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ABSTRACT

ON THE INVERSE FILTERING OF SPEECH

George P. Kafentzis

Computer Science Department

Master of Science

In all proposed source-filter models of speech production, Inverse Filtering

(IF) is a well known technique for obtaining the glottal flow waveform, which

acts as the source in the vocal tract system. The estimation of glottal flow is

of high interest in a variety of speech areas, such as voice quality assessment,

speech coding and synthesis as well as speech modifications. A major obstacle

in comparing and/or suggesting improvements in the current state of the art

approaches is simply the lack of real data concerning the glottal flow. In other

words, the results obtained from various inverse filtering algorithms, cannot

be directly evaluated because the actual glottal flow waveform is simply un-

known. To this direction, suggestions on the use of synthetic speech that has

been created using artificial glottal waveform are widely used in the literature.

This kind of evaluation, however, is not truly objective because speech synthe-

sis and IF are typically based on similar models of the human voice production



apparatus, in our case, the traditional source-filter model. This thesis presents

three well-known IF methods based on Linear Prediction Analysis (LPA), and

a new method, and its performance is compared to the others. The first one

is based on the conventional autocorrelation LPA, and the second one on the

conventional closed phase covariance LPA. The closed phase is identified using

Plumpe and Quatieri’s suggested method based on using statistics on the first

formant frequencies during a pitch period. The third one is based the work

of Alku et al, which proposed an IF method based on a Mathematically Con-

strained Closed Phase Covariance LPA, in which mathematical constraints are

imposed on the conventional covariance analysis. This results in more realis-

tic root locations of the model on the z-plane. Finally, Magi et al suggested a

new method for extracting the vocal tract filter, called Stabilized Weighted LP

Analysis (SWLP), in which a short time energy window controls the perfor-

mance of the LP model. This method is suggested for IF due to its interesting

property of applying emphasis on speech samples which typically occur during

the closed phase region of the speech signal. This is expected to yield a more

robust, in the acoustic sense, vocal tract filter estimate than the conventional

autocorrelation LP. The three IF approaches along with the suggested new

one are applied on a database of physically modeled speech signals. In this

case, the glottal flow and the speech signal are available and direct evaluation

of IF methods can be performed. Robust time and frequency parametrization

measures are applied on both the actual glottal flow and the estimated ones,

in order to evaluate the performance of the methods. These measures include

the Normalized Amplitude Quotient (NAQ), the difference between the first

two harmonics (H1-H2) of the glottal spectrum, and the Harmonic Richness

Factor (HRF), along with the Signal to Reconstruction Error ratio (SRER).



Experiments conducted on physically modeled sustained vowels (/aa/, /ae/,

/eh/, /ih/) of a wide range of frequencies (105 to 255 Hz) for both male and

female speech. Glottal flow estimates were produced, using short time pitch

synchronous analysis and synthesis for the covariance based methods, whereas

for the autocorrelation methods, a long analysis window and a short synthe-

sis window was used. The results and measures are compared and discussed,

showing the prevalence of the covariance methods, but the suggested method

typically produces better results than the conventional autocorrelation LP,

according to our metrics.
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Chapter 1

Introduction

The source of human speech production system, called the glottal flow, poses an im-

portant role on the characteristics of speech and on several scientific fields. The glottal

flow can be obtained from the speech signal using a technique called inverse filtering

(IF). Inverse filtering is extensively used in basic research of speech production and

its applications to speech analysis, synthesis, and modification. Also, an increased

interest is recently risen in areas of speech science as environmental voice care, voice

pathology detection, and analysis of the emotional content of speech.

Most of the suggested techniques in the literature are based on Linear Prediction

(LP) Analysis [43]. The goal of this thesis is to evaluate the performance of a number

of IF techniques, using robust time and frequency domain parametrization measures

on a database of physically modeled speech signals. This chapter starts with a math-

ematical framework of the source-filter model of speech production. We then provide

motivation for the importance of assessing the performance of IF techniques and this

is followed by a description of previous efforts towards that direction. Finally, we

discuss the contribution of this thesis and we provide an outline for the remainder of

this thesis.

1



2 Chapter 1 Introduction

1.1 Background

A mathematical framework of the classic source-filter model of speech production

model is presented here.

