Approximate Labeling via the Primal-Dual
Schema

Nikos Komodakis and Georgios Tziritas

Technical Report
CSD-TR-2005-01

February 1, 2005

Approximate Labeling via the Primal-Dual Schema

Nikos Komodakis and Georgios Tziritas

Computer Science Department, University of Crete
E-mails: {komod, tziritag @csd.uoc.gr

Technical Report
CSD-TR-2005-01

February 1, 2005

Abstract

A linear programming based framework is presented which is capable of providing combinatorial-based approximation al-
gorithms to a certain class of NP-complete classification problems. The resulting algorithms utilize tools from the duality
theory of linear programming and have guaranteed optimality properties. Finally, it is shown that state-of-the-art classification
techniques can be derived merely as a special case of the considered framework.

Contents
1 Introduction 1

2 The primal-dual schema 1
2.1 Metric Labeling as alinearprogram 2
2.2 Relaxed complementary slackness conditions 3
2.3 Anintuitive view of the dual variables and some extraterminology 4
2.4 Applying the primal-dual schemato MetricLabeling 5

3 The PD1 algorithm 6
3.1 Anintuitive understanding of the algorithm 6
3.2 Constructing the capacitated graBiy e 7
3.3 Update of the primaland dual variables 9

4 PD2 algorithm 14
4.1 Algorithm overvIiEW e e e e e e 14
4.2 Update of the primal and dual variables 15

5 PD3 algorithms: extending PD2 to the semimetric case 20
5.1 Algorithms PD3and PD3 e e e e 20
5.2 Algorithm PD3 22

6 Algorithmic properties of the presented primal-dual algorithms 23

1 Introduction

The Metric Labeling Problem, introduced by Kleinberg and Tardos [1], can capture a broad range of classification problems
that arise in early vision (e.g. image restoration, stereo matching, image segmentation etc.). According to this problem, the
task is to classify a st of n. objects by assigning to each object a label from a giverl.s#tlabels. Each labeling, i.e. a
functionf : V' — L, is associated with a certain cost which has 2 components. On one hand, fpreachhere is a label

coste, , > 0 for assigning labek = f(p) to p. On the other hand, for each pair of objegts there is a so-calleseparation

costfor assigning labels = f(p),b = f(g) to them. This separation cost is equaldg,d,, where the quantities,, are the

edge weights of a grapi = (V, E) and represent the strength of the relationship betwegwhile d,,;, is a distance function
between labels which is assumed to be a metiibus, the total cost equal¥(f) = 3 v ¢, 7(p) + Z(m)eE Wpadf(p) f(q)

and the goal is to find a labelingwith the minimum cost. For a connection between Metric Labeling and Markov Random
Fields the reader is referred to [1].

According to one class of approximation algorithms [1, 2, 3] the Metric Labeling problem is formulated as the Linear
Programming relaxation of an integer program. This LP relaxation is then solved and a randomized rounding technique is
being used to extract a near the optimum integer solution. These algorithms have good theoretical properties but since they
require the solution of a linear program which, in the case of early vision problems, can grow very large, this makes them
impractical to use. On the other hand, a variety of combinatorial-based approximation algorithms [4, 5, 6, 7, 8] have been
developed. These state-of-the-art techniques are very efficient and have been applied with great success to many problems ir
computer vision [9, 10, 11, 12, 13]. However, they have been interpreted only as greedy local search techniques up to now.

The major contributions of this paper are:

e A linear programming based framework that makes use of the primal-dual schema in order to provide efficient (i.e.
combinatorial-based) approximation algorithms to the Metric Labeling problem, thus bridging the gap between the two
classes of approximation algorithms mentioned above.

e The derived algorithms have guaranteed optimality properties even in the more general casé, wtsenserely a
semimetrié. These properties assert the existence of worst-case suboptimality bounds meaning that the minimum
generated by any of the considered algorithms is always within a known factor of the global optimum.

e Graph-cut techniques introduced in [4] can be derived as a special case of our framework which is thus shedding further
light on the essence of those algorithms. In particular, it is the first time that these (state of the art) algorithms are being
interpreted not merely as greedy local search techniques but in terms of principles drawn from the theory of linear
programming.

¢ In addition to the theoretical (worst-case) suboptimality bounds, the considered algorithms also provide per-instance
suboptimality bounds for the generated solutions. This way one may better inspect how successful the convergence of
the algorithm has been for each specific instance. In practice these per-instance bounds always prove to be much tighter
than the theoretical (worst-case) ones, thus showing that the generated minimum is very close to the global optimum
each time. Since graph-cut techniques can be included as a special case, this last fact explains in another way the grea
success that these techniques exhibit in practice.

2 The primal-dual schema
Consider the following primal-dual pair of linear programs:

PRIMAL : min ¢’z DUAL: max by
st. Ae=b,z>0 st. ATy <ec

whereA = [a;;] is anm x n matrix andb, c are vectors of sizex, n respectively. We would like to find an optimal integral
solution to the primal program. But since this is in general an NP-complete problem we need to settle with estimating
approximate solutions. A primal-dugtapproximation algorithm achieves that by use of the following principle:

1i.e. dab =0&a= b, da,b = dba 2 0, d(Lb S da,c + dcb
%ie.dgy =0 a=b, dyp = dpg >0

Primal-Dual Principle. If x and y are integral-primal and dual feasible solutions satisfying:
< foly 1)
thenz is an f-approximation to the optimal integral solutiarf i.e. ¢’z < f - cTa*

The above principle, which is a a consequence of the Weak Duality Theorem, lies at the heart of any primal-dual tech-
nique. In fact, the various primal-dual methods mostly differ in the way that they manage to estimatéra;pasatisfying
the fundamental inequality (1). One very common way for that (but not the only one) is by relaxing the so-called primal
complementary slackness conditions [14]:

Theorem (Relaxed Complementary Slackness)lf the pair (x,y) of integral-primal and dual feasible solutions satisfies
the so-called relaxed primal complementary slackness conditions:

m
Vl’j >0:>Za”yz > Cj/fj
=1

then(z, y) also satisfies the Primal-Dual Principle with= max; f; and thereforer is an f-approximation to the optimal
integral solution.

Based on the above theorem, during a primal-guapproximation algorithm the following iterative schema is usually
being used:

Primal-Dual Schema. Generate a sequence of pairs of integral-primal, dual solutiarts y*}¢ _, until the elements = z!
andy = g of the last pair of the sequence are both feasible and satisfy the relaxed primal complementary slackness
conditions.

It should be noted that the exact slackness conditionsfj.e- 1) are always satisfied by the primal-dual pair of optimal
fractional solutions.

2.1 Metric Labeling as a linear program

Here we will consider the following integer programming formulation of the Metric Labeling problem, introduced in [2]:

min Z Cpalpa + Z Wpg Z dabTpq,ab (2

peV,a€L (p,q)EE a,beL
S6.Y Tpa=1 VpeV A3)
Za Tpg.ab = Tq,b vbelL, (p,q) € E (4)
Zb Tpg.ab = Tp,a YVaelL, (pq € E (5)

Tpa, Tpgab €10,1} VpeV, (p,q) €E, a,be L

The {0, 1}-variablex, , indicates that vertey is assigned label while the{0, 1}-variablez,, ., indicates that vertex is
labeleda and vertex; is labeledb. The variables:,, .1, T4p,5. therefore indicate exactly the same thing and should coincide.
So, in order to reduce the number of variables in the primal problem, we adopt the convention that for any ngighbors
exactly one of(p, ¢), (¢,p) € E. This in turn implies that exactly one of the variablgs ., zqp.+4 IS being used for each
pair of neighbor, ¢q. The notation p ~ ¢” will hereafter denote the fact that ¢ are neighboring vertices and will mean
“either (p,q)e E or (q,p)€ E". The first constraints (3) simply express the fact that each vertex must receive a label while
constraints (4), (5) maintain consistency between variablgs x4, andz,, o in the sense that if, , = 1,24, = 1 they
forcexpg . = 1 as well.

By relaxing the{0, 1} constraints tac, , > 0, z,4,4 > 0 We get a linear program. The dual of that linear program has
the following form:

max Zp Yp

stoy, <cpa+ Z Ypga VPEV,a€lL
q:q~p
Ypaga T Ygpb < Wpgday Va,b € L,(p,q) € E

To each vertey, there corresponds one dual variapje Also, to each pair of neighboring verticesg (and any labek),
there correspond 2 dual variablgs, , andy,, .. Note that this is in contrast to the primal problem where, for each pair of
neighboring verticeg, ¢ (and any labels;, b), only one of the 2 variables,, s, x4 1o IS being used depending on whether
(p,q) € Eor(q,p) € E. All the dual v::lriables{ypq,a};fﬁpwq3 will be called “balance variables” hereafter while also for
each pairy,q.q, Yqp,o Of these balance variables we will say thgj ., is the conjugate balance variablewf, , (and vice
versa) or equivalently that,, o, yqp,. are conjugate variables.

By defining the auxiliary variablest? , as:

ht} o = cpa + Z Ypg,a (6)

q:q~p

the dual problem is trivially transformed into:

max ZP Yp
sty < hty , VpeV,aeL)
Ypg,a + Ygp,b < wpqdab Va,b € L, (p, Q> S (8)

The dual variablesity , will be called “height variables™ hereafter. The reason for this as well as for introducing these
redundant variables will become clear in the sections that are following. For defining a dual solution, only the balance
variablesy,, . as well as they, variables need to be specified. The auxiliary height varialfg are then computed by (6).

2.2 Relaxed complementary slackness conditions

The relaxed primal complementary slackness conditions, related to the specific pair of primal-dual linear programs of the
previous section, are:

Tpa>0=yp = cpa/f1 + Zq:qu Ypa,a 9)

Tpg,ab > 0= Ypg,a + Ygp,b = Wpedab/ f2 (10)

During the primal-dual schema we will be considering only feasjbld }-primal solutions. It is not difficult to see that such
solutions can be completely specified (i.e. all primal variablgs, ©,4,.» Can be estimated) once we know what label has
been assigned to each vertex. For this reason, a primal solutigh hereafter refer to a set of labefs,, } ,cv wherex,
denotes the label assigned to vertexUnder this notationg, , > 0 (i.e. =, , = 1 since we are dealing only witf0, 1}
solutions) is equivalent to,, = a and so the relaxed primal complementary slackness conditions (9) are trivially reduced to:

Yp = Cp,zp/fl + Zq:qu Ypq,xp (11)

In a similar fashiong,, ., > 0 is equivalent tar, = a andz, = b and the complementary slackness conditions (10) are
trivially reduced to:

Tp # Tq = Ypg,ay T Yap,zg = Wpelaya,/ f2 (12)
Tp =Tq = 0= Ypga T Ygp,a =0 (13)
where we consider the cases‘ b anda = b separately.
During any of the algorithms that will follow our objective will be to find feasible solutieng satisfying the above

complementary slackness conditions (11), (12) and (13). The last slackness conditions (13) simply express the fact that
conjugate balance variables should be opposite to each other. For this reason we set by definition:

yqp,a = _ypq,a v (pv Q) € Ev a€lL (14)

Therefore slackness condition (13) will always be true hereafter and so we will have to take care for fulfilling only conditions
(11) and (12).

] W
< Pq R
p ﬂ
Q----1 htY
htp af------O Yopd € a.c
w=x, O 5
hty IypqC o ------------ hta’a
o I c 0=X,)
ht%l’b --------- bo bo """""" htq,b
;referenceplane

Fig. 1: A visualization of the dual for a very simple instance of the Metric Labeling Problem where the gragmsists of just 2
neighboring verticeg, ¢ and the set of labels is equal to{a, b, c}. To each of the vertices, ¢ there corresponds a separate set of labels

{a, b, c} (each label is represented by a circle) and all of these labels are located at certain heights relative to a common reference plane.
The values of these heights are set equal to the dual variablasd therefore depend on the balance variables. Labgp is pulled up

due to the increase of the balance varialg. and so the corresponding label at neighboring vegtesxpulled down due to the decrease

of the conjugate variablg,, .. The labels which are currently assigned to vertjggsare drawn with a thicker line.

