
MRF Optimization via Dual Decomposition: Message-Passing Revisited∗

Nikos Komodakis
MAS, Ecole Centrale Paris

komod@csd.uoc.gr

Nikos Paragios
MAS, Ecole Centrale Paris

nikos.paragios@ecp.fr

Georgios Tziritas
University of Crete

tziritas@csd.uoc.gr

Abstract
A new message-passing scheme for MRF optimization

is proposed in this paper. This scheme inherits better
theoretical properties than all other state-of-the-art mes-
sage passing methods and in practice performs equally
well/outperforms them. It is based on the very powerful
technique of Dual Decomposition [1] and leads to an el-
egant and general framework for understanding/designing
message-passing algorithms that can provide new insights
into existing techniques. Promising experimental results
and comparisons with the state of the art demonstrate
the extreme theoretical and practical potentials of our ap-
proach.

1. Introduction

Discrete MRF optimization is of fundamental impor-
tance to computer vision. Given a graphG = (V, E) with
nodesV and edgesE , the goal is to assign a labellp (from a
discrete label setL) to eachp ∈ V, so that the MRF energy
is minimized. This means solving the following problem:

min
∑

p∈V
θp(lp) +

∑
pq∈E

θpq(lp, lq). (1)

Here,θp(·), θpq(·, ·) represent the unary and pairwise MRF
potential functions respectively.

Currently, two classes of methods are the most promi-
nent ones in MRF optimization: those based on graph-cuts
[5, 2], and those based on message-passing. Regarding the
latter class, a significant advance took place recently with
the introduction of the so-called tree-reweighted message
passing (TRW) algorithms [7, 3, 8]. Although they appear
similar to the max-product Belief Propagation (BP) algo-
rithm [6] on the surface, these methods are in fact quite
different, as well as far more powerful. They rely on the
following integer linear programming formulation of (1):

min
x

E(θ,x) = θ ·x =
∑
p∈V

θp ·xp +
∑

pq∈E
θpq ·xpq

s.t. x ∈ X G
(2)

Here, the vectorθ={{θp}, {θpq}} of MRF-parameters con-
sists of all unaryθp={θp(·)} and pairwiseθpq={θpq(·, ·)}
∗This work was partially supported from the French ANR-Blanc grant

SURF (2005-2008) and Platon (2006-2007).

vectorized potential functions, whereasx = {{xp}, {xpq}}
is the vector of MRF-variables consisting of all unary sub-
vectorsxp = {xp(·)} and pairwise subvectorsxpq =
{xpq(·, ·)}. The MRF-variables are{0, 1}-variables that
satisfy: xp(l) = 1 ⇔ label l is assigned top, while
xpq(l, l′) = 1 ⇔ labelsl, l′ are assigned top, q. To enforce
these conditions, it suffices that vectorx lies in the setX G .
For any graphG = (V, E), that set is defined as follows:

X G =



x

∣∣∣∣∣∣

∑
l∈L xp(l) = 1, ∀ p ∈ V∑
l′∈L xpq(l, l′) = xp(l), ∀ (pq, l) ∈ E×L

xp(l) ∈ {0, 1}, xpq(l, l′) ∈ {0, 1}





The first constraints simply ensure that a unique label is as-
signed to eachp, while the second constraints enforce con-
sistency betweenxp(·), xq(·) andxpq(·, ·), since they en-
sure that ifxp(l) = xq(l′) = 1, thenxpq(l, l′) = 1 as well.

However, despite that TRW algorithms rely on formu-
lation (2) in order to optimize an MRF, the key property
that characterizes all these methods is that they do not ac-
tually attempt to minimize the energy of that MRF directly.
Instead, their goal is to maximize a lower bound on this en-
ergy. To be more rigorous, instead of directly addressing the
MRF problem,i.e. problem (2), these methods try to solve
a dual problem. Specifically, the key idea behind them is to
solve the dual to the LP relaxation of (2). Any feasible so-
lution to this dual is a lower bound on the MRF energy, and
so, by solving the dual, these methods aim to maximize this
bound. Based on how good the resulting lower bound from
the dual is, a solution to the primal,i.e. the MRF problem
(2), is then extracted. To our surprise, however, we found
out that, although the key to success of all TRW algorithms
is solving that dual, none of them can actually guarantee
that. In fact, as shown in [3], there are cases for which this
is not true.

