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Abstract

This paper proposes a very general max-margin learn-

ing framework for distance-based clustering. To this end, it

formulates clustering as a high order energy minimization

problem with latent variables, and applies a dual decom-

position approach for training this model. The resulting

framework allows learning a very broad class of distance

functions, permits an automatic determination of the num-

ber of clusters during testing, and is also very efficient. As

an additional contribution, we show how our method can be

generalized to handle the training of a very broad class of

important models in computer vision: arbitrary high-order

latent CRFs. Experimental results verify its effectiveness.

1. Introduction

Clustering is known to be ubiquitous in computer vision,

playing a crucial role in a wide variety of applications. It is

typically cast as an optimization problem, where one aims

to estimate a set of cluster centers that optimally represent

a given dataset based on a distance function measuring dis-

similarity between data points. The choice of this distance

plays a crucial role for the success of the method. Due to the

complexity and variability of the clustering tasks encoun-

tered in computer vision, the ability to automatically learn

such a distance based on training data is a matter of utmost

importance. In fact, quite often this is the only viable choice

as the distances to be learnt may depend on a large number

of parameters.

Considering the above observations, the goal of this

work is to provide a very general max-margin learning

framework for distance-based clustering. It uses as input a

set of ground truth partitions of training datasets. Based just

on this input, it enables the discriminative learning of a very

broad class of distances for clustering, where, e.g., non-

metric, non-differentiable or even asymmetric distances can

be handled by our method. Furthermore, despite its gener-

ality, the proposed learning framework provides great com-

putational efficiency as it is based on a very fast and par-

allelizable projected subgradient method. On top of that, it

relies on a formulation of clustering that allows the num-

ber of extracted clusters to be automatically determined as

a result of the optimization process. Therefore, our method

is able to properly account for the fact that this number is

typically not known in advance at test time (note that a cor-

rect estimation of this number often proves a very crucial

factor).

To achieve all these, we formulate the learning problem

for clustering as one of training a discrete conditional ran-

dom field (CRF). The two complications that we must deal

with in this case are the following: the resulting CRF is of

very high order, and it also contains latent variables that are

not observable during training. As a result, we also pro-

pose a very general method for handling learning problems

of this type, which is another important contribution of this

work. The proposed method relies on a master-slave dual

decomposition approach [10, 8] thanks to which it manages

to reduce the max-margin training of a complex high order

CRF with latent variables to that of training a series of much

simpler slave CRFs. This gives to the proposed method

great generality and flexibility, thus allowing it to efficiently

handle a very broad class of high-order latent CRF models.

Regarding prior work, a fully supervised learning

method for clustering has also been proposed in [4]. How-

ever, that method relies on a different formulation based on

correlation clustering. Such a formulation requires the use

of a similarity function simpq that classifies each pair of

datapoints (p, q) as either similar (simpq > 0) or dissimilar

(simpq < 0). Also, a structured learning method for models

with latent variables has appeared in [17]. However, both

[17] and [4] require solving a very complicated LP relax-

ation as well as a quadratic program with a growing number

of constraints per iteration. They are thus much slower than

our approach. Furthermore, they can only handle quadratic

regularizers. On the contrary, our method can naturally han-

dle any type of regularizer, such as a sparsity-inducing l1
norm that often plays a very crucial role for correct learn-

ing. Our method also extends the recently proposed learn-

ing framework [6]. Although that framework can efficiently

train arbitrary high-order CRFs, it cannot handle any hidden

variables during learning. Before proceeding, we should

also note the important role that latent CRFs play in many

vision applications [3].

Paper structure: §2 describes the used formulation of clus-

tering. The corresponding max-margin learning framework
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is presented in §3-§4, while §5 explains how it can be gen-

eralized to arbitrary high-order latent CRFs. Experimental

results are presented in §6, and we finally conclude in §7.

2. Exemplar based clustering

For a set of datapoints S endowed with a distance, a gen-

eral formulation for center based clustering is the following

one [9, 5]

min
Q⊆S

E(Q) =
∑

p/∈Q

min
q∈Q

dp,q +
∑

q∈Q

dq,q . (1)

Here Q represents the set of cluster centers (exemplars),

which in this case can consist of any subset of data points

from the input set S. The role of elements of d = {dp,q}
is twofold: for p 6= q each dp,q represents the distance be-

tween p and q, whereas each element dq,q represents the

penalty for choosing q as exemplar. As a result, we seek

to minimize the distance of a datapoint to its nearest center,

while at the same time choosing as few centers as possible.

Note that in this case the number of exemplars is not prede-

termined but is an output of the optimization. In addition,

this formulation allows us to use very general distances.