2.3 Anintuitive view of the dual variables and some extra terminology

A way of viewing/visualizing the dual variables, that will prove useful when designing our approximation algorithms later,
is the following: for each vertey, we consider a separate copy of the complete set of Idhe@@ne then may assume that
all of these labels are objects which are located at certain heights relative to a common reference plane (see Fig. 1). The
he|ght of label: at vertexp is given by the dual variablet? ,. Expressions like “labet atp is below/above labél” imply
hty , < ht? . The role of the balance variables is to contrlbute to the increase or decrease of a vertex’s height. In particular,
due to (6) the height of a labelat p can be altered only if at least one of the balance variafygs, } ;.q~p IS altered as
well. In addition, due to the fact that conjugate balance variables are opposite to each other (see (14)), changes in the height
of labela at p also affect the height of that label at a neighboring vertex. In Fig. 1, for example, each time we increase the
height of labek at p, say by increasing balance variablg ., the height ot at the neighboring vertexis decreased by the
same amount due to the decrease of the conjugate vagighle

Before proceeding let us also define some terminology that will be used frequently throughout this documentbieet
any pair of integral-primal, dual solutions. We will call labg] the assigned label toor equivalently theactive label atp.
We will also refer to the height of an assigned label to veptéxe. htgﬂ.p) as merelthe height op. Based on this definition,
a function (denoted ad PF*:¥ hereafter) which will play an important role in all of the considered primal-dual algorithms
is the sum of the heights of all vertices i.aPF*Y = 3" hty . . If 2,y satisfy the exact (i.ef; = 1, fo = 1) slackness
conditions (11),(12), then it is easy to prove that APF coincides with the value of the primal objective function while if the
relaxed slackness conditions hold then it is also easy to prove that APF stays close to the actual value of the primal objective
function. For this reason APF will be called th&pproximate Primal Function”hereafter.

Another significant concept is that of active balance variableWe define as aactive balance variable at a vertex
any balance variable belonging to the following $g4,.., }4:~p (i.€. any balance variable of the form, ., whereq is
any neighboring vertex qf). Based on the “active balance variable” concept, we may also introduce another very important
quantity which is called théoad between two neighbors, ¢ (load;,’) and is equal to the sum of the 2 active balance
variablesy, «,,, Ygp,z, 1-€. loady)? = Ypgu, + Ygp.z,- If relaxed slackness conditions (12) are to be satisfied, then it is
easy to see that the load between can be thought of as a virtual separation cost which is always a rough approximation
of the actual separation cost,,d oy betweenp, ¢q. This can be verified as follows: if the separation cost betweegris
zero (i.e.z;, = z4) then so idoad;;” due to (14). While if the separation cost is not zero (ig.# z,) then it holds that
Wpqlz,z,/ f2 < loady? < wpqupmq where the 1! inequality is due to slackness conditions (12) and ttfedhe is due to
the dual constraints (8).

Another useful thing to note is that there exists a direct relationship between the value of the APF function and the loads.
In particular, it holds that:

APF™Y = Z Cpay + Y loadyy (15)

(p,9)EE

3According to our notation the s€tpq,q 1255 -, equals the sefypg,a, yqp,a}ZEip,q)eE

k«— 1;2% —INIT_PRIMALS(); y* —INIT_DUALS();
LabelChange < 0

: for each labet in L do

§* «— PREEDIT.DUALS(c, 2", 9%);

[+, §*+1] —UPDATE.DUALS_PRIMALS(c, ¥, §);
y* ! —POSTEDITDUALS(c, zF 1, g*H1);

if 28! +£ 2% then LabelChange — 1

k++;

: end for

. if LabelChange = 1 (i.e. at least one vertex has changed its lathedh goto 2;
. if algorithm# PD1then 7% «—DUAL _FIT(y%);

N R ONE

[
= O

Fig. 2: Pseudocode showing the basic structure of the algorithms PD1, PD2 and PD3.

One can very easily verify the above equation as follows:

APF™ = thp . = Z(cp ot D Upa, z) Zcp . (ym @ + Yap, f)

q:q~p (p,q)€E

—Zcpz + Z loady;?

(p,q)EE

2.4 Applying the primal-dual schema to Metric Labeling

The majority of the approximation algorithms that will be presented here achieve an approximation fggfgr-ef2 Zmex dnas

with d,in = mlna;ébdab andd,q.. = mazq£day. The distinction between the considered algorithms will be Iy|ng in the
exact values they assign to the constafitsf, that are used in the relaxed complementary slackness conditions (11),(12).
Another important difference will be that some of them are applicable even in the more general&adeeifig a semimet-

ric*.

The basic structure of any of the considered algorithms can be seen in Fig. 2. The initial primal-dual solutions are
generated insideNIT _PRIMALS andINIT _DUALS respectively. During each inner iteration (lines in Fig. 2) a labek is
selected and a new primal-dual pair of solution$*!, 4*+1) is generated by updating the current gaif, 4*). It should be
noted that among all balance variableg/bfi.e. {y%, ,}2¢-) only the balance variables of tadabels (i.e {y}, .} p.q:p~q)
are modified. We call this eiteration of the algorithm|L| such iterations (one-iteration for each label in the setl) make
up an outer iteration (line2-9 in Fig. 2) and if no vertex changes its label during the current outer iteration the algorithm
then terminates.

The role of the routines which are being executed during an iptiteration is as follows: the role GfREEDIT.DUALS
is to edit solutiony” into solutiong” that is going to be used as an input to thRDATE_DUALS_PRIMALS routine. That
routine is responsible for the main update of the primal and dual variables and to this end it generates the pair of solutions
(xF+1 y*+1), Finally, POSTEDIT.DUALS applies further modifications tg**! thus producing the next dual solutigfi**.

This solutiony®+! along withz**! constitute the next primal-dual pair of solutions. The algorithms to be considered are
named PD1, PD2, PD3 and tb&AL _FIT routine, which is being used only in the last two of them, serves only the purpose
of applying a scaling operation to the last dual solution (as we shall later see).

Since we will be dealing only with approximation algorithms, we may hereafter assume w.l.o.g. that all coefficients
Cp.a» Wpq, dap OF the Metric Labeling integer program (2) are nonnegative integers. If this was not true, then we could
approximate (to any precision) those coefficients by rational numbers thus generating an instance of the Metric Labeling
problem which in turn can be trivially transformed into an integer program (2) with integral coefficients. We could then apply
all of our approximation algorithms to this last integer program.

4The linear programming formulation of Metric Labeling is still valid

3 The PD1 algorithm

During this section we will assume thdt, is a semimetric. In the particular case of the PD1 algorithm our goal will be to
find feasible solutions, y satisfying slackness conditions (11), (12) wjth= 1 and f, = f,,,. By replacingf; = 1in (11)
that condition becomesg, > hty , . Since it also holds that, < min, At} , (by the dual constraints (7)), it is easy to see
that (11) reduces to the foIIowmg 2 equations:

Yp = minht} , (16)

hty . = Inain ht? ., a7

In addition, by making use of the definition of the loada&d;;” = ypq,., + Ygp.z, @Nd by replacingz = fapp in (12) that
condition becomes equivalent to:

Ty # g = loady;! > wpedy 2,/ fapp (18)

Therefore the objective of PD1 is to find feasihlgy satisfying conditions (16)-(18). PD1 uses the following strategy to
achieve its goal: during its execution it generates a series of primal-dual pairs of solutions, one primal-dual pair per iteration.
At each iteration it makes sure that conditions (16) and (18) are automatically satisfied by the current primal-dual pair. In
addition, it makes sure that the current dual solution is feasible (primal solutions are always integral-feasible by construction).
To this end it enforces that the current dual solution always satisfies the following constraints:

Ypq,a < wpqd’m’in/Q Vac L, p~gq (19)

To see that (19) ensures feasibility, it is enough to observe that due to this constraint the following inequality can be derived:
Ypg.a T Ygpb < 2Wpalmin/2 = Wpgdmin < Wpeda, and so the dual constraints (8) hold true. This implies that solytisn
indeed feasible since the other dual constraints (7) already hold true due to condition (16).

All that remains then for PD1 to achieve its goal is just to ensure that after a finite number of iterations slackness conditions
(17) are satisfied as well. This last objective (i.e. driving the primal-dual pairs towards satisfying (17)) will be the final and
key issue for the success of the considered algorithm. To this end, PD1 will be trying to ensure that the number of vertices
for which equation (17) holds true increases after each one of its iterations.

3.1 Anintuitive understanding of the algorithm

Let us now give some “feel” for how PD1 is really trying to achieve that last objective. Before proceeding, it should be noted
that enforcing condition (16) is always a trivial thing to do (we simply need to set each dual vagjagleal tomin,, ht} ,),
so we do not really have to worry about that condition throughout PD1.

Letx, y be the current pair of integral-primal and dual feasible solutions satisfying all required conditions (16)-(19) except
for (17). That condition simply requires that the labglassigned to any vertex must be “lower” than all other labels at that
vertex. So lep be a vertex for which this condition fails i.e. one of its labels, sag located “below” the active label, at
that vertex. To restore (17) we need to raise labgb tox, by increasing one of the balance variab{gg, }4:q~p. But as
already mentioned, each time we incregsg. its conjugate variablg,, . decreases and so the heightaft the neighboring
vertexq decreases as well. This may have as a result that tadiie} gets below the active label,. Therefore we must be
careful which balance variables we choose to increase and by how much or otherwise we may break condition (17) for some
neighboring vertey. This means that the increase/decrease of the balance variables must proceed in an optimal way so that
condition (17) is restored for as many vertices as possible. Based on this observation, during any iteration of the algorithm
the update of the primal and dual variables roughly proceeds as follows:

e Dual variables update: given the current primal solution (i.e. the current label assignment), we keep the heights of all
active labels fixed and then for each vertex we try so that all of its labels are raised above the vertex’s active label. Of
course, we only need to do that for the labels that are “below” the active label. To this end we need to update the dual
balance variables in an optimal way. As we shall see any update of the balance variables can be simulated by pushing
flow through an appropriately constructed capacitated graph while the optimal update can be achieved by pushing the
maximum flow through that graph. Of course, care must also be taken so that constraints (19) do not become violated
during this update of the dual variables or else the resulting dual solution might not be feasible. Constraints (19) impose
upper bounds on the values of the balance variables, restricting this way the maximum allowed increase that we may
apply to the height of a label.

?t (sink)
f, capg = htg - hty %

W W
?’4 i ‘?“ a ‘ﬂ Cappq = Wpdmm 2- ypq,c! Capqr =0
htY f-e-eeeeeev oc r
htp’x ""o ; a.c f_-f I hty _______ . h
p a=x, T, P~ pag fal O \ — .. /2 0
o v a = hty Capqp - qu min yqp,c rq /0

pa-"'op |htY L. o) = rX S —ntY —ptY -

A q, " (X . capg, =ht hty f .7
htp,c cOI . a=Xg ai~pﬁo_pi—’rﬁpsr =1

S (source)

€Y (b)

Fig. 3: (a) An arrangement of labels (represented by circles) for a simple instance of the Metric Labeling problem consisting of 3 vertices
p, q,r and 2 edgepq, gr with weightswyq, wqr-. The label setid. = {a, c}. The circles with the thicker line represent the active labels.
Also, the red arrows indicate how tlidabels will move in respond to the update of the dual variables while the circles with the dashed
line show the final position of those labels after the updét¢.The corresponding capacitated gra@fy? is shown. A maximum flow
algorithm is applied to this graph for updating the dual variables. Interior edges are drawn with a solid line while exterior edges are drawn
with a dashed line. Capacities of both interior and exterior edges are also shown.

e Primal variables update: after the optimal rearrangement of the labels’ heights, there might still be some vertices whose
active labels are not the ones with the lowest height (among all labels at the vertex), violating this way condition (17).
We select a suitable subset of these vertices and assign to them new labels which are at lower heights than the previous
active labels so that the resulting primal solution is taken closer to satisfying (17) too. The reason we may not be able
to do that for all the vertices is that we must still take care that the other slackness conditions (18) are maintained as
well. Nevertheless, the number of vertices violating (17) decreases per iteration and so by keep repeating this update of
the primal and dual variables it can be shown that in the end the active label of each vertex will have the lowest height
at that vertex and the last primal-dual pair will therefore satisfy all required conditions (16)-(19).