Motivated by this fact, we propose here a new message-
passing MRF-optimization scheme, called DD-MRF (Dual
Decomposition MRF). To the best of our knowledge, DD-
MRF is the first such scheme that can also solve the above
mentioned dual LP (i.e., maximize the lower bound), which
is the driving force behind all TRW algorithms. It enjoys
better theoretical properties than TRW methods, thus pro-
viding new insights into these techniques, while it has given
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Fig. 1: The original (possibly difficult) optimization problem de-
composes into easier subproblems (called theslaves) that are co-
ordinated by amasterproblem via message exchanging.

very good experimental results on a variety of computer
vision tasks. Moreover, it is derived based on very gen-
eral principles, and thus leads to a simple, powerful and
elegant framework for understanding/designing message-
passing algorithms, that revisits some of the choices of pre-
vious methods, which we consider as another important
contribution of this work. In particular, the theoretical set-
ting of our method rests on the technique ofdual decompo-
sition [1]. This is an extremely powerful and general tech-
nique, well known to people in optimization. As a result of
introducing this technique, we manage to reduce MRF op-
timization to a simple projected-subgradient method. This
connection can prove to be of great benefit, since it could
motivate new research and pave the way for better MRF op-
timization methods in the future.

The remainder of the paper is organized as follows: we
briefly review dual decomposition in§2. The DD-MRF al-
gorithm is then presented in§3, while some of its theoreti-
cal properties are analyzed in§4. Experimental results are
shown in§5, while we finally conclude in§6.

2. Dual decomposition

The main idea behind decomposition is surprisingly sim-
ple: first decompose your original complex problem into
smaller solvable subproblems and then extract a solution by
cleverly combining the solutions from these subproblems.
Although simple as a concept, decomposition is extremely
general and powerful, and has been used for solving many
large or complex optimization problems. Typically, during
decomposition one has to define 2 things: what the subprob-
lems will be (also referred to asslaveproblems), as well as
a so-calledmasterproblem that will act as a coordinator be-
tween the slave problems (see Fig.1). In addition, one can
either decompose the original problem (primal decomposi-
tion) or its Lagrangian dual (dual decomposition).

Here, we will only consider the latter type and give a
simple example just to illustrate how it works. To this end,
consider the following problem (wherex denotes a vector):

minx

∑
i f i(x)

s.t. x ∈ C
We assume that separately minimizing eachf i(·) over vec-
tor x is easy, but minimizing

∑
i f i(·) is hard. Using auxil-

iary variables{xi}, we thus transform our problem into:

min{xi},x
∑

i f i(xi)
s.t. xi ∈ C, xi = x

If the coupling constraintsxi = x were absent, the problem
would decouple. We therefore relax them(via multipliers
{λi}) and form the following Lagrangian dual function:

g({λi}) = min{xi∈C},x
∑

i f i(xi) +
∑

i λi · (xi − x)
= min{xi∈C},x

∑
i[f

i(xi) + λi · xi]− (
∑

i λi)x

We next eliminatex from g({λi}) by minimizing over that
variable. This just implies{λi} ∈ Λ =

{{λi}|∑i λi =0
}

(it is easy to check that if{λi} /∈Λ theng({λi}) = −∞).
Therefore, the resulting dual function becomes equal to:

g({λi}) = min
{xi∈C}

∑
i
[f i(xi) + λi · xi]

We can now setup a Lagrangian dual problem,i.e. maximize
g({λi}) over the feasible setΛ, or

max{λi}∈Λ g({λi}) =
∑

i gi(λi), (3)

where this dual problem (also called the master) has now de-
coupled into the following slave problems (one pergi(λi)):

gi(λi) = minxi f i(xi) + λi · xi

s.t. xi ∈ C (4)

Problem (3) is always convex and can be solved with
the projected subgradient method (sinceg(·) is typically
not differentiable). According to that method, at each
iteration the dual variables{λi} are updated asλi ←[
λi + αt∇gi(λi)

]
Λ

. Here,αt denotes a positive multiplier
(for the t-th iteration),[ · ]Λ denotes projection onto the set
Λ, while∇gi(λi) denotes the subgradient ofgi(·). It thus
remains to compute this subgradient, for which we can use
the following well-known lemma:

Lemma. Let q(λ) = mini∈I{di · λ + bi}. Anydi with
i ∈ Iλ = {i|di · λ + bi = q(λ)} is a subgradient ofq(·).
Therefore,∇gi(λi) = x̄i, wherex̄i is any optimal solution
to thei-th slave problem (4). To summarize, what happens
in essence is that a solution to the dual is obtained by oper-
ating at two levels. At the higher level, the master problem
(3) coordinates the slaves simply by updating{λi} based on
the currently extracted optimal solutions{x̄i}. And then, at
the lower level, based on the updated{λi} each of the de-
coupled slave problems (4) is again solved independently to
generate a new̄xi for the next iteration.

