Learning to Cluster Using High Order Graphical Models with Latent Variables (Supplemental Material)

Nikos Komodakis
University of Crete, Computer Science Department
http://www.csd.uoc.gr/~komod

Abstract

This document provides technical proofs for all theorems in the main paper.

1. Proofs

Lemma 1 Let $\hat{\mathbf{x}}^{k, p}, \hat{\mathbf{x}}^{k, C}$ be binary minimizers of the energy functions $\bar{E}_{p}^{k}, \bar{E}_{C}^{k}$. Define $f_{p q}^{k} \equiv f_{p q}\left(\mathbf{y}^{k}\right), \hat{X}_{q}^{k} \equiv \hat{x}_{q q}^{k, C}+$ $\sum_{p} \hat{x}_{q q}^{k, p}, \forall q \in C$. Update (30) then reduces to

$$
\left[\begin{array}{c}
\mathbf{w} \tag{36}\\
\lambda_{p q}^{k} \\
\lambda_{C q}^{k}
\end{array}\right]-=s_{t}\left[\begin{array}{c}
\tau \nabla J(w)+\sum_{k} \delta_{\mathbf{w}}^{k} \\
\frac{\hat{X}_{q}^{k}}{\left|S^{k}\right|+1}-\hat{x}_{q q}^{k, p} \\
\frac{\hat{X}_{q}^{k}}{\left|S^{k}\right|+1}-\hat{x}_{q q}^{k, C}
\end{array}\right]
$$

where $\delta_{\mathbf{w}}^{k}=\sum_{p, q} x_{p q}^{k} f_{p q}^{k}-\sum_{p \neq q} \hat{x}_{p q}^{k, p} f_{p q}^{k}-\frac{\sum_{q} \hat{X}_{q}^{k} f_{q q}^{k}}{\left|S^{k}\right|+1}$.
Note: If $J(\mathbf{w})$ is non-differentiable (e.g., if $\left.J(\mathbf{w})=\|\mathbf{w}\|_{1}\right)$ then $\nabla J(\mathbf{w})$ should refer to a subgradient of $J(\cdot)$ at \mathbf{w}.
Proof. Update (30) requires computing a subgradient of the objective function (28) with respect to $\mathbf{w}, \boldsymbol{\lambda}^{k}$ (for a fixed \mathbf{x}^{k}). To this end, we need to compute the corresponding subgradient for each of the terms $\overline{\mathcal{L}}_{\bar{E}_{p}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ and $\overline{\mathcal{L}}_{\bar{E}_{C}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ that are included in function (28). By definition (21) it holds that ${ }^{1}$

$$
\begin{align*}
\overline{\mathcal{L}}_{\bar{E}_{p}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) & =\bar{E}_{p}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\min _{\mathbf{x}} \bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) \tag{37}\\
& =\bar{E}_{p}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)+\max _{\mathbf{x}}\left(-\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right) \tag{38}
\end{align*}
$$

A subgradient for a pointwise maximum function $g\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)=\max _{\mathbf{x}} g_{\mathbf{x}}\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)$, where each $g_{\mathbf{x}}(\cdot, \cdot)$ is convex and differentiable, is given by $\nabla g_{\hat{\mathbf{x}}}\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ for any $\hat{\mathbf{x}}$ that satisfies $g\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)=g_{\hat{\mathbf{x}}}\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)$, i.e., $\max _{\mathbf{x}} g_{\mathbf{x}}\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)=g_{\hat{\mathbf{x}}}\left(\mathbf{w}, \boldsymbol{\lambda}^{k}\right)$. Since function $-\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ is linear (and hence both convex and differentiable) with respect to $\mathbf{w}, \boldsymbol{\lambda}^{k}$, a subgradient of function $\overline{\mathcal{L}}_{\bar{E}_{p}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ (with respect to $\mathbf{w}, \boldsymbol{\lambda}^{k}$) will thus equal

$$
\begin{equation*}
\nabla \bar{E}_{p}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\nabla \bar{E}_{p}^{k}\left(\hat{\mathbf{x}}^{k, p} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) \tag{39}
\end{equation*}
$$

where $\hat{\mathbf{x}}^{k, p}$ denotes a binary minimizer of function $\bar{E}_{p}^{k}\left(\cdot ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$. Therefore, based on (39) and the fact that $d_{p q}^{k}=\mathbf{w}^{T} f_{p q}^{k}$, a