3.2 Constructing the capacitated graphGZY

The rearrangement of the label heights takes place in groups. Given as input a current primal-dual pair of &olybiamsi
a labele, UPDATE DUALS_PRIMALS(c, z, y) rearranges only the heights of théabels. To this end it changes solutiginto
solutiony’ by changing only the balance variables,, . } .4:p~q (i-. the balance variables of allabels) into{y,,, .} p.q:p~q-

The goal of this update will be to have the resulting heigh]géc rearranged in an optimal way so that as many oftlabels
as possible end up being above the currently active labels. In addition, we need to make sure that the new duaf solution
does not break conditions (19).
In the simple case presented in Fig. 3(a), for example, we would like to haveclabglmove at least as high as label
a atp (the active label op) without, at the same time, labelat ¢ gets lower than label at ¢ (the active label of;). Label
c atr does not need to move at all since it is already the active label of verdex has the lowest height in there. It turns
out that in the general case the update of both the balance variables and the labels’ heights can be simulated by pushing flow
through an appropriately constructed directed g@pty = (V=¥ E*¥ C*¥) with capacitiesC*¥. In fact, as we shall see
later, the optimal update corresponds to pushing the maximum amount of flow through that graph. Such a capacitated graph,
associated to the simple problem of Fig. 3(a), is presented in Fig. 3(b).
Let us now explain how such a graph can be constructed as well as how pushing flow through that graph relates to the
update of the dual variables. The nodé%¥ of G%'¥ consist of all the nodes of gragh (these are the internal nodes) plus
two special external nodes the souscand the sink. The nodes o&Z-¥ are connected by two types of edges: interior edges
(drawn with solid lines in Fig. 3(b)) and exterior edges (drawn with dashed lines in Fig. 3(b)).
Interior edges: For each edgép, q) € G, we insert 2 directed interior edggg andgp in graphGZ-Y. The amount of flow
fpq leavingp throughpq represents the increase of the balance varighle while the amount of flowf,,, entering p through
interior edgeyp represents the decrease of the same varighle. The total change aj,, . will therefore be:

y;q,c = Ypg,c + fpqa — fop (20)

The total change i, . is defined symmetrically since any flow coming oupdhroughpg will enter ¢ (and vice versa). It

is then obvious thay,,, . = —y,, . and so conjugate balance variables remain opposite to each other as they should.
Based on (20), it is also easy to see that the capagity, of an interior edgeyq represents the maximum allowed increase

of the y,, . variable (attained iff,, = cap,q, f;p = 0) and therefore the quantity,, . + cap,, represents the maximum

value of the new balance variamgq’c. Similar conclusions can be drawn regarding the capagity, of the reverse edge

gp- Based on these observations the capacitipg,, cap,, are assigned as follows: if the current labepdbr g) is already

c then we want to keep the heightoétp (or ¢) fixed during the current iteration and so the capacity for all interior edges in

or out ofp (or ¢) must be zero. Therefore:
Tp =C O Tg = C = CAPpq = CAPgp = 0 (21)

Otherwise (i.ex, # c,z, # c), we set the capacity of the edges gp so that the values of the new balance variablgs.,
Yyp.c CAN NEver exceed,,,dnq»/2 and feasibility conditions (19) are therefore maintained for the new dual solytidtor
this reason we set:

Ypq,c + CaPpg = wpqdmin/2 = Ygp,c T CaPgp (22)

Exterior edges: Each internal node will be connected to either the source nader the sink nodée through an exterior
edge. Whether we choose the source or the sink depends on the relative heights at ektfiedabelsc andz, (the active
label of p). There are 3 possible cases:

Case 1:If cis “below” z,, (i.e. ht} . < htg%) then (as explained in section 3.1) we would like to raise laltBl exactly
as much as needed so that it reaches lapelThis is the case, for example, with vertexn Fig. 3(a) where we would like
that labelc atp reaches label atp. To this end, we connect the source nede nodep through a directed edg®. The flow
fp passing through that edge has the following interpretation: it represents the total increase in the height ¢fadkingl
into account the contribution from the change of all balance variables):

htg,c = htg,c + fp (23)
To verify this, it is enough to combine the flow conservation constraint at pedgch can be easily seen to reduce to:
fo= Z (qu - fqp) (24)
q:g~p

and the fact thaf,,, — f,, represents the total change of the balance varighlgi.e. f,q — fop = Ypg.c — Ypa.c (S€€ (20)).
Indeed, it then follows that:

htye+ fp= (C”’C + Z ypqm) +fp

q:q~p

= (Cp,c + Z ypq,c) + Z (qu — fqp)
q:q~p q:q~p

- (Cp’c + Z ypq’c) ™ Z (Ypg.c = Ypa.c) = Cpc + Z Ypge = htg:c
q:q~p q:q~p q:q~p

Based on this observation, the capacity,, of the edgesp represents the maximum allowed raise in the height.of
Therefore, since we need to raisenly as high as the current label pbut not higher than that, we simply set this capacity
as follows:

capsp = ht} . —hty . (25)

b, Zp
The capacity of edgep in Fig. 3(b) is defined this way.

Case 2:If cis not “below”z,, (i.e. ht§ . > htg)xp) and is also not the active label pf(i.e. ¢ # z,) then we can afford a
decrease in the height efas long as: remains “above’,. In such a case, we connect the ngde the sink node through
a directed edget. This time the flow passing through edgewill reflect the total decrease in the heightcoftaking again
into account the contribution from the change of all balance variables):

hty, =hts. — f, (26)

The capacity of this edge therefore represents the maximum decrease in the heightcdifebsihce this label must remain
“above”z,, capacitycap,; is defined, in a similar fashion to (25), as:

capp, = hty . — ht} (27)

p,Tp

8

In Fig. 3(a), for example, labelat vertexq needs to remain above laheht ¢ and so in Fig. 3(b) the capacity of edgeis
defined by applying (27) to vertex

Case 3:Finally, if c is the active label op (i.e. c = z,) then we want to keep the heightofixed at the current iteration.
As in case 1 above, we again connect the source radenodep through directed edgep. This time, however, no flow
passes through the interior edges incident (oe. f,, = f,», = 0 for any neighboring vertex) since these edges have zero
capacity now (see (21)). Sfy = 0 (due to (24)) and no flow passes through edgas well which in turn implies that the
height of labelc will not change (see (23)), as was intended. By convention we set the capagjfyof edgesp equal to
one:

capsp =1 (28)

Vertexr in Fig. 3(a) belongs to this case and this is the reason why weggt = 1 in the graph of Fig. 3(b).

3.3 Update of the primal and dual variables

We are now ready to describe what actions are performed by each of the main routines of PD1 ciitengtin.
PREEDIT.DUALS(c, z*, y*): For all of the considered algorithms the role of this routine will be to edit current solytion
into solutiong® that will be used (along witk*) as input for the construction of the capacitated gr@@ﬁﬂk of section 3.2.
In the specific case of PD1, no update takes place irdEDIT.DUALS and soy* = y*.
UPDATE_DUALS_PRIMALS(c, z*, 7*): After the construction of the grapﬂiﬁﬁ'k@k (as explained in section 3.2), a maximum
flow algorithm [15] is applied to it and the resulting flows on interior edges are used in updating the dual balance variables.
More specifically, only the balance variables of tHabels are updated as follows (see (20)):

gzl;;:cl = gzqu’c + fpa — fap (29)
Therefore the heights of alllabels will also change as (see (23), (26)):

fp if p is connected to node

30
—f, if p is connected to node (30)

k41 —k
hty . = ht) .+ {

In the toy example of Fig. 4(a) you can see an initial arrangement of labels’ heights based on the values that the dual
variables take at the start ofdteration while in Fig. 4(b) you can see the resulting rearrangement of the labels’ heights due
to the update of the dual variables after applying the maximum-flow algorithm to the associatedlgkréﬁmf Fig. 4(d).

The corresponding flows are also shown in that figure.

Based on the resulting heights, we now need to update the primal variables i.e. assign new labels to the véttices of
Since only the heights eflabels have been altered, the latter amounts to deciding whether each vertex keeps its current label
or is assigned the label On one hand, this must be done so that the labels of any veeextaken closer to satisfying (17)

(i.e. the active label op should also be the “lowest” one a}. This practically means that if labelat p has not managed

to get “above” the active label ¢f, then we need to assigras the new label of that vertex. For example, in the case of the
updated heights of Fig. 4(b) we would like vertexo be assigned labelwhile the rest of the verticeg should maintain

their current labels. On the other hand, we must also take care maintaining condition (18). It turns out that both of the above
criteria can be fulfilled by considering the flows through both interior and exterior edgéskdf and making use of the
following rule:

REASSIGN RULE. Labelc will be the new label o (i.e. xﬁ“ = ¢) & 3 unsaturated path between the source and nqde
(otherwisep keeps its current label i.e:f ™ = zF).

In Fig. 4(c) you can see the new assignment of labels to vertices that has resulted after applying the above rule to the
graph of 4(d). Vertey gets indeed a new label because egigés unsaturated whilg, » maintain their active labels since
no unsaturated path to them existsﬂﬁkv?k. As mentioned above, the new assignment obviously coincides with what we
would like to achieve initially. Before proceeding let us state some very useful properties resulting out of the choice of the
reassign rule (these properties will hold for all of the considered algorithms):

5A path is unsaturated iflow < capacity for all forward arcs angflow > 0 for all backward arcs

q] [ar
______ a= e ¥ o
1850 o° 081120 ool i” 120}-++rry0° p 109 ----- 120
700 70}---0 I 70t—0 k3 | 70tV
a=x, a=x, 1o a=X, l qur a=x;
10p------:0 10f--------0
(@) (b)
Capy=90~ >O<\caprt 50
200 1000 =597 \f =0
wW._= Wr= _ N -
?\‘ pa ?\‘ q ﬂ) cap,,=100 cap, =500
135}----- oa r
PR — - 9Xp . . q f,=0 &
~ 70t---0 O% | 701---—-- = =
o It =100 cap,,=100 cap,=500
\ pSp 125

(© (d)

Fig. 4: (a) The initial arrangement of the labels’ heights at the start of the curréetation for a toy example of the Metric Labeling
problem. All of the vertice9, q, r are currently assigned label(as indicated by the circles with the thicker line)b) The red and blue

arrows show how the labels will move due to the update of the balance variables after applying a maximum flow algorithm to the graph

in (d). Label movements due to changes in balance variables that are conjugate to each other are drawn with the same line style and color.
Furthermore, the dashed circles indicate the final positions of the laf®I¥he new active labels (thick circles) that have been selected

based on the “reassign rule” are shown here. Only vesthad to change its label intosince the exterior edgep of the graph in(d)

is unsaturated(d) The associated capacitated graph (assuming that initially all balance variables are zero) and the resulting flows after
applying a maximum flow algorithm. The flows, f,, f- at the exterior edges are equal to the total change in the height ofdbels at

p, q, r respectively. In this example the Potts metric has been used for the digtan@e. if a # b = dq, = 1).