3. MRF optimization via Dual Decomposition

In this section, we will describe how we can apply the
dual decomposition method to the case of the MRF opti-
mization problem. To prepare the reader, our goal will be



to decompose our original MRF problem, which is NP-hard
since it is defined on a general graphG, into a set of easier
MRF subproblems defined on treesT ⊂ G. To this end, we
will first need to transform our problem into a more appro-
priate form by introducing a set of auxiliary variables.

In particular, letT be a set of subtrees of graphG. The
only requirement forT is that its trees cover (at least once)
every node and edge of graphG. For each treeT ∈ T we
will then imagine that there is a smaller MRF defined just
on the nodes and edges of treeT , and we will associate
to it a vector of MRF-parametersθT , as well as a vector
of MRF-variablesxT (these have similar form to vectorsθ
andx of the original MRF, except that they are smaller in
size). MRF-variables contained in vectorxT will be redun-
dant, since we will initially assume that they are all equal
to the corresponding MRF-variables in vectorx, i.e. it will
hold xT = x|T , wherex|T represents the subvector ofx
containing MRF-variables only for nodes and edges of tree
T . In addition, all the vectors{θT } will be defined so that
they satisfy the following conditions:

∑

T∈T (p)

θT
p = θp,

∑

T∈T (pq)

θT
pq = θpq. (5)

Here,T (p) andT (pq) denote all trees ofT that contain
nodep and edgepq respectively.E.g., to ensure (5), one can
simply set:θT

p = θp

|T (p)| andθT
pq = θpq

|T (pq)| . Due to (5) and

the fact thatxT = x|T , energyE(θ,x) thus decomposes
into the energiesE(θT ,xT ) = θT · xT , or

E(θ,x) =
∑

T∈T
E(θT ,xT ) (6)

Also, by using the auxiliary variablesxT , it is trivial to see
that our original constraintsx ∈ X G reduce to:

xT ∈ X T , xT = x|T , ∀T ∈ T (7)

Hence, our original MRF problem becomes equivalent to:

min
{xT },x

∑
T∈T E(θT ,xT )

s.t. xT ∈ X T , ∀T ∈ T
xT = x|T , ∀T ∈ T

(8)

It is clear that without constraintsxT = x|T , this problem
would decouple into a series of smaller MRF problems (one
per treeT ). Therefore, it is natural to relax these coupling
constraints(by introducing Lagrange multipliersλT =
{{λT

p }, {λT
pq}}) and form the Lagrangian dual function as:

g({λT })= min
{xT∈XT },x

∑

T∈T
E(θT ,xT ) +

∑

T∈T
λT ·(xT − x|T )

= min
{xT∈XT },x

∑

T∈T
E(θT+λT ,xT )−

∑

T∈T
λT ·x|T

Vector x can be eliminated fromg({λT }) by directly
minimizing over it, which simply imposes the constraint
{λT }∈Λ,1 where the feasible setΛ is now defined as:

Λ =
{
{λT }

∣∣ ∑

T∈T (p)

λT
p = 0,

∑

T∈T (pq)

λT
pq = 0

}
,

while the resulting Lagrangian dual function simplifies to:

g({λT }) = min
{xT∈XT }

∑

T∈T
E(θT+λT ,xT )

We can now setup a dual problem,i.e. maximize the above
dual functiong({λT }) over its feasible setΛ, or

max
{λT }∈Λ

g({λT }) =
∑

T∈T
gT (λT ), (9)

where each functiongT (·) is defined as:

gT (λT ) = min
xT

E(θT+λT ,xT )

s.t. xT ∈ X T .
(10)

Problem (9) has thus become our master problem, and
each slave problem (10) simply amounts to optimizing an
MRF over a treeT ⊂ G, i.e. a much easier problem.
For optimizing the master, we will use the projected sub-
gradient method. As explained in§2, at each iteration of
this method the dual variablesλT must first be updated as
λT ← λT + αt∇gT (λT ). Based on lemma2, the sub-
gradient ofgT (·) equals∇gT (λT ) = x̄T , wherex̄T rep-
resents any optimal solution to slave MRF (10), and so the
above update amounts to settingλT ← λT + αtx̄T . It
then only remains to project the resulting{λT } onto the
feasible setΛ. Due to the definition ofΛ, this projection

reduces to subtracting the average vector
∑

T∈T (p) λT
p

|T (p)| from

eachλT
p (so that

∑
T∈T (p) λT

p = 0), as well as subtract-

ing the average vector
∑

T∈T (pq) λT
pq

|T (pq)| from eachλT
pq (so that∑

T∈T (pq) λT
pq = 0). By aggregating all of the above opera-

tions, a projected subgradient update is easily seen to reduce
to λT

p += ∆λT
p , λT

pq += ∆λT
pqwhere:

∆λT
p = αt·

(
x̄T

p −
∑

T ′∈T (p) x̄
T ′
p

|T (p)|

)
(11)

∆λT
pq = αt·

(
x̄T

pq −
∑

T ′∈T (pq) x̄
T ′
pq

|T (pq)|

)
(12)

Of course, eachλT is only used for defining the MRF-
parametersθT + λT of the slave MRF in (10). Hence, in-
stead of updating the Lagrange multipliers{λT } at each

1It is easy to see that if{λT } /∈Λ, theng({λT }) = −∞.



− Solve slave MRFs using max-product BP, i.e.:
∀T ∈ T , compute x̄T = argmin

xT∈XT

E(θT ,xT )

− Update parameters for slave MRFs using {x̄T }, i.e.:
∀T ∈ T , θT

p += ∆λT
p , θT

pq += ∆λT
pq

Fig. 2: A basic update during the projected subgradient algorithm.

mastermaster
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Fig. 3: Dual decomposition scheme for MRF optimizationLeft:
Based on the current optimal solutions{x̄T } (i.e. the current re-
source allocation), the master assigns new MRF potentials{θT }
(i.e. new prices) to the slave MRFs.Right: Based on these new
potentials, the slave MRFs immediately respond to the master by
sending to him new optimal solutions{x̄T } (i.e. by readjusting
their resource allocation).

iteration, one can choose to directly update the MRF-
parameters{θT }, i.e., setθT

p += ∆λT
p , θT

pq += ∆λT
pq.

In this manner, the need for storing the dual variables{λT }
is avoided. This is actually how the pseudocode in Fig.2
was formed, describing one basic update during the result-
ing subgradient algorithm.

3.1. Analysis of the algorithm

Let us now briefly summarize how the algorithm in Fig.
2 works. Like most other dual decomposition techniques, it
operates on two levels (see Fig.3). At the lower level, it has
to solve each one of the decoupled slave problems (10). In
this case, the slave problems turn out to be MRF optimiza-
tion problems for tree-structured graphs. There exists one
such MRF for each treeT ∈ T , and its MRF-parameters
are specified by the vectorθT . Since the underlying graphs
for all slave MRFs are tree-structured, these are easy prob-
lems to solve.E.g., one can use the max-product algorithm
to estimate an exact optimal solution̄xT for eachT ∈ T .
At the higher level, on the other hand, there exists the mas-
ter problem, whose sole mission is to coordinate the slave
problems so that the dual function in (9) is maximized. To
this end, it thus has to update the MRF-parameters{θT }
of all slave MRFs, based on the optimal solutions{x̄T }
that have been estimated previously at the current iteration
(strictly speaking, the master is responsible for updating the
dual variables,i.e. the Lagrange multipliers{λT }, but, as
already explained, this is equivalent to updating the MRF-
parameters{θT } instead).

To gain a better understanding of how the master prob-
lem tries to coordinate the slave MRFs, let us now consider
a nodep in our original graphG and let us also assume that,
during the current iteration, nodep is assigned the same la-
bel, saylp, by all slave MRFs. This means that, for each
T ∈ T (p), the vectorx̄T

p will have the following form:
x̄T

p (l) = 1 if l = lp, whereas̄xT
p (l) = 0 if l 6= lp. All

these vectors will therefore coincide with each other and so
∆λT

p = 0. Any vectorθT
p will thus remain untouched dur-

ing the current iteration, which, in other words, means that
if all slave MRFs agree on a nodep, then the master problem
does not modify the unary potentials associated to that node.

On the other hand, let us assume that not all slave MRFs
assign the same label top. For simplicity, let us assume that
p belongs just to two trees, sayT1, T2, and let the corre-
sponding slave MRFs assign labelsl1, l2 to that node (with
l1 6= l2). It is then easy to check that the following update
of the vectorsθT1

p , θT2
p will take place:

θT1
p (l) +=





+αt

2 if l = l1
−αt

2 if l = l2
0 otherwise

, θT2
p (l) +=




−αt

2 if l = l1
+αt

2 if l = l2
0 otherwise

As can be seen, what happens is that the master tries to read-
just the unary potentials for nodep atT1, T2, so that a com-
mon label assignment to that node (by both slave MRFs)
has higher chances during the next iteration,i.e. the master
encourages slave MRFs to agree on a common label forp.
As a result, all slave MRFs will agree on more and more
nodes, as the algorithm progresses. Note, however, that this
agreement is not enforced explicitly by the algorithm.

