
Approximate Labeling via the Primal-Dual
Schema

Nikos Komodakis and Georgios Tziritas

Technical Report
CSD-TR-2005-01

February 1, 2005

Approximate Labeling via the Primal-Dual Schema

Nikos Komodakis and Georgios Tziritas

Computer Science Department, University of Crete
E-mails:{komod, tziritas}@csd.uoc.gr

Technical Report
CSD-TR-2005-01

February 1, 2005

Abstract

A linear programming based framework is presented which is capable of providing combinatorial-based approximation al-
gorithms to a certain class of NP-complete classification problems. The resulting algorithms utilize tools from the duality
theory of linear programming and have guaranteed optimality properties. Finally, it is shown that state-of-the-art classification
techniques can be derived merely as a special case of the considered framework.

Contents

1 Introduction 1

2 The primal-dual schema 1
2.1 Metric Labeling as a linear program . 2
2.2 Relaxed complementary slackness conditions . 3
2.3 An intuitive view of the dual variables and some extra terminology . 4
2.4 Applying the primal-dual schema to Metric Labeling . 5

3 The PD1 algorithm 6
3.1 An intuitive understanding of the algorithm . 6
3.2 Constructing the capacitated graphGx,y

c . 7
3.3 Update of the primal and dual variables . 9

4 PD2 algorithm 14
4.1 Algorithm overview . 14
4.2 Update of the primal and dual variables . 15

5 PD3 algorithms: extending PD2 to the semimetric case 20
5.1 Algorithms PD3a and PD3b . 20
5.2 Algorithm PD3c . 22

6 Algorithmic properties of the presented primal-dual algorithms 23

1 Introduction

The Metric Labeling Problem, introduced by Kleinberg and Tardos [1], can capture a broad range of classification problems
that arise in early vision (e.g. image restoration, stereo matching, image segmentation etc.). According to this problem, the
task is to classify a setV of n objects by assigning to each object a label from a given setL of labels. Each labeling, i.e. a
functionf : V → L, is associated with a certain cost which has 2 components. On one hand, for eachp ∈ V there is a label
costcp,a ≥ 0 for assigning labela = f(p) to p. On the other hand, for each pair of objectsp, q there is a so-calledseparation
costfor assigning labelsa = f(p), b = f(q) to them. This separation cost is equal towpqdab where the quantitieswpq are the
edge weights of a graphG = (V, E) and represent the strength of the relationship betweenp, q whiledab is a distance function
between labels which is assumed to be a metric1. Thus, the total cost equalsC(f) =

∑
p∈V cp,f(p) +

∑
(p,q)∈E wpqdf(p)f(q)

and the goal is to find a labelingf with the minimum cost. For a connection between Metric Labeling and Markov Random
Fields the reader is referred to [1].

According to one class of approximation algorithms [1, 2, 3] the Metric Labeling problem is formulated as the Linear
Programming relaxation of an integer program. This LP relaxation is then solved and a randomized rounding technique is
being used to extract a near the optimum integer solution. These algorithms have good theoretical properties but since they
require the solution of a linear program which, in the case of early vision problems, can grow very large, this makes them
impractical to use. On the other hand, a variety of combinatorial-based approximation algorithms [4, 5, 6, 7, 8] have been
developed. These state-of-the-art techniques are very efficient and have been applied with great success to many problems in
computer vision [9, 10, 11, 12, 13]. However, they have been interpreted only as greedy local search techniques up to now.

The major contributions of this paper are:

• A linear programming based framework that makes use of the primal-dual schema in order to provide efficient (i.e.
combinatorial-based) approximation algorithms to the Metric Labeling problem, thus bridging the gap between the two
classes of approximation algorithms mentioned above.

• The derived algorithms have guaranteed optimality properties even in the more general case wheredab is merely a
semimetric2. These properties assert the existence of worst-case suboptimality bounds meaning that the minimum
generated by any of the considered algorithms is always within a known factor of the global optimum.

• Graph-cut techniques introduced in [4] can be derived as a special case of our framework which is thus shedding further
light on the essence of those algorithms. In particular, it is the first time that these (state of the art) algorithms are being
interpreted not merely as greedy local search techniques but in terms of principles drawn from the theory of linear
programming.

• In addition to the theoretical (worst-case) suboptimality bounds, the considered algorithms also provide per-instance
suboptimality bounds for the generated solutions. This way one may better inspect how successful the convergence of
the algorithm has been for each specific instance. In practice these per-instance bounds always prove to be much tighter
than the theoretical (worst-case) ones, thus showing that the generated minimum is very close to the global optimum
each time. Since graph-cut techniques can be included as a special case, this last fact explains in another way the great
success that these techniques exhibit in practice.

2 The primal-dual schema

Consider the following primal-dual pair of linear programs:

PRIMAL : min cT x DUAL : max bT y
s.t. Ax = b, x ≥ 0 s.t. AT y ≤ c

whereA = [aij] is anm× n matrix andb, c are vectors of sizem, n respectively. We would like to find an optimal integral
solution to the primal program. But since this is in general an NP-complete problem we need to settle with estimating
approximate solutions. A primal-dualf -approximation algorithm achieves that by use of the following principle:

1i.e. dab = 0 ⇔ a = b, dab = dba ≥ 0, dab ≤ dac + dcb
2i.e. dab = 0 ⇔ a = b, dab = dba ≥ 0

1

Primal-Dual Principle. If x and y are integral-primal and dual feasible solutions satisfying:

cT x ≤ f · bT y (1)

thenx is anf -approximation to the optimal integral solutionx∗ i.e. cT x ≤ f · cT x∗

The above principle, which is a a consequence of the Weak Duality Theorem, lies at the heart of any primal-dual tech-
nique. In fact, the various primal-dual methods mostly differ in the way that they manage to estimate a pair(x, y) satisfying
the fundamental inequality (1). One very common way for that (but not the only one) is by relaxing the so-called primal
complementary slackness conditions [14]:

Theorem (Relaxed Complementary Slackness).If the pair (x, y) of integral-primal and dual feasible solutions satisfies
the so-called relaxed primal complementary slackness conditions:

∀ xj > 0 ⇒
m∑

i=1

aijyi ≥ cj/fj

then(x, y) also satisfies the Primal-Dual Principle withf = maxj fj and thereforex is anf -approximation to the optimal
integral solution.

Based on the above theorem, during a primal-dualf -approximation algorithm the following iterative schema is usually
being used:

Primal-Dual Schema. Generate a sequence of pairs of integral-primal, dual solutions{xk, yk}t
k=1 until the elementsx = xt

and y = yt of the last pair of the sequence are both feasible and satisfy the relaxed primal complementary slackness
conditions.

It should be noted that the exact slackness conditions (i.e.fj = 1) are always satisfied by the primal-dual pair of optimal
fractional solutions.

2.1 Metric Labeling as a linear program

Here we will consider the following integer programming formulation of the Metric Labeling problem, introduced in [2]:

min
∑

p∈V,a∈L

cp,axp,a +
∑

(p,q)∈E

wpq

∑

a,b∈L

dabxpq,ab (2)

s.t.
∑

a
xp,a = 1 ∀ p ∈ V (3)

∑
a
xpq,ab = xq,b ∀ b ∈ L, (p, q) ∈ E (4)

∑
b
xpq,ab = xp,a ∀ a ∈ L, (p, q) ∈ E (5)

xp,a, xpq,ab ∈ {0, 1} ∀ p ∈ V, (p, q) ∈ E, a, b ∈ L

The{0, 1}-variablexp,a indicates that vertexp is assigned labela while the{0, 1}-variablexpq,ab indicates that vertexp is
labeleda and vertexq is labeledb. The variablesxpq,ab, xqp,ba therefore indicate exactly the same thing and should coincide.
So, in order to reduce the number of variables in the primal problem, we adopt the convention that for any neighborsp, q
exactly one of(p, q), (q, p) ∈ E. This in turn implies that exactly one of the variablesxpq,ab, xqp,ba is being used for each
pair of neighborsp, q. The notation “p ∼ q” will hereafter denote the fact thatp, q are neighboring vertices and will mean
“either (p, q)∈E or (q, p)∈E”. The first constraints (3) simply express the fact that each vertex must receive a label while
constraints (4), (5) maintain consistency between variablesxp,a, xq,b andxpq,ab in the sense that ifxp,a = 1, xq,b = 1 they
forcexpq,ab = 1 as well.

By relaxing the{0, 1} constraints toxp,a ≥ 0, xpq,ab ≥ 0 we get a linear program. The dual of that linear program has
the following form:

max
∑

p
yp

s.t. yp ≤ cp,a +
∑

q:q∼p

ypq,a ∀p ∈ V, a ∈ L

ypq,a + yqp,b ≤ wpqdab ∀a, b ∈ L, (p, q) ∈ E

2

To each vertexp, there corresponds one dual variableyp. Also, to each pair of neighboring verticesp, q (and any labela),
there correspond 2 dual variablesypq,a andyqp,a. Note that this is in contrast to the primal problem where, for each pair of
neighboring verticesp, q (and any labelsa, b), only one of the 2 variablesxpqab, xqp,ba is being used depending on whether
(p, q) ∈ E or (q, p) ∈ E. All the dual variables{ypq,a}a∈L

p,q:p∼q
3 will be called “balance variables” hereafter while also for

each pairypq,a, yqp,a of these balance variables we will say thatypq,a is the conjugate balance variable ofyqp,a (and vice
versa) or equivalently thatypq,a, yqp,a are conjugate variables.

By defining the auxiliary variableshtyp,a as:

htyp,a ≡ cp,a +
∑

q:q∼p

ypq,a (6)

the dual problem is trivially transformed into:

max
∑

p
yp

s.t. yp ≤ htyp,a ∀p ∈ V, a ∈ L (7)

ypq,a + yqp,b ≤ wpqdab ∀a, b ∈ L, (p, q) ∈ E (8)

The dual variableshtyp,a will be called “height variables” hereafter. The reason for this as well as for introducing these
redundant variables will become clear in the sections that are following. For defining a dual solution, only the balance
variablesypq,a as well as theyp variables need to be specified. The auxiliary height variableshtyp,a are then computed by (6).

2.2 Relaxed complementary slackness conditions

The relaxed primal complementary slackness conditions, related to the specific pair of primal-dual linear programs of the
previous section, are:

xp,a > 0 ⇒ yp ≥ cp,a/f1 +
∑

q:q∼p
ypq,a (9)

xpq,ab > 0 ⇒ ypq,a + yqp,b ≥ wpqdab/f2 (10)

During the primal-dual schema we will be considering only feasible{0, 1}-primal solutions. It is not difficult to see that such
solutions can be completely specified (i.e. all primal variablesxp,a, xpq,ab can be estimated) once we know what label has
been assigned to each vertex. For this reason, a primal solutionx will hereafter refer to a set of labels{xp}p∈V wherexp

denotes the label assigned to vertexp. Under this notation,xp,a > 0 (i.e. xp,a = 1 since we are dealing only with{0, 1}
solutions) is equivalent toxp = a and so the relaxed primal complementary slackness conditions (9) are trivially reduced to:

yp ≥ cp,xp/f1 +
∑

q:q∼p
ypq,xp (11)

In a similar fashion,xpq,ab > 0 is equivalent toxp = a andxq = b and the complementary slackness conditions (10) are
trivially reduced to:

xp 6= xq ⇒ ypq,xp + yqp,xq ≥ wpqdxpxq/f2 (12)

xp = xq = a ⇒ ypq,a + yqp,a = 0 (13)

where we consider the casesa 6= b anda = b separately.
During any of the algorithms that will follow our objective will be to find feasible solutionsx, y satisfying the above

complementary slackness conditions (11), (12) and (13). The last slackness conditions (13) simply express the fact that
conjugate balance variables should be opposite to each other. For this reason we set by definition:

yqp,a ≡ −ypq,a ∀ (p, q) ∈ E, a ∈ L (14)

Therefore slackness condition (13) will always be true hereafter and so we will have to take care for fulfilling only conditions
(11) and (12).

3

ypq,c

yqp,c

α=xq

α=xp

c

b

p q
wpq

c
b

y
apht ,

y
cpht ,

y
bpht ,

y
aqht ,

y
bqht ,

y
cqht ,

reference plane

Fig. 1: A visualization of the dual for a very simple instance of the Metric Labeling Problem where the graphG consists of just 2
neighboring verticesp, q and the set of labelsL is equal to{a, b, c}. To each of the verticesp, q there corresponds a separate set of labels
{a, b, c} (each label is represented by a circle) and all of these labels are located at certain heights relative to a common reference plane.
The values of these heights are set equal to the dual variablesht and therefore depend on the balance variables. Labelc at p is pulled up
due to the increase of the balance variableypq,c and so the corresponding label at neighboring vertexq is pulled down due to the decrease
of the conjugate variableyqp,c. The labels which are currently assigned to verticesp, q are drawn with a thicker line.