Properties 3.1. Letp, g be two neighboring vertices i.e.~ ¢. Then during a-iteration:

(a)a#cz>g§;;_ypqa7 htpa _hty

k1 _k
k_ k1 _ k1l k+1\ _ (koK] _ 34
(0) zf = c= a2yt =c, (UpdeUape) = (Upg.er Ugp.c)> htpvzgﬂ = ht, .

*p
gh T
(©) htwﬁ+1 <ty
(d) hty Jorn < Bt gt
(e) if pis assigned label ¢ but g keeps its current label (it = canda ™ = z¥), thengh L = 7%+ cap,, i.e. the

ypq C
balance vanabley{,fr1 attains its maximum value
APF monotonici PRttt < APF*" 5" Furthermore, if at least one change of label has taken place durin
g p g
the currentc-iteration thenAPF="""7""" < Appa*a"

Proof:

(a) This property follows directly from the fact that only the balance variables ot:tlabels are updated duringa
iteration, by definition.

(b) Due to:r’; = cand (21), the capacities of all interior edges ¢p with ¢ adjacent tg (i.e. ¢ ~ p) will be zero and so
no flow can pass through them i.e.:

fri=Tip=0 Vd:q~p (31)

10

If we then apply the flow conservation at nogé24), we can see that the flow through edgewill be zero as well
(i.e. f, = 0) which in turn implies that the edg® is unsaturated (sinceip,, = 1 by (28)). Therefore by the reassign
rule it will also bex*! = c. Finally, the equality(ys2, y5+1) = (3%, ., 4k,) follows directly from applying (31)

to ¢ = ¢ and then using (29) while the other equalfnhg]}’;ﬂ,f+1 = htgk . follows from £, = 0 and (30).
»Zp "Tp

(c) if x’;“ # c then it will necessarily holdc’;Jrl = x’; since by the reassign rule a vertex is either assigned tabel

keeps its current label?. Therefore it will also ber} # c. So by settingei ™' = 2% = a # ¢ we may now apply

property(a) and easily conclude thatsz)kg;r1 = htgkxk which means that the property holds in this case.
stp *p

Therefore we may hereafter assume tbgatl = c. In that case, ip is connected to the source noglthen we may
easily verify the property as follows:

k41 —k+1 —k
htz,m’g“ =hth . =ht] .+ fp by (30)
< htgj; + capgp
= htl', + (nt? , — ht?,) by (25)
K
= htzﬂzg

Let us now consider the case wheres connected to the sink since we assumef)“ = c the reassign rule implies
that there must be an unsaturated path,ssay p, from s to p. But it must then holdf,, = cap,: or else there will also

be an unsaturated path— p — t between the source and the sink which is impossible due to the max-flow min-cut
theorem [15]. Combining this fact (i.¢, = cap,:) with (30) and the definition ofap,. in (27) it then follows that:

—k+1 —k+1 —k
ht? =hty, =ht’, —
p,xf,+1 p,c p,c fp

= htgfc — cappt
—k —k =k —k
= ht] . — (bt . — htg’w,;) = hty o
(d) If 21 = c the property obviously holds. So we may assume #jdtf # c. In that case, it will also be® # c as
well (due to property(d)). If p is connected to the source nogléhen the arsp must be saturated i.¢,, = cap,, or
else it would holw’;+1 = c according to the reassign rule. Using this fact as well as (30) and the definitiop gf
in (25) the property then follows:

k41 —k
htg,c = ht%,c + fp
k

= htgC + capsp
_k ~k
= ht} .+ (ht?

p,zk

_k —k —k
—ht)) =ht? , =ht’
P,C) p,x’; pﬁngrl

where the last equality is true due to the fagt;é ¢ and propertya).
On the other hand, i is connected to the sinkthen:

o, = htl, — f, by (30)
> htf:C — cappi
= htl, — (Wt — el) by (27)
—k _k
= htzym,; = htz.m,’i“

where again the last equality is true due to the i%c;—:é c and propertya).

11

(e) If x = cthencap,, = 0 (due to (21)) while alsg;fjé = ypq . (by property(b)) and so the property obviously holds.
Therefore we may assume theft # ¢ which implies that5 ™ # ¢ as well (sincer!™ = 2%). Sincep has been
assigned the labelthere must exist an unsaturated path p from s to p. But then the forward argq as well as the

backward argyp of the paths ~~ p — ¢ must be saturated i.e.:

fpqg = cappq @and fg, =0 (32)

or else that path would also be unsaturated (which would in turn implyqtgfe]t = ¢ contrary to our assumption
above). Due to (32) and (29) the property then follows.

(f) The first inequality follows directly fronfc) and the definition of the APF function. Furthermore, if at least one change
of label has taken place then according to the reassign rule there must be at least one unsaturategh doetsagn
the source and some no;deThis implies thatfp < capsp and so by also using (30) and the definitiort@ps,, in (25)

it is then trivial to show thahty ,:H < hty . Due to this fact and by applying propeiy) to all other vertices the
desired strict inequality foIIows

O

Property 3.1(a) simply expresses the fact that only dual variables related ¢dahels may change duringcaiteration
while property 3.1(b) simply says that if labels the active label during esiteration then its height is kept fixed during that
iteration.

Note also that due to property 3.1(c) the height of a vertex (i.e. the height of its active label) decreases after each iteration
of the algorithm. Furthermore, due to property 3.1(d), the new active label at the ensditefation (i.e. the label assigned
to a vertex by:*1+1) is always located “below” that vertex’s labe(as was intended). Based on these observations the new
label assigned to a vertex by +! is always taken closer to having the minimum height at that vertex after the end of each
iteration. We may therefore hope that by keep repeating this procedure we will finally make sure that (17) is satisfied after a
sufficient number of iterations has elapsed.

Besides that, however, we also need to ensureattat, y/* ! satisfy conditions (18). To this end, the routiresTe
DIT_DUALS(c, z**1, #+1) still needs to apply an additional correction to the resulting dual solutidd. In particular,
the role of that routine will be to changé& ™! into **! so that all of the active balance variables of solutjéri! become
nonnegative (this should come as no surprise since conditions (18) involve only sums of active balance variables). It turns out
that in the case of algorithm PD1, only neighbprg with zi 1 = zk*+! = ¢ may have one of the active balance variables

—k+1

k41 ; k+1 _ o k+1 _
gttt Ygp gt being negative during aiteration. In that caseOSTEDIT.DUALS simply SetSyp;'C yq;fc 0. No

other differences betweegjr’f“rl k1 exist It is then obvious that for any neighboring vertiges the following equation
holds: y’““k+1 + y ,k+1 = y’“*ikﬂ + y ,kﬂ This means that all the loads are preserved during the transition from

solutlony’“+1 tOyk'H (|e load= " l ad®* """y which in turn implies (due to (15)) th®0STEDITDUALS does

not alter the value of thel PF function as well i. eAPF”"“ o qppetttatt!

This, seemingly minor, modification of the dual solutionmySTEDIT.DUALS plays, nevertheless, a very crucial role in
the success of the PD1 algorithm. In particular, the considered modification along with property 3.1(e) will be absolutely
necessary for ensuring that conditions (18) are satisfied by all dual solutions generated throughout PD1. This will become
clear during the proof of the theorem 3.2 ahead, which is the main result of this section and proves that PD1 always leads to
an f,,p-approximate solution. The pseudocode for the PD1 algorithm is shown in Fig. 5.

Theorem 3.2. The final primal and dual solutions generated by PD1 satisfy all conditions (16) - (19). Therefore, (as
explained in section 3) these solutions are feasible and satisfy the relaxed complementary slackness condifipas Wyith

f2 = .fapp-

Proof: Due to the integrality assumption of the quantitigs , wyq, dqs, both the initial dual solution as well as the capacities
of the grath”kv?k are always of the forni> with ny € N. It can then be easily verified that any balance variable, and
therefore the APF function too, can take values only of that form. So after extagation any decrease of APF will always
have magnitude> 1/2. Based on this observation and the fact that, as mentioned abo8gEDIT.DUALS does not alter the
value of the APF function, the algorithm termination (i.e. no change of label taking plaffe| fownsecutive inner iterations)

is guaranteed by the APF monotonicity property 3.1(f).

12

INIT _PRIMALS : initialize z* by a random label assignment

INIT _DUALS
y* =0

for each pail(p,) € E with 2} # x% do
, 7y§p@§ = Wpgdmin/2 = yqp@f? = 7y§q71’5

Ypg,ak =
yk =min, ht, ¥peV {Itimposes conditions (16)

PREEDIT_DUALS (¢, 2%, y®): 7 = ¢*

UPDATE _DUALS_PRIMALS (¢, z*, §*)

o S s S
=T, Y =Yy

Apply max-flow toGZ"7" and compute flowgy, foq
Tpae = Upae T foa = Jaop VPra:p~ 4

. k Zk
VpeV a:’““ = ¢ < Junsaturated path~ pin G Y

POSTEDIT_DUALS (¢, z*+1, gF*1)
k+1 —k+1
yrrt =gt
for each pair(p, ¢) € E with 2! = 25+ = ¢ do
if grls <Oorgj’;;§ <Othenyifl =ykil =0

yrt! = min, htp a Vp € vV {ltimposes conditions (16)

Fig. 5: Pseudocode for the PD1 algorithm.

Feasibility conditions (16) are enforced by the definition of the PD1 algorithm (see Fig. 5). In addition, due to the specific
assignment of capacities to interior edges (see (22)), the balance variables gfgedgese not allowed to grow larger than
Wpqedmin/2 and so constraints (19) are also enforced.

Furthermore, we can prove by induction that solutiofisy® (for any k) satisfy slackness conditions (18) and have all of
their active balance variables nonnegative i.e.

L >0 (33)

ypq)

These conditions are obviously true at initialization (by the definitiomof _DUALS), so let us assume that they hold for
x¥ y* and let the current iteration becateration. We will then show that these conditions hold#61!, y*+1 as well. To
this end, we will consider 3 cases:

Case l:let us first consider the case whmf;;” = x’j* =c. Thenloadm = 0 (due to (14)) and so (18) obviously
holds while (33) is guaranteed to be restored by the defInItICHUSfTEDIT DUALS

Case 2:Next, let us examine the case where neihaor ¢ is assigned a new label (i.ef** = zF 251 = 2%). We can

then show that:
k+1 k k+1

_ ok
Ypg,aitt =~ Ypaal Ygp pk+r = Ygp,ak (34)

and so both conditions (18), (33) follow directly from the induction hypothesis. Indeed, by applying either property 3.1(a)

or 3.1(b), depending on whethef ™' = z% = a # corzi*t! = zF = ¢, we conclude thagrjk“p = gy, .- In addition,
y;jq ok = y;jq ok 2 0 with the equality being true due to the definition of thREEDIT.DUALS function and the inequality

foIIowmg by the induction hypothesis. Combining the above relations we get:

—k+1 k
yp;,z;gﬂ = Ypga = 0 (35)

while with similar reasoning we can also show that:

—k+1 k
Topsyrs = Va2 0 (36)

Therefore, bot@k+1k+l,g o are nonnegative and so their values will not be alteredt§TEDIT.DUALS:

q;Tp

k+1 —k+1 k+1 —k+1 37
ypqﬁzxfr ypql, +1 yqp_’zgﬂ yqpx +1 (37)

13

The above equation, in conjunction with (35), (36), implies that (34) holds true, as claimed.

Case 3:Finally, let us consider the only remaining case according to which only opegofsayp) is assigned a new
label ¢ i.e. z)™' = ¢ # xf while the other one (say) keeps its current label i.ezf*! = 2} = awitha # c. In
this case due to property 3.1(e) and (22) it follows thgt! = 7k, . + cappy = wpq - dmin/2. In addition, it holds
that yt’;;; = yq o= yqpa > 0 where thel®* equality is true due ta # ¢ and property 3.1(a), the"¢ equality is
true due to the definition GPREEDIT.DUALS and the inequality follows from the induction hypothesis. Sincg c¢ (or
equivalentlyz’+! £ ¢), POSTEDIT.DUALS (by definition) will alter none of the active balance variabjés;, 7% +! and so

kbl — ghtl gkl — gktl By combining all of the above equalities it is now trivial to verify that (18), (33) hold for

Ypq.c = Ypg,c>Yqp,a = Ygp,a-
k1 yk+1 as well.