[^0]subgradient of $\overline{\mathcal{L}}_{\bar{E}_{p}^{k}}$ will have components $\delta \mathbf{w}^{k, p},\left\{\delta \lambda_{q}^{k, p}\right\}_{q}$ (corresponding to variables $\mathbf{w},\left\{\lambda_{p q}^{k}\right\}_{q}$ respectively) given by
\[

$$
\begin{align*}
\delta \mathbf{w}^{k, p} & =\sum_{q: q \neq p} x_{p q}^{k} f_{p q}^{k}+\sum_{q} \frac{x_{q q}^{k} f_{q q}^{k}}{\left|S^{k}\right|+1}-\left(\sum_{q: q \neq p} \hat{x}_{p q}^{k, p} f_{p q}^{k}+\sum_{q} \frac{\hat{x}_{q q}^{k, p} f_{q q}^{k}}{\left|S^{k}\right|+1}\right) \tag{40}\\
\delta \lambda_{q}^{k, p} & =x_{q q}^{k}-\hat{x}_{q q}^{k, p} . \tag{41}
\end{align*}
$$
\]

Similarly, we can prove that a subgradient of function $\overline{\mathcal{L}}_{\bar{E}_{C}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ will have components $\delta \mathbf{w}^{k, C},\left\{\delta \lambda_{q}^{k, C}\right\}_{q \in C}$ (corresponding to variables $\mathbf{w},\left\{\lambda_{C q}^{k}\right\}_{q \in C}$ respectively) given by

$$
\begin{align*}
\delta \mathbf{w}^{k, C} & =\sum_{q \in C} \frac{x_{q q}^{k} q_{q q}^{k}}{\left|S^{k}\right|+1}-\sum_{q \in C} \frac{\hat{x}_{q q}^{k, C} f_{q q}^{k}}{\left|S^{\mid}\right|+1} \tag{42}\\
\delta \lambda_{q}^{k, C} & =x_{q q}^{k}-\hat{x}_{q q}^{k, C}, \forall q \in C \tag{43}
\end{align*}
$$

where $\hat{\mathbf{x}}^{k, C}$ denotes a binary minimizer of function $\bar{E}_{C}^{k}\left(\cdot ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$.
Therefore, a total subgradient of the objective function (28) will have components $\delta \mathbf{w}, \delta \lambda_{q}^{k, p}, \delta \lambda_{q}^{k, C}$ (corresponding to variables $\mathbf{w}, \lambda_{p q}^{k}, \lambda_{C q}^{k}$ respectively), where

$$
\begin{equation*}
\delta \mathbf{w}=\tau \nabla J(\mathbf{w})+\sum_{k}\left(\sum_{p \in S^{k}} \delta \mathbf{w}^{k, p}+\sum_{C \in \mathcal{C}^{k}} \delta \mathbf{w}^{k, C}\right) \stackrel{(40),(42)}{=} \tau \nabla J(\mathbf{w})+\sum_{k} \delta_{\mathbf{w}}^{k} \tag{44}
\end{equation*}
$$

Furthermore, projection onto the set $\boldsymbol{\Lambda}^{k}=\left\{\boldsymbol{\lambda}^{k}: \sum_{p \in S^{k}} \lambda_{p q}^{k}+\lambda_{C q}^{k}=0, \forall C \in \mathcal{C}^{k}, q \in C\right\}$ simply requires to first subtract the average $\frac{\sum_{p \in S^{k}} \delta \delta_{q}^{k, p}+\delta \delta_{q}^{k, C}}{\left|S^{k}\right|+1} \stackrel{(41),(43)}{=} x_{q q}^{k}-\frac{X_{q}^{k}}{\left|S^{k}\right|+1}$ from each of the elements $\left\{\delta \lambda_{q}^{k, p}\right\}_{p}, \delta \lambda_{q}^{k, C}$ before applying the updates $\mathbf{w}-=s_{t} \delta \mathbf{w}, \lambda_{p q}^{k}-=s_{t} \delta \lambda_{q}^{k, p}, \lambda_{C q}^{k}-=s_{t} \delta \lambda_{q}^{k, C}$ (where s_{t} is the multiplier used during the t-th iteration). This is easily seen to lead to updates (36), which concludes the proof of the lemma.