The above behavior is typical in dual decomposition
schemes. In fact, due to an economic interpretation, dual
decomposition corresponds to what is also known as re-
source allocation via pricing. According to this interpreta-
tion, we can think of the primal variables{xT } as amounts
of resources consumed by the slave problems, with vari-
ablesxT representing the amount of resources consumed
by the MRF problem for treeT . In dual decomposition,
the master algorithm never sets these amounts explicitly.
Instead, it just sets the prices,i.e. the variables{θT } in
our case, for the resources. Then, based on these prices,
each slave MRF has to independently decide how many re-
sources it will use. Of course, the prices do not remain
static, but are adjusted at every iteration by the master algo-
rithm. This adjustment is naturally done as follows: prices
for overutilized resources are increased, whereas prices for
underutilized resources are decreased.

At this point, it is also worth noting some of the result-
ing differences between DD-MRF and existing TRW al-
gorithms. These differences are useful, since they reveal
some of the algorithmic choices of TRW algorithms that
are revisited by DD-MRF.E.g., all TRW algorithms use
the tree min-marginals in order to update the dual variables



{θT }. DD-MRF, however, relies solely on the optimal so-
lutions x̄T for that task. This also implies that no tree min-
marginals have to be explicitly computed by DD-MRF. Fur-
thermore, contrary to TRW algorithms, which modify all
dual variables (either sequentially or in parallel) at each it-
eration, DD-MRF modifies a vector,e.g., θT

p of dual vari-
ables at a nodep only if the slave MRFs disagree about that
node’s label, which is another important difference.

Before proceeding, we should also note that, since no
Lagrange multipliers{λT } need to be stored (as{θT } can
be updated directly), DD-MRF has similar memory require-
ments to the belief propagation algorithm. In fact, any of the
recently proposed techniques for improving the memory us-
age of BP, apply here as well [3].

3.2. Obtaining primal solutions

Let us now briefly recapitulate what we have accom-
plished so far. We wanted to find a solution to our original
MRF problem (2), or equivalently to the primal problem
(8). To this end, we have opted to relax some of the compli-
cating constraints in (8) and solve the resulting Lagrangian
dual, by decomposing it into easier subproblems (in fact, as
we shall prove in the next section, the resulting Lagrangian
dual is equivalent to the linear programming relaxation of
the original MRF problem,i.e. it is the same problem that
all TRW algorithms are attempting to solve). What still re-
mains to be done is to obtain a feasible primal solution to
our initial problem,i.e. to the MRF problem, based on the
estimated solution from the Lagrangian dual.

The above situation is typical for schemes with La-
grangian relaxation. The Lagrangian solutions will in gen-
eral be infeasible with respect to the original primal,i.e. the
one without relaxed constraints. Yet, they will usually be
nearly feasible, since large constraints violations got penal-
ized. Hence, one may construct feasible solutions by,e.g.,
correcting the minor infeasibilities of the Lagrangian solu-
tions, which implies that the cost of the resulting solutions
will not be far from the optimum. In fact, one usually con-
structs many feasible solutions in this manner (the more the
better) and chooses the best one at the end.

In our case, for instance, we can take advantage of the
optimal solutions{x̄T } that were generated for the slave
problems. Recall that each̄xT is a{0, 1} vector, which es-
sentially specifies an optimal labeling for a slave MRF at
treeT . As explained in§3.1, these labelings will typically
agree on all but a few of the MRF nodes (if they agree ev-
erywhere, they are equal to the MRF optimal solution). Due
to this fact, many good primal solutions are expected to be
constructed by using these labelings. Moreover, this can
be done very easily.E.g., if every T ∈ T is a spanning
tree, then each̄xT directly specifies a feasible solution to
the MRF problem.

Of course, there are many other possible ways of get-

ting good feasible primal solutions. One such way, that we
found to work well in practice, was to use the messages ex-
changed during the max-product algorithms (for the slave
MRFs), since these messages contain valuable information.
E.g., a heuristic similar to the one proposed in [3] can be
used for this purpose.

4. Theoretical properties

As already explained, our method tries to solve problem
(9), which is the Lagrangian relaxation of problem (8). The
subject of the next theorem is to show that this is equivalent
to trying to solve the Linear Programming (LP) relaxation
of problem (2).

Theorem 1. Lagrangian relaxation(9) is equivalent to the
LP relaxation of (2), i.e. the LP relaxation of the original
integer programming formulation for the MRF problem.