2.3 An intuitive view of the dual variables and some extra terminology

A way of viewing/visualizing the dual variables, that will prove useful when designing our approximation algorithms later,
is the following: for each vertexp, we consider a separate copy of the complete set of labelsL. One then may assume that
all of these labels are objects which are located at certain heights relative to a common reference plane (see Fig. 1). The
height of labela at vertexp is given by the dual variablehtyp,a. Expressions like “labela at p is below/above labelb” imply
htyp,a ≶ htyp,b. The role of the balance variables is to contribute to the increase or decrease of a vertex’s height. In particular,
due to (6), the height of a labela at p can be altered only if at least one of the balance variables{ypq,a}q:q∼p is altered as
well. In addition, due to the fact that conjugate balance variables are opposite to each other (see (14)), changes in the height
of labela at p also affect the height of that label at a neighboring vertex. In Fig. 1, for example, each time we increase the
height of labelc atp, say by increasing balance variableypq,c, the height ofc at the neighboring vertexq is decreased by the
same amount due to the decrease of the conjugate variableyqp,c.

Before proceeding let us also define some terminology that will be used frequently throughout this document. Letx, y be
any pair of integral-primal, dual solutions. We will call labelxp the assigned label top or equivalently theactive label atp.
We will also refer to the height of an assigned label to vertexp (i.e. htyp,xp

) as merelythe height ofp. Based on this definition,
a function (denoted asAPF x,y hereafter) which will play an important role in all of the considered primal-dual algorithms
is the sum of the heights of all vertices i.e.APF x,y =

∑
p htyp,xp

. If x, y satisfy the exact (i.e.f1 = 1, f2 = 1) slackness
conditions (11),(12), then it is easy to prove that APF coincides with the value of the primal objective function while if the
relaxed slackness conditions hold then it is also easy to prove that APF stays close to the actual value of the primal objective
function. For this reason APF will be called the“Approximate Primal Function”hereafter.

Another significant concept is that of anactive balance variable. We define as anactive balance variable at a vertexp
any balance variable belonging to the following set{ypq,xp}q:q∼p (i.e. any balance variable of the formypq,xp whereq is
any neighboring vertex ofp). Based on the “active balance variable” concept, we may also introduce another very important
quantity which is called theload between two neighborsp, q (loadx,y

pq) and is equal to the sum of the 2 active balance
variablesypq,xp , yqp,xq i.e. loadx,y

pq = ypq,xp + yqp,xq . If relaxed slackness conditions (12) are to be satisfied, then it is
easy to see that the load betweenp, q can be thought of as a virtual separation cost which is always a rough approximation
of the actual separation costwpqdxpxq betweenp, q. This can be verified as follows: if the separation cost betweenp, q is
zero (i.e.xp = xq) then so isloadx,y

pq due to (14). While if the separation cost is not zero (i.e.xp 6= xq) then it holds that
wpqdxpxq/f2 ≤ loadx,y

pq ≤ wpqdxpxq where the 1st inequality is due to slackness conditions (12) and the 2nd one is due to
the dual constraints (8).

Another useful thing to note is that there exists a direct relationship between the value of the APF function and the loads.
In particular, it holds that:

APF x,y =
∑

p

cp,xp +
∑

(p,q)∈E

loadx,y
pq (15)

3According to our notation the set{ypq,a}a∈L
p,q:p∼q equals the set{ypq,a, yqp,a}a∈L

p,q:(p,q)∈E

4

1: k ← 1; xk ←INIT PRIMALS(); yk ←INIT DUALS();
2: LabelChange ← 0
3: for each labelc in L do
4: ȳk ← PREEDIT DUALS(c, xk, yk);
5: [xk+1, ȳk+1] ←UPDATE DUALS PRIMALS(c, xk, ȳk);
6: yk+1 ←POSTEDIT DUALS(c, xk+1, ȳk+1);
7: if xk+1 6= xk then LabelChange ← 1
8: k++;
9: end for

10: if LabelChange = 1 (i.e. at least one vertex has changed its label)then goto 2;
11: if algorithm 6= PD1 then yfit ←DUAL FIT(yk);

Fig. 2: Pseudocode showing the basic structure of the algorithms PD1, PD2 and PD3.

One can very easily verify the above equation as follows:

APF x,y =
∑

p

htyp,xp
=

∑
p

(
cp,xp

+
∑

q:q∼p

ypq,xp

)
=

∑
p

cp,xp
+

∑

(p,q)∈E

(
ypq,xp

+ yqp,xq

)

=
∑

p

cp,xp +
∑

(p,q)∈E

loadx,y
pq

2.4 Applying the primal-dual schema to Metric Labeling

The majority of the approximation algorithms that will be presented here achieve an approximation factor offapp = 2dmax

dmin

with dmin ≡ mina 6=bdab anddmax ≡ maxa 6=bdab. The distinction between the considered algorithms will be lying in the
exact values they assign to the constantsf1, f2 that are used in the relaxed complementary slackness conditions (11),(12).
Another important difference will be that some of them are applicable even in the more general case ofdab being a semimet-
ric4.

The basic structure of any of the considered algorithms can be seen in Fig. 2. The initial primal-dual solutions are
generated insideINIT PRIMALS and INIT DUALS respectively. During each inner iteration (lines4-8 in Fig. 2) a labelc is
selected and a new primal-dual pair of solutions(xk+1, yk+1) is generated by updating the current pair(xk, yk). It should be
noted that among all balance variables ofyk (i.e. {yk

pq,a}a∈L
p,q:p∼q) only the balance variables of thec labels (i.e.{yk

pq,c}p,q:p∼q)
are modified. We call this ac-iteration of the algorithm.|L| such iterations (onec-iteration for each labelc in the setL) make
up an outer iteration (lines2-9 in Fig. 2) and if no vertex changes its label during the current outer iteration the algorithm
then terminates.

The role of the routines which are being executed during an innerc-iteration is as follows: the role ofPREEDIT DUALS

is to edit solutionyk into solutionȳk that is going to be used as an input to theUPDATE DUALS PRIMALS routine. That
routine is responsible for the main update of the primal and dual variables and to this end it generates the pair of solutions
(xk+1, ȳk+1). Finally, POSTEDIT DUALS applies further modifications tōyk+1 thus producing the next dual solutionyk+1.
This solutionyk+1 along withxk+1 constitute the next primal-dual pair of solutions. The algorithms to be considered are
named PD1, PD2, PD3 and theDUAL FIT routine, which is being used only in the last two of them, serves only the purpose
of applying a scaling operation to the last dual solution (as we shall later see).

Since we will be dealing only with approximation algorithms, we may hereafter assume w.l.o.g. that all coefficients
cp,a, wpq, dab of the Metric Labeling integer program (2) are nonnegative integers. If this was not true, then we could
approximate (to any precision) those coefficients by rational numbers thus generating an instance of the Metric Labeling
problem which in turn can be trivially transformed into an integer program (2) with integral coefficients. We could then apply
all of our approximation algorithms to this last integer program.

4The linear programming formulation of Metric Labeling is still valid

5

3 The PD1 algorithm

During this section we will assume thatdab is a semimetric. In the particular case of the PD1 algorithm our goal will be to
find feasible solutionsx, y satisfying slackness conditions (11), (12) withf1 = 1 andf2 = fapp. By replacingf1 = 1 in (11)
that condition becomesyp ≥ htyp,xp

. Since it also holds thatyp ≤ mina htyp,a (by the dual constraints (7)), it is easy to see
that (11) reduces to the following 2 equations:

yp = min
a

htyp,a (16)

htyp,xp
= min

a
htyp,a (17)

In addition, by making use of the definition of the load asloadx,y
pq = ypq,xp

+ yqp,xq
and by replacingf2 = fapp in (12) that

condition becomes equivalent to:
xp 6= xq ⇒ loadx,y

pq ≥ wpqdxpxq
/fapp (18)

Therefore the objective of PD1 is to find feasiblex, y satisfying conditions (16)-(18). PD1 uses the following strategy to
achieve its goal: during its execution it generates a series of primal-dual pairs of solutions, one primal-dual pair per iteration.
At each iteration it makes sure that conditions (16) and (18) are automatically satisfied by the current primal-dual pair. In
addition, it makes sure that the current dual solution is feasible (primal solutions are always integral-feasible by construction).
To this end it enforces that the current dual solution always satisfies the following constraints:

ypq,a ≤ wpqdmin/2 ∀ a ∈ L, p ∼ q (19)

To see that (19) ensures feasibility, it is enough to observe that due to this constraint the following inequality can be derived:
ypq,a + yqp,b ≤ 2wpqdmin/2 = wpqdmin ≤ wpqdab and so the dual constraints (8) hold true. This implies that solutiony is
indeed feasible since the other dual constraints (7) already hold true due to condition (16).

All that remains then for PD1 to achieve its goal is just to ensure that after a finite number of iterations slackness conditions
(17) are satisfied as well. This last objective (i.e. driving the primal-dual pairs towards satisfying (17)) will be the final and
key issue for the success of the considered algorithm. To this end, PD1 will be trying to ensure that the number of verticesp
for which equation (17) holds true increases after each one of its iterations.

3.1 An intuitive understanding of the algorithm

Let us now give some “feel” for how PD1 is really trying to achieve that last objective. Before proceeding, it should be noted
that enforcing condition (16) is always a trivial thing to do (we simply need to set each dual variableyp equal tomina htyp,a),
so we do not really have to worry about that condition throughout PD1.

Let x, y be the current pair of integral-primal and dual feasible solutions satisfying all required conditions (16)-(19) except
for (17). That condition simply requires that the labelxp assigned to any vertex must be “lower” than all other labels at that
vertex. So letp be a vertex for which this condition fails i.e. one of its labels, sayc, is located “below” the active labelxp at
that vertex. To restore (17) we need to raise labelc up toxp by increasing one of the balance variables{ypq,c}q:q∼p. But as
already mentioned, each time we increaseypq,c its conjugate variableyqp,c decreases and so the height ofc at the neighboring
vertexq decreases as well. This may have as a result that labelc at q gets below the active labelxq. Therefore we must be
careful which balance variables we choose to increase and by how much or otherwise we may break condition (17) for some
neighboring vertexq. This means that the increase/decrease of the balance variables must proceed in an optimal way so that
condition (17) is restored for as many vertices as possible. Based on this observation, during any iteration of the algorithm
the update of the primal and dual variables roughly proceeds as follows:

• Dual variables update: given the current primal solution (i.e. the current label assignment), we keep the heights of all
active labels fixed and then for each vertex we try so that all of its labels are raised above the vertex’s active label. Of
course, we only need to do that for the labels that are “below” the active label. To this end we need to update the dual
balance variables in an optimal way. As we shall see any update of the balance variables can be simulated by pushing
flow through an appropriately constructed capacitated graph while the optimal update can be achieved by pushing the
maximum flow through that graph. Of course, care must also be taken so that constraints (19) do not become violated
during this update of the dual variables or else the resulting dual solution might not be feasible. Constraints (19) impose
upper bounds on the values of the balance variables, restricting this way the maximum allowed increase that we may
apply to the height of a label.

6

fpq--fqp

fqp -fpqa=xp

c

c=xr
c

p q r
wpq wqr

a=xq

a

y
xp p

ht ,

y
cpht ,

y
cqht ,

y
xq q

ht ,

y
xr r

ht ,

y
arht ,

(a)

p
q

r

s (source)

t (sink)

fpq
fqp

fp

fr

fq

fqr
frq

y
xq

y
cqqt q

hthtcap ,, −=

0=qrcap

cqppqqp ydwcap ,min 2 −=

cpqpqpq ydwcap ,min 2 −=

y
cp

y
xpsp hthtcap

p ,, −=

0=rqcap

1=srcap

(b)

Fig. 3: (a) An arrangement of labels (represented by circles) for a simple instance of the Metric Labeling problem consisting of 3 vertices
p, q, r and 2 edgespq, qr with weightswpq, wqr. The label set isL = {a, c}. The circles with the thicker line represent the active labels.
Also, the red arrows indicate how thec labels will move in respond to the update of the dual variables while the circles with the dashed
line show the final position of those labels after the update.(b) The corresponding capacitated graphGx,y

c is shown. A maximum flow
algorithm is applied to this graph for updating the dual variables. Interior edges are drawn with a solid line while exterior edges are drawn
with a dashed line. Capacities of both interior and exterior edges are also shown.

• Primal variables update: after the optimal rearrangement of the labels’ heights, there might still be some vertices whose
active labels are not the ones with the lowest height (among all labels at the vertex), violating this way condition (17).
We select a suitable subset of these vertices and assign to them new labels which are at lower heights than the previous
active labels so that the resulting primal solution is taken closer to satisfying (17) too. The reason we may not be able
to do that for all the vertices is that we must still take care that the other slackness conditions (18) are maintained as
well. Nevertheless, the number of vertices violating (17) decreases per iteration and so by keep repeating this update of
the primal and dual variables it can be shown that in the end the active label of each vertex will have the lowest height
at that vertex and the last primal-dual pair will therefore satisfy all required conditions (16)-(19).