FinaIIy, to conclude the proof of this theorem we need to show that the last primal-dual pair of solutions satisfies condition
(17). According to the termination criterion of the PD1 algorithm, during its|l&sinner iterations there should be no label
change. Let be any label and consider theteration out of these la$L| iterations. During that iteration it will hold that:

(38)

Zk+1 —k+1
Y Y
htY L < htl

D,ZTp

where the above inequality is true due to property 3.1(d). In addition, since no change of label takes place, we can apply
the same reasoning as in case 2 above and show again that (37) holds for any neighboringyertidgs implies that all
active balance variables are kept constant during the transitiongffdinto y**+* which in turn implies thay**+! = g*+1
since, by definitionPOSTEDIT.DUALS cannot touch any non-active balance variables. Therefore, the heights of labels do not
change during the transition frogf*! into /**! and so, based on the previous inequality (38), it will also hold that:

k+1

hti’“};l < ht? (39)
sTp

= "pe

Furthermore, the value dft; 41 IS not altered during any of the next iterations. This is true becadseeps its current

label (by the termlnatlon crlterlon) and so we may again show that (34) holds for all of the remaining iterations. Similarly,
the value ofhtgC will not change hereafter since by assumption this is theddatgration i.e. the last time the balance
variables of the: labels are updated. Therefore, inequality (39) will be maintained until the end of the algorithm. Since the
same reasoning can be applied to any labebndition (17) will finally hold true at the end of the last iteration. O

4 PD2 algorithm

The PD2 approximation algorithm can be applied only in the caggdfieing a metric (the necessity of this assumption will
become clear later in the section). In fact, PD2 represents not just one algorithm but instead a family of algorithms PD2
which is parameterized by a variahlec [f 1]. The distinction between the various PD&gorithms for different values

of 1 lies in the exact form of slackness conditions that they are trying to achieve. Specifically, the primal-dual solutions
generated by PD2will satisfy slackness conditions (11), (12) with = pfapp and fo = fapp. The reason for requiring

> i is that it can never b¢; < 1.

4.1 Algorithm overview

A main difference between algorithms PD1 and RO that the former is always generating a feasible dual solution at
any of its inner iterations while the latter will allow an intermediate dual solution of becoming infeasible. However, the
PD2, algorithm ensures that the (probably) infeasible dual solutions generated are “not too far away” from feasibility. This
notion of “not too far away” practically means that if the infeasible dual solutions are divided by a suitable factor, they will
become feasible again. This method (i.e. turning an infeasible dual solution into a feasible one by division) is also known as
“dual-fitting” [14] in the linear programming literature.

More specifically, we will prove that the algorithm is generating a series of intermediate pairs consisting of primal-dual
solutions with the following properties: all of them satisfy slackness condition (12) as an equalitﬁ\pﬁttﬂg:

Ty # 3 = loadlyl = pggds, e, (40)

14

In addition, the last intermediate pair satisfies the exact fi.e= 1) slackness condition (11) which, as explained in section
3, reduces to:
Yp = minht}, (41)

a

htz’mp = minht%ya (42)

a

However, the dual solution of this last pair is probably infeasible since although it satisfies dual constraints (7) (due to (41)),
it can be guaranteed to satisfy only:

Ypg,a T Ygp,b < 2prqdmam Va, be Lv (p7 q) ek (43)

in place of the dual constraints (8).
Nevertheless the above conditions ensures that the last dual solution is not “too far away” from feasibility. This practically
means that by replacing this last solution, gavith v/ = ,,fy

y/ satisfies the dual constraints (8) as well (and is therefore feasible):

fit +yfit _ Ypg.a T Yap,b < 20Wpgdmas _ 2pWpgdimaa

Y = < = = WpqQmin < Wpedap
P ap:b ,“fapp /u’fapp ﬂQdmaz/dmzn pam para

Furthermore, by making use of (40)-(42) it again takes only elementary algebra to show that the feasible primal-dual pair
(z,y’™) (wherex is the last primal solution) satisfies the relaxed slackness conditions (11), (12Ywith jf.,, and

f2 = fapp @and thus comprises afy,,-approximate solution. Indeed, this can be verified for the case of conditions (11) by
making use of the next equalities:

Yy
fit __ Yp _ htP,CDp _ Cp,a, + Zq:qu Ypq,zp

y = = =
b /j’fapp Nfapp Mfapp
Cp,ap Ypq,z,

ffapp = Hfapp

Cpx fit
T uf —+ Z Ypg.z,p
PP qig~p

while for the case of conditions (12) one may proceed as follows:

yfzf +yfit _ Y, + Yap,zy _ loady,! _ PWpgdy e, _ Wpqda,z,
Pq,Tp qp,Tq Nfapp Nfapp Nfapp fapp

The generation of/* (giveny) is exactly what th@UAL _FIT routine does.

The goal of thePD2,, algorithm will therefore be to extract a primal-dual péir, y) satisfying conditions (40)-(43). It
should be noted that (as in the PD1 case) imposing condition (41) is always a trivial thing to do. We now proceed to describe
the bulk of the algorithm i.e. each of the main routines appearing duriritgegation.

4.2 Update of the primal and dual variables

The update of the primal and dual variables inSi#®ATE_DUALS_PRIMALS(c, z*, 7*) takes place in exactly the same way

as in the PD1 algorithm (see (29), (30) and the “reassign rule”). In addition, the construction of thé?gra?pf(as described

in section 3.2) can be replicated here as well except for the assignment of capacities to a certain subset of interior edges. This
subset will consist of all interior edges, ¢p (corresponding to edg@, ¢) of the original graphG) whose endpointg, ¢

have labels# ¢ at the start of the currentiteration i.e.x’; =a#c andx’qC = b # c¢. Then, in place of (22), we instead

define:

CapPpq = HWpq (dac + dcb - dab) (44)
capgy =0 (45)

15

In addition, in this case (i.e. whem’; =a # c,x = b # ¢) PREEDIT.DUALS changesyqpc (and therefore its conjugate

ypq,c) into yqp’c (andypq’c) SO as to ensure;

g]];:(La + g];p,c = pwpqdac (46)
This is done without modifyingpq NS sz‘q u yp'q .- Regarding the rest of the balance variabless EDIT_-DUALS applies
no changes to them, during the transition frofnto 4*, just like in the PD1 case. No further differences exist between the
routinesPREEDIT_-DUALS, UPDATE_DUALS_PRIMALS of the PD1 algorithm and the corresponding routines in RD2
Based on the above observations it is easy to seeethEEDIT_.DUALS does not alter any of the active balance variables
(indeed, according to its definiioRREEDIT.-DUALS modifies a balance variable only if it is of the forgfj, . or y¥, . with
2} # candz{ #). Therefore the values of all the loads are not altered during the transition/fraony”:

zk7—k o atk, k
load,,"”" = loady," (47)
In addition, the above equation (47) (along with (15)) implies that the APF function is also not modified:
APF*" " = ApFe"v* (48)

Furthermore, (44) explains whi,, needs to be a metric (or elsep,, would be negative).
The rationale behind the capacity assignments in (44), (45) and the specific definkiRBEDIT_.DUALS is to ensure that
in the case which only one ¢f ¢ is assigned the label(by the new primal solution*+1), then condition (40) still remains
valid. The basic tool to be used for the proof of this assertion will be property 3.1(e). All of the above can be seen in the
following key lemma.

Lemma 4.1. During a c-iteration, letp, ¢ be two neighbors (i.ep ~ ¢) with 2% = a, 2% = b and assume that", 7" satisfy
condition (40) i.eloadgkxgk = pwpqdyiyt.

(@) if a # c,b # cthenghl < pw,qde, — ggm andykrl < pwpgdac — 75, o
(b) zF+1, y**1 satisfy condition (40) as well i. doad;,, ML uwpqdl,gﬂrgﬂ

Proof:
(a) Since both ofs, b ares# ¢ then (44), (45), (46) hold. In addition, by the lemma hypothesis:

loady, ™ = Gk, o + T = Hipgda (49)
By property 3.1(e) the maximum valuegf," ! will be: g, .+cappq = U, A 1wpg(dactdep—dap) = uwpqdcb—fgf;p’b
where the first equality is due to (44) and the last equality follows by substitdting,. from (49), (46). Likewise
the maximum value of%,"! will be: 7%, . + capg, = 5, . = pwpgdac — 77, . Where the first equality is due to (45)
and the last equality follows from (46).

gh+l ghtl .
(b) If gc,’;“ = :c’;“ thenload;, ¥ = 0 and part(b) of the lemma obviously holds. Therefore we may hereafter

assume that’;Jr1 + x’;“. This assumption has as a result that not both, éfcan be equal te or else it would hold

zh 1l = 251 = ¢ due to property 3.1(b). On the other hand, if either one,&fis equal toc (sayzf = a = ¢,z} =

b ;é o), thrs implies tha@flf,} =y, (due tob # cand property 3.1(a)) as well ag*! = ¢ andy’;jg = yiq .
(due toz}, = c and property 3.1(b)). Then necessarify"™* = z} = b (since we assume!*! # 2! = c and by
definition of z**+! any vertexg is either assigned labelor else keeps its current Iabreg) By combining all of the
above equalities it follows thaIIoad;q+1 U ”;“ +y§;§ = y +y load’” 7 = = pwpeder (Where the last
equality is true due to the lemma hypothesis) and grof the Iemma therefore holds in this case.

We still need to consider only the case where both,éfare different thare (i.e. a # ¢,b # ¢). Since we assume
zh L 2 251 only one ofp, ¢ may be assigned labelby z**1. If label ¢ is assigned tg but ¢ keeps its current

labelb (i.e. 2} = ¢, 2! = b) then by property 3.1(e)}"} attains its maximum value and so by péa} 75} =
(g dey — yqp 5 I addltlonyf;;”; = g, (due tob # c and property 3.1(a)) and soadz, 7" = gt 4 gkt =

(Hwpgder — 5E,) + U8,)= owpq «. Likewise we can show that if labelis assigned tq (by 2**1) butp keeps its

k+1

current labeh thenloadT = pWpqdac- O

16

As will become clear during the proof of theorem 4.3 ahead, the above lemma plays a very significant role for the success
of the PD2, algorithm. The second part of that lemma can lead, as we shall see, directly to the proof that conditions (40)
remain valid throughout PD2 While the first part of the above lemma can be used in showing that the balance variables
do not actually increase too much per iteration. This way we will be able later to show that the balance variables are always
bounded above by the quantjiyv,,d..., thus proving that conditions (43) are satisfied throughout,Pax2well.

However, for proving this last assertion the first part of lemma 4.1 does not suffice. We still need to apply an additional
modification to the dual solutiop®*+!. This will be carried out by th@ 0OSTEDIT.DUALS routine, which also plays a very
crucial role for the success of the PPDalgorithm. More specifically, as in the PD1 case, the role of that routine will be to
change solutiog®+! into y**! so as to ensure that the active balance variables of the resulting selfitibare nonnegative.
The difference with the PD1 algorithm is that a greater number of active balance variables may turn out to be negative now.
In addition, care must be taken (IWpSTEDIT.DUALS) so that the value of the loads and the APF function are not altered
during this transition frong*+1 to y/*+1.