The above formulation of clustering can be cast as a

high-order CRF optimization problem [9]. To this end, note

that problem (1) is equivalent to the following integer pro-

gram

min
x

∑

p,q∈S

dp,qxpq (2)

s.t.
∑

q∈S

xpq = 1, ∀p (3)

xpq ≤ xqq, ∀p, q (4)

xpq ∈ {0, 1}, ∀p, q. (5)

In this integer program each binary variable xqq indicates

whether q has been chosen as an exemplar or not, while

xpq with p 6= q indicates whether p has been assigned to

exemplar q or not. Constraints (3) ensure that each p is

assigned to exactly one cluster, while constraints (4) ensure

that if p is assigned to q then the latter must be an exemplar.

Therefore clustering can be expressed as minimizing the

following function

E(x;d) =
∑

p,q

upq(xpq ;d)+
∑

p,q

φpq(xpq , xqq)+
∑

p

φp(xp)

(6)

which represents the energy of a discrete CRF having unary

potentials u = {upq( · ;d)} and higher order potentials φ =
{φpq(·), φp(·)} that are defined as

upq(xpq;d) = dp,qxpq (7)

φpq(xpq , xqq) = δ(xpq ≤ xqq) (8)

φp(xp) = δ
(

∑

q
xpq = 1

)

, (9)

where xp = {xpq|q ∈ S}, and δ(·) equals 0 if the expres-

sion in parenthesis is satisfied and∞ otherwise.

3. Max-margin learning for clustering

Let us now assume that we are given a set of K train-

ing samples {Sk, Ck,yk}Kk=1. Here Sk represents the set

of data points of the k-th training sample, and Ck = {Ck
i }

represents a ground truth partition (clustering) of that set,

i.e., it holds ∪iC
k
i = Sk, Ck

i ∩Ck
j = ∅, ∀i 6= j. We also as-

sume that the distances between data points of the k-th sam-

ple dk = {dk
p,q} can be expressed in terms of an unknown

vector of parameters w and a set of known vector-valued

feature functions fpq(·) that depend on some input data yk ,

i.e. it holds

dk
p,q = wT fpq(y

k) . (10)

We seek to estimate w such that when we minimize the en-

ergy E(x;d) resulting from any given input data y, we can

then predict the correct clustering C for the corresponding

set of data points S. However, there are two difficulties as-

sociated with this structured learning task that we need to

deal with in this case: on the one hand, the energy E(x;d)
is of very high-order (e.g., notice that potential φp(xp) is a

function of |S| variables). On the other hand, during train-

ing we get to observe only the correct partition Ck but not

the underlying vector xk, i.e., variables xk are latent in this

case (note that a partition Ck does not fully determine xk

since the cluster centers are unknown). Hereafter we will

denote by X (C) the set of all x consistent1 with the cluster-

ing defined by partition C, and we will also use the follow-

ing notation throughout the rest of the paper:

Ek(x;w) := E(x;dk) , uk
pq(xpq) := upq(xpq ;d

k) (11)

To estimate w, here we will follow a max-margin ap-

proach [14], in which case we must adjust w such that there

exists xk ∈ X (Ck) whose energy Ek(xk;w) is smaller by

∆(x; Ck) than the energy of any other binary solution x, i.e.

∃xk ∈ X (Ck) : Ek(xk;w) ≤ Ek(x;w)−∆(x; Ck)+ ξk .

(12)

Function ∆(x; Ck) should measure how far the clustering

induced by x is with respect to any desired clustering Ck.

Furthermore, slack variable ξk is required for the case of an

infeasible training set. Constraints (12) lead to minimizing

the following regularized loss functional for computing w

min
{xk∈X (Ck)},w

τJ(w) +
∑

k
LEk(xk;w) , (13)

where J(w) is a regularization term, while LEk(xk;w)
represents slack variable ξk and is given by the following

1Vector x is said to be consistent with clustering C iff the partition

induced by x coincides with C.



hinge loss

LEk(xk;w) = Ek(xk;w)−min
x

(

Ek(x;w) −∆(x; Ck)
)

.

(14)

The selection of J(w) often proves a crucial factor depend-

ing on the learning task. Many possible choices exist for

J(w) (e.g., ||w||2, a sparsity-inducing norm ||w||1 etc.).

3.1. Choosing the error function ∆(x; Ck)

The proper definition of function ∆(x; Ck) is important

for learning a correct w. As mentioned above, ∆(x; Ck)
must provide a measure of the error between the clustering

induced by x and the clustering induced by partition Ck. To

this end, we will make use of the following definition

∆(x; Ck) = α
∑

C∈Ck

∣

∣

∣
1−

∑

q∈C

xqq

∣

∣

∣
+β

∑

C∈Ck

∑

p∈C

(

1−
∑

q∈C

xpq

)

.