3.2 Constructing the capacitated graphGx,y
c

The rearrangement of the label heights takes place in groups. Given as input a current primal-dual pair of solutions(x, y) and
a labelc, UPDATE DUALS PRIMALS(c, x, y) rearranges only the heights of thec labels. To this end it changes solutiony into
solutiony′ by changing only the balance variables{ypq,c}p,q:p∼q (i.e. the balance variables of allc labels) into{y′pq,c}p,q:p∼q.

The goal of this update will be to have the resulting heightshty
′

p,c rearranged in an optimal way so that as many of thec labels
as possible end up being above the currently active labels. In addition, we need to make sure that the new dual solutiony′

does not break conditions (19).
In the simple case presented in Fig. 3(a), for example, we would like to have labelc at p move at least as high as label

a at p (the active label ofp) without, at the same time, labelc at q gets lower than labela at q (the active label ofq). Label
c at r does not need to move at all since it is already the active label of vertexr and has the lowest height in there. It turns
out that in the general case the update of both the balance variables and the labels’ heights can be simulated by pushing flow
through an appropriately constructed directed graphGx,y

c = (V x,y
c , Ex,y

c , Cx,y
c) with capacitiesCx,y

c . In fact, as we shall see
later, the optimal update corresponds to pushing the maximum amount of flow through that graph. Such a capacitated graph,
associated to the simple problem of Fig. 3(a), is presented in Fig. 3(b).

Let us now explain how such a graph can be constructed as well as how pushing flow through that graph relates to the
update of the dual variables. The nodesV x,y

c of Gx,y
c consist of all the nodes of graphG (these are the internal nodes) plus

two special external nodes the sources and the sinkt. The nodes ofGx,y
c are connected by two types of edges: interior edges

(drawn with solid lines in Fig. 3(b)) and exterior edges (drawn with dashed lines in Fig. 3(b)).
Interior edges: For each edge(p, q) ∈ G, we insert 2 directed interior edgespq andqp in graphGx,y

c . The amount of flow
fpq leavingp throughpq represents the increase of the balance variableypq,c while the amount of flowfqp entering p through
interior edgeqp represents the decrease of the same variableypq,c. The total change ofypq,c will therefore be:

y′pq,c = ypq,c + fpq − fqp (20)

The total change inyqp,c is defined symmetrically since any flow coming out ofp throughpq will enter q (and vice versa). It

7

is then obvious thaty′pq,c = −y′qp,c and so conjugate balance variables remain opposite to each other as they should.
Based on (20), it is also easy to see that the capacitycappq of an interior edgepq represents the maximum allowed increase

of the ypq,c variable (attained iffpq = cappq, fqp = 0) and therefore the quantityypq,c + cappq represents the maximum
value of the new balance variabley′pq,c. Similar conclusions can be drawn regarding the capacitycapqp of the reverse edge
qp. Based on these observations the capacitiescappq, capqp are assigned as follows: if the current label ofp (or q) is already
c then we want to keep the height ofc atp (or q) fixed during the current iteration and so the capacity for all interior edges in
or out ofp (or q) must be zero. Therefore:

xp = c or xq = c ⇒ cappq = capqp = 0 (21)

Otherwise (i.e.xp 6= c, xq 6= c), we set the capacity of the edgespq, qp so that the values of the new balance variablesy′pq,c,
y′qp,c can never exceedwpqdmin/2 and feasibility conditions (19) are therefore maintained for the new dual solutiony′. For
this reason we set:

ypq,c + cappq = wpqdmin/2 = yqp,c + capqp (22)

Exterior edges: Each internal nodep will be connected to either the source nodes or the sink nodet through an exterior
edge. Whether we choose the source or the sink depends on the relative heights at vertexp of the labelsc andxp (the active
label ofp). There are 3 possible cases:

Case 1:If c is “below” xp (i.e. htyp,c < htyp,xp
) then (as explained in section 3.1) we would like to raise labelc by exactly

as much as needed so that it reaches labelxp. This is the case, for example, with vertexp in Fig. 3(a) where we would like
that labelc atp reaches labela atp. To this end, we connect the source nodes to nodep through a directed edgesp. The flow
fp passing through that edge has the following interpretation: it represents the total increase in the height of labelc (taking
into account the contribution from the change of all balance variables):

hty
′

p,c = htyp,c + fp (23)

To verify this, it is enough to combine the flow conservation constraint at nodep which can be easily seen to reduce to:

fp =
∑

q:q∼p

(
fpq − fqp

)
(24)

and the fact thatfpq − fqp represents the total change of the balance variableypq,c i.e. fpq − fqp = y′pq,c − ypq,c (see (20)).
Indeed, it then follows that:

htyp,c + fp =
(
cp,c +

∑
q:q∼p

ypq,c

)
+ fp

=
(
cp,c +

∑
q:q∼p

ypq,c

)
+

∑
q:q∼p

(
fpq − fqp

)

=
(
cp,c +

∑
q:q∼p

ypq,c

)
+

∑
q:q∼p

(
y′pq,c − ypq,c

)
= cp,c +

∑
q:q∼p

y′pq,c = hty
′

p,c

Based on this observation, the capacitycapsp of the edgesp represents the maximum allowed raise in the height ofc.
Therefore, since we need to raisec only as high as the current label ofp but not higher than that, we simply set this capacity
as follows:

capsp = htyp,xp
− htyp,c (25)

The capacity of edgesp in Fig. 3(b) is defined this way.
Case 2:If c is not “below”xp (i.e. htyp,c ≥ htyp,xp

) and is also not the active label ofp (i.e. c 6= xp) then we can afford a
decrease in the height ofc as long asc remains “above”xp. In such a case, we connect the nodep to the sink nodet through
a directed edgept. This time the flow passing through edgept will reflect the total decrease in the height ofc (taking again
into account the contribution from the change of all balance variables):

hty
′

p,c = htyp,c − fp (26)

The capacity of this edge therefore represents the maximum decrease in the height of labelc and since this label must remain
“above”xp, capacitycappt is defined, in a similar fashion to (25), as:

cappt = htyp,c − htyp,xp
(27)

8

In Fig. 3(a), for example, labelc at vertexq needs to remain above labela at q and so in Fig. 3(b) the capacity of edgeqt is
defined by applying (27) to vertexq.

Case 3:Finally, if c is the active label ofp (i.e. c = xp) then we want to keep the height ofc fixed at the current iteration.
As in case 1 above, we again connect the source nodes to nodep through directed edgesp. This time, however, no flow
passes through the interior edges incident top (i.e. fpq = fqp = 0 for any neighboring vertexq) since these edges have zero
capacity now (see (21)). Sofp = 0 (due to (24)) and no flow passes through edgesp as well which in turn implies that the
height of labelc will not change (see (23)), as was intended. By convention we set the capacitycapsp of edgesp equal to
one:

capsp = 1 (28)

Vertexr in Fig. 3(a) belongs to this case and this is the reason why we setcapsr = 1 in the graph of Fig. 3(b).

3.3 Update of the primal and dual variables

We are now ready to describe what actions are performed by each of the main routines of PD1 during ac-iteration.
PREEDIT DUALS(c, xk, yk): For all of the considered algorithms the role of this routine will be to edit current solutionyk

into solutionȳk that will be used (along withxk) as input for the construction of the capacitated graphGxk,ȳk

c of section 3.2.
In the specific case of PD1, no update takes place insidePREEDIT DUALS and soȳk = yk.

UPDATE DUALS PRIMALS(c, xk, ȳk): After the construction of the graphGxk,ȳk

c (as explained in section 3.2), a maximum
flow algorithm [15] is applied to it and the resulting flows on interior edges are used in updating the dual balance variables.
More specifically, only the balance variables of thec labels are updated as follows (see (20)):

ȳk+1
pq,c = ȳk

pq,c + fpq − fqp (29)

Therefore the heights of allc labels will also change as (see (23), (26)):

htȳ
k+1

p,c = htȳ
k

p,c +

{
fp if p is connected to nodes

−fp if p is connected to nodet
(30)

In the toy example of Fig. 4(a) you can see an initial arrangement of labels’ heights based on the values that the dual
variables take at the start of ac-iteration while in Fig. 4(b) you can see the resulting rearrangement of the labels’ heights due
to the update of the dual variables after applying the maximum-flow algorithm to the associated graphGxk,ȳk

c of Fig. 4(d).
The corresponding flows are also shown in that figure.

Based on the resulting heights, we now need to update the primal variables i.e. assign new labels to the vertices ofG.
Since only the heights ofc labels have been altered, the latter amounts to deciding whether each vertex keeps its current label
or is assigned the labelc. On one hand, this must be done so that the labels of any vertexp are taken closer to satisfying (17)
(i.e. the active label ofp should also be the “lowest” one atp). This practically means that if labelc at p has not managed
to get “above” the active label ofp, then we need to assignc as the new label of that vertex. For example, in the case of the
updated heights of Fig. 4(b) we would like vertexp to be assigned labelc while the rest of the verticesq, r should maintain
their current labels. On the other hand, we must also take care maintaining condition (18). It turns out that both of the above
criteria can be fulfilled by considering the flows through both interior and exterior edges ofGxk,ȳk

c and making use of the
following rule:

REASSIGN RULE. Labelc will be the new label ofp (i.e. xk+1
p = c) ⇔ ∃ unsaturated5 path between the source and nodep

(otherwisep keeps its current label i.e.xk+1
p = xk

p).

In Fig. 4(c) you can see the new assignment of labels to vertices that has resulted after applying the above rule to the
graph of 4(d). Vertexp gets indeed a new label because edgesp is unsaturated whileq, r maintain their active labels since
no unsaturated path to them exists inGxk,ȳk

c . As mentioned above, the new assignment obviously coincides with what we
would like to achieve initially. Before proceeding let us state some very useful properties resulting out of the choice of the
reassign rule (these properties will hold for all of the considered algorithms):

5A path is unsaturated ifflow < capacity for all forward arcs andflow > 0 for all backward arcs

9

a=xp c c

c

p q r

135

10

120

70

120

70

wpq=200 wqr=1000

a=xq a=xr

(a)

fpq

-fpq

fqr

-fqr

a=xp c c

c

p q r

135

10

120

70

120

70

wpq=200 wqr=1000

a=xq a=xr

110

(b)

a

c cc=xp

p q r

135

70 70

wpq=200 wqr=1000

a=xq a=xr

110

(c)

p

q
r

s

t

capsp=125

caprt=50

capqp=100

cappq=100 capqr=500

caprq=500

fpq=100
fqp=0

fp=100

fqr=50
frq=0

fr=50
capqt=50

fq=50

(d)

Fig. 4: (a) The initial arrangement of the labels’ heights at the start of the currentc-iteration for a toy example of the Metric Labeling
problem. All of the verticesp, q, r are currently assigned labela (as indicated by the circles with the thicker line).(b) The red and blue
arrows show how thec labels will move due to the update of the balance variables after applying a maximum flow algorithm to the graph
in (d). Label movements due to changes in balance variables that are conjugate to each other are drawn with the same line style and color.
Furthermore, the dashed circles indicate the final positions of the labels.(c) The new active labels (thick circles) that have been selected
based on the “reassign rule” are shown here. Only vertexp had to change its label intoc since the exterior edgesp of the graph in(d)
is unsaturated.(d) The associated capacitated graph (assuming that initially all balance variables are zero) and the resulting flows after
applying a maximum flow algorithm. The flowsfp, fq, fr at the exterior edges are equal to the total change in the height of thec labels at
p, q, r respectively. In this example the Potts metric has been used for the distancedab (i.e. if a 6= b ⇒ dab = 1).

Properties 3.1. Letp, q be two neighboring vertices i.e.p ∼ q. Then during ac-iteration:

(a) a 6= c ⇒ ȳk+1
pq,a = ȳk

pq,a, htȳ
k+1

p,a = htȳ
k

p,a

(b) xk
p = c ⇒ xk+1

p = c,
(
ȳk+1

pq,c , ȳk+1
qp,c

)
=

(
ȳk

pq,c, ȳ
k
qp,c

)
, htȳ

k+1

p,xk+1
p

= htȳ
k

p,xk
p

(c) htȳ
k+1

p,xk+1
p

≤ htȳ
k

p,xk
p

(d) htȳ
k+1

p,xk+1
p

≤ htȳ
k+1

p,c

(e) if p is assigned label c but q keeps its current label (i.e.xk+1
p = c andxk+1

q = xk
q), thenȳk+1

pq,c = ȳk
pq,c + cappq i.e. the

balance variablēyk+1
pq,c attains its maximum value

(f) (APF monotonicity)APF xk+1,ȳk+1 ≤ APF xk,ȳk

Furthermore, if at least one change of label has taken place during
the currentc-iteration thenAPF xk+1,ȳk+1

< APF xk,ȳk

Proof:

(a) This property follows directly from the fact that only the balance variables of thec labels are updated during ac-
iteration, by definition.