Lemma 2 Let $[a]_{+} \equiv \max (a, 0),[a]_{-} \equiv \min (a, 0)$.

1. For fixed p, let $\theta_{q}^{k} \equiv \frac{\bar{u}_{q}^{k}(1)}{S^{s} \mid+1}+\lambda_{p q}^{k}, \forall q$ and let us define $\bar{\theta}_{q}^{k} \equiv \bar{u}_{p q}^{k}(1)+\left[\theta_{q}^{k}\right]_{+}, \forall q \neq p$ and $\bar{\theta}_{p}^{k}=\theta_{p}^{k}$. A minimizer $\hat{\mathbf{x}}$ of $\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ can be computed as follows:

$$
\begin{align*}
& \forall q \neq p, \hat{x}_{q q} \leftarrow\left[\theta_{q}^{k}<0\right] \tag{45}\\
& \quad \forall q, \hat{x}_{p q} \leftarrow[q=\bar{q}], \text { where } \bar{q}=\arg \min _{q} \bar{\theta}_{q}^{k} \tag{46}
\end{align*}
$$

2. For fixed $C \in \mathcal{C}^{k}$, let $\theta_{q}^{k} \equiv \frac{\bar{u}_{q q}^{k}(1)}{S^{k} \mid+1}+\lambda_{C q}^{k}, \forall q \in C$. A minimizer $\hat{\mathbf{x}}$ of $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \lambda^{k}\right)$ is given by

$$
\forall q \in C, \hat{x}_{q q}= \begin{cases}{\left[\theta_{q}^{k}<\alpha\right],} & \text { if } 2 \alpha+\sum_{q^{\prime} \in C}\left[\theta_{q^{\prime}}^{k}-\alpha\right]_{-}<0 \tag{47}\\ 0, & \text { otherwise }\end{cases}
$$

Proof. 1. It holds that

$$
\begin{align*}
\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) & =\sum_{q: q \neq p} \bar{u}_{p q}^{k}\left(x_{p q}\right)+\sum_{q}\left(\frac{\bar{u}_{q q}^{k}\left(x_{q q}\right)}{\left|S^{k}\right|+1}+\lambda_{p q}^{k} x_{q q}\right)+\sum_{q} \bar{\phi}_{p q}\left(x_{p q}, x_{q q}\right)+\bar{\phi}_{p}\left(\mathbf{x}_{p}\right)-\beta \tag{48}\\
& =\sum_{q: q \neq p} \bar{u}_{p q}^{k}(1) x_{p q}+\sum_{q} \theta_{q}^{k} x_{q q}+\sum_{q} \bar{\phi}_{p q}\left(x_{p q}, x_{q q}\right)+\bar{\phi}_{p}\left(\mathbf{x}_{p}\right)-\beta \tag{49}\\
& =\sum_{q: q \neq p} \bar{u}_{p q}^{k}(1) x_{p q}+\sum_{q}\left(\theta_{q}^{k} x_{q q}+\bar{\phi}_{p q}\left(x_{p q}, x_{q q}\right)\right)+\bar{\phi}_{p}\left(\mathbf{x}_{p}\right)-\beta, \tag{50}
\end{align*}
$$

where $\bar{\phi}_{p q}\left(x_{p q}, x_{q q}\right)=\delta\left(x_{p q} \leq x_{q q}\right), \bar{\phi}_{p}\left(\mathbf{x}_{p}\right)=\delta\left(\sum_{q} x_{p q}=1\right)$ and $\delta(\cdot)$ equals 0 if the expression in parenthesis is satisfied and ∞ otherwise.
Due to the term $\theta_{q}^{k} x_{q q}$, it is easy to see that if we set $x_{q q}=1$ for any $q \neq p$ then the value of the function $\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ will decrease if and only if it holds $\theta_{q}^{k}<0$. Therefore, to minimize $\bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ we must set

$$
\begin{equation*}
\hat{x}_{q q}=\left[\theta_{q}^{k}<0\right], \forall q \neq p \tag{51}
\end{equation*}
$$