1.1.1 Source-Filter Production Model

Speech production can be considered as a linear filtering operation, which is time

invariant over short time periods. The overall system of speech production can be

divided into three parts: the vocal tract, with impulse response v[n], the excitation

signal e[n], which is the input of the vocal tract, and the lip radiation r[n]:

s[n] = e[n] ∗ v[n] ∗ r[n]

where s[n] is the speech pressure output, i.e. the speech signal, and * denotes

convolution. For voiced speech, the excitation is a periodic series of pulses, whereas

for unvoiced speech, the excitation has the properties of random noise. Figure 1.1

depicts this simple model.

Series of impulses
or random noise

Source signal 
       e[n]

Vocal tract signal 
         v[n]

Lip radiation 
       r[n]

Speech s[n]

Figure 1.1 Simple Source-Filter Model.

In the Z-domain, the above equation can be written as:

S(z) = E(z)V (z)R(z)

It is shown that the vocal tract filter V (z) can be written as an all-pole filter:

V (z) =
1∏p

k=1(1− ckz−1)
=

1∑p
k=1(αkz−k)

,

where p is the number of poles of the filter.
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1.1.2 Linear Prediction Analysis

A primary tool for inverse filtering speech waveforms is Linear Prediction (LP). LP is

a very powerful modeling technique which may be applied to time series data. When

applied to the speech signal, LP is used to produce an all-pole model of the system

filter, V (z), which turns out to be a model of the vocal tract and its resonances or

formants. As it is previously mentioned, the input to such a model is either a series

of pulses or white noise, for voiced speech and unvoiced speech respectively.

So, using LP we can estimate the vocal tract filter v[n] from the speech signal, and

then cancel its effect, thus resulting in the source waveform. In order to find the vocal

tract response, we set up a least squares minimization problem where the error

e[n] = s[n]−
p∑

k=1

aks[n− k]

is to be minimized, where ak are the estimates of αk. The minimization is per-

formed over a region R. The total error is given by

E =
∑
R

e2[n]

The solutions of this minimization problem are called linear prediction, from the

fact that a speech sample x[n] can be written as a linear combination of p previous

samples, that is, it can be predicted from p previous samples. Depending on the

region selection, we are lead into two different techniques of linear prediction. These

two techniques, as well as improvements on these, will be presented in a later chapter.

As is well known, using the method of least squares, this model has been suc-

cessfully applied to a wide range of signals: deterministic, random, stationary, and

non-stationary, including speech, where the method has been applied assuming local

stationarity. LP has a number of advantages, including:
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1. Mathematical tractability of the error measure

2. Stability of the model

3. Favorable computational characteristics of the resulting formulations

4. Spectral estimation properties

5. Wide applicability to a range of signal types

1.1.3 Inverse Filtering

The idea behind inverse filtering is to form a computational model for the vocal

tract signal and then to cancel its effect from the speech waveform by filtering the

speech signal through the inverse of the model. When we obtain an estimate, V̂ (z),

of the vocal tract filter V (z), we can cancel its effect by removing the vocal tract

response from the speech signal s[n]. After that, we have an estimate of the driving

function, ê[n], which is the combined signal of the glottal flow and the lip radiation.

In frequency domain,

Ê(z) =
S(z)

V̂ (z)
.

The above equation describes a process called inverse filtering. It is apparent that

inverse filtering is greatly depended on the estimate of the vocal tract filter, V̂ (z).

The problem of robustly and accurately estimation of the vocal tract is often called

spectral estimation in the literature.

A common procedure before linear prediction analysis and inverse filtering is pre-

emphasizing the speech signal. Pre-emphasis is the process of filtering the speech

signal with a single zero high-pass filter:
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semph = s[n]− βemphs[n− 1],

where βemph is the pre-emphasis coefficient and its values are between 0.9 and 0.99.

The reason for pre-emphasis is that the pre-emphasized spectrum is a closer repre-

sentation of the vocal tract response, thus allowing linear prediction to better match

the vocal tract response rather than the spectrum of the combined excitation and

vocal tract.

Another common procedure before applying vocal tract LP analysis is applying a

LP analysis of order one to acquire a preliminary estimate for the combined effects

of the glottal flow and the lip radiation effect on the speech spectrum. Then, the es-

timated effects are cancelled from speech by invserse filtering with the corresponding

filter.

1.1.4 The Glottal Flow

The goal of inverse filtering is the estimation of the voice source, e.g. the glottal flow.

