i.e. the truncated quadratic) can be also used for the task of image
completion. Besides containing Gaussian noise, the image in Fig. 13(c) also has a part which
has been masked. The labels costs of masked pixels have been set to zero, while for the rest

of the pixels the costs have been set as before. As can be seen, from Fig. 13(d), our algorithm

(a) Noisy input (b) Restored (c) Noisy input with mask (d) Restored & completed

Fig. 13: Examples of image restoration and image completion
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managed not only to remove the noise again, but also to fill the missing part in a plausible way.

D. Optical flow estimation
Global methods [22], [23] estimate optical flawy, «,, by minimizing a functional of the form:
E(ug,uy) = [, pp(Lyug + Tyuy + L) + X - ps(\/|Vug|? + [Vuy|?)dzdy, wherel,, I,, I, denote

spatial and temporal image derivatives, whilg, ps denote penalty functions. By discretizing

E(uy,u,), we can easily incorporate all such methods into our frameworkith&erm (which
expresses theptic flow constraint equatigrand the2"? term (which is a regularizer) will then
correspond to the label costs and separation costs respectively. Furthermore, due to our weak
assumptions o+, ), our framework allows us to seis equal to any of the so-calleabust
penalty function§22] (e.g. the Lorentziaps(z) = log(1+3(z/0)?)), which are known to better
cope with outliers or flow discontinuities. Due to this fact, our framework can also incorporate the
state-of-the-art combined local-global method (CLG) [23], which just repldges, I; (in the
1%t term of the above functional) with a structure tensor. This is important, since our algorithms
can always compute a solution near the global minimum and so, by using them as initializers
to CLG (or to any other global method), we can help such methods to avoid a local minimum.
Besides using theptic flow constraint equatiom our label costs, our framework also allows
the use of other label costs. E.g. we cans¢t) = |I;(p + a) — Ip(a)|, where Iy, I, are the
current and next image. In this case, due to the two-dimensional nature of optical flow, it is
important that, not only the magnitudes, but especially the directions of the optical flow vectors
are estimated correctly as well. To this end, the following non-metric distance between labels can
be usedd(a,b) = dist(a, b) + 7 - angledist(a, b). Here,dist(a, b) denotes a truncated euclidean
distance between the optical flow vecters, i.e. dist(a,b) = min(||a — b||, \), while the 2"
term is used for giving even more weight to the correct estimation of the vectors’ direction.
In particular, it penalizes (in a robust way) abrupt changes in the direction of the vectors
and is defined as followsingledist(a, b) equalsl if the angle (in degrees) betweenand b
is greater thani5°, while in all other cases equals 0. We have applied both our algorithm and
the a-3-swap algorithm to the well knowposemitamage sequence, using as label distance the
above distance with parametexs= 5,7 = 5. The results, as well as error statistics, are shown
in Figure 14. Due to the bigger number of labels, the run times of our algorithm for this example

were approximately 6 minutes on averayfée note that, although both algorithms are trying
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(a) 4" frame ofyosemite
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ARE
T j :
ey

Liiis e

(d) 12** frame ofyosemite (e) Our flow: 6.92 avg. angular error, (f) a-3-swap flow: 39.29 avg. angular error,

sequence with clouds 4 ijterations 23 iterations, 56.7% higher energy than (e)

Fig. 14: Estimated flow between frames 4, 5/(tow) and 11, 12 (2¢ row) of yosemitesequence. Although more

outer iterations were used hyG-swap, its optical flow had 19.2% and 56.7% higher energy than our optical flow.

to minimize exactly the same objective function, the resulting solutionsge$wap have much
higher energylt seems that, contrary to our methad,3-swap needs to be properly initialized,

or else is not powerful enough to escape from bad local minima in this case.

E. Synthetic problems

To further examine the ability of our algorithms to optimize the energy of an MRF, we also
tested them on a set of synthetic problems. In these problems, the vertic8s »f3a grid were
chosen as the nodes of the grapthwhile the total number of labels was set equakioThe label
costs for all nodes were generated randomly by drawing samples from a uniform distribution in
the [0y 1] interval, while, for the pairwise potentials, a random non-metric distance has been
used, that was constructed as follows: equal labels were assigned zero distance, whereas the
distance for different labels was generated randomly injthey, | interval again.