(15)

Notice that the first term equals zero if and only if for each

cluster C ∈ Ck there exists exactly one datapoint chosen as

exemplar by x among all datapoints in C. Furthermore, the

second term is zero if and only if this unique exemplar for

cluster C, say q′, is assigned by solution x to all datapoints p

in C, i.e. it holds xpq′ = 1, ∀p ∈ C (the constants α, β ≥ 0
are used for weighting the importance of these two terms).

Therefore, the following natural property holds true

∆(x; Ck) = 0⇔ x ∈ X (Ck). (16)

In addition, it is easy to see that the more inconsistent solu-

tion x is with respect to clustering Ck, the greater the value

of the error ∆(x; Ck) is.

Let us now define Ēk(x;w) := Ek(x;w) − ∆(x; Ck).
An important observation for the analysis that will follow

is that Ēk(x;w) can still be expressed as the energy of a

high-order discrete CRF, i.e. it holds

Ēk(x;w) =
∑

p,q

ūk
pq(xpq) +

∑

p,q

φ̄pq(xpq, xqq)+

∑

p

φ̄p(xp) +
∑

C∈Ck

φ̄C(xC)− β|Sk| ,
(17)

where xC ={xqq | q∈C}. The unary potentials ūk={ūk
pq}

and the higher-order potentials φ̄ = {φ̄pq, φ̄p, φ̄C} equal

ūk
pq(xpq) = uk

pq(xpq) + β ·
[

∃C ∈ Ck : p, q ∈ C
]

·xpq, (18)

φ̄pq(·) = φpq(·) , φ̄p(·) = φp(·) , (19)

φ̄C(xC) = −α
∣

∣

∣
1−

∑

q∈C
xqq

∣

∣

∣
, (20)

where [ · ] denotes the indicator function (which is 1 if the

expression in square brackets is true, and 0 otherwise).

Due to (16) and the fact that xk ∈ X (Ck) it follows that

Ēk(xk;w) = Ek(xk;w). Therefore, the following equal-

ity holds LEk(xk;w) = L̄Ēk(xk;w), where we define

L̄Ēk(xk;w) := Ēk(xk;w)−min
x

Ēk(x;w) . (21)

As a result, loss function (13) reduces to

min
{xk∈X (Ck)},w

τJ(w) +
∑

k
L̄Ēk(xk;w) . (22)

Essentially the above loss tells us the following fact: during

learning we should ideally adjust w such that the minimum

of the high-order energy Ēk( · ;w) is attained at a solution

xk that belongs to the set X (Ck).

4. Learning to cluster using a dual decomposi-

tion approach

Dealing with the above loss functional is intractable.

This happens due to the term minx Ēk(x;w) appearing

in L̄Ēk(xk;w), which is NP-hard to compute. In cases

like this, one typically opts to approximate the original

loss with an easier to handle upper bound, which should

be minimized so as to implicitly lead to a reduction of

the original loss as well. Having expressed the clustering-

related function Ēk( · ;w) as the energy of a high-order

CRF, here we will derive such an upper bound by approxi-

mating minx Ēk(x;w) with a convex dual relaxation that

results from applying the method of dual decomposition

to Ēk( · ;w) [7, 10]. According to this method, the en-

ergy Ēk( · ;w) (also called the energy of the master prob-

lem) must be decomposed into the energies of a set of

slave subproblems. In this case, we will employ the fol-

lowing specific decomposition
{

{Ēk
p}p∈Sk , {Ēk

C}C∈Ck

}

,

which makes use of one slave subproblem per datapoint

p ∈ Sk and one slave subproblem per cluster C ∈ Ck,

where

Ēk
p (x;w, λ) =

∑

q:q 6=p

ūk
pq(xpq) +

∑

q

φ̄pq(xpq , xqq) + φ̄p(xp)

+
∑

q

( ūk
qq(xqq)

|Sk|+ 1
+λpqxqq

)

− β , (23)

Ēk
C(x;w, λ) =

∑

q∈C

( ūk
qq(xqq)

|Sk|+ 1
+λCqxqq

)

+φ̄C(xC) . (24)

Here, the vector λ =
{

{λpq}, {λCq}
}

(whose components

represent the dual variables) is assumed to satisfy

λ ∈ Λk =
{

λ :
∑

p∈Sk

λpq+λCq =0 , ∀C ∈ Ck, q ∈ C
}

.