Furthermore, the fact that the components of an optimal solution $\hat{\mathbf{x}}$ must belong to $\{0,1\}$ in conjunction with the form of the potential $\bar{\phi}_{p}\left(\mathbf{x}_{p}\right)=\delta\left(\sum_{q} x_{p q}=1\right)$ impose the constraint that we must set equal to 1 exactly one of the variables in the set $\left\{\hat{x}_{p q}\right\}_{q}$. If we set variable $\hat{x}_{p q}$ (with $q \neq p$) equal to 1 then the cost we must pay is $\bar{u}_{p q}^{k}(1)$, due to the term $\bar{u}_{p q}^{k}(1) \hat{x}_{p q}$, plus $\left[\theta_{q}^{k}\right]_{+}$, due to the term $\theta_{q}^{k} \hat{x}_{q q}+\bar{\phi}_{p q}\left(\hat{x}_{p q}, \hat{x}_{q q}\right)$ that requires also setting $\hat{x}_{q q}=1$ (note that we are paying $\left[\theta_{q}^{k}\right]_{+}$and not θ_{q}^{k} because for $q \neq p$ if $\theta_{q}^{k}<0$ then $\hat{x}_{q q}$ is set to 1 anyway due to (51) and thus no extra cost is paid in this case). On the other hand, if we set $\hat{x}_{p p}=1$ then the cost we must pay is θ_{p}^{k} due to the term $\theta_{p}^{k} \hat{x}_{p p}$. Therefore, for any q, the cost we pay if we choose to set $\hat{x}_{p q}=1$ is given by $\bar{\theta}_{q}^{k}$. As a result, we should set $\hat{x}_{p q}=[q=\bar{q}]$, where $\bar{q}=\arg \min _{q} \bar{\theta}_{q}^{k}$.
2. Energy $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ can be expressed as

$$
\begin{align*}
\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) & =\sum_{q \in C}\left(\frac{\bar{u}_{q q}^{k}\left(x_{q q}\right)}{\left|S^{k}\right|+1}+\lambda_{C q}^{k} x_{q q}\right)+\bar{\phi}_{C}\left(\mathbf{x}_{C}\right) \tag{52}\\
& =\sum_{q \in C} \theta_{q}^{k} x_{q q}+\bar{\phi}_{C}\left(\mathbf{x}_{C}\right) \tag{53}\\
& =\sum_{q \in C} \theta_{q}^{k} x_{q q}-\alpha\left|1-\sum_{q \in C} x_{q q}\right| \tag{54}
\end{align*}
$$

We will consider two cases:
(a) The minimizer of function $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ is given by $\hat{\mathbf{x}}=\mathbf{0}$ (i.e., none of the binary variables $\left\{\hat{x}_{q q}\right\}_{q \in C}$ is equal to 1$)$. In this case the minimum of function $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ must equal

$$
\begin{equation*}
\mathrm{OPT}_{1}=-\alpha \tag{55}
\end{equation*}
$$

(b) The minimizer of function $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ is given by $\hat{\mathbf{x}} \neq \mathbf{0}$. In this case at least one of the binary variables $\left\{\hat{x}_{q q}\right\}_{q \in C}$ will equal 1 and so $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ can be written as

$$
\begin{align*}
\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right) & =\sum_{q \in C} \theta_{q}^{k} x_{q q}-\alpha\left|1-\sum_{q \in C} x_{q q}\right| \tag{56}\\
& =\sum_{q \in C} \theta_{q}^{k} x_{q q}-\alpha\left(\sum_{q \in C} x_{q q}-1\right) \tag{57}\\
& =\sum_{q \in C}\left(\theta_{q}^{k}-\alpha\right) x_{q q}+\alpha \tag{58}
\end{align*}
$$