The glottal flow is the output of the glottis during voicing and thus it is a periodic

signal. A period of the glottal flow can be divided in two main parts, corresponding

to the state of the glottis:

1. The glottal open phase, where the glottis starts to open, reaches its full openess,

and eventually closes again. The open phase can be further divided into the

opening phase, where the glottal flow increases from baseline at time 0 to its

maximum amplitude Av, also called amplitude of voicing at time Tp, and the
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closing phase, where the glottal flow decreases from Av to a point at time Te

where the derivative reaches its negative extremum Ee. Te is the so-called glottal

closing instant (GCI) and Ee is called the maximum excitation.

2. The glottal closed phase, where the glottis is closed and no airflow pressure

comes into the vocal tract. In normal voicing, after time Te, the glottal flow

derivative is continuous and exponentially returns to 0 at time Tc. This phase

is called return phase and the exponential time constant is noted Ta.

Figure 1.2 illustrates this analysis on both the glottal flow and the glottal flow

derivative waveform.
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Figure 1.2 Phases of the glottal flow and its derivative.
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1.1.5 Closed Phase Inverse Filtering

It is advantageous to restrict the linear prediction analysis region to the time inter-

val where the glottis is closed. The reason is that during closed phase, there is no

source/vocal tract interaction [18] and an accurate vocal tract estimate can be calcu-

lated. This estimate can then be used to inverse filter both the open and the closed

phase.

The identification of the glottal closed phase interval from the speech signal is a

difficult task. In the literature, there are several approaches in accurately determin-

ing the closed phase (and consequently, the glottal flow) in a non-invasive manner.

Wong et al [71] proposed the use of the maximum determinant of the covariance

matrix in order to find the closed phase interval. Ananthapadmanabha and Yegna-

narayana [1] studied the linear prediction residual in order to find the closed phase.

In [50], the authors proposed to detect discontinuities in frequency by confining the

analysis around a single frequency. In this latter work, GCIs correspond to the posi-

tive zero-crossings of a filtered signal obtained by successive integrations of the speech

waveform and followed by a mean removal operation. Childers et al have discussed

two systems [16] [15] [37]. The first one is a two-channel analysis approach, using the

electroglottographic (EGG) signal along with the speech signal. The second system

uses weighting on speech samples based on the error in previous analysis windows.

In [28], [17], and [71], it is suggested that an operator driven technique is required

to estimate the closed phase interval. McKenna [46] suggested the use of Kalman

filtering for closed phase identification. Plumpe et al [53] discussed the importance

of an automatic system to find glottal opening and closure, and suggested the use of

a sliding covariance analysis window for calculating the formant trajectories. Then,

the closed phase interval was identified based on first order statistics on the motion
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of the first formant. This technique is used in this thesis whenever a closed phase

covariance analysis is discussed, as it will be seen in later chapters.

1.1.6 Parametrization of the Source

Parametrization of the voice source has been the target of intensive research during

the past few decades. The goal of parametrization is the expression of the most impor-

tant features of the glottal flow (or its derivative) using few numerical values. In the

past years, a large number of possible parametric representations of glottal flows given

by inverse filtering have been proposed. Although quantitative signal processing mea-

sures such as the Signal to Reconstruction Error Ratio (SRER) can be applied on the

glottal flow estimates, it is also desirable to apply measures that indicate the quality

of IF based on the source-filter theory. Thus, we introduce here some of these metrics.

In time domain, there is a considerable amount of parametrization measures con-

cerning the glottal flow (or its derivative) in the literature. This corresponds to

quantifying the glottal flow using certain quotients between the closed phase, the

opening phase, the closing phase of the glottal volume velocity waveform [31]. Time-

based measures have also been computed using the first derivative of the glottal flow

by applying, for example, the time difference between the beginning of the closing

phase and the instant of the maximal negative peak [64]. The three most common

time-based parameters are: (1) the open quotient (OQ), which is the ration of be-

tween the open phase of the glottal pulse and the length of the fundamental period;

(2) the speed quotient (SQ), which is the ratio between glottal opening and closing

phases; and (3) the closing quotient (CQ), which is the ratio between the glottal clos-

ing phase and the length of the fundamental period. However, the extraction of these

time-based parameters is often problematic due to the presence of noise or formant
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ripple in the estimated waveforms. In [7], a more robust time-domain parameter

was introduced, called the Normalized Amplitude Quotient - NAQ, which is defined

as the ratio between the maximum value of the glottal flow, fac, to the product of

the minimum value of the glottal flow derivative, dpeak, and the length of the fun-

damental period, T . The NAQ’s quality over its conventional counterpart, CQ, was

demonstrated in both clean and noisy speech conditions. In addition, the calculation

of NAQ is straightforward and can be computed automatically.