(25)

Due to (25), it holds Ēk =
∑

p Ēk
p +

∑

C Ēk
C and so the

sum of the minimum energies of the slave subproblems is

easily shown to provide a lower bound to the minimum en-

ergy of the master problem, i.e.,
∑

p minx Ēk
p (x;w, λ) +

∑

C minx Ēk
C(x;w, λ) ≤ minx Ēk(x;w). Maximizing

this lower bound by adjusting λ leads to the convex dual



relaxationRk(w) used for approximating minx Ēk(x;w)

Rk(w)= max
λ∈Λk

(

∑

p

min
x

Ēk
p (x;w, λ)+

∑

C

min
x

Ēk
C(x;w, λ)

)

(26)

Therefore, the loss function that we must finally minimize

results from replacing minx Ēk(x;w) withRk(w) in (22),

thus leading to the following upper bound of the true loss

min
{xk∈X (Ck)},w

τJ(w) +
∑

k

(

Ēk(xk;w)−Rk(w)
)

. (27)

By substituting (26) for Rk(w), the minimization (27)

above can be shown [1] to finally reduce to

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w)+
∑

k

∑

p∈Sk

L̄Ēk
p
(xk;w, λk)+

∑

k

∑

C∈Ck

L̄Ēk
C
(xk;w, λk),

(28)

where L̄Ēk
p

, L̄Ēk
C

are defined analogously to (21) (i.e.,

we replace Ēk(· ;w) in (21) with Ēk
p (· ;w, λk) and

Ēk
C(· ;w, λk) respectively).

Therefore, the initial loss function (22), which was in-

tractable due to including the hinge losses L̄Ēk(·) of the

extremely complicated energy functions Ēk, has now been

substituted with the loss function (28) that involves hinge

losses L̄Ēk
p
(·), L̄Ēk

C
(·) related to the much easier energies

of the slave subproblems Ēk
p , Ēk

C . As we shall see be-

low, this will lead to an extremely efficient learning scheme

for clustering. Note that the function in (28) still remains

non-convex (e.g., due to the terms Ēk
p (xk;w, λk) in L̄Ēk

p
).

To minimize it we will use a block-coordinate descent ap-

proach by alternately optimizing over {xk} and {w, {λk}}.

4.1. Optimizing over {xk}

Minimizing function (28) over {xk} (for fixed w) gives

xk = arg min
x∈X (Ck)

Ēk(x;w)
(16)
= arg min

x∈X (Ck)
Ek(x;w).

Therefore, to fully determine xk it suffices to find the set of

exemplars Qk that are consistent with Ck and also minimize

the clustering cost Ek(x;w) (indeed, if we know Qk then

we can set xk
qq = 1 ⇔ q ∈ Qk, while for each p 6= q

we can assign xk
pq = 1 ⇔ q = argminq∈Qk dk

p,q). The

computation of the set of exemplars Qk can be performed in

linear time as follows: since Qk must be consistent with Ck,

it must have the following form Qk = {qC}C∈Ck , where

qC denotes the unique exemplar corresponding to cluster

C. Furthermore, this unique exemplar qC can be efficiently

found via the following minimization

qC = argmin
q∈C

∑

p∈C

dk
p,q . (29)

4.2. Optimizing over {w, {λk}}

When {xk} are fixed, each term L̄Ēk
p
(xk;w, λk) (resp.

L̄Ēk
C
(xk;w, λk)) is immediately recognized to correspond

to the structured learning loss of a slave CRF with energy

Ēk
p (resp. Ēk

C ), where output variables xk are now assumed

to be fully observed during training (i.e., no latent variables

exist). As a result, for fixed {xk}, optimizing convex func-

tion (28) essentially has been reduced to the parallel training

of a set of slave problems that are much easier to handle,

both because of their much simpler energy functions and

because of the absence of latent variables. To perform this

training, we will apply the iterative projected subgradient

method that updates {w, {λk}} at each iteration as follows

w← w − stδw , λk ← projΛk(λk − stδλk) , (30)

where {δw, {δλk}} denotes a subgradient of function (28)

at {w, {λk}}, and proj
Λk(·) denotes projection onto Λk.

As described in the next lemma (see [1] for a proof),

the above update essentially requires to compute an opti-

mal solution for the slave subproblems, and, as we shall see,

this computation can be performed very efficiently thanks to

the much simpler energy functions involved (note that this

would not be possible had we to deal with the energy of the

master problem Ēk).

Lemma 1 Let x̂k,p, x̂k,C be binary minimizers of the en-

ergy functions Ēk
p , Ēk

C . Define fk
pq ≡ fpq(y

k), X̂k
q ≡

x̂k,C
qq +

∑

p x̂k,p
qq , ∀q∈C. Update (30) then reduces to











w

λk
pq

λk
Cq











−= st











τ∇J(w)+
∑

k δk
w

X̂k
q

|Sk|+1
− x̂k,p

qq

X̂k
q

|Sk|+1
− x̂k,C

qq











, (31)

where δk
w

=
∑

p,q xk
pqf

k
pq−

∑

p6=q x̂k,p
pq fk

pq −
∑

q
X̂k

q fk
qq

|Sk|+1
.