To this end,POSTEDIT.DUALS is applying an operataRECTIFY(p, q) to any pair(p,q) € E. This operator is defined

as follows: letz}*! = a,z%*! = b and let us also assume that at least one of the active balance vag'ﬁ;p;egg; is
—k+1

negative, say, ", < 0. Thenifa = b the operatoRECTIFY(p, q) simply setsy;) = yktl = 0 while if a # b it sets
—kJrl k+1 __

Ypas = Upaa + Ugnys Yynp = 0.2 During the transition frony*** to y**! no other balance variables are modified by the
RECTIFY operator.
The resulting dual solutiop*+! then satisfies the following properties for any pair of neighboring verjices

kel ket zk+1 k1

Properties 4.2. (a) load,, = load;

1

(b) The primal-dual solutiong**!, y**! satisfy conditions (40) i.eload;f;“vyk+ = pwpqd x+1 1

(C) APF,ck+1 k+1 APF$k+17Qk+1
(d) ykrd <|gkrll, yhtl <|gkrll| Vae L

()y k+1_0 y k+120
Proof:
(a) This equality can be easily verified directly from the definition of the operR@TIFY.

(b) This property follows easily by induction from lemma 4.1(b). Indeed, assuming that the*pait satisfies conditions
(40) then the same thing applies to péir, 7* as well due to (47). Therefore the hypothesis of lemma 4.1 holds and by
use of 4.1(b) in that lemma the paif+!, 7*+! also satisfies (40). By then applying propefiy the same conclusion
can be drawn regarding the pafi*!, ka and this completes the induction.

(c) It follows by combining propertya) above and equation (15).
(d) This can be trivially verified based on the definition of oper&ecTIFY(p, q).
(e) Combining propertiesa) and(b) we conclude tha/loacig;“’-@k+1 > 0. Using this fact it is then trivial to verify the
property based on the definition of tReCTIFY operator.
O

It should be noted that property 4.2(e) above ensures that all active balance variables remain nonnegative throughout
PD2, (as was intended) i.e. for any pair of neighboring vertjggsit holds that:

Ypgar 20 Yk (50)
The pseudocode for P)2s shown in Fig. 6. We are now ready to prove the main theorem of this section.

Theorem 4.3. The final primal-dual solutions generated by PDére feasible and satisfy the relaxed complementary slack-
ness conditions with; = 1 fap, @and fo = fopp-

80f course we also set their conjugate balance variabledjﬁsﬁ = —y’éjb y’;ﬁ = —ygﬁ-

17

INIT _DUALS

y" =0
for each pan(p;C q) € E with labelsz}; # a:q do .
ypq 2 - yqp J.k - ,LL’Lqud k "/2 - yqp ak = —ypq%é

Yy = min, htw vpeV {Itimposes conditions (41)

PREEDIT _DUALS(c, ¥, ")

gt =y"

for each(p, q) € E with z& —a;éc —byécdo
—k —k
Yqp,c = MWpgdac — Ypq,a} ypq c= yqp c

POSTEDIT_DUALS (¢, z*+1, gF*1)
for each pair(p, q) € £ do RECTIFY(p, q)
yp ™! = min, htg,ka+1 Vp € V' {lItimposes conditions (41)

k

DUAL_FIT(¢*): yfit = ¥

.U'fapp

Fig. 6: Pseudocode for the PDRa&lgorithm. Only those routines differing from their counterparts in algorithm PD1 are shown.

Proof: Due to the integrality assumption of the quantitigs , w,, d.s, both the initial dual solution as well as the capacities
of the grath’“'k’??k are always of the fornd> with no € N. It is then easy to verify that the APF function can take values
only of the form% with ny € N, so any decrease of APF will necessarily be of magnitudge The algorithm termination
is then guaranteed by the APF monotonicity property 3.1(f) and the observation that reifEwI T.DUALS (due to (48))
nor POSTEDIT.DUALS (due to property 4.2(c)) alters the value of APF.

Also, conditions (41) are enforced by the definition of &2, algorithm (see Fig. 6) while conditions (40) follows
directly from property 4.2(b).

In order to prove that conditions (43) hold as well it is enough to show by inductior;zyz’;j;)@\,ty(’;p’C < pWpglmaz Ve € L.
This is obviously true at initialization so let’'s assume it holdsyggzrc, Ygp,- We will show that during a-iteration this holds
for y*+1 &+l as well. Due to property 4. 2(d) itis enough to si‘rgjyyuyk“ < pwpgdmaz - If €ither one oftf = a, 2% = b

pg,c> yq gp,c —
equalsc then by property 3.1(by~+! = ghtl Also, ypq)c (SincCePREEDIT.DUALS

Pac = yPlLC’ Yap,e = yqp,c Ypa,cr Ygp,e = yl];pq,c

may aItery;fq . only if xk #+c andx # ¢). The assertion then follows from the induction hypothesis.

If both of a,b are;é c then by lemma 4.1(a);f} < pwpeder — Yk, , while alsog? , = y¥ , (sinceb # ¢ and
PREEDIT.DUALS, by definition, may alter only balance variables of the fojﬁgc during ac-iteration). Butyf;p,b > 0 since
x’; = b i.e. this is an active balance variable (see (50)). Therqj@;{é < pwpgdep < pwpedmag- Likewise, using again
lemma 4.1(a), we can prove t@;;g < pwpgdae < pwpedmas and the assertion follows.

Finally, we may show that the last primal-dual pair of solutions (say) also satisfies conditions (42), by following the
same reasoning that has been used in the proof of theorem 3.2 to show the satisfiability of the equivalent conditions (17).
Therefore all conditions (40)-(43) hold true and so (as explained in section 4.1) the p#it*) generated bypUAL _FIT will

be feasible and will also satisfy all required slackness conditions, thus concluding the proof of the theorem. O

All PD2,, algorithms withy, < 1 (as well as PD1) are non-greedy algorithms. That means that neither the primal objective
function (nor the dual objective function) are necessarily decreasing (increasing) during each iteration. Instead, it is the
value of the APF function which is constantly decreasing but since APF is always kept close to the true primal function the
decrease in APF is finally reflected to the values of the primal function as well. However, a notable thing happens when
W= 1 In that case, due to (40), the load between any neighboring vertigagpresents exactly their separation cost (i.e.
load”” Wb = = Wped, K k) and so it can be proved that APF coincides with the primal function (see lemma 4.4). In addition it
can be shown that the resulting PD2 algorithm is actually equivalent to theexpansion algorithm introduced by Boykov
et.al. in [4] (which has been interpreted only as a greedy local search technique up to now). The proof of this fact comes
in theorem 4.6 ahead. Before proceeding, we recall that a label assignfmientalled ac-expansion of (another label
assignment)*, if it holds that eithetr; = x’; or m;, = cforanyp € V (i.e. only labelc may be assigned as a new label by

z').

18

Lemma 4.4. Letz be a label assignment anda dual solution (not necessarily feasible) satisfying the following conditions:
loady! < wpedy,z, V(P q) € E (51)

Let us also denote by RI M AL” the value of the primal objective function:at Under these assumptions it is always true
that APF*Y < PRIM AL” while if, in addition, condition§51) hold as equalities thed PF*Y = PRIM AL".

Proof: Equation (15) and the assumptions of the lemma imply:

APF®Y = Z Cpa, + Y loadly

(p,9)EE

<Zcpz + Z Wpgly, o, = PRIMAL®

(p,9)EE

O

Lemma 4.5. Letz*, y* be a primal dual pair of solutions at the start ofcaiteration of the PD2_; algorithm. Letz’ be
any label assignment due taceexpansion of:*.

+1 lc+1 ! gkl

(a) APF= < APF*'Y
(b) APF 7" < PRIMAL®
Proof:

(a) Sincex’ is a label assignment due toceexpansion, this means that may either keep the current Iabeg of a

vertexp or assign labet to it. If x' = a:’f # ¢ (i.e. 2’ keeps the current label gf) then by property 3.1(c)
htZZﬁlﬂ < htz o ht;{ o = ht;{ " " where the last equality is true due:l'g # ¢ and property 3.1(a). On the
other hand ifz;, = c then by property 3. 1(dhty o < htj A ht?; " So in any casénf :H < htg / " and
p
thereforeAPp=""" 3" < Appe' 7",
(b) Let us first recall that the following equation holds:
loads, " = load, " = wpyd, . (52)

where thel** equality is due to the preservation of the loadHREEDIT.DUALS (see (47)) while the2! one follows
from the fact that all-*, y* generated by PD2.; satisfy slackness conditions (40).

According to lemma 4.4, to prove the assertion it is enough to shovxa:tha’Prl satisfy (51). Ifz;, = zj, this is
obviously true since in that ca:réead;;;v?k+ = 0 dueto (14) Ifz), = =2k 2! = x’; then by applying either property

pP’q
3.1(a) or 3.1(b) (depending on whethﬁj =a # cor xp = ¢) we can conclude th@‘t’lj;;k = *I’jq L Similarly we
*p *p
can show thayk;rik =gk » and so:
locecl';fz’gkdr1 = load;;:’gk (53)

. ’ —k+1 k —k+1 k =k .
The property then follows sincévady V" = loady, ¥ = loadp, V" = wpqdyk = Wwpqday ., Where the the first
and last equalities are true due to our assumptioruthat =%, 2/, = =¥ while the 2'¢ and3" equallities are true due
to equatipns (53) and (52) respeptively. Also;y # c,x, # cthen necessarily;, = x’;,x; = x’; (sincex’ is a
c-expansion) and so we fall back into the previous case.
Therefore we still need to consider only the case whgres x;, (z,,) # (x T) and one ofr;,, 7, is equal toc.
Assume thatr;, = c and let us also seztr’f =a, x’; = b. Based on all of the above assumptlons and the factthiat

a c-expansion ofc*, one may then easily prove that, = b,a # c¢,b # c. This together with (52) implies that the

hypothesis of lemma 4.1(a) holds andg‘ggl < wpgdey — yq » While a|SOy§;'; = y(’;p’b (due tob # ¢ and property
3.1(a)). Thereforéoad?, ¥ = gt + gl < (wpedey, — 35,4) + 55, , = wpedes and the lemma follows. O

19

Theorem 4.6. The label assignment*+! selected during a-iteration of the PD2_; algorithm, has the minimum primal
cost among all label assignments that can result afterexpansion of:*.

Proof: Assignmentx’“+1 is indeed a-expansion since nolabel may be replaced duringzdteration (see property 3.1(b)).
In addmonload”” =lo d*’”k+1 R = Wped,x+1,1+1 due to properties 4.2(a) and 4.2(b). So, solutipfis!, gF+1

satisfy conditions (51) of lemma 4.4 as equalities and therefRI M AL = Appe""' o by that lemma. Let
now 2’ be any other label assignment due te-axpansion ofr*. Combining the above equality with th@) and (b)
k+1 —k+1

inequalities of lemma 4.5 we gePRIM AL = APF=""'3""" < ApF=' """ < PRIMAL® and the theorem
therefore follows. O

5 PD3 algorithms: extending PD2 to the semimetric case

By modifications to the PD2algorithm, three different variations (PRFPD3,, PD3.) of that algorithm may result which are
applicable even in the case @f, being a semimetric. Only two of these variations lead to approximations with guaranteed
optimality properties. The proof of this fact makes again use of the dual fitting technique and follows along the same lines as
those of proving the PD2optimality properties. For this reason that proof will be omitted. For simplicity we will consider
only they = 1 case i.e. only the variations of the P22 algorithm. An additional reason for that is because in that case,

the resulting algorithms have nice, intuitive interpretations in the primal domain. Before proceeding, we are recalling a fact
that proves to be very useful for providing these intuitive interpretations as well as for explaining the rationale lying behind
the algorithms’ definition: if exact slackness conditions hold and the approximation factor is therefore equal to 1 (i.e. the
current solution is optimal) then the load between any two neighbors should represent exactly their separation cost.