(b) Due toxk
p = c and (21), the capacities of all interior edgespq́, q́p with q́ adjacent top (i.e. q́ ∼ p) will be zero and so

no flow can pass through them i.e.:
fpq́ = fq́p = 0 ∀ q́ : q́ ∼ p (31)

10

If we then apply the flow conservation at nodep (24), we can see that the flow through edgesp will be zero as well
(i.e. fp = 0) which in turn implies that the edgesp is unsaturated (sincecapsp = 1 by (28)). Therefore by the reassign
rule it will also bexk+1

p = c. Finally, the equality
(
ȳk+1

pq,c , ȳk+1
qp,c

)
=

(
ȳk

pq,c, ȳ
k
qp,c

)
follows directly from applying (31)

to q́ = q and then using (29) while the other equalityhtȳ
k+1

p,xk+1
p

= htȳ
k

p,xk
p

follows fromfp = 0 and (30).

(c) if xk+1
p 6= c then it will necessarily holdxk+1

p = xk
p since by the reassign rule a vertex is either assigned labelc or

keeps its current labelxk
p. Therefore it will also bexk

p 6= c. So by settingxk+1
p = xk

p = a 6= c we may now apply

property(a) and easily conclude thathtȳ
k+1

p,xk+1
p

= htȳ
k

p,xk
p

which means that the property holds in this case.

Therefore we may hereafter assume thatxk+1
p = c. In that case, ifp is connected to the source nodes then we may

easily verify the property as follows:

htȳ
k+1

p,xk+1
p

= htȳ
k+1

p,c = htȳ
k

p,c + fp by (30)

≤ htȳ
k

p,c + capsp

= htȳ
k

p,c +
(
htȳ

k

p,xk
p
− htȳ

k

p,c

)
by (25)

= htȳ
k

p,xk
p

Let us now consider the case wherep is connected to the sinkt: since we assumexk+1
p = c the reassign rule implies

that there must be an unsaturated path, says Ã p, from s to p. But it must then holdfp = cappt or else there will also
be an unsaturated paths Ã p → t between the source and the sink which is impossible due to the max-flow min-cut
theorem [15]. Combining this fact (i.e.fp = cappt) with (30) and the definition ofcappt in (27) it then follows that:

htȳ
k+1

p,xk+1
p

= htȳ
k+1

p,c = htȳ
k

p,c − fp

= htȳ
k

p,c − cappt

= htȳ
k

p,c −
(
htȳ

k

p,c − htȳ
k

p,xk
p

)
= htȳ

k

p,xk
p

(d) If xk+1
p = c the property obviously holds. So we may assume thatxk+1

p 6= c. In that case, it will also bexk
p 6= c as

well (due to property(b)). If p is connected to the source nodes then the arcsp must be saturated i.e.fp = capsp or
else it would holdxk+1

p = c according to the reassign rule. Using this fact as well as (30) and the definition ofcapsp

in (25) the property then follows:

htȳ
k+1

p,c = htȳ
k

p,c + fp

= htȳ
k

p,c + capsp

= htȳ
k

p,c +
(
htȳ

k

p,xk
p
− htȳ

k

p,c

)
= htȳ

k

p,xk
p

= htȳ
k

p,xk+1
p

where the last equality is true due to the factxk
p 6= c and property(a).

On the other hand, ifp is connected to the sinkt then:

htȳ
k+1

p,c = htȳ
k

p,c − fp by (30)

≥ htȳ
k

p,c − cappt

= htȳ
k

p,c −
(
htȳ

k

p,c − htȳ
k

p,xk
p

)
by (27)

= htȳ
k

p,xk
p

= htȳ
k

p,xk+1
p

where again the last equality is true due to the factxk
p 6= c and property(a).

11

(e) If xk
q = c thencappq = 0 (due to (21)) while alsōyk+1

pq,c = ȳk
pq,c (by property(b)) and so the property obviously holds.

Therefore we may assume thatxk
q 6= c which implies thatxk+1

q 6= c as well (sincexk+1
q = xk

q). Sincep has been
assigned the labelc there must exist an unsaturated paths Ã p from s to p. But then the forward arcpq as well as the
backward arcqp of the paths Ã p → q must be saturated i.e.:

fpq = cappq and fqp = 0 (32)

or else that path would also be unsaturated (which would in turn imply thatxk+1
q = c contrary to our assumption

above). Due to (32) and (29) the property then follows.

(f) The first inequality follows directly from(c) and the definition of the APF function. Furthermore, if at least one change
of label has taken place then according to the reassign rule there must be at least one unsaturated arc, saysp, between
the source and some nodep. This implies thatfp < capsp and so by also using (30) and the definition ofcapsp in (25)

it is then trivial to show thathtȳ
k+1

p,xk+1
p

< htȳ
k

p,xk
p
. Due to this fact and by applying property(c) to all other vertices the

desired strict inequality follows.

Property 3.1(a) simply expresses the fact that only dual variables related to thec-labels may change during ac-iteration
while property 3.1(b) simply says that if labelc is the active label during ac-iteration then its height is kept fixed during that
iteration.

Note also that due to property 3.1(c) the height of a vertex (i.e. the height of its active label) decreases after each iteration
of the algorithm. Furthermore, due to property 3.1(d), the new active label at the end of ac-iteration (i.e. the label assigned
to a vertex byxk+1) is always located “below” that vertex’s labelc (as was intended). Based on these observations the new
label assigned to a vertex byxk+1 is always taken closer to having the minimum height at that vertex after the end of each
iteration. We may therefore hope that by keep repeating this procedure we will finally make sure that (17) is satisfied after a
sufficient number of iterations has elapsed.

Besides that, however, we also need to ensure thatxk+1, yk+1 satisfy conditions (18). To this end, the routinePOSTE-
DIT DUALS(c, xk+1, ȳk+1) still needs to apply an additional correction to the resulting dual solutionȳk+1. In particular,
the role of that routine will be to changēyk+1 into yk+1 so that all of the active balance variables of solutionyk+1 become
nonnegative (this should come as no surprise since conditions (18) involve only sums of active balance variables). It turns out
that in the case of algorithm PD1, only neighborsp, q with xk+1

p = xk+1
q = c may have one of the active balance variables

ȳk+1

pq,xk+1
p

, ȳk+1

qp,xk+1
q

being negative during ac-iteration. In that casePOSTEDIT DUALS simply setsyk+1
pq,c = yk+1

qp,c = 0. No

other differences between̄yk+1, yk+1 exist. It is then obvious that for any neighboring verticesp, q the following equation
holds: yk+1

pq,xk+1
p

+ yk+1

qp,xk+1
q

= ȳk+1

pq,xk+1
p

+ ȳk+1

qp,xk+1
q

. This means that all the loads are preserved during the transition from

solutionȳk+1 to yk+1 (i.e. loadxk+1,yk+1
= loadxk+1,ȳk+1

) which in turn implies (due to (15)) thatPOSTEDIT DUALS does
not alter the value of theAPF function as well i.e.APF xk+1,yk+1

= APF xk+1,ȳk+1

This, seemingly minor, modification of the dual solution byPOSTEDIT DUALS plays, nevertheless, a very crucial role in
the success of the PD1 algorithm. In particular, the considered modification along with property 3.1(e) will be absolutely
necessary for ensuring that conditions (18) are satisfied by all dual solutions generated throughout PD1. This will become
clear during the proof of the theorem 3.2 ahead, which is the main result of this section and proves that PD1 always leads to
anfapp-approximate solution. The pseudocode for the PD1 algorithm is shown in Fig. 5.

Theorem 3.2. The final primal and dual solutions generated by PD1 satisfy all conditions (16) - (19). Therefore, (as
explained in section 3) these solutions are feasible and satisfy the relaxed complementary slackness conditions withf1 = 1,
f2 = fapp.

Proof: Due to the integrality assumption of the quantitiescp,a, wpq, dab, both the initial dual solution as well as the capacities

of the graphGxk,ȳk

are always of the formn0
2 with n0 ∈ N. It can then be easily verified that any balance variable, and

therefore the APF function too, can take values only of that form. So after everyc-iteration any decrease of APF will always
have magnitude≥ 1/2. Based on this observation and the fact that, as mentioned above,POSTEDIT DUALS does not alter the
value of the APF function, the algorithm termination (i.e. no change of label taking place for|L| consecutive inner iterations)
is guaranteed by the APF monotonicity property 3.1(f).

12

INIT PRIMALS : initialize xk by a random label assignment

INIT DUALS

yk = 0
for each pair(p, q) ∈ E with xk

p 6= xk
q do

yk
pq,xk

p
= −yk

qp,xk
p

= wpqdmin/2 = yk
qp,xk

q
= −yk

pq,xk
q

yk
p = mina htyk

p,a ∀p ∈ V {It imposes conditions (16)}
PREEDIT DUALS(c, xk, yk): ȳk = yk

UPDATE DUALS PRIMALS (c, xk, ȳk)
xk+1 = xk, ȳk+1 = ȳk

Apply max-flow toGxk,ȳk

c and compute flowsfp, fpq

ȳk+1
pq,c = ȳk

pq,c + fpq − fqp ∀p, q : p ∼ q

∀p ∈ V xk+1
p = c ⇔ ∃ unsaturated paths Ã p in Gxk,ȳk

c

POSTEDIT DUALS(c, xk+1, ȳk+1)
yk+1 = ȳk+1

for each pair(p, q) ∈ E with xk+1
p = xk+1

q = c do
if ȳk+1

pq,c < 0 or ȳk+1
qp,c < 0 then yk+1

pq,c = yk+1
qp,c = 0

yk+1
p = mina htyk+1

p,a ∀p ∈ V {It imposes conditions (16)}

Fig. 5: Pseudocode for the PD1 algorithm.

Feasibility conditions (16) are enforced by the definition of the PD1 algorithm (see Fig. 5). In addition, due to the specific
assignment of capacities to interior edges (see (22)), the balance variables of edgespq, qp are not allowed to grow larger than
wpqdmin/2 and so constraints (19) are also enforced.

Furthermore, we can prove by induction that solutionsxk, yk (for anyk) satisfy slackness conditions (18) and have all of
their active balance variables nonnegative i.e.

yk
pq,xk

p
≥ 0 (33)

These conditions are obviously true at initialization (by the definition ofINIT DUALS), so let us assume that they hold for
xk, yk and let the current iteration be ac-iteration. We will then show that these conditions hold forxk+1, yk+1 as well. To
this end, we will consider 3 cases:

Case 1:let us first consider the case wherexk+1
p = xk+1

q = c. Thenloadxk+1,yk+1

pq = 0 (due to (14)) and so (18) obviously
holds while (33) is guaranteed to be restored by the definition ofPOSTEDIT DUALS.

Case 2:Next, let us examine the case where neitherp nor q is assigned a new label (i.e.xk+1
p = xk

p, xk+1
q = xk

q). We can
then show that:

yk+1

pq,xk+1
p

= yk
pq,xk

p
yk+1

qp,xk+1
q

= yk
qp,xk

q
(34)

and so both conditions (18), (33) follow directly from the induction hypothesis. Indeed, by applying either property 3.1(a)
or 3.1(b), depending on whetherxk+1

p = xk
p = a 6= c or xk+1

p = xk
p = c, we conclude that̄yk+1

pq,xk+1
p

= ȳk
pq,xk

p
. In addition,

ȳk
pq,xk

p
= yk

pq,xk
p
≥ 0 with the equality being true due to the definition of thePREEDIT DUALS function and the inequality

following by the induction hypothesis. Combining the above relations we get:

ȳk+1

pq,xk+1
p

= yk
pq,xk

p
≥ 0 (35)

while with similar reasoning we can also show that:

ȳk+1

qp,xk+1
q

= yk
qp,xk

q
≥ 0 (36)

Therefore, both̄yk+1

pq,xk+1
p

, ȳk+1

qp,xk+1
q

are nonnegative and so their values will not be altered byPOSTEDIT DUALS:

yk+1

pq,xk+1
p

= ȳk+1

pq,xk+1
p

yk+1

qp,xk+1
q

= ȳk+1

qp,xk+1
q

(37)

13

The above equation, in conjunction with (35), (36), implies that (34) holds true, as claimed.
Case 3:Finally, let us consider the only remaining case according to which only one ofp, q (sayp) is assigned a new

label c i.e. xk+1
p = c 6= xk

p while the other one (sayq) keeps its current label i.e.xk+1
q = xk

q = a with a 6= c. In
this case due to property 3.1(e) and (22) it follows thatȳk+1

pq,c = ȳk
pq,c + cappq = wpq · dmin/2. In addition, it holds

that ȳk+1
qp,a = ȳk

qp,a = yk
qp,a ≥ 0 where the1st equality is true due toa 6= c and property 3.1(a), the2nd equality is

true due to the definition ofPREEDIT DUALS and the inequality follows from the induction hypothesis. Sincea 6= c (or
equivalentlyxk+1

q 6= c), POSTEDIT DUALS (by definition) will alter none of the active balance variablesȳk+1
pq,c , ȳk+1

qp,a and so
yk+1

pq,c = ȳk+1
pq,c , yk+1

qp,a = ȳk+1
qp,a. By combining all of the above equalities it is now trivial to verify that (18), (33) hold for

xk+1, yk+1 as well.
Finally, to conclude the proof of this theorem we need to show that the last primal-dual pair of solutions satisfies condition