Therefore, the minimizer $\hat{\mathbf{x}}$ will be given by

$$
\begin{equation*}
\hat{x}_{q q}=\left[\theta_{q}^{k}<\alpha\right] \tag{59}
\end{equation*}
$$

and so the optimum value of $\bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)$ will equal

$$
\begin{equation*}
\mathrm{OPT}_{2}=\sum_{q \in C}\left[\theta_{q}^{k}-\alpha\right]_{-}+\alpha \tag{60}
\end{equation*}
$$

To conclude the proof, it suffices to notice that the second case will hold true if and only if

$$
\begin{equation*}
\mathrm{OPT}_{2}<\mathrm{OPT}_{1} \Leftrightarrow \sum_{q \in C}\left[\theta_{q}^{k}-\alpha\right]_{-}+\alpha<-\alpha \Leftrightarrow \sum_{q \in C}\left[\theta_{q}^{k}-\alpha\right]_{-}+2 \alpha<0 \tag{61}
\end{equation*}
$$

Lemma 3: Minimizations (27) and (28) in the main paper are equivalent.

Proof. It holds that

$$
\begin{align*}
& \min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w}} \tau J(\mathbf{w})+\sum_{k}\left(\bar{E}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}\right)-\mathcal{R}^{k}(\mathbf{w})\right) \tag{62}\\
& \stackrel{(26)}{=} \min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w}} \tau J(\mathbf{w})+\sum_{k}\left(\bar{E}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}\right)-\max _{\boldsymbol{\lambda}^{k} \in \boldsymbol{\Lambda}^{k}}\left(\sum_{p} \min _{\mathbf{x}} \bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)+\sum_{C} \min _{\mathbf{x}} \bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right)\right) \tag{63}\\
& =\min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w},\left\{\boldsymbol{\lambda}^{k} \in \boldsymbol{\Lambda}^{k}\right\}} \tau J(\mathbf{w})+\sum_{k}\left(\bar{E}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}\right)-\sum_{p} \min _{\mathbf{x}} \bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\sum_{C} \min _{\mathbf{x}} \bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right) \tag{64}\\
& \stackrel{(25)}{=} \min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w},\left\{\boldsymbol{\lambda}^{k} \in \boldsymbol{\Lambda}^{k}\right\}} \tau J(\mathbf{w})+\sum_{k}\left(\sum_{p} \bar{E}_{p}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)+\sum_{C} \bar{E}_{C}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right. \\
& \left.-\sum_{p} \min _{\mathbf{x}} \bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\sum_{C} \min _{\mathbf{x}} \bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right) \tag{65}\\
& =\min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w},\left\{\boldsymbol{\lambda}^{k} \in \boldsymbol{\Lambda}^{k}\right\}} \tau J(\mathbf{w})+\sum_{k} \sum_{p}\left(\bar{E}_{p}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\min _{\mathbf{x}} \bar{E}_{p}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right)+ \\
& \sum_{k} \sum_{C}\left(\bar{E}_{C}^{k}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)-\min _{\mathbf{x}} \bar{E}_{C}^{k}\left(\mathbf{x} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)\right) \tag{66}\\
& =\min _{\left\{\mathbf{x}^{k} \in \mathcal{X}\left(\mathcal{C}^{k}\right)\right\}, \mathbf{w},\left\{\boldsymbol{\lambda}^{k} \in \boldsymbol{\Lambda}^{k}\right\}} \tau J(\mathbf{w})+\sum_{k} \sum_{p} \overline{\mathcal{L}}_{\bar{E}_{p}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right)+\sum_{k} \sum_{C} \overline{\mathcal{L}}_{\bar{E}_{C}^{k}}\left(\mathbf{x}^{k} ; \mathbf{w}, \boldsymbol{\lambda}^{k}\right), \tag{67}
\end{align*}
$$

which concludes the proof.

[^0]: ${ }^{1}$ Note that both here and in the main paper all vectors of CRF variables \mathbf{x} are always assumed to be integral. Therefore, in order to reduce notational clutter we often omit stating this integrality constraint when using such vectors (e.g., we simply write $\min _{\mathbf{x}}$ instead of min $\{\mathbf{x}: \mathbf{x}$ has integral components $\}$).