The main difficulty of extending PD2.; to the case of a semimetric relates to how the capacities of certain interior edges
of Gfkv@k are defined during eriteration. In particular, these are all edges whose capacity is defined by equation (44). (This
should come as no surprise since (44) has been the only place where the metric hypothesis has been used.) Equivalently
these are all interior edgeg, gp whose endpointg, ¢ are currently assigned labefsc (i.e. 17;]3 =a # ¢, xﬁj =b# ¢)and
in addition the following inequality holds:

dab > dac + dcb (54)

Hereafter we will call any such pair a “conflicting pair” while the corresponding triplet of lafaels ¢) will be called a
“conflicting label-triplet”. The only differences between a PD3 algorithm and RR2riginate from the way the former
deals with any “conflicting pairs” that might occur. Also, as we shall see, these differences will concern only the definition
of capacity of the above mentioned edges and/or certain modifications to the behavior of reatE®sT DUALS and
POSTEDIT.DUALS. The above observations imply that if the distariggis a metric then the PD3 algorithms always coincide
with PD2,—;.

5.1 Algorithms PD3, and PD3,

The 2 algorithms of the current section differ from the R,D2algorithm only when a “conflicting pair” is met during their
execution. In all other cases, i.e. at non-conflicting pairs, these algorithms completely coincide wjth; PR2aning that
their routineSPREEDIT.DUALS, UPDATE_DUALS_PRIMALS andPOSTEDIT.DUALS work in exactly the same way with the
corresponding routines from PR2;.

Upon meeting a “conflicting pairp, ¢ (with x’; =a#ec, x’qf = b # ¢) during ac-iteration, both algorithms proceed then
as follows in order to define the capacities of the edgegp:

They first make use of a rulresoLvE([a,b],c) in order to do what we call “resolving the conflicting pairkRe-
soLvE([a, b], ¢) (which can be freely specified by the user on a per-application basis) takes as input a “conflicting label-
triplet” (a, b, c) (with d,, > due + dep) and selects one of the 2 paifs, ¢), (c,b) while excluding the other one. The
physical meaning of the resolve rule will become clear later in the section.

Then the value for one of the 2 capacitieg,,, cap,, is defined based on the output of tlRESOLVE routine. In
particular, ifRESOLVE[a, b], ¢) selectga, ¢), thencap,, = 0 andPREEDIT.DUALS setsgqp . Sothatgh +gjqp o = Wpglge-

While if (¢, b) is selected, thenap,, = 0 andPREEDIT.DUALS assigns a value tgf, . so thatypq etk b= wpqdcb In

both cases, no other change of balance variables takes place dRE®EQIT_DUALS i.e. y = y’;q a,y It
should be noted that in the original P[22 algorithm it has been always the first case that Was taking place (see (45) (46)).
Let us now assume w.l.0.g. thRESOLVE([a, b], ¢) has selected pala, c). Then the only thing that we still need to define,

20

before being able to applyPDATE_DUALS_PRIMALS, is the capacity:ap,,. Two options will be considered, giving rise to 2
different algorithms:

PD3, algorithm: We choose to setp,,, = 0 as well . In this case, if the pair of labels c (the pair selected byESOLVE) is

assignedtp, ¢ (i.e. z5+! = a, z5+! = ¢), then (as in lemma 4.1(b)) we may easily show tbatl;:;“’@k+1 = Wpqdac-
In addition, due to property 4.2(a), it is always the caseltdmad;s“fyk+1 = loadgl,;“’?k“. Therefore, at the start of

the next iteration the load between vertiges (i.e. loadg;““’yk“) will represent exactly the actual separation cost of
D, q (i.e. wped,.) as it should in the optimal case.

However, if the pair of labels, b (the pair excluded bRESOLVE) is assigned to, ¢ (i.e. zE+! = ¢, 251 = b) then

due to our choice of setting:p,, = 0 it is again easy to show thlactad;fZH@H1 = Wpq(dap — dac) Which is> wy,qd.,
sincep, q is a “conflicting pair” (see (54)). So in this case, the load overestimates the actual separation cost. In order
that this overestimation is not maintained during the next iteration of the algorffiITEDIT DUALS changes the

active balance variablgg, !, g+ 8intoys 1,y so that the value of the supf ! + ¥ decreases to,,d.;, and

' Yapb b
pq,c’ Jqp, ap,
the equality betweeh)ad;ﬁ(’;“vyk+l and separation cost is therefore restored. The rest ¢fdlsg EDIT.DUALS routine

is exactly the same as in the P[22 algorithm.

For an intuitive understanding of what is really happening, one can think of the situation as followsi gincéd,,. +

d., no matter how the capacitiesp,,, cap,, are defined there will always exist one pair ama@nage), (¢, b) which,

if assigned tg, ¢ by 2**1, will lead to an overestimation of the separation cost in the sense that (for the next primal-
dual pairz**+1, 4**1) the load betweep, ¢ will be greater than the actual separation cost of these verieEsoLVE

selects which one of the two label pairs will cause an overestimated cost while at the same time the assignment of zero
capacity to both edges;, ¢p by the algorithm ensures that this overestimation error will be as small as possible. In
addition, POSTEDIT.DUALS is trying so that this overestimation is canceled before the beginning of the algorithm’s
next iteration.

One may also view this cost overestimation as an equivalent overestimation of the distance between labels. In the
above case, for example, we saw that if laleelsare assigned tp, ¢ by 2**! then instead of the actual separation cost
wpqedep the resulting overestimated cost has b&%lcicb with d., = da, — dg.. This is equivalent to saying that the
algorithm has assigned the distante > d.;, to labelsc, b instead of their actual distandg,. In all other cases (i.e.
when(a, b) or (a, c) are assigned tp, ¢ by 2**1) no cost overestimation takes place and so the distances assigned to the
corresponding labels by the algorithm are equal to the actual distancég,i=e.dy, dee = dae. SinCedye+dey = day,

one could then argue that ttigD3, algorithm chose to overestimate the distance between laJeis order to restore

the triangle inequality for the current label-triplet b, ¢). Put otherwise, itis as if a “dynamic approximation” of the
semimetric by a varying “metric is taking place. The distanek, assigned to any pair of labg(s, b) by this metric

is not kept fixed throughout PR3 Instead, the PD3algorithm constantly adaptsaccording to the “conflicting label
triplets” occurring during its execution, always trying to restore the triangle inequality for the current “conflicting label
triplet” while introducing the least amount of overestimation error todisemimetric at the same time. Furthermore,

an advantage of this “metric approximation”das that it can be explicitly controlled through tirR&EsoLvE scheme.

That scheme is specified by the user and can therefore be chosen on a per-application basis.

It can be shown (using similar reasoning with that in theorem 4.3) that the intermediate primal-dual solutions generated
by both algorithms PD3and PDZ2,—, satisfy exactly the same conditions and therefore it can be guaranteed that PD3
always leads to affi,,,-approximate solution as well.

PD3, algorithm: We choose to setup,, = 400 and no further differences between REG#d PD2_, exist. This has the
following important resultthe solutionz**! produced at the current iteration can never assign the pair of labgls
(i.e. the pair excluded bResSOLVE) to the vertice®, ¢ respectively.To prove this, it is enough to recall the “reassign
rule” and also observe that there will always be a possibility of increasing the flow through dipgatethout that
edge ever becoming saturated (sineg,, = +o0). Indeed, if labek is assigned te by z**1 (which, according to
the “reassign rule”, means that there is an unsaturatedspattp) then labeb can never be assigneddgince in that
case the path ~~ p — ¢ would also be unsaturated and so, by the “reassign rule” agamuld have to be assigned
labelc as well. Put otherwise, if the labels excludedABsoLVEare assigned tp, ¢ an infinite overestimation of the
separation cost takes place and so we implicitly prevent those labels from being assigned to the “conflicting pair”.

“instead of using the capacity definition (44) which would now be invalid.
8and also their conjugate variables

21

Unfortunately the price we pay for this infinite overestimation is that no guarantees about the algorithm’s optimality
can be provided. The reason is that the balance variables may now increase without bounsinee+oo) and

S0 we cannot make sure that the generated primal-dual solutions satisfy a “not too far away from feasibility” condition
like (43). This in turn implies that no dual-fitting technique can be applied in this case.

However, the PDgalgorithm has a nice interpretation in the primal domain. This can be seen in the following theorem
which is analogous to theorem 4.6 and can be proved using similar reasoning with the proof of that theorem.

Theorem 5.1. The label assignment**! selected during a-iteration of the PD3 algorithm, has the minimum primal
cost among all label assignments that may result afterexpansion of:*, disregarding the ones that assign labels
excluded byrEsSOLVEto “conflicting pairs”.

This theorem designates the price we pay dgy being a semimetric: in the metric case we can choose the best
assignment among altexpansion moves while in the semimetric case we are only able to choose the best one among
a certain subset of thegeexpansion moves. Despite this fact, the considered subset contains a very large number of
c-expansion moves which makes the algorithm a good candidate as a local minimizer. Another interesting thing to note
is that the the choice of theexpansion moves to be included in this subset can be controlled IRetheLvEscheme

that will be selected. This scheme can be application specific and each time could reflect a priori knowledge about the
considered problem (excluding for example configurations which are a priori highly unlikely to appear).

5.2 Algorithm PD3.

Contrary to the previous two algorithms PDand PD3, the algorithm of this section may differ with PR2; even at
“non-conflicting pairs”. In addition, PD3does not make use of amesoLVEscheme at all. Instead, it applies the following
modifications to the PD2; algorithm. It first adjusts (if needed) the dual solutighso that the following inequality holds
for any neighboring vertices, g:

load'f,s’yk < Wy (dae + dep) (55)

If this is not the case (i.e. iﬁoad;s’yk = y;,fq,a + yijp,b is greater thanu,,(d.. + dep)) then in order to restore (55) one

can simply decreasﬁgq,a,yi;pyb o) thatload;;’yk = Wpq(dae + dep). After this initial adjustment of the dual solution, the
algorithm then continues in exactly the same way as the,RD2lgorithm with the only difference being that instead of
using equation (44) to define capadityp,,, that capacity is set by the algorithm as follows:

cappg = Wpq(dac + deb — dab)

In other words, the algorithm has simply replaced the distdpg@n equation (44) with a new distandg; which is defined
as:

N P

dap = —— (56)

Wpq

Due to (55) it is obvious that,, < d,. + d.;, and so the above definition of capacityp,, is valid i.e.cap,, > 0. No other
differences between PD&nd PDZ,_; exist. Based on this definition of PR3t can then be shown that df,, is a metric
then the distanced,;, d.; coincide (i.e.d,, = d,;) while, in addition, condition (55) always holds true and so no initial
adjustment of/* is needed. These two facts imply that P8 completely equivalent to PD2; in this case.

It is now interesting to examine what happens,if is a “conflicting pair” (Witha:’; =a # ¢, x’; = b # ¢). In that case
it holds thatd,. + d., < dq and so by combining this inequality with (56) and (55) one can concludelthat d,;, as
follows: .

7ab = loadng S wpq(dac + dcb) < wpqdab — dab
Wpq Wpq Wpq
Furthermore, it can be proved that if either the gairc) or (c, b) is assigned tp, ¢ by z**+! during the current iteration, then
the resulting load (i.eload-;';“vym) will represent exactly the actual separation cogp,af (i.e. eitherw,,dq. Or wpedes).
However, if none of, ¢ is assigned a new label by (i.e. they both retain their current labelsb) then it can also be
shown thaloadz:+l’yk+l = wp,d,p and so the load constitutes an underestimation of the actual separatian,ggstsince

dap < dgp, as was shown above.

22

Based on these observations, one can see that thed@@8ithm works in a complementary way to the RB#gorithm:
in order to restore the triangle inequality for the “conflicting label-triplet;d, ¢), instead of overestimating the distance
between either the labe(s, ¢) or (¢, b) (like PD3, did), it chooses to underestimate the distance betWegr. Again one
may view this as a “dynamic approximation” of tHesemimetric by a constantly adapting metfjhowever this time we set
dap = loadsy V" [wpg < day, dae = doc ANAdyy, = dep.

