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Abstract. This supplementary material contains the technical proofs of
all theorems of the main paper. It also includes additional experimental
results that were omitted from the main paper due to lack of space.

1 Technical proofs

Theorem. If MRFḠ(Ū, P̄) is the master MRF resulting from the dual decompo-
sition defined by eqs. (7)-(9), it then holds MRFḠ(Ū, P̄) = proj(MRFG(U,P)).

Proof. By comparing Eqs. (9) and (6) in the main paper, it follows directly that
the pairwise potentials P̄ and the pairwise potentials of the MRF proj(MRFG(U,P))
coincide. Therefore, to prove the theorem, it suffices to show that the unary po-
tentials Ū coincide with the unary potentials of proj(MRFG(U,P)) as well.

Indeed, due to Eq. (3) it must hold

Ū =
∑

j

θ̄
Ḡj .

Furthermore, by substituting Eq. (8) into the above equation, it holds that

Ūp̄(l) =
∑

j

∑
i:proj(Gi)=Ḡj

∑
p:proj(p)=p̄

θ
Gi

p (l) (19)

=
∑

i

∑
p:proj(p)=p̄

θ
Gi

p (l) (20)

=
∑

p:proj(p)=p̄

∑
i
θ

Gi

p (l) (21)

=
∑

p:proj(p)=p̄
Up(l) , (22)

where the last equality is due to Eq. (3) that requires U =
∑

i θ
Gi . The theorem

now follows directly by comparing Eqs. (22) and (6). ⊓⊔

Theorem. Let OptḠ, OptG denote the optimal values of the dual relaxations
for graphs Ḡ and G respectively. Then, in general, it holds OptḠ > OptG.
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Proof. Let OptMRFG and OptMRFḠ denote the optimal energies for the two
MRFs defined on the graphs G and Ḡ = proj(G) respectively. Due to the MRF
on Ḡ being a projection of the MRF on G, it is obvious that, in general, it will
hold

OptMRFḠ > OptMRFG . (23)

If we now consider a case where the corresponding dual relaxations are also tight
(e.g., both MRFs are submodular), it will then hold

OptḠ = OptMRFḠ (24)

OptG = OptMRFG . (25)

The theorem then follows directly by combining Eqs. (23), (24) and (25). ⊓⊔

Proposition. If a node p is stabilized then no update of its local dual variables
{θGi

p (·)} can increase the dual objective. Conversely, if p is non-stabilized, then

there always exists an update of the variables {θGi
p (·)} that improves the dual.

Proof. Without loss of generality, we assume that p is contained in only two
subgraphs G1 and G2. The forward part of the proposition (i.e., the fact that
no update of the local dual variables {θGi

p (·)} can increase the dual objective
when p is a stabilized node) is a direct consequence of the feasibility constraint
(3), which requires that the local dual variables at node p satisfy

θ
G1

p (l) + θ
G2

p (l) = Up(l) , ∀l ∈ L . (26)

This condition implies that whenever θ
G1

p (l) is increased by dθ, θ
G2

p (l) must also

decrease by the same amount (and vice versa). Therefore, if l̄ is a stable label
of p (i.e., a label that is optimal for both slave MRFs on G1 and G2), it is then
trivial to see that for each increase dθ of the optimum of the first slave (attained
via increasing θ

G1

p (l̄) by dθ), there will also be a decrease of the optimum of
the second slave by dθ (and vice versa). Hence, the total increase of the dual
objective will be zero in the best case.

To prove the converse statement, we will show that if p is non-stabilized then
we can increase the dual objective by properly updating the local dual variables
at p. Indeed, since p is non-stabilized, there will exist no label l that is optimal
for both of the slave MRFs on G1 and G2. If we then denote by L̄1 the set of
optimal labels for p with regard to the slave MRF on G1, it is easy to show
that the following feasible update of the local dual variables increases the dual
objective by dθ > 0 for a small enough dθ:

θ
G1

p (l) = θ
G1

p (l) + dθ, ∀l ∈ L̄1 (27)

θ
G2

p (l) = θ
G2

p (l) − dθ, ∀l ∈ L̄1 . (28)

More specifically, for a small enough dθ, the above update increases the optimum
of the first slave by dθ, while it leaves unmodified the optimum of the second
slave. ⊓⊔
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2 Additional experiments

We also compared our method with the original implementation of the TRW-S al-
gorithm by V. Kolmogorov (available from http://www.cs.ucl.ac.uk/staff/

V.Kolmogorov/papers/TRW-S.html). To this end, we provide below the result-
ing “energy vs time” plots for various problems from the “Middlebury” bench-
mark dataset.

0 2 4

3.0805

3.0806

3.0806

3.0806

3.0807

x 10
7

time (secs)

e
n

e
rg

y

 

 

TRW−S
our method
global optimum

(a) ‘Person’
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(b) ‘Sponge’
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(c) ‘Flower’
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(d) ‘Tsukuba’
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Fig. 1: “Energy vs time” plots for various benchmark problems from “Middlebury”