(17). According to the termination criterion of the PD1 algorithm, during its last|L| inner iterations there should be no label
change. Letc be any label and consider thec-iteration out of these last|L| iterations. During that iteration it will hold that:

htȳ
k+1

p,xk+1
p

≤ htȳ
k+1

p,c (38)

where the above inequality is true due to property 3.1(d). In addition, since no change of label takes place, we can apply
the same reasoning as in case 2 above and show again that (37) holds for any neighboring verticesp, q. This implies that all
active balance variables are kept constant during the transition fromȳk+1 into yk+1 which in turn implies thatyk+1 = ȳk+1

since, by definition,POSTEDIT DUALS cannot touch any non-active balance variables. Therefore, the heights of labels do not
change during the transition from̄yk+1 into yk+1 and so, based on the previous inequality (38), it will also hold that:

hty
k+1

p,xk+1
p

≤ hty
k+1

p,c (39)

Furthermore, the value ofhty
k+1

p,xk+1
p

is not altered during any of the next iterations. This is true becausep keeps its current

label (by the termination criterion) and so we may again show that (34) holds for all of the remaining iterations. Similarly,
the value ofhty

k+1

p,c will not change hereafter since by assumption this is the lastc-iteration i.e. the last time the balance
variables of thec labels are updated. Therefore, inequality (39) will be maintained until the end of the algorithm. Since the
same reasoning can be applied to any labelc, condition (17) will finally hold true at the end of the last iteration.

4 PD2 algorithm

The PD2 approximation algorithm can be applied only in the case ofdab being a metric (the necessity of this assumption will
become clear later in the section). In fact, PD2 represents not just one algorithm but instead a family of algorithms PD2µ

which is parameterized by a variableµ ∈ [1
fapp

1]. The distinction between the various PD2µ algorithms for different values
of µ lies in the exact form of slackness conditions that they are trying to achieve. Specifically, the primal-dual solutions
generated by PD2µ will satisfy slackness conditions (11), (12) withf1 = µfapp andf2 = fapp. The reason for requiring
µ ≥ 1

fapp
is that it can never bef1 < 1.

4.1 Algorithm overview

A main difference between algorithms PD1 and PD2µ is that the former is always generating a feasible dual solution at
any of its inner iterations while the latter will allow an intermediate dual solution of becoming infeasible. However, the
PD2µ algorithm ensures that the (probably) infeasible dual solutions generated are “not too far away” from feasibility. This
notion of “not too far away” practically means that if the infeasible dual solutions are divided by a suitable factor, they will
become feasible again. This method (i.e. turning an infeasible dual solution into a feasible one by division) is also known as
“dual-fitting” [14] in the linear programming literature.

More specifically, we will prove that the algorithm is generating a series of intermediate pairs consisting of primal-dual
solutions with the following properties: all of them satisfy slackness condition (12) as an equality withf2 = 1

µ :

xp 6= xq ⇒ loadx,y
pq = µwpqdxpxq (40)

14

In addition, the last intermediate pair satisfies the exact (i.e.f1 = 1) slackness condition (11) which, as explained in section
3, reduces to:

yp = min
a

htyp,a (41)

htyp,xp
= min

a
htyp,a (42)

However, the dual solution of this last pair is probably infeasible since although it satisfies dual constraints (7) (due to (41)),
it can be guaranteed to satisfy only:

ypq,a + yqp,b ≤ 2µwpqdmax ∀a, b∈L, (p, q)∈E (43)

in place of the dual constraints (8).
Nevertheless the above conditions ensures that the last dual solution is not “too far away” from feasibility. This practically

means that by replacing this last solution, sayy, with yfit = y
µfapp

, it is then easy to show that the resulting dual solution

yfit satisfies the dual constraints (8) as well (and is therefore feasible):

yfit
pq,a + yfit

qp,b =
ypq,a + yqp,b

µfapp
≤ 2µwpqdmax

µfapp
=

2µwpqdmax

µ2dmax/dmin
= wpqdmin ≤ wpqdab

Furthermore, by making use of (40)-(42) it again takes only elementary algebra to show that the feasible primal-dual pair
(x, yfit) (wherex is the last primal solution) satisfies the relaxed slackness conditions (11), (12) withf1 = µfapp and
f2 = fapp and thus comprises anfapp-approximate solution. Indeed, this can be verified for the case of conditions (11) by
making use of the next equalities:

yfit
p =

yp

µfapp
=

htyp,xp

µfapp
=

cp,xp +
∑

q:q∼p ypq,xp

µfapp

=
cp,xp

µfapp
+

∑
q:q∼p

ypq,xp

µfapp

=
cp,xp

µfapp
+

∑
q:q∼p

yfit
pq,xp

while for the case of conditions (12) one may proceed as follows:

yfit
pq,xp

+ yfit
qp,xq

=
ypq,xp + yqp,xq

µfapp
=

loadx,y
pq

µfapp
=

µwpqdxpxq

µfapp
=

wpqdxpxq

fapp

The generation ofyfit (giveny) is exactly what theDUAL FIT routine does.
The goal of thePD2µ algorithm will therefore be to extract a primal-dual pair(x, y) satisfying conditions (40)-(43). It

should be noted that (as in the PD1 case) imposing condition (41) is always a trivial thing to do. We now proceed to describe
the bulk of the algorithm i.e. each of the main routines appearing during ac-iteration.

4.2 Update of the primal and dual variables

The update of the primal and dual variables insideUPDATE DUALS PRIMALS(c, xk, ȳk) takes place in exactly the same way
as in the PD1 algorithm (see (29), (30) and the “reassign rule”). In addition, the construction of the graphGxk,ȳk

c (as described
in section 3.2) can be replicated here as well except for the assignment of capacities to a certain subset of interior edges. This
subset will consist of all interior edgespq, qp (corresponding to edge(p, q) of the original graphG) whose endpointsp, q
have labels6= c at the start of the currentc-iteration i.e.xk

p = a 6= c andxk
q = b 6= c. Then, in place of (22), we instead

define:

cappq = µwpq(dac + dcb − dab) (44)

capqp = 0 (45)

15

In addition, in this case (i.e. whenxk
p = a 6= c, xk

q = b 6= c) PREEDIT DUALS changesyk
qp,c (and therefore its conjugate

yk
pq,c) into ȳk

qp,c (andȳk
pq,c) so as to ensure:

ȳk
pq,a + ȳk

qp,c = µwpqdac (46)

This is done without modifyingyk
pq,a i.e. ȳk

pq,a = yk
pq,a. Regarding the rest of the balance variables,PREEDIT DUALS applies

no changes to them, during the transition fromyk to ȳk, just like in the PD1 case. No further differences exist between the
routinesPREEDIT DUALS, UPDATE DUALS PRIMALS of the PD1 algorithm and the corresponding routines in PD2µ.

Based on the above observations it is easy to see thatPREEDIT DUALS does not alter any of the active balance variables
(indeed, according to its definition,PREEDIT DUALS modifies a balance variable only if it is of the formyk

pq,c or yk
qp,c with

xp
k 6= c andxq

k 6= c). Therefore the values of all the loads are not altered during the transition fromyk to ȳk:

loadxk,ȳk

pq = loadxk,yk

pq (47)

In addition, the above equation (47) (along with (15)) implies that the APF function is also not modified:

APF xk,ȳk

= APF xk,yk

(48)

Furthermore, (44) explains whydab needs to be a metric (or elsecappq would be negative).
The rationale behind the capacity assignments in (44), (45) and the specific definition ofPREEDIT DUALS is to ensure that

in the case which only one ofp, q is assigned the labelc (by the new primal solutionxk+1), then condition (40) still remains
valid. The basic tool to be used for the proof of this assertion will be property 3.1(e). All of the above can be seen in the
following key lemma.

Lemma 4.1. During a c-iteration, letp, q be two neighbors (i.e.p ∼ q) with xk
p = a, xk

q = b and assume thatxk, ȳk satisfy

condition (40) i.e.loadxk,ȳk

pq = µwpqdxk
pxk

q
.

(a) if a 6= c, b 6= c thenȳk+1
pq,c ≤ µwpqdcb − ȳk

qp,b and ȳk+1
qp,c ≤ µwpqdac − ȳk

pq,a

(b) xk+1, ȳk+1 satisfy condition (40) as well i.e.loadxk+1,ȳk+1

pq = µwpqdxk+1
p xk+1

q

Proof:

(a) Since both ofa, b are 6= c then (44), (45), (46) hold. In addition, by the lemma hypothesis:

loadxk,ȳk

pq = ȳk
pq,a + ȳk

qp,b = µwpqdab (49)

By property 3.1(e) the maximum value ofȳk+1
pq,c will be: ȳk

pq,c+cappq = ȳk
pq,c+µwpq(dac+dcb−dab) = µwpqdcb−ȳk

qp,b

where the first equality is due to (44) and the last equality follows by substitutingdab, dac from (49), (46). Likewise
the maximum value of̄yk+1

qp,c will be: ȳk
qp,c + capqp = ȳk

qp,c = µwpqdac − ȳk
pq,a where the first equality is due to (45)

and the last equality follows from (46).

(b) If xk+1
p = xk+1

q then loadxk+1,ȳk+1

pq = 0 and part(b) of the lemma obviously holds. Therefore we may hereafter
assume thatxk+1

p 6= xk+1
q . This assumption has as a result that not both ofa, b can be equal toc or else it would hold

xk+1
p = xk+1

q = c due to property 3.1(b). On the other hand, if either one ofa, b is equal toc (sayxk
p = a = c, xk

q =
b 6= c), this implies that̄yk+1

qp,b = ȳk
qp,b (due tob 6= c and property 3.1(a)) as well asxk+1

p = c and ȳk+1
pq,c = ȳk

pq,c

(due toxp
k = c and property 3.1(b)). Then necessarilyxk+1

q = xk
q = b (since we assumexk+1

q 6= xk+1
p = c and by

definition ofxk+1 any vertexq is either assigned labelc or else keeps its current labelxk
q). By combining all of the

above equalities it follows thatloadxk+1,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b = ȳk
pq,c + ȳk

qp,b = loadxk,ȳk

pq = µwpqdcb (where the last
equality is true due to the lemma hypothesis) and part(b) of the lemma therefore holds in this case.

We still need to consider only the case where both ofa, b are different thanc (i.e. a 6= c, b 6= c). Since we assume
xk+1

p 6= xk+1
q only one ofp, q may be assigned labelc by xk+1. If label c is assigned top but q keeps its current

labelb (i.e. xk+1
p = c, xk+1

q = b) then by property 3.1(e)̄yk+1
pq,c attains its maximum value and so by part(a) ȳk+1

pq,c =
µwpqdcb − ȳk

qp,b. In additionȳk+1
qp,b = ȳk

qp,b (due tob 6= c and property 3.1(a)) and soloadxk+1,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b =(
µwpqdcb − ȳk

qp,b

)
+ ȳk

qp,b = µwpqdcb. Likewise we can show that if labelc is assigned toq (by xk+1) butp keeps its

current labela thenloadxk+1,ȳk+1

pq = µwpqdac.

16

As will become clear during the proof of theorem 4.3 ahead, the above lemma plays a very significant role for the success
of the PD2µ algorithm. The second part of that lemma can lead, as we shall see, directly to the proof that conditions (40)
remain valid throughout PD2µ. While the first part of the above lemma can be used in showing that the balance variables
do not actually increase too much per iteration. This way we will be able later to show that the balance variables are always
bounded above by the quantityµwpqdmax, thus proving that conditions (43) are satisfied throughout PD2µ as well.

However, for proving this last assertion the first part of lemma 4.1 does not suffice. We still need to apply an additional
modification to the dual solution̄yk+1. This will be carried out by thePOSTEDIT DUALS routine, which also plays a very
crucial role for the success of the PD2µ algorithm. More specifically, as in the PD1 case, the role of that routine will be to
change solution̄yk+1 into yk+1 so as to ensure that the active balance variables of the resulting solutionyk+1 are nonnegative.
The difference with the PD1 algorithm is that a greater number of active balance variables may turn out to be negative now.
In addition, care must be taken (byPOSTEDIT DUALS) so that the value of the loads and the APF function are not altered
during this transition from̄yk+1 to yk+1.