4.2.1 Solving the slave problems

Despite the fact that the potentials included in the energy

functions of the slave problems are of high-arity (e.g., φ̄p(·),
φ̄C(·) are functions of |Sk| and |C| variables respectively),

the special structure of these potentials allows us to compute

a binary minimizer for the energies Ēk
p , Ēk

C very efficiently.

This is detailed in the following lemma (proved in [1]).

Lemma 2 Let [a]+ ≡ max(a, 0), [a]− ≡ min(a, 0).

1. For fixed p, let θk
q ≡

ūk
qq(1)

|Sk|+1
+λk

pq, ∀q and let us define

θ̄k
q ≡ ūk

pq(1) + [θk
q ]+, ∀q 6= p and θ̄k

p = θk
p . A mini-

mizer x̂ of Ēk
p (x;w, λk) can be computed as follows:

∀q 6= p, x̂qq ← [θk
q < 0] (32)

∀q, x̂pq ← [q = q̄], where q̄ = argmin
q

θ̄k
q (33)



Data: training samples {yk, Ck, Sk}Kk=1, features {fpq(·)}

λk ← 0, ∀k
repeat

/* Optimize over x
k */

compute optimal set of exemplars Qk via (29)

set xk
qq =1⇔q ∈ Qk, xk

pq =1⇔q=arg min
q∈Qk

dk
p,q, ∀p 6=q

/* Apply T rounds of projected subgradient */

repeat T times {
get solutions x̂

k,p, x̂k,C of slaves Ēk
p , Ēk

C via (32)-(34)

update w, λk via (31)

}

until convergence

Fig. 1: Pseudocode for the clustering learning algorithm.

2. For fixed C ∈ Ck, let θk
q ≡

ūk
qq(1)

|Sk|+1
+λk

Cq, ∀q ∈ C. A

minimizer x̂ of Ēk
C(x;w, λk) is given by

∀q ∈C, x̂qq =

{

[θk
q < α], if 2α+

∑

q′∈C [θk
q′−α]−<0

0, otherwise

(34)

The pseudocode of the resulting learning algorithm for

clustering appears in Fig. 1. As can be seen, this algorithm

alternates between filling in the latent variables xk and up-

dating w, λ via doing a parallel training for the easy-to-

handle slave problems. For the latter task, T rounds of the

projected subgradient algorithm are being used. Note that in

practice the number of rounds T can be set to be very small

(e.g., even 1). In addition, if we want to further improve

the efficiency of the above method, we can make use of a

stochastic subgradient algorithm. In this case the only dif-

ference is that at each iteration we must randomly pick just

one training sample, say the k-th one, and then update only

λk,xk,w during the current iteration (we must also replace

the term
∑

k δk
w in (31) with just δk

w). Overall, this leads to

an extremely efficient learning scheme for clustering.

5. Training high-order latent CRFs

Although the focus of this work is on clustering, we

note that our learning method can be generalized to an ex-

tremely broad class of problems that play an important role

in many vision applications: namely high-order CRFs with

latent variables (it thus also extends the recently proposed

learning framework in [6]). In the following we briefly

explain how our method handles such latent models. Let

EGk denote the energy of a CRF defined on a hypergraph

Gk = (V k, Ek) with vertices V k and hyperedges Ek, where

EGk(x, z;w) =
∑

p∈V k

uk
p(xp, zp;w) +

∑

e∈Ek

φk
e(xe, ze;w).

Functions uk
p(·), φk

e(·) denote the unary and higher-order

potentials that are expressible in terms of an unknown vec-

tor of parameters w and some feature functions of the input

data yk (e.g., uk
p(xp, zp;w) = wT fp(xp, zp,y

k) and sim-

ilarly for φk
e(·)). We want to estimate w based on a set of

training samples {yk, zk}Kk=1, where only variables zk are

observed during training (i.e., variables xk are hidden).

The only requirement that must hold in this case is

that an error function ∆(x, z; zk) must be used that ful-

fills the following property: the function EGk(x, z;w)−
∆(x, z; zk) should equal the energy of a high-order CRF

defined on a hypergraph Ḡk = (V̄ k, Ēk), i.e., it must hold

EGk(x, z;w)−∆(x, z; zk)= ĒḠk(x, z;w), where

ĒḠk(x, z;w) =
∑

p∈V̄ k

ūk
p(xp, zp;w) +

∑

e∈Ēk

φ̄k
e (xe, ze;w).

Note that this is an extremely loose assumption given that

both the hypergraph Ḡk and the new potentials ūk
p(·), φ̄k

e(·)

may be totally different than Gk or uk
p(·), φk

e (·) respectively.