Sketch of proof. To form the Lagrangian relaxation, we re-
laxed constraintsxT

p = xp of (8), but we kept constraints
xT ∈X T . The Lagrangian dual is then known to be equiva-
lent to the following relaxation of (8):

min
{xT },x

{E(x, θ) | xT
p = xp, xT ∈ CONVEXHULL(X T )}

For a treeT , however, the setCONVEXHULL(X T ) will not
change if we modifyX T by replacing the{0, 1} constraints
with xT ≥ 0. Based on this fact, the theorem follows triv-
ially.

The above theorem certifies that our method tries to
solve exactly the same problem as all state-of-the-art tree-
reweighted message-passing algorithms, such as TRW-
T, TRW-E or TRW-S. However, unlike those algorithms,
which can only guarantee a local optimum in general, an
important advantage of our method is that it can provably
compute the global optimum of that problem. This is an
immediate result of the fact that we are using the subgra-
dient algorithm, which is a very well studied technique in
optimization, with a vast literature devoted to it. Here, we
simply state two of the simplest theorems related to it [1].

Theorem 2. If the sequence of multiplies{αt} satisfies
αt ≥ 0, limt→∞ αt = 0,

∑∞
t=0 αt = ∞, then the sub-

gradient algorithm converges to the optimal solution of(9).

In fact, one can even make the following statement:

Theorem 3. The distance of the current solution{θT } to
the optimal solution, say,{θ̄T } decreases at every iteration.

State-of-the-art tree-reweighted (TRW) max-product al-
gorithms can also provide certain correctness guarantees re-
garding their fixed points. One such example is the strong
tree agreement(TA) condition that was first introduced in



[7]. If a TRW fixed point, say{θ̄T }, satisfies TA, an optimal
solution to the original MRF problem can then be extracted.
A much more general condition was later introduced in [3],
called theweak tree agreement(WTA). This condition has
also been used to provide further optimality results for TRW
algorithms [4]. We next show that our method provides a
generalization of the WTA condition (and hence of TA as
well), in the sense that any solution of our algorithm sat-
isfies the WTA condition (but, as we shall see in§5, the
converse is not true,i.e., a solution{θ̄T } satisfying WTA is
not necessarily optimal with respect to the Lagrangian dual
problem (9)).

Theorem 4. Any solution obtained by our method satisfies
the WTA condition.

Sketch of proof. Let {θ̄T } be a solution generated by our
algorithm. Let us suppose it does not satisfy WTA. One
can then show that{θ̄T } can be perturbed to give a solution
that achieves a higher objective value for the Lagrangian
dual (9). This is impossible, however, since, by theorem2
above,{θ̄T } is already an optimal solution to (9)

The above theorem implies that all optimality results re-
lated to WTA carry over to our algorithm. Here we simply
state just one of them [4]:

Theorem 5. For binary MRFs with submodular energies,
our method computes a globally optimal solution.

5. Experimental results

Here we will present some experimental results pro-
duced by our method. We will also compare DD-MRF to
existing TRW algorithms. These are the TRW-T and TRW-
E algorithms presented in [7], as well the TRW-S algorithm
presented in [3]. The only difference between TRW-E and
TRW-S is that the former algorithm updates its messages in
parallel, whereas TRW-S updates messages in a sequential
order. Furthermore, since TRW-E did worse than the other
TRW algorithms in our experiments, no results for TRW-E
will be shown, so as to also keep the plots cleaner.

We have first tested our method on the task of inter-
active binary image segmentation. In this case, the unary
MRF potentials were set according to the log-likelihood of
a pixel belonging either to foreground or background (these
likelihoods were learned based on user specified masks),
whereas the pairwise potentials were set using a standard
Potts model. According to theorem5, DD-MRF should be
able to find the global optimum in this case and so the main
goal of this experiment was to confirm this fact. 10 natural
images were thus segmented and Fig.4 shows a typical plot
of how the MRF energy (i.e. the cost of the primal prob-
lem) varies during a segmentation test. We have also plot-
ted the cost of the dual problem (9), since this cost forms a
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Fig. 4: Plots for the binary segmentation problem. Solid curves
represent the MRF energy per iteration (these curves thus form
an upper bound on the minimum MRF energy), whereas dashed
curves represent the cost of the Lagrangian dual (9) (i.e. form
lower bounds on that energy).
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Fig. 5: Tsukubaresults.

lower bound on the minimum MRF energy. As can be seen,
DD-MRF manages to extract the global optimum, since the
primal-dual gap (i.e. the difference between the primal cost
and the dual cost) reaches 0 at the end. Another way to ver-
ify this, is by using the max-flow algorithm to compute the
optimal solution.