It can be shown that the intermediate primal-dual solutions generated by both algorithpafllD2,_, satisfy exactly
the same conditions except for condition (40). In place of that condition, the intermediate solutions. @& shown to
satisfy:

ko k ~
loady, " > wpqugxg (57)

whered,, = mincEL(dac + dcb). By applying then the same (as in PR23) dual fitting factor to the last dual solution of
PD3., one can easily prove that PDgads to ary; ,,-approximate solution where:

. dab
fEILpP = fapp - co With ¢ = rgi«i(dAab (58)

Since it is always true that,, < dgp (due tod,, = dup + dpy), this has as a result thag > 1 with equality holding only if
dap is a metric. Therefore it will always hold thgf , > f.,, and so PD3cannot guarantee a better approximation factor.
It should be noted at this point that in the caselgf being a semimetric the choice (between RDBD3,, PD3.) of the

algorithm that will be applied can be decided on an iteration by iteration basis.

6 Algorithmic properties of the presented primal-dual algorithms

As implied by the Primal-Dual Principle in section 2, each ratie- ¢’z /bTy (wherex, y is any pair of integral-primal,

dual feasible solutions) provides a suboptimality bound for the cost of the current primal solution, in the sensis that
guaranteed to be anapproximation to the optimal integral solution. This property (which is a very significant advantage of
any primal-dual algorithm) leads to an important consequence that proves to be very useful in practice:

By considering the sequence of primal-dual soluti¢n§, y*}! _, generated throughout the primal-dual schema, a series

of suboptimality boundér* = ¢T'z*/bTy*}! _| can be obtained. The minimum of these bounds is much tighter (i.e. much
closer to 1) than the corresponding worst-case bound and so this allows one to have a much clearer view about the goodness
of a solution.

This has been verified experimentally by applying the presented algorithms to the stereo matching problem. In this case,
the labels represent image pixel disparities and they can be chosen fromk a=s¢0, 1, ..., K} of discretized disparities
where K denotes the maximum allowed disparity. The vertices of the gagte the image pixels and the edges(bf
connect each pixel to its 4 immediate neighbors in the image. During our tests, the label cost for assigning ditsptmity
image pixelp has been set equal to:

Cpa = Lright(p + a) — Lies(p)| (59)

wherel. s, Irign: represent the intensities of the left and right images respectively.

We have applied our algorithms to the well-known Tsukuba stereo data set [16] setting the maximum disparity value equal
to K = 14 based on the provided ground truth data. A sample from the results produced when using the algorithms PD2
(which is also equivalent to theexpansion algorithm) and PD1 are shown in Fig. 7. It should be noted that no attempt
has been made to model occlusions during the stereo matching procedure while, in addition, all edgewygibhie
been set equal to each other instead of properly adjusting their values based on the intensity difteren@@s- e r(q)|
(something which would improve the quality of the estimated disparity since, in practice, disparity discontinuities usually
coincide with intensity edges). The reason for that as well as for using the very simple label cost presented in (59) is because
our main goal was not to produce the best possible disparity estimation but only to test the tightness of the suboptimality
bounds that are provided by the considered algorithms i.e. to test the ability of these algorithms to efficiently minimize the
objective function of a Metric Labeling problem.

To this end, 3 different distances; have been used during our experiments. These are the Potts digtafacmetric),

23

(b) (d)

Fig. 7: (a) The left andb) right images for one stereo pair from the Tsukuba data(egThe disparity estimated by the PD1 algorith{d)

The corresponding disparity of the P22 algorithm. This algorithm was shown to be equivalent to the expansion Graph Cuts algorithm.

In both of the above cases the Potts metric has been used as the distance between labels. Since this distance is a metric the algorithm
PD3,, PD3, PD3 coincide with PD2—+ in this case and therefore produce the same result as that in figure

the truncated linear distandg (also a metric) and the truncated quadratic distalio@ semimetric), defined as follows:

db, =1 Ya #b (60)
d’, = min(M, |a — b|) Ya,b (61)
d?, = min(M, |a — b*) Ya,b (62)

In the above equations the consta#itdenotes the maximum allowed distance.

Each experiment consisted of selecting an approximation algorithm and a distance function and then using them for
computing disparities for each one of the Tsukuba stereo pairs. The average values of the obtained suboptimality bounds are
displayed in table 1. The columrfg D!, D=1, LoD, fED3 f1 D3 of that table list these averages for the algorithms
PD1,PD2,_:,PD3,, PD3, and PD3, respectively. In addition, the last column lists the value of the corresponding
approximation factorf,,, which, as already proved, constitutes a worst-case suboptimality bound for most of the above
algorithms. By observing table 1 one can conclude that the per-instance suboptimality bounds are much tighter (i.e. much
closer to 1) than the worst-case bounds predicted in theory. This holds for all cases i.e. for all combinations of algorithms and
distances and so this fact indicates that the presented algorithms are always able to extract a nearly optimal solution (with this
being true even for the more difficult case whégg is merely a semimetric)Since thec-expansion algorithm has proved
to be equivalent to one of the presented algorithms this gives yet another explanation for the great success that graph-cut
techniques exhibit in practice.

Besides the tightness of the per instance suboptimality bounds, another important issue is their accuracy i.e. how well these
bounds describe the true suboptimality of the generated solutions. To investigate this issue we modified our experiments in
the following way: we applied our stereo matching algorithms to one image scanline at a time (instead of the whole image).
In this case the grap@ reduces to a chain and the true optimum can be easily computed using dynamic programming. This
in turn implies that we are able to compute the true suboptimality of a solution. If this fact is applied to our case, it leads to
the construction of table 2. Its columg D, /" D2u=1 ¢PD3a ¢PD3y ¢PD3c contain the true average suboptimality of
the solutions ofPD1, PD2,_,, PD3,, PD3, and PD3, respectively where the average is taken over all image scanlines.
Furthermore, by examining table 2 one can see that the true suboptimality of a solution is always close to the corresponding
suboptimality bound. This implies that these bounds are relatively accurate and therefore reliable for judging the goodness
of an algorithms’s solution.

More generally speaking, any primal-dual approximation algorithm places an upper bound on the so-called integrality gap
1GAP,ima [14] of the LP relaxation of the primal problem. In particular, frapproximation primal-dual algorithm places
the following bound on the integrality gap:

IGAPprimal < f

where the integrality gapG AP,,imq is defined as the supremum (over all instances of the problem) of the ratio of the
optimal integral and fractional solutions and is always.

Obviously, the integrality gap is the best approximation factor we can hope to prove. In fact, for special cases of the Metric
Labeling Problem it can be shown that the presented primal-dual algorithms yield approximation factors that are essentially
equal to the resulting integrality gap i.e. these are the best possible approximation factors.

24

Distance f£PD1 | fapp =t | £PD3a | fPD3, | fPD3e |
Potts 1.0104| 1.0058 | 1.0058 | 1.0058| 1.0058 | 2
Trunc. Linear(M = 5) | 1.0226| 1.0104 | 1.0104| 1.0104| 1.0104| 10
Trunc. quad(M =5) | 1.0280| - 1.0143| 1.0158| 1.0183| 10

Table 1: The average suboptimality bounds obtained when using various combinations of primal-dual algorithms and distances to compute
disparities for the Tsukuba stereo data set. As expected these are much closer to 1 than the corresponding worst-case suboptimaly bound
listed in the last columry,,, of the table. This in turn implies that the generated solutions are much closer to the optimal solution. It
should be noted that when using as distance either the Potts or the Truncated Linear metric the suboptimality bounds of the algorithms
PD2,-1, PD3,, PD3 and PD3 always coincide (as the algorithms themselves coincide since the distanisea metric in both cases).
Furthermore PD2,—1 cannot be applied when the truncated quadratic distance is being used since that distance is not a metric.

Distance | fER1 fR) |t fhoret | npi fhose | grbe gohiv | grps goo
Potts 1.0098 1.0036 1.0066 1.0004 | 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004
Trunc. Linear| 1.0202 1.0107] 1.0115 1.0021 | 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021
Trunc. quad. | 1.0255 1.0130 - - 1.0135 1.0011 1.0144 1.0020 1.0160 1.0036

Table 2: The average suboptimality bounds (columns 2-4-6-8-10) obtained when applying our stereo matching algorithms to one scanline
at a time (instead of the whole image). In this case, we are also able to compute the true average suboptimality (columns 3-5-7-9-11) of
the generated solutions using dynamic programming. As can be seen by inspecting the table the suboptimality bounds always approximate
the true suboptimality relatively well, meaning that they can be safely used as a measure for judging the goodness of a generated solution.

Such a special case is the Generalized Potts model [TTs explains in yet another way why Graph-Cut techniques
are so good in dealing with problems that are related to minimizing the Potts enefing.Generalized Potts model can
be derived simply by using the Potts metric (defined in (60)) as the distapdeetween labels. In this case the provided
approximation factor can be easily seen tofRg, = 2 and solGAP,.tts < fopp = 2. This is essentially the best possible
bound for the integrality gap of the Potts model since one may easily construct a sequence of ifgigrteof the Metric
Labeling problem where each makes use of the Potts metric while, in addition, the sequence of the integrality gaps of
all I, converges to two [1]. For example, one could considefiathe instance wheré&' is a complete graph oh nodes
{p1,p2,...,px}, the edge weights,, ,, are all equal td and the label sek consists oft labels{ai, as, ..., ax} with all
label costs equal to zero except for the cdsis ., }*_, which are set equal to infinity. It is then not difficult for one to check
that the resulting sequence of integrality gaps indeed converges to 2.

References

[1] J. Kleinberg and E. Tardos, “Approximation algorithms for classification problems with pairwise relaionships: metric
labeling and markov random fieldslburnal of the ACMvol. 49, pp. 616-630, 2002.

[2] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “Approximation algorithms for the metric labeling problem via a new
linear programming formulation,” ia2* Annual ACM-SIAM Symposium on Discrete Algorith@®01, pp. 109-118.

[3] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talvar, and E. Tardos, “Approximate classification via
earthmover metrics,” iffroceedings of the 15 Annual ACM-SIAM Symposium on Discrete Algorith@@04.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph #aEE Transactions on
Pattern Analysis and Machine Intelligena®l. 23, no. 11, pp. 1222-1239, Nov. 2001.

[5] O. Veksler, “Efficient graph-based energy minimization methods in computer vision,” Ph.D. dissertation, Department
of Computer Science, Cornell University, 1999.

25

[6] S. Roy and I. Cox, “A maximum-flow formulation of the n-camera stereo correspondence probl&rgteedings of
the International Conference on Computer Visia898, pp. 492—499.

[7]1 A. Gupta and E. Tardos, “Constant factor approximation algorithms for a class of classification probldéPns¢ead-
ings of the 32¢ Annual ACM Symposium on the theory of Comput2@0, pp. 652—658.

[8] H.Ishikawa and D. Geiger, “Segmentation by grouping junctiondEBE conference on Computer Vision and Pattern
Recognition 1998.

[9] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in n-d
images.” inlEEE International Conference on Computer Visi@001, pp. 105-112.

[10] Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal surfaces via graph cult&EmR International
Conference on Computer Visiag2003, pp. 26—33.

[11] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cutElUiopean Conference on Com-
puter Vision 2002, pp. 82—-96.

[12] R. Zabih and V. Kolmogorov, “Spatially coherent clustering using graph cut$Zl conference on Computer Vision
and Pattern Recognitiqr2004, pp. 437-444.

[13] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cut€irwpean Conference on
Computer Vision2002, pp. 65-81.

[14] V. Vazirani, Approximation Algorithms Springer, 2001.
[15] A. Gibbons,Algorithmic Graph Theory Cambridge University Press, 1985.

[16] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,”
International Journal of Computer Visiomol. 47, no. 1/2/3, pp. 7-42, April-June 2002.

[17] Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with efficient approximationslEEE conference on
Computer Vision and Pattern Recognitjdr998.

26