In such a case we can proceed by applying the dual de-

composition method to the CRF energy ĒḠk [7]. In its

simplest version this entails choosing an arbitrary parti-

tion {Ḡk
i = (V̄ k

i , Ēk
i )} of Ḡk and defining on each Ḡk

i a

slave CRF with energy ĒḠk
i
(x, z;w, λk,i) whose potentials

ūk,i
p (xp, zp;w, λk,i), φ̄k,i

e (xe, ze;w) are given by

ūk,i
p (·;w, λk,i) = λk,i

p (·) +
ūk

p(·;w)

|{i : p ∈ V̄ k
i }|

, φ̄k,i
e = φ̄k

e .

Here, the dual variables λk = {λk,i} are assumed to belong

to the set Λk = {λk :
∑

i:p∈V̄ k
i

λk,i
p (·) = 0, ∀p}.

By then leveraging the convex dual relaxation resulting

from this decomposition, we can show that the original in-

tractable loss, which in this case equals minxk,w τJ(w) +
∑

k L̄Ē
Ḡk

(xk, zk;w), can be approximated with the fol-

lowing much easier-to-handle tight upper bound2

min
xk,w,λk∈Λk

τJ(w) +
∑

k,i

L̄Ē
Ḡk

i

(xk, zk;w, λk,i) (35)

that relates to the training of CRF slaves ĒḠk
i
( · ;w, λk,i).

In this manner a very efficient learning scheme can

be derived that alternates between the following two

steps: (a) filling in the latent variables by setting xk =
argminx ĒḠk(x, zk;w) (or more generally by simply up-

dating xk such that the energy ĒḠk(xk, zk;w) decreases),

and (b) updating w, λk by training in parallel the CRF

slaves ĒḠk
i

via T rounds of projected subgradient, where

each round essentially reduces to computing an optimal so-

lution for each slave ĒḠk
i

(this comprises the main step for

the subgradient computation).

Besides its extreme efficiency, the above learning

scheme also provides great flexibility and generality, which

2L̄Ē(x′, z′)≡ Ē(x′, z′)−minx,z Ē(x, z) for any energy Ē(x, z).
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Fig. 2: In (c) we show a projection of a test dataset onto 2 non-

noisy dimensions. The test set lives in R
100 and consists of 10

ground truth clusters indicated with different colors. Circle cen-

ters denote the estimated exemplars when using the learnt weights

shown in (b). (See also text).

stems from the freedom of choice with regard to the slave

CRFs that are used in each case. For instance, even if the

trianing of the original latent CRF is quite complex, we can

decompose it to the much easier training of simpler slaves

(e.g., one slave per clique). In this manner we are able to

efficiently handle the training of a very broad class of CRFs

with latent variables. Furthermore, through a proper selec-

tion of the slaves, the above framework can also be easily

adapted to take advantage of the special structure that may

exist in classes of latent CRFs used in practice, e.g., sub-

modular CRFs (note that essentially the only requirement is

that one can compute optimal solutions for the slave CRFs).

6. Experimental results

To verify the effectiveness of our learning framework

for clustering, we conducted various experiments. In all of

them we assume that the penalties {dqq} are set to a fixed

value and so only the distances {dpq}p6=q depend on w.

We also used an l1-norm regularizer R(w) - as we found

it to lead to better generalization performance compared to

a quadratic regularizer (probably due to sparsity) - and set

α = β = 1 in (15). For obtaining a clustering at test time

(i.e., after we learn w), any of the algorithms capable of

optimizing objective function (1) can be used (e.g., [9]).