We have also tested our method on stereo matching. In
Fig. 5(a), we show the disparity produced by DD-MRF
for the case of the well-knownTsukubastereo pair. In
this example, the truncated linear distanceθpq(xp, xq) =
wpq ·min(|xp − xq|, θmax) (with wpq = 20, θmax = 2) has
been used as the MRF pairwise potential function. Fig.5(b)
contains the corresponding plot that shows how the costs of
the primal and the dual problem (i.e. the MRF energy and
the lower bound) vary during the execution of the algorithm.
As in all other examples, here as well we have included the
corresponding plots for the TRW-T and TRW-S algorithms.
It is worth noting that, in this example, TRW-T did not man-
age to reduce the MRF energy (or increase the lower bound)
as effectively as the DD-MRF algorithm. This is despite the
fact that, as in all of this paper’s experiments, exactly the
same set of spanning trees has been used by both algorithms
(we recall here that TRW-T uses a set of spanning trees for
doing its message-passing).

Another issue that we investigated was how to set the
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Fig. 6: Results for theMapstereo pair.

positive multipliers{αt}. These multipliers are used for
updating the dual variables during the subgradient method.
Theorem2 describes just one of the simplest methods that
can be used for this task. We have also experimented with a
few other schemes as well, but we still intend to experiment
with many more in the future, since there is a large literature
on this subject [1]. E.g., one of the schemes that we found
to work well in practice was to update the multipliers{αt}
using the following formula:

αt = γ
BESTPRIMAL t − DUAL t

‖∇gt‖2 . (13)

Here,BESTPRIMAL t denotes the MRF energy of the best
primal solution up to iterationt, DUAL t denotes the current
value of the dual function at thet-th iteration, while∇gt de-
notes the subgradient of the dual function at timet. Also,γ
denotes a constant taking values in(0, 2]. The intuition be-
hind this formula is that, initially, when the primal-dual gap
(and hence the quantityBESTPRIMAL t − DUAL t) is large,
{αt} will take large values. This means that large changes
will be initially applied to the dual variables (and hence to
the primal variables as well), which makes sense since we
are still far from the optimum. During the last iterations,
however, as the primal-dual gap will be smaller,{αt} will
be assigned smaller values and hence the dual variables will
be modified using finer updates. Another thing we have
experimented with was using an incremental subgradient
method [1] (instead of a standard subgradient algorithm).
By doing so, we found that this method can give improved
results in some cases.

Figures6, 7 contain further results on stereo matching.
Specifically, Fig. 6(a) displays the produced disparity for
the Map stereo pair, while Fig.6(b) contains the corre-
sponding energy plots generated during the algorithm’s ex-
ecution. Similarly, the corresponding results for theSRI-
treestereo pair are displayed in Figures7(a)and7(b). For
the case of theMap stereo pair, the MRF pairwise poten-
tials were set equal toθpq(xp, xq) = 4 ·min(|xp − xq|, 3),
whereas for the case of theSRI-treeexample the pairwise
potentials were defined using the following truncated linear
distanceθpq(xp, xq) = 6 ·min(|xp − xq|, 5).
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Fig. 7: Results for theSRI treestereo pair.
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Fig. 8: Optical flow for theYosemiteimage sequence.

As a further test, we have also applied our method
to the optical flow estimation problem. In this
case, labels correspond to 2D displacement vec-
tors, while the unary potential, for assigning vector
xp = (ux, uy) to pixel p = (px, py), equalsθp(xp) =
|Inext(px+ux, py +uy) − Icur(px, py)|, whereIcur, Inext

denote the current and next image frame. Also, the pairwise
potential between labelsxp = (ux, uy), xq = (vx, vy)
equals the following truncated squared Euclidean distance
θpq(xp, xq) = wpq min(‖(ux − vx, uy − vy)‖2, θmax).
An optical flow result, generated by applying DD-
MRF to the well-known Yosemite sequence (with
wpq = 10, θmax = 20), is shown in Fig.8, along with plots
for the corresponding upper and lower bounds. Note again
that, contrary to our method, TRW-T has not managed to
effectively reduce the MRF energy in this case.