Three experiments have been conducted: initthene (Fig. 15(a)), a random spanning tree
of the 30 x 30 grid was used as the gragh and the number of labels was = 60, while,
in the 27 (Fig. 15(b)) and3™ (Fig. 15(c)) experiment, the gragh had inherited the structure
of the underlying grid and the number of labels wiss= 60 and K = 180 respectively. For

each experimentl00 random problems were constructed (all wigh = 1, o; = 100) and the
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— o-PB-swap " — a-B-swap 12 — 0a-B-swap

0 1 2 3 4 5 6 0 2 4 6 8 10 0 2 4 6 8
outer iteration outer iteration outer iteration

(@) G is a tree,K = 60 labels (b) G is a grid, K = 60 labels (c) G is a grid, K = 180 labels

Fig. 15: a-3-swap produces an energy which is higher (ay 17%, (b) 23% and(c) 28% with respect to our
algorithm’s energy. Notice that as the number of labels increases the gap in performance increases as well.
resulting average energies per outer iteration, for both our algorithm and ghewap algorithm,
are shown in the plots of Figure 15. Notice that, compared-t&swap, our algorithm manages
to produce a solution of lower energy in all cases. At the same time, it needs less iterations to
converge. This behavior is a typical one and has been observed in real problems as well. Notice
also that, as the number of labels or the graph complexity increases, the gap in performance
between the 2 algorithms increases as well.

The efficiency of our algorithms in the case whéfe -) is not a metric can be also illustrated
by the synthetic example of Figure 16. Although RPBD3 and PD3 are always able to locate
the exact global minimum for this example, the)-swap algorithm may get stuck at a local

minimum that can be arbitrarily far from the true minimum.

Label costs Label distance
C() p r] dt)[a]b]c
alo0
b|T
cl2

Labeling A Labeling B
T alo T2 T (Local minimum) (Global minimum)
T b [T/2| 0 [T/2
0

c|T|T/2/ 0 \a\b\c\ \c\c\c\

N|o ||l

Fig. 16: A synthetic example, where the graghhas 3 verticeqp, ¢,r} and 2 edgegpq, gr}, while the labels’
are{a, b, c}. Label costs,(-) and the distancé(-,-) (not a metric) are shown. The-g-swap algorithm can get
stuck in labelingA whose cost id’, i.e. arbitrarily larger than the true minimum cost, which is 4 (labeli#)g On

the contrary, PD3, PD3 and PD3 can always locate the optimal labelidgy Example taken from [1].
VIII. CONCLUSIONS
A new theoretical framework has been proposed, for both understanding and developing
algorithms that can approximately optimize MRFs with both metric and non-metric energy
functions. This set of MRFs can model a very important class of problems in computer vision.
The above framework includes the state-of-theeagxpansion algorithm merely as a special

case (for metric energy functions). Moreover, it provides algorithms, which have guaranteed
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optimality properties even for the case of non-metric potentials. In fact, in all cases, our primal-
dual algorithms are capable of providing per-instance suboptimality bounds, which, in practice,
prove to be very tight (i.e. very close to 1), meaning that the resulting solutions are nearly optimal.
The theoretical setting of the proposed framework rests on duality theory of linear programming,
which is entirely different than the setting of the original graph-cut work. This way, an alternative
and more general view of the very successful graph-cut algorithms for approximately optimizing
MRFs is provided, which is an important advance. We strongly believe that this more general
view of graph cut techniques may give rise to new related research, which could lead to even
more powerful MRF optimization algorithms in the future. Moreover, a novel optimization
technique, the primal-dual schema, has been introduced to the field of computer vision and
the resulting algorithms have proved to give excellent experimental results on a variety of low
level vision tasks, such as stereo matching, image restoration, image completion and optical flow
estimation.

For metric MRFs, PD2 withy, = 1 has, in general, given the best results experimentally
(although, in some cases, the results were only slightly better compared, e.g., to PD1 (see tables
| and II)), which is consistent with the good performanceaeéxpansion in many problems
up to now. However, we believe that PD2 with< 1, as well as PD1 can also be very useful
as initializers, since they are less greedy and can more easily avoid local minima. For non-
metric MRFs, PD3 algorithms exhibit similar performance and gave the best results in practice.
Furthermore, they reduce to P2 in the case of a metric potential function. Therefore,
based also on the fact that PDa8nd PD3 can in both cases provide worst case guarantees,
we recommend the use of either one of these two algorithms in the general case. Also, as
already mentioned, all of our algorithms apply without change even if each eddeas its

own distancel,,. The distance giving the worst approximation factor then dominates and so the

maxqp, dpg(a,b)
ming 2y dpg(a,b)

new suboptimality bound becomds,, = max,, |2 |. Finally, we should note that

for certain special cases of the ML problem, our algorithms’ theoretical approximation factors
coincide with the so-calledhtegrality gapof the linear program in (1), which is essentially the
best possible approximation factor a primal-dual algorithm may achieve [18]. E.g., such is the
case with the Generalized Potts model, whose integrality gap is known to be 2 [2], i.e. equal
to f.pp- This explains, in yet another way, why graph-cut techniques are so good in optimizing

problems related to the Potts energy. In conclusion, a new powerful optimization tool has been
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added to the arsenal of computer vision, capable of tackling a very wide class of problems.
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