Our first experiment is on clustering synthetic data. In

this case each synthetic dataset was generated by sampling

N data points (living in R
D) from a mixture of M multi-

dimensional Gaussian distributions with a diagonal covari-

ance matrix Σ = diag(σi). The values σi were chosen such

that a percentage ρ of the total D dimensions were noisy

(i.e., their variance was set to be much larger compared to

the rest of the dimensions). Clustering such a set of data-

points requires learning a distance function of the following

form dpq =
∑D

i=1 wi(x
i
p − xi

q)
2, where w = {wi} is the

vector of unknown weights. To this end, a set of ground

truth partitions of sampled data is assumed to be given as

input. Based on the above setting, we performed multi-

ple tests by varying the number of total dimensions D, the

percentage of corrupted dimensions ρ, as well as the num-

ber of clusters M and the number of datapoints N (each

time 10 ground truth partitions of different datasets were

used as training data, and 10 test datasets were clustered

based on the estimated w). Fig. 2(a) shows a typical ex-

ample of how the learning objective function varies in this

case when running our algorithm (we show an average over

20 different runs). Notice the extremely fast convergence

of our method. The number of dimensions D used in this

example was D = 100, the last half of which were cor-

rupted (i.e., ρ = 50%), while the other first half had equal

variance (N and M varied per run). The resulting vector

w = {wi} estimated by our method is shown in Fig. 2(b),

where the weights corresponding to the noisy dimensions

are the last ones. Notice how the algorithm has successfully

managed to significantly suppress the values of all these

weights (we note that the use of a sparsity inducing regu-

larizer R(w) = ||w||1 was important to achieve this). We

also show in Fig. 2(c) a typical clustering result produced

for a test dataset using the learnt distance. As can be seen,

the clustering algorithm has also managed to automatically

determine the correct number of exemplars (in this case 500
datapoints had been sampled from a mixture of 10 Gaus-

sians, i.e., M = 10, N = 500). The above successful be-

havior of our learning method was observed throughout all

our tests. To this end, we show in Fig. 2(d) the average ac-

curacy (F-measure) obtained for clusterings of test datasets

for different values of ρ (we note that the same ρ has been

used in both training and testing and the average is over 10

runs). As can be observed, even for very large ρ our method

manages to correctly estimate w and thus learn distances

that yield highly accurate clusterings during testing (i.e., F-

measure ≈ 1). On the contrary, squared Euclidean distance

fails completely in this case, as expected.

The next experiment is about learning a distance function

for texture classification, i.e., for clustering different classes

of texture images. In this case the distance d(·) to be esti-

mated equals a weighted combination of known distances,

i.e., it holds d(·) =
∑

f wfdf (·), where each individual

distance df (·) compares images based on a different visual

feature f . Due to the generality of our learning framework,

arbitrary distances df (·) can be used (e.g., non-metric, non-

differentiable or even asymmetric distance functions can be
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Fig. 3: Learnt weights for Outex and UIUC.

Fig. 4: 10 of 24 estimated exemplar images for Outex.

chosen). Furthermore, due to the robustness of our learn-

ing procedure, we can freely use as many feature distance

functions as we want and let the learning algorithm figure

out the ones that are useful in clustering. We first apply our

method to images from the Outex database [13] that con-

tains 24 different texture classes. We use 10 train/test splits,

where each time a single partition containing half of the im-

ages from each class is used as training data while the rest of

the images are clustered during testing. The visual features

that are used are the following: gist, histogram of dense

quantized HOGs, local binary patterns (LBP), rotation in-

variant LBP (rot-LBP) [2], histograms of quantized dense

SIFT descriptors, histograms of quantized sparse SIFT de-

scriptors (at Hessian-affine interest points), standard texton

histograms and histograms based on MR8 textons [16]. For

all of them we use the chi-squared distance (χ2), except for

gist (squared euclidean distance) and rot-LBP (l1 distance).

The weights learnt by our algorithm appear in Fig. 3(a).

Based on these weights, clustering attains an accuracy of

100% during testing (fig. 4 shows 10 of the 24 images that

were automatically determined as exemplars for one of the

test sets). In this case, due to the fact that texture classes

exhibit no rotational variations, rotation invariant features

such as rot-LBP or MR8 are suppressed by our method and

essentially dense HOG and dense SIFT features suffice for

comparing texture images.

On the contrary, if we apply our learning algorithm

to the UIUC texture database [11] (consisting of 25 tex-

ture classes) the resulting set of learnt weights appears in

Fig. 3(b). Essentially, due to the existence of intra-class ro-

tational variations, dense HOG and SIFT features (which

offer no rotational invariance) have been traded off for the

rotationally invariant sparse SIFT and MR8 features. In this

case, the average clustering accuracy of our method is 86%.

Furthermore, nearest neighbor classification based on the
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Fig. 6: (a) Learnt weights for multiple distance-feature pairs for

the scene dataset. (b) Evolution of the learning objective function

for the scene dataset.

learnt weighted distance achieves an accuracy of 95.3%,

whereas the best obtained accuracy using either a single fea-

ture distance or the average of all feature distances does not

even exceed 90%. In fact, the difference in performance be-

comes even greater when there exist additional redundant

or noisy features. To further explore the benefit of using

our learning framework in such a case, we performed the

following experiment: in addition to the above mentioned

features, we artificially added an equal number of noisy fea-

tures by randomly sampling vectors from a Gaussian distri-

bution. What we observed is that our method had no prob-

lem at all to completely suppress all the weights of irrele-

vant features, thus achieving the same level of accuracy as

before. On the contrary, in this case performance dropped

significantly when the average of all feature distances was

used for classifying images.

In our next experiment we went one step further by al-

lowing not only different visual features but also multiple

distance functions per feature (apparently even important

features can be misused if they are not compared properly).