To this end,POSTEDIT DUALS is applying an operatorRECTIFY(p, q) to any pair(p, q) ∈ E. This operator is defined
as follows: letxk+1

p = a, xk+1
q = b and let us also assume that at least one of the active balance variablesȳk+1

pq,a, ȳk+1
qp,b is

negative, saȳyk+1
qp,b < 0. Then if a = b the operatorRECTIFY(p, q) simply setsyk+1

pq,a = yk+1
qp,a = 0 while if a 6= b it sets

yk+1
pq,a = ȳk+1

pq,a + ȳk+1
qp,b , yk+1

qp,b = 0.6 During the transition from̄yk+1 to yk+1 no other balance variables are modified by the
RECTIFY operator.

The resulting dual solutionyk+1 then satisfies the following properties for any pair of neighboring verticesp, q:

Properties 4.2. (a) loadxk+1,yk+1

pq = loadxk+1,ȳk+1

pq

(b) The primal-dual solutionsxk+1, yk+1 satisfy conditions (40) i.e.loadxk+1,yk+1

pq = µwpqdxk+1
p xk+1

q

(c) APF xk+1,yk+1
= APF xk+1,ȳk+1

(d) yk+1
pq,a ≤ |ȳk+1

pq,a|, yk+1
qp,a ≤ |ȳk+1

qp,a| ∀ a ∈ L

(e) yk+1

pq,xk+1
p

≥ 0, yk+1

qp,xk+1
q

≥ 0

Proof:

(a) This equality can be easily verified directly from the definition of the operatorRECTIFY.

(b) This property follows easily by induction from lemma 4.1(b). Indeed, assuming that the pairxk, yk satisfies conditions
(40) then the same thing applies to pairxk, ȳk as well due to (47). Therefore the hypothesis of lemma 4.1 holds and by
use of 4.1(b) in that lemma the pairxk+1, ȳk+1 also satisfies (40). By then applying property(a) the same conclusion
can be drawn regarding the pairxk+1, yk+1 and this completes the induction.

(c) It follows by combining property(a) above and equation (15).

(d) This can be trivially verified based on the definition of operatorRECTIFY(p, q).

(e) Combining properties(a) and(b) we conclude thatloadxk+1,ȳk+1

pq ≥ 0. Using this fact it is then trivial to verify the
property based on the definition of theRECTIFY operator.

It should be noted that property 4.2(e) above ensures that all active balance variables remain nonnegative throughout
PD2µ (as was intended) i.e. for any pair of neighboring verticesp, q it holds that:

yk
pq,xk

p
≥ 0 ∀ k (50)

The pseudocode for PD2µ is shown in Fig. 6. We are now ready to prove the main theorem of this section.

Theorem 4.3. The final primal-dual solutions generated by PD2µ are feasible and satisfy the relaxed complementary slack-
ness conditions withf1 = µfapp andf2 = fapp.

6Of course we also set their conjugate balance variables as:yk+1
qp,a = −yk+1

pq,a, yk+1
pq,b = −yk+1

qp,b .

17

INIT DUALS

yk = 0
for each pair(p, q) ∈ E with labelsxk

p 6= xk
q do

yk
pq,xk

p
= −yk

qp,xk
p

= µwpqdxk
pxk

q
/2 = yk

qp,xk
q

= −yk
pq,xk

q

yk
p = mina htyk

p,a ∀p ∈ V {It imposes conditions (41)}
PREEDIT DUALS(c, xk, yk)

ȳk = yk

for each(p, q) ∈ E with xk
p = a 6= c, xk

q = b 6= c do
ȳk

qp,c = µwpqdac − ȳk
pq,a; ȳk

pq,c = −ȳk
qp,c

POSTEDIT DUALS(c, xk+1, ȳk+1)
for each pair(p, q) ∈ E do RECTIFY(p, q)

yk+1
p = mina htyk+1

p,a ∀p ∈ V {It imposes conditions (41)}

DUAL FIT (yk): yfit = yk

µfapp

Fig. 6: Pseudocode for the PD2µ algorithm. Only those routines differing from their counterparts in algorithm PD1 are shown.

Proof: Due to the integrality assumption of the quantitiescp,a, wpq, dab, both the initial dual solution as well as the capacities

of the graphGxk,ȳk

are always of the formn0
2 with n0 ∈ N. It is then easy to verify that the APF function can take values

only of the formn0
2 with n0 ∈ N, so any decrease of APF will necessarily be of magnitude≥ 1

2 . The algorithm termination
is then guaranteed by the APF monotonicity property 3.1(f) and the observation that neitherPREEDIT DUALS (due to (48))
nor POSTEDIT DUALS (due to property 4.2(c)) alters the value of APF.

Also, conditions (41) are enforced by the definition of thePD2µ algorithm (see Fig. 6) while conditions (40) follows
directly from property 4.2(b).

In order to prove that conditions (43) hold as well it is enough to show by induction thatyk
pq,c, y

k
qp,c ≤ µwpqdmax ∀c ∈ L.

This is obviously true at initialization so let’s assume it holds foryk
pq,c, y

k
qp,c. We will show that during ac-iteration this holds

for yk+1
pq,c , yk+1

qp,c as well. Due to property 4.2(d) it is enough to showȳk+1
pq,c , ȳk+1

qp,c ≤ µwpqdmax. If either one ofxk
p = a, xk

q = b

equalsc then by property 3.1(b)̄yk+1
pq,c = ȳk

pq,c, ȳk+1
qp,c = ȳk

qp,c. Also, ȳk
pq,c = yk

pq,c, ȳk
qp,c = yk

qp,c (sincePREEDIT DUALS

may alteryk
pq,c only if xk

p 6= c andxk
q 6= c). The assertion then follows from the induction hypothesis.

If both of a, b are 6= c then by lemma 4.1(a)̄yk+1
pq,c ≤ µwpqdcb − ȳk

qp,b while also ȳk
qp,b = yk

qp,b (sinceb 6= c and
PREEDIT DUALS, by definition, may alter only balance variables of the formyk

pq,c during ac-iteration). Butyk
qp,b ≥ 0 since

xk
q = b i.e. this is an active balance variable (see (50)). Thereforeȳk+1

pq,c ≤ µwpqdcb ≤ µwpqdmax. Likewise, using again
lemma 4.1(a), we can prove thatȳk+1

qp,c ≤ µwpqdac ≤ µwpqdmax and the assertion follows.
Finally, we may show that the last primal-dual pair of solutions (sayx, y) also satisfies conditions (42), by following the

same reasoning that has been used in the proof of theorem 3.2 to show the satisfiability of the equivalent conditions (17).
Therefore all conditions (40)-(43) hold true and so (as explained in section 4.1) the pair(x, yfit) generated byDUAL FIT will
be feasible and will also satisfy all required slackness conditions, thus concluding the proof of the theorem.

All PD2µ algorithms withµ < 1 (as well as PD1) are non-greedy algorithms. That means that neither the primal objective
function (nor the dual objective function) are necessarily decreasing (increasing) during each iteration. Instead, it is the
value of the APF function which is constantly decreasing but since APF is always kept close to the true primal function the
decrease in APF is finally reflected to the values of the primal function as well. However, a notable thing happens when
µ = 1. In that case, due to (40), the load between any neighboring verticesp, q represents exactly their separation cost (i.e.
loadxk,yk

pq = wpqdxk
pxk

q
) and so it can be proved that APF coincides with the primal function (see lemma 4.4). In addition it

can be shown that the resulting PD2µ=1 algorithm is actually equivalent to thec-expansion algorithm introduced by Boykov
et.al. in [4] (which has been interpreted only as a greedy local search technique up to now). The proof of this fact comes
in theorem 4.6 ahead. Before proceeding, we recall that a label assignmentx′ is called ac-expansion of (another label
assignment)xk, if it holds that eitherx′p = xk

p or x′p = c for anyp ∈ V (i.e. only labelc may be assigned as a new label by
x′).

18

Lemma 4.4. Letx be a label assignment andy a dual solution (not necessarily feasible) satisfying the following conditions:

loadx,y
pq ≤ wpqdxpxq

∀(p, q) ∈ E (51)

Let us also denote byPRIMALx the value of the primal objective function atx. Under these assumptions it is always true
thatAPF x,y ≤ PRIMALx while if, in addition, conditions(51)hold as equalities thenAPF x,y = PRIMALx.

Proof: Equation (15) and the assumptions of the lemma imply:

APF x,y =
∑

p

cp,xp +
∑

(p,q)∈E

loadx,y
pq

≤
∑

p

cp,xp
+

∑

(p,q)∈E

wpqdxpxq
= PRIMALx

Lemma 4.5. Let xk, yk be a primal dual pair of solutions at the start of ac-iteration of the PD2µ=1 algorithm. Letx′ be
any label assignment due to ac-expansion ofxk.

(a) APF xk+1,ȳk+1 ≤ APF x′,ȳk+1

(b) APF x′,ȳk+1 ≤ PRIMALx′

Proof:

(a) Sincex′ is a label assignment due to ac-expansion, this means thatx′ may either keep the current labelxk
p of a

vertex p or assign labelc to it. If x′p = xk
p 6= c (i.e. x′ keeps the current label ofp) then by property 3.1(c)

htȳ
k+1

p,xk+1
p

≤ htȳ
k

p,xk
p

= htȳ
k

p,x′p
= htȳ

k+1

p,x′p
where the last equality is true due tox′p 6= c and property 3.1(a). On the

other hand ifx′p = c then by property 3.1(d)htȳ
k+1

p,xk+1
p

≤ htȳ
k+1

p,c = htȳ
k+1

p,x′p
. So in any casehtȳ

k+1

p,xk+1
p

≤ htȳ
k+1

p,x′p
and

thereforeAPF xk+1,ȳk+1 ≤ APF x′,ȳk+1
.

(b) Let us first recall that the following equation holds:

loadxk,ȳk

pq = loadxk,yk

pq = wpqdxk
pxk

q
(52)

where the1st equality is due to the preservation of the load byPREEDIT DUALS (see (47)) while the 2nd one follows
from the fact that allxk, yk generated by PD2µ=1 satisfy slackness conditions (40).

According to lemma 4.4, to prove the assertion it is enough to show thatx′, ȳk+1 satisfy (51). Ifx′p = x′q this is

obviously true since in that caseloadx′,ȳk+1

pq = 0 due to (14). Ifx′p = xk
p, x′q = xk

q then by applying either property

3.1(a) or 3.1(b) (depending on whetherxk
p = a 6= c or xk

p = c) we can conclude that̄yk+1
pq,xk

p
= ȳk

pq,xk
p
. Similarly we

can show that̄yk+1
qp,xk

q
= ȳk

qp,xk
q

and so:

loadxk,ȳk+1

pq = loadxk,ȳk

pq (53)

The property then follows since:loadx′,ȳk+1

pq = loadxk,ȳk+1

pq = loadxk,ȳk

pq = wpqdxk
pxk

q
= wpqdx′px′q where the the first

and last equalities are true due to our assumption thatx′p = xk
p, x′q = xk

q while the 2nd and3rd equalities are true due
to equations (53) and (52) respectively. Also, ifx′p 6= c, x′q 6= c then necessarilyx′p = xk

p, x′q = xk
q (sincex′ is a

c-expansion) and so we fall back into the previous case.

Therefore we still need to consider only the case wherex′p 6= x′q, (x′p, x′q) 6= (xk
p, xk

q) and one ofx′p, x
′
q is equal toc.

Assume thatx′p = c and let us also setxk
p = a, xk

q = b. Based on all of the above assumptions and the fact thatx′ is
a c-expansion ofxk, one may then easily prove that:x′q = b, a 6= c, b 6= c. This together with (52) implies that the

hypothesis of lemma 4.1(a) holds and soȳk+1
pq,c ≤ wpqdcb − ȳk

qp,b while alsoȳk+1
qp,b = ȳk

qp,b (due tob 6= c and property

3.1(a)). Thereforeloadx′,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b ≤
(
wpqdcb − ȳk

qp,b

)
+ ȳk

qp,b = wpqdcb and the lemma follows.

19

Theorem 4.6. The label assignmentxk+1 selected during ac-iteration of the PD2µ=1 algorithm, has the minimum primal
cost among all label assignments that can result after ac-expansion ofxk.

Proof: Assignmentxk+1 is indeed ac-expansion since noc label may be replaced during ac-iteration (see property 3.1(b)).
In additionloadxk+1,ȳk+1

pq = loadxk+1,yk+1

pq = wpqdxk+1
p xk+1

q
due to properties 4.2(a) and 4.2(b). So, solutionsxk+1, ȳk+1

satisfy conditions (51) of lemma 4.4 as equalities and thereforePRIMALxk+1
= APF xk+1,ȳk+1

by that lemma. Let
now x′ be any other label assignment due to ac-expansion ofxk. Combining the above equality with the(a) and (b)
inequalities of lemma 4.5 we get:PRIMALxk+1

= APF xk+1,ȳk+1 ≤ APF x′,ȳk+1 ≤ PRIMALx′ and the theorem
therefore follows.