Also, note that DD-MRF has been able to find very low
MRF energy in all of the examples. In fact, based on the
lower bounds estimated from the plots in Figures5-8, one
can actually show that the generated energy is extremely
close to the minimum MRF energy.E.g., based on these
bounds, the energy found by DD-MRF is within relative
distance 0.0094, 0.0081, 0.00042, 0.00012 from the
minimum energy corresponding toTsukuba, map, SRI-tree
and Yosemiterespectively (relative distance is measured
as ENERGY−LOWER BOUND

LOWER BOUND
). Also, the corresponding running

times (per iteration) of the algorithm were0.32, 0.34, 0.17,
0.41 secs respectively (measured on a 2GHz CPU). Regard-
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Fig. 9: (a) A simple graph that can be used for showing that
TRW algorithms cannot maximize the lower bound on the MRF
energy. The graph shown here is decomposed into 2 treesT1 =
(a, b, d, e, g), T2 = (a, c, d, f, g). (b) A plot of the lower bounds
produced by Dual-DT and TRW algorithms for the graph in Fig.
9(a), whenκ = 1000 (see text). Notice the large gap between
these 2 bounds. In fact, the value of this gap can be made arbitrar-
ily large by,e.g., increasingκ.

ing the choice of the trees that are associated with the slave
MRFs, we found that, in practice, the smaller these trees
are, the slower the convergence of the algorithm was. For
this reason, each slave MRF was usually associated with a
separate spanning tree of the original graph. Furthermore,
the following termination criterion has been used: the
algorithm stops when either the primal-dual gap has not
decreased significantly for a certain number of iterations,
or a maximum number of iterations has been exceeded.

We finally borrow an example from [3] to illustrate that
DD-MRF can maximize the dual problem (9) (i.e. the lower
bound on the MRF energy), even in cases where the TRW
algorithms fail to do so. In fact, as this example shows,
TRW algorithms may get stuck to a lower bound, which
can be arbitrarily far from the maximum lower bound. The
graph for this example is shown in Fig.9(a), where we
assume that nodesa, b, c, e, f , g, have two possible labels,
while noded has three possible labels. The following two
treesT1 = (a, b, d, e, g), T2 = (a, c, d, f, g) are used in
this case, both of which are supposed to have zero unary
potentials,i.e. θT1

p = 0 ∀p ∈ T1,θ
T2
p = 0 ∀p ∈ T2. Also,

the pairwise potentials for these trees are set as follows:

θT1
ab=

[
κ 0
0 κ

]
, θT1

bd=
[
0 κ κ
κ 0 0

]
, θT1

de=



κ 0
0 κ
κ 0


 , θT1

eg=
[
0 κ
κ 0

]
,

θT2
ac=

[
κ 0
0 κ

]
, θT2

cd=
[
κ 0 0
0 κ κ

]
, θT2

df =



κ 0
κ 0
0 κ


 , θT2

fg=
[
κ 0
0 κ

]
,

whereκ denotes a positive constant. As it was shown in
[3], the above dual variablesθT1 , θT2 form a fixed point
for all TRW algorithms (asθT1 ,θT2 satisfy the WTA con-
dition). Hence, in this case, these algorithms will get stuck
to a lower bound of value zero,i.e. arbitrarily far from the
true maximum lower bound that can grow indefinitely by
increasing parameterκ. On the contrary, as shown in Fig.
9(b), DD-MRF does not get stuck to such a bad lower bound
when starting fromθT1 , θT2 .

6. Extensions and conclusions

By being based on the technique of dual decomposition,
i.e. one of the most powerful and widely used techniques in
optimization, the proposed framework gains extreme gen-
erality and flexibility. For instance, one of the extensions
we plan to explore in the future is to use exactly the same
framework, but for optimizing MRFs with higher order
cliques. A similar subgradient algorithm will result in this
case, which can again provably maximize a lower bound
on the energy. The only difference will be that, instead
of the standard max-product, a factor graph max-product
algorithm will have to be used for computing the subgra-
dients. Another closely related idea, that we also wish to
explore, is to use the proposed framework for constructing
tighter LP relaxations to the MRF optimization problem (1)
by considering groups of variables (again, minor modifica-
tions would need to be applied to our framework for this).
The resulting algorithm would again be able to maximize an
even stronger lower bound on the MRF energy, thus leading
to better primal solutions in case of difficult MRF problems.
On another note, an additional advantage is that our frame-
work reduces MRF optimization to a projected subgradi-
ent algorithm. This connection can motivate new research,
while it can also prove to be of great benefit, since subgradi-
ent methods form a very well studied topic in optimization,
with a vast literature devoted to it. In fact, exploring some
of the existing, but more advanced subgradient optimization
techniques is one very interesting avenue of future research,
that could potentially lead to even more powerful MRF opti-
mization techniques in the future. To conclude, a novel and
very general message-passing framework for MRF opti-
mization has been presented, which possesses stronger the-
oretical properties (compared to existing message-passing
methods), while also giving very good results in practice.
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