In this case the distance function for clustering is given by

d(·) =
∑

f,i wf,id
f,i(·), where i now runs over multiple

distances per feature f . To this end, we used the follow-

ing distances for all of the features: χ2 distance (denoted

chi2 in the figures), squared Euclidean distance (denoted

l2), l1-norm distance, and the RBF kernel distance3. Using

this setting and applying again our learning method to the

UIUC dataset leads to the new weights in Fig. 5. Essen-

tially, the main difference is that the rot-LBP feature, which

was originally suppressed due to the use of a l1 distance, is

3We define the distance of a similarity kernel k(·, ·) as dk(x, y) =
√

k(x, x) + k(y, y) − k(x, y) − k(y,x).



Fig. 7: 10 of the exemplar images estimated for the Scene dataset.

now given more weight when used in conjunction with, e.g.,

the RBF kernel distance. This also has the effect of raising

the accuracy of nearest neighbor classification to 96.1%.

Using this idea of multiple distances per feature, we also

applied our method to the 15 scene category dataset for

scene classification [12]. To this end, we chose 10 ran-

dom train/test splits containing 80 images per scene (with

half of the images being in the training set). The result-

ing evolution of the objective function during learning (av-

eraged over the 10 runs) appears in Fig. 6(b). It can be

noticed that convergence is again very fast. Also, the es-

timated weights for various feature-distance combinations

are shown in Fig. 6(a). As expected, due to the greater intra-

class image variation, a larger number of features come into

play compared to texture classification. In this case, the av-

erage clustering accuracy is 63%. Furthermore, using the

resulting weighted distance in conjunction with a nearest

neighbor classifier yields a NN accuracy of 70.2%. The im-

portant thing to note here is that this provides a significant

improvement compared to the best NN accuracy that can be

obtained using either a single feature-distance combination

or the average distance, which in this case does not go over

61%. Fig. 7 also shows a few of the exemplar images that

were chosen when clustering the test images for one of the

splits of the Scene dataset.

We also experimentally compared our method with [4],

which is a state of the art learning algorithm for cluster-

ing (our implementation of [4] was based on adapting the

public SVM-struct software). In all experiments we found

our method to have consistently better performance. For

instance, the clustering accuracy of [4] for the UIUC and

Scene experiments were 74% and 52% respectively (vs 86%

and 63% for our method). Similarly, the corresponding

NN accuracy of [4] were 82.1% and 62.1% (vs 95.3% and

70.2% for our method). We also compared our method with

the state of the art multiple kernel learning algorithm in

[15]. The classification accuracy of that algorithm for the

same UIUC and Scene experiments were 94.9% and 63.4%

respectively (vs 95.3% and 70.2% for our method).

We should add that in all the experiments we imposed a

positivity constraint on w, i.e., we required w ≥ 0. Note

that our method can naturally handle any constraint of the

form w ∈ W with W a convex set. To this end, one must

simply replace the update w ← w − stδw in (30) with the

update w ← projW (w − stδw), where projW (·) denotes

projection onto set W (in the case where W = {w : w ≥
0}, it holds projW (w) = max(w, 0)).

7. Conclusions

In this paper we presented a discriminative learning

framework for distance-based clustering. The proposed

framework is very general, highly efficient (as it relies on a

very fast subgradient scheme) and parallelizable. It allows

learning a very broad class of distances that may depend

on a large number of unknown parameters. Furthermore,

we showed that it can be extended to efficiently handle the

training of a very broad class of high-order models that play

an important role in computer vision: these are high-order

CRFs with latent variables. Due to the widespread use of

both distance-based clustering and latent CRFs, we firmly

believe that our framework will be a valuable tool for many

vision applications4.
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image description with local binary pattern histogram fourier fea-

tures. In SCIA, 2009. 7

[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-

ject detection with discriminatively trained part-based models. PAMI,

2009. 1

[4] T. Finley and T. Joachims. Supervised clustering with support vector

machines. In ICML, 2005. 1, 8

[5] B. J. Frey and D. Dueck. Clustering by passing messages between

data points. Science, 2007. 2

[6] N. Komodakis. Efficient training for pairwise or higher order CRFs

via dual decomposition. In CVPR, 2011. 1, 5

[7] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient

optimization for higher-order MRFs. In CVPR, 2009. 3, 5

[8] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via

dual decomposition: Message-passing revisited. In ICCV, 2007. 1

[9] N. Komodakis, N. Paragios, and G. Tziritas. Clustering via LP-based

Stabilities. In NIPS, 2008. 2, 6

[10] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimiza-

tion and beyond via dual decomposition. PAMI, 2010. 1, 3

[11] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representa-

tion using local affine regions. PAMI, 2005. 7

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In CVPR, 2006. 8
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