5 PD3 algorithms: extending PD2 to the semimetric case

By modifications to the PD2µ algorithm, three different variations (PD3a, PD3b, PD3c) of that algorithm may result which are
applicable even in the case ofdab being a semimetric. Only two of these variations lead to approximations with guaranteed
optimality properties. The proof of this fact makes again use of the dual fitting technique and follows along the same lines as
those of proving the PD2µ optimality properties. For this reason that proof will be omitted. For simplicity we will consider
only theµ = 1 case i.e. only the variations of the PD2µ=1 algorithm. An additional reason for that is because in that case,
the resulting algorithms have nice, intuitive interpretations in the primal domain. Before proceeding, we are recalling a fact
that proves to be very useful for providing these intuitive interpretations as well as for explaining the rationale lying behind
the algorithms’ definition: if exact slackness conditions hold and the approximation factor is therefore equal to 1 (i.e. the
current solution is optimal) then the load between any two neighbors should represent exactly their separation cost.

The main difficulty of extending PD2µ=1 to the case of a semimetric relates to how the capacities of certain interior edges

of Gxk,ȳk

c are defined during ac-iteration. In particular, these are all edges whose capacity is defined by equation (44). (This
should come as no surprise since (44) has been the only place where the metric hypothesis has been used.) Equivalently,
these are all interior edgespq, qp whose endpointsp, q are currently assigned labels6= c (i.e. xk

p = a 6= c, xk
q = b 6= c) and

in addition the following inequality holds:
dab > dac + dcb (54)

Hereafter we will call any such pair a “conflicting pair” while the corresponding triplet of labels(a, b, c) will be called a
“conflicting label-triplet”. The only differences between a PD3 algorithm and PD2µ=1 originate from the way the former
deals with any “conflicting pairs” that might occur. Also, as we shall see, these differences will concern only the definition
of capacity of the above mentioned edges and/or certain modifications to the behavior of routinesPREEDIT DUALS and
POSTEDIT DUALS. The above observations imply that if the distancedab is a metric then the PD3 algorithms always coincide
with PD2µ=1.

5.1 Algorithms PD3a and PD3b

The 2 algorithms of the current section differ from the PD2µ=1 algorithm only when a “conflicting pair” is met during their
execution. In all other cases, i.e. at non-conflicting pairs, these algorithms completely coincide with PD2µ=1, meaning that
their routinesPREEDIT DUALS, UPDATE DUALS PRIMALS and POSTEDIT DUALS work in exactly the same way with the
corresponding routines from PD2µ=1.

Upon meeting a “conflicting pair”p, q (with xk
p = a 6= c, xk

q = b 6= c) during ac-iteration, both algorithms proceed then
as follows in order to define the capacities of the edgespq, qp:

They first make use of a ruleRESOLVE([a, b], c) in order to do what we call “resolving the conflicting pair”.RE-
SOLVE([a, b], c) (which can be freely specified by the user on a per-application basis) takes as input a “conflicting label-
triplet” (a, b, c) (with dab > dac + dcb) and selects one of the 2 pairs(a, c), (c, b) while excluding the other one. The
physical meaning of the resolve rule will become clear later in the section.

Then the value for one of the 2 capacitiescappq, capqp is defined based on the output of thisRESOLVE routine. In
particular, ifRESOLVE([a, b], c) selects(a, c), thencapqp = 0 andPREEDIT DUALS setsȳk

qp,c so thatȳk
pq,a + ȳk

qp,c = wpqdac.
While if (c, b) is selected, thencappq = 0 andPREEDIT DUALS assigns a value tōyk

pq,c so thatȳk
pq,c + ȳk

qp,b = wpqdcb. In
both cases, no other change of balance variables takes place duringPREEDIT DUALS i.e. ȳk

pq,a = yk
pq,a, ȳk

qp,b = yk
qp,b. It

should be noted that in the original PD2µ=1 algorithm it has been always the first case that was taking place (see (45), (46)).
Let us now assume w.l.o.g. thatRESOLVE([a, b], c) has selected pair(a, c). Then the only thing that we still need to define,

20

before being able to applyUPDATE DUALS PRIMALS, is the capacitycappq. Two options will be considered, giving rise to 2
different algorithms:

PD3a algorithm: We choose to setcappq = 0 as well7. In this case, if the pair of labelsa, c (the pair selected byRESOLVE) is

assigned top, q (i.e. xk+1
p = a, xk+1

q = c), then (as in lemma 4.1(b)) we may easily show thatloadxk+1,ȳk+1

pq = wpqdac.

In addition, due to property 4.2(a), it is always the case thatloadxk+1,yk+1

pq = loadxk+1,ȳk+1

pq . Therefore, at the start of

the next iteration the load between verticesp, q (i.e. loadxk+1,yk+1

pq) will represent exactly the actual separation cost of
p, q (i.e. wpqdac) as it should in the optimal case.

However, if the pair of labelsc, b (the pair excluded byRESOLVE) is assigned top, q (i.e. xk+1
p = c, xk+1

q = b) then

due to our choice of settingcappq = 0 it is again easy to show thatloadxk+1,ȳk+1

pq = wpq(dab−dac) which is> wpqdcb

sincep, q is a “conflicting pair” (see (54)). So in this case, the load overestimates the actual separation cost. In order
that this overestimation is not maintained during the next iteration of the algorithm,POSTEDIT DUALS changes the
active balance variables̄yk+1

pq,c , ȳk+1
qp,b

8 into yk+1
pq,c , yk+1

qp,b so that the value of the sumyk+1
pq,c +yk+1

qp,b decreases towpqdcb and

the equality betweenloadxk+1,yk+1

pq and separation cost is therefore restored. The rest of thePOSTEDIT DUALS routine
is exactly the same as in the PD2µ=1 algorithm.

For an intuitive understanding of what is really happening, one can think of the situation as follows: sincedab > dac +
dcb no matter how the capacitiescappq, capqp are defined there will always exist one pair among(a, c), (c, b) which,
if assigned top, q by xk+1, will lead to an overestimation of the separation cost in the sense that (for the next primal-
dual pairxk+1, yk+1) the load betweenp, q will be greater than the actual separation cost of these vertices.RESOLVE

selects which one of the two label pairs will cause an overestimated cost while at the same time the assignment of zero
capacity to both edgespq, qp by the algorithm ensures that this overestimation error will be as small as possible. In
addition,POSTEDIT DUALS is trying so that this overestimation is canceled before the beginning of the algorithm’s
next iteration.

One may also view this cost overestimation as an equivalent overestimation of the distance between labels. In the
above case, for example, we saw that if labelsc, b are assigned top, q by xk+1 then instead of the actual separation cost
wpqdcb the resulting overestimated cost has beenwpqd̄cb with d̄cb = dab − dac. This is equivalent to saying that the
algorithm has assigned the distanced̄cb > dcb to labelsc, b instead of their actual distancedcb. In all other cases (i.e.
when(a, b) or (a, c) are assigned top, q byxk+1) no cost overestimation takes place and so the distances assigned to the
corresponding labels by the algorithm are equal to the actual distances i.e.d̄ab = dab, d̄ac = dac. Sinced̄ac+d̄cb = d̄ab

one could then argue that thePD3a algorithm chose to overestimate the distance between labelsc, b in order to restore
the triangle inequality for the current label-triplet(a, b, c). Put otherwise, it is as if a “dynamic approximation” of thed
semimetric by a varying “metric”̄d is taking place. The distancēdcb assigned to any pair of labels(c, b) by this metric
is not kept fixed throughout PD3a. Instead, the PD3a algorithm constantly adapts̄d according to the “conflicting label
triplets” occurring during its execution, always trying to restore the triangle inequality for the current “conflicting label
triplet” while introducing the least amount of overestimation error to thed̄ semimetric at the same time. Furthermore,
an advantage of this “metric approximation” tod is that it can be explicitly controlled through theRESOLVEscheme.
That scheme is specified by the user and can therefore be chosen on a per-application basis.

It can be shown (using similar reasoning with that in theorem 4.3) that the intermediate primal-dual solutions generated
by both algorithms PD3a and PD2µ=1 satisfy exactly the same conditions and therefore it can be guaranteed that PD3a

always leads to anfapp-approximate solution as well.

PD3b algorithm: We choose to setcappq = +∞ and no further differences between PD3b and PD2µ=1 exist. This has the
following important result:the solutionxk+1 produced at the current iteration can never assign the pair of labelsc, b
(i.e. the pair excluded byRESOLVE) to the verticesp, q respectively.To prove this, it is enough to recall the “reassign
rule” and also observe that there will always be a possibility of increasing the flow through directedpq without that
edge ever becoming saturated (sincecappq = +∞). Indeed, if labelc is assigned top by xk+1 (which, according to
the “reassign rule”, means that there is an unsaturated paths Ã p) then labelb can never be assigned toq since in that
case the paths Ã p → q would also be unsaturated and so, by the “reassign rule” again,q would have to be assigned
labelc as well. Put otherwise, if the labels excluded byRESOLVEare assigned top, q an infinite overestimation of the
separation cost takes place and so we implicitly prevent those labels from being assigned to the “conflicting pair”.

7instead of using the capacity definition (44) which would now be invalid.
8and also their conjugate variables

21

Unfortunately the price we pay for this infinite overestimation is that no guarantees about the algorithm’s optimality
can be provided. The reason is that the balance variables may now increase without bound (sincecappq = +∞) and
so we cannot make sure that the generated primal-dual solutions satisfy a “not too far away from feasibility” condition
like (43). This in turn implies that no dual-fitting technique can be applied in this case.

However, the PD3b algorithm has a nice interpretation in the primal domain. This can be seen in the following theorem
which is analogous to theorem 4.6 and can be proved using similar reasoning with the proof of that theorem.

Theorem 5.1. The label assignmentxk+1 selected during ac-iteration of the PD3b algorithm, has the minimum primal
cost among all label assignments that may result after ac-expansion ofxk, disregarding the ones that assign labels
excluded byRESOLVE to “conflicting pairs”.

This theorem designates the price we pay fordab being a semimetric: in the metric case we can choose the best
assignment among allc-expansion moves while in the semimetric case we are only able to choose the best one among
a certain subset of thesec-expansion moves. Despite this fact, the considered subset contains a very large number of
c-expansion moves which makes the algorithm a good candidate as a local minimizer. Another interesting thing to note
is that the the choice of thec-expansion moves to be included in this subset can be controlled by theRESOLVEscheme
that will be selected. This scheme can be application specific and each time could reflect a priori knowledge about the
considered problem (excluding for example configurations which are a priori highly unlikely to appear).

5.2 Algorithm PD3c

Contrary to the previous two algorithms PD3a and PD3b, the algorithm of this section may differ with PD2µ=1 even at
“non-conflicting pairs”. In addition, PD3c does not make use of anyRESOLVEscheme at all. Instead, it applies the following
modifications to the PD2µ=1 algorithm. It first adjusts (if needed) the dual solutionyk so that the following inequality holds
for any neighboring verticesp, q:

loadxk,yk

pq ≤ wpq(dac + dcb) (55)

If this is not the case (i.e. ifloadxk,yk

pq = yk
pq,a + yk

qp,b is greater thanwpq(dac + dcb)) then in order to restore (55) one

can simply decreaseyk
pq,a, yk

qp,b so thatloadxk,yk

pq = wpq(dac + dcb). After this initial adjustment of the dual solution, the
algorithm then continues in exactly the same way as the PD2µ=1 algorithm with the only difference being that instead of
using equation (44) to define capacitycappq, that capacity is set by the algorithm as follows:

cappq = wpq(dac + dcb − d̄ab)

In other words, the algorithm has simply replaced the distancedab in equation (44) with a new distancēdab which is defined
as:

d̄ab =
loadxk,yk

pq

wpq
(56)

Due to (55) it is obvious that̄dab ≤ dac + dcb and so the above definition of capacitycappq is valid i.e.cappq ≥ 0. No other
differences between PD3c and PD2µ=1 exist. Based on this definition of PD3c, it can then be shown that ifdab is a metric
then the distancesdab, d̄ab coincide (i.e.dab = d̄ab) while, in addition, condition (55) always holds true and so no initial
adjustment ofyk is needed. These two facts imply that PD3c is completely equivalent to PD2µ=1 in this case.

It is now interesting to examine what happens ifp, q is a “conflicting pair” (withxk
p = a 6= c, xk

q = b 6= c). In that case
it holds thatdac + dcb < dab and so by combining this inequality with (56) and (55) one can conclude thatd̄ab < dab as
follows:

d̄ab =
loadxk,yk

pq

wpq
≤ wpq(dac + dcb)

wpq
<

wpqdab

wpq
= dab

Furthermore, it can be proved that if either the pair(a, c) or (c, b) is assigned top, q by xk+1 during the current iteration, then
the resulting load (i.e.loadxk+1,yk+1

pq) will represent exactly the actual separation cost ofp, q (i.e. eitherwpqdac or wpqdcb).
However, if none ofp, q is assigned a new label byxk+1 (i.e. they both retain their current labelsa, b) then it can also be
shown thatloadxk+1,yk+1

pq = wpqd̄ab and so the load constitutes an underestimation of the actual separation costwpqdab since
d̄ab < dab as was shown above.

22

Based on these observations, one can see that the PD3c algorithm works in a complementary way to the PD3a algorithm:
in order to restore the triangle inequality for the “conflicting label-triplet”(a, b, c), instead of overestimating the distance
between either the labels(a, c) or (c, b) (like PD3a did), it chooses to underestimate the distance between(a, b). Again one
may view this as a “dynamic approximation” of thed semimetric by a constantly adapting metricd̄, however this time we set
d̄ab = loadxk,yk

pq /wpq < dab, d̄ac = dac andd̄cb = dcb.
It can be shown that the intermediate primal-dual solutions generated by both algorithms PD3c and PD2µ=1 satisfy exactly

the same conditions except for condition (40). In place of that condition, the intermediate solutions of PD3c can be shown to
satisfy:

loadxk,yk

pq ≥ wpqd̂xk
pxk

q
(57)

whered̂ab = minc∈L

(
dac + dcb

)
. By applying then the same (as in PD2µ=1) dual fitting factor to the last dual solution of

PD3c, one can easily prove that PD3c leads to anf ′app-approximate solution where:

f ′app = fapp · c0 with c0 = max
a 6=b

dab

d̂ab

(58)

Since it is always true that̂dab ≤ dab (due todab = dab + dbb), this has as a result thatc0 ≥ 1 with equality holding only if
dab is a metric. Therefore it will always hold thatf ′app ≥ fapp and so PD3c cannot guarantee a better approximation factor.

It should be noted at this point that in the case ofdab being a semimetric the choice (between PD3a, PD3b, PD3c) of the
algorithm that will be applied can be decided on an iteration by iteration basis.

6 Algorithmic properties of the presented primal-dual algorithms

As implied by the Primal-Dual Principle in section 2, each ratior = cT x/bT y (wherex, y is any pair of integral-primal,
dual feasible solutions) provides a suboptimality bound for the cost of the current primal solution, in the sense thatx is
guaranteed to be anr-approximation to the optimal integral solution. This property (which is a very significant advantage of
any primal-dual algorithm) leads to an important consequence that proves to be very useful in practice:
By considering the sequence of primal-dual solutions{xk, yk}t

k=1 generated throughout the primal-dual schema, a series
of suboptimality bounds{rk = cT xk/bT yk}t

k=1 can be obtained. The minimum of these bounds is much tighter (i.e. much
closer to 1) than the corresponding worst-case bound and so this allows one to have a much clearer view about the goodness
of a solution.

This has been verified experimentally by applying the presented algorithms to the stereo matching problem. In this case,
the labels represent image pixel disparities and they can be chosen from a setL = {0, 1, . . . , K} of discretized disparities
whereK denotes the maximum allowed disparity. The vertices of the graphG are the image pixels and the edges ofG
connect each pixel to its 4 immediate neighbors in the image. During our tests, the label cost for assigning disparitya to the
image pixelp has been set equal to:

cp,a = |Iright(p + a)− Ileft(p)| (59)

whereIleft, Iright represent the intensities of the left and right images respectively.
We have applied our algorithms to the well-known Tsukuba stereo data set [16] setting the maximum disparity value equal

to K = 14 based on the provided ground truth data. A sample from the results produced when using the algorithms PD2µ=1

(which is also equivalent to thec-expansion algorithm) and PD1 are shown in Fig. 7. It should be noted that no attempt
has been made to model occlusions during the stereo matching procedure while, in addition, all edge weightswpq have
been set equal to each other instead of properly adjusting their values based on the intensity differences|Ileft(p)− Ileft(q)|
(something which would improve the quality of the estimated disparity since, in practice, disparity discontinuities usually
coincide with intensity edges). The reason for that as well as for using the very simple label cost presented in (59) is because
our main goal was not to produce the best possible disparity estimation but only to test the tightness of the suboptimality
bounds that are provided by the considered algorithms i.e. to test the ability of these algorithms to efficiently minimize the
objective function of a Metric Labeling problem.

To this end, 3 different distancesdab have been used during our experiments. These are the Potts distancedp (a metric),

23

(a) (b) (c) (d)

Fig. 7: (a)The left and(b) right images for one stereo pair from the Tsukuba data set.(c) The disparity estimated by the PD1 algorithm.(d)
The corresponding disparity of the PD2µ=1 algorithm. This algorithm was shown to be equivalent to the expansion Graph Cuts algorithm.
In both of the above cases the Potts metric has been used as the distance between labels. Since this distance is a metric the algorithms
PD3a, PD3b, PD3c coincide with PD2µ=1 in this case and therefore produce the same result as that in figure(d).

the truncated linear distancedl (also a metric) and the truncated quadratic distancedq (a semimetric), defined as follows:

dp
ab = 1 ∀a 6= b (60)

dl
ab = min(M, |a− b|) ∀a, b (61)

dq
ab = min(M, |a− b|2) ∀a, b (62)

In the above equations the constantM denotes the maximum allowed distance.
Each experiment consisted of selecting an approximation algorithm and a distance function and then using them for

computing disparities for each one of the Tsukuba stereo pairs. The average values of the obtained suboptimality bounds are
displayed in table 1. The columnsfPD1

app , f
PD2µ=1
app , fPD3a

app , fPD3b
app , fPD3c

app of that table list these averages for the algorithms
PD1, PD2µ=1, PD3a, PD3b and PD3c respectively. In addition, the last column lists the value of the corresponding
approximation factorfapp which, as already proved, constitutes a worst-case suboptimality bound for most of the above
algorithms. By observing table 1 one can conclude that the per-instance suboptimality bounds are much tighter (i.e. much
closer to 1) than the worst-case bounds predicted in theory. This holds for all cases i.e. for all combinations of algorithms and
distances and so this fact indicates that the presented algorithms are always able to extract a nearly optimal solution (with this
being true even for the more difficult case wheredab is merely a semimetric).Since thec-expansion algorithm has proved
to be equivalent to one of the presented algorithms this gives yet another explanation for the great success that graph-cut
techniques exhibit in practice.

Besides the tightness of the per instance suboptimality bounds, another important issue is their accuracy i.e. how well these
bounds describe the true suboptimality of the generated solutions. To investigate this issue we modified our experiments in
the following way: we applied our stereo matching algorithms to one image scanline at a time (instead of the whole image).
In this case the graphG reduces to a chain and the true optimum can be easily computed using dynamic programming. This
in turn implies that we are able to compute the true suboptimality of a solution. If this fact is applied to our case, it leads to
the construction of table 2. Its columnsfPD1

true , f
PD2µ=1
true , fPD3a

true , fPD3b
true , fPD3c

true contain the true average suboptimality of
the solutions ofPD1, PD2µ=1, PD3a, PD3b andPD3c respectively where the average is taken over all image scanlines.
Furthermore, by examining table 2 one can see that the true suboptimality of a solution is always close to the corresponding
suboptimality bound. This implies that these bounds are relatively accurate and therefore reliable for judging the goodness
of an algorithms’s solution.

More generally speaking, any primal-dual approximation algorithm places an upper bound on the so-called integrality gap
IGAPprimal [14] of the LP relaxation of the primal problem. In particular, anf -approximation primal-dual algorithm places
the following bound on the integrality gap:

IGAPprimal ≤ f

where the integrality gapIGAPprimal is defined as the supremum (over all instances of the problem) of the ratio of the
optimal integral and fractional solutions and is always≥ 1.

Obviously, the integrality gap is the best approximation factor we can hope to prove. In fact, for special cases of the Metric
Labeling Problem it can be shown that the presented primal-dual algorithms yield approximation factors that are essentially
equal to the resulting integrality gap i.e. these are the best possible approximation factors.

24

Distance fPD1
app fPD2µ=1

app fPD3a
app fPD3b

app fPD3c
app fapp

Potts 1.0104 1.0058 1.0058 1.0058 1.0058 2

Trunc. Linear(M = 5) 1.0226 1.0104 1.0104 1.0104 1.0104 10

Trunc. quad.(M = 5) 1.0280 - 1.0143 1.0158 1.0183 10

Table 1: The average suboptimality bounds obtained when using various combinations of primal-dual algorithms and distances to compute
disparities for the Tsukuba stereo data set. As expected these are much closer to 1 than the corresponding worst-case suboptimaly bounds
listed in the last columnfapp of the table. This in turn implies that the generated solutions are much closer to the optimal solution. It
should be noted that when using as distance either the Potts or the Truncated Linear metric the suboptimality bounds of the algorithms
PD2µ=1, PD3a, PD3b and PD3c always coincide (as the algorithms themselves coincide since the distancedab is a metric in both cases).
Furthermore,PD2µ=1 cannot be applied when the truncated quadratic distance is being used since that distance is not a metric.

Distance fPD1
app fPD1

true fPD2µ=1
app fPD2µ=1

true fPD3a
app fPD3a

true fPD3b
app fPD3b

true fPD3c
app fPD3c

true

Potts 1.0098 1.0036 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004

Trunc. Linear 1.0202 1.0107 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021

Trunc. quad. 1.0255 1.0130 - - 1.0135 1.0011 1.0144 1.0020 1.0160 1.0036

Table 2: The average suboptimality bounds (columns 2-4-6-8-10) obtained when applying our stereo matching algorithms to one scanline
at a time (instead of the whole image). In this case, we are also able to compute the true average suboptimality (columns 3-5-7-9-11) of
the generated solutions using dynamic programming. As can be seen by inspecting the table the suboptimality bounds always approximate
the true suboptimality relatively well, meaning that they can be safely used as a measure for judging the goodness of a generated solution.

Such a special case is the Generalized Potts model [17].(This explains in yet another way why Graph-Cut techniques
are so good in dealing with problems that are related to minimizing the Potts energy).The Generalized Potts model can
be derived simply by using the Potts metric (defined in (60)) as the distancedab between labels. In this case the provided
approximation factor can be easily seen to befapp = 2 and soIGAPpotts ≤ fapp = 2. This is essentially the best possible
bound for the integrality gap of the Potts model since one may easily construct a sequence of instances{Ik}∞k=3 of the Metric
Labeling problem where eachIk makes use of the Potts metric while, in addition, the sequence of the integrality gaps of
all Ik converges to two [1]. For example, one could consider asIk the instance whereG is a complete graph onk nodes
{p1, p2, . . . , pk}, the edge weightswpiqj are all equal to1 and the label setL consists ofk labels{a1, a2, . . . , ak} with all
label costs equal to zero except for the costs{cpi,ai}k

i=1 which are set equal to infinity. It is then not difficult for one to check
that the resulting sequence of integrality gaps indeed converges to 2.

References

[1] J. Kleinberg and E. Tardos, “Approximation algorithms for classification problems with pairwise relaionships: metric
labeling and markov random fields,”Journal of the ACM, vol. 49, pp. 616–630, 2002.

[2] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “Approximation algorithms for the metric labeling problem via a new
linear programming formulation,” in12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 109–118.

[3] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talvar, and E. Tardos, “Approximate classification via
earthmover metrics,” inProceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[5] O. Veksler, “Efficient graph-based energy minimization methods in computer vision,” Ph.D. dissertation, Department
of Computer Science, Cornell University, 1999.

25

[6] S. Roy and I. Cox, “A maximum-flow formulation of the n-camera stereo correspondence problem,” inProceedings of
the International Conference on Computer Vision, 1998, pp. 492–499.

[7] A. Gupta and E. Tardos, “Constant factor approximation algorithms for a class of classification problems,” inProceed-
ings of the 32nd Annual ACM Symposium on the theory of Computing, 2000, pp. 652–658.

[8] H. Ishikawa and D. Geiger, “Segmentation by grouping junctions,” inIEEE conference on Computer Vision and Pattern
Recognition, 1998.

[9] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in n-d
images.” inIEEE International Conference on Computer Vision, 2001, pp. 105–112.

[10] Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal surfaces via graph cuts.” inIEEE International
Conference on Computer Vision, 2003, pp. 26–33.

[11] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts.” inEuropean Conference on Com-
puter Vision, 2002, pp. 82–96.

[12] R. Zabih and V. Kolmogorov, “Spatially coherent clustering using graph cuts.” inIEEE conference on Computer Vision
and Pattern Recognition, 2004, pp. 437–444.

[13] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?” inEuropean Conference on
Computer Vision, 2002, pp. 65–81.

[14] V. Vazirani,Approximation Algorithms. Springer, 2001.

[15] A. Gibbons,Algorithmic Graph Theory. Cambridge University Press, 1985.

[16] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,”
International Journal of Computer Vision, vol. 47, no. 1/2/3, pp. 7–42, April-June 2002.

[17] Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with efficient approximations,” inIEEE conference on
Computer Vision and Pattern Recognition, 1998.

26