The NAQ is therefore selected as the time-domain parameter for IF evaluation in this

thesis.

In addition, frequency-domain methods have been developed to quantify the voice

source. These are typically based on measuring the decay of the voice source spec-

trum either from the spectral harmonics [33] [15], or from the pitch-synchronously

computed spectrum [10]. This is justified by the fact that the harmonics in the speech

signal below the first formant are often considered important for the perception of

vocal quality [32]. It has also been found that the glottal spectra shows distinctive

amplitude relationships between the fundamental and higher harmonics [15].

A well known technique for frequency domain parametrization is called Parabolic

Spectral Parameter (PSP) [10], is based on fitting a parabolic function to a pitch

synchronously computed spectrum of the estimated voice source. The PSP algorithm

gives a single numerical value that describes how the spectral decay of an obtained

glottal flow behaves with respect to theoretical bounds corresponding to maximal and

minimal spectral tilting.

Another very common frequency domain parametrization measure is called H1H2,

which is defined as the difference in dB between the amplitudes of the fundamental

and the second harmonic of the source spectrum [68]. Finally, another parameter, the
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Harmonic Richness Factor (HRF), is defined from the spectrum of the glottal flow as

the difference in dB between the sum of the harmonic amplitudes above the funda-

mental frequency and the amplitude of the fundamental [15]. These two frequency

fomain measures are selected for IF evaluation in this thesis. There are two reason for

selecting these two parameters. First, both of them can be computed automatically,

with low complexity, and without any user adjustments. Second, both of them are

known to reflect the spectral decay of the glottal excitation. This means that if, for

example, the glottal flow estimates appear to have the so-called “jags” [71], which

are sharp negative peaks of the glottal flow near glottal closure, then this would be

reflected into the H1H2 and HRF values.

Finally, one category of voice source parametrization methods is represented by

techniques that fit certain predefined mathematical functions to the obtained glot-

tal waveform. In noisy conditions, IF is known to perform poorly, so the glottal

flow estimates (and their derivatives) would be severely distorted. This distortion

can be alleviated if the mathematical function is firstly fit onto the distorted glot-

tal flow derivative, and then calculate time-based or spectral measures using this

mathematical model, instead of the original, distorted derivative. Among them, the

Liljencrants-Fant (LF) [23] model is very popular. Parametrization methods for both

time and frequency domain have been developed for the LF model [35].

LF-waveform parameterization is an intricate process, the complexities and implica-

tions of which are not always fully appreciated. In terms of ’accuracy’, the result of

a parametric fit greatly depends on the optimization algorithm and the cost function

to be minimized. In addition, the results are heavily influenced by the presence of

random or systematic error in the signal to be fitted. Finally, if the model differs

substantially from the process that generated the signal, the concept of accuracy of
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the fit looses most of its meaning. A quick closer look at the LF model follows next.

The LF model

In a previous section, we saw that the speech signal can be represented as:

s[n] = e[n] ∗ v[n] ∗ r[n],

where e[n] is the excitation signal, v[n] is the vocal tract impulse response, r[n] is

the lip radiation, and * denotes convolution. The lip radiation can be modelled as a

first order differentiator, r[n] = δ[n]− δ[n− 1].

Re-arranging the terms, we have:

s[n] = e[n] ∗ v[n] ∗ r[n] = e[n] ∗ r[n] ∗ v[n] = ê[n] ∗ v[n],

where ê[n] is the derivative of the excitation signal, which is the source signal.

Since the source of the speech production system is the glottal flow, ê[n] is the deriva-

tive of the glottal flow, the so-called glottal flow derivative. The glottal flow derivative

is often called the driving function.

In the late 1980’s, Liljencrants and Fant suggested a model for the derivative of

the glottal flow, called the LF model [23]. The LF model is a four parameter model,

although in [53], it is extended up to seven parameters, including time instants,

for speaker identification applications. The LF model is described by the following

equations:

xLF (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0e
at sin(ωgt), 0 ≤ t ≤ Te,

− E0

βTa
(e−β(t−Te) − e−β(Tc−Te)), Te ≤ t ≤ Tc

0, elsewhere

,
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Figure 1.3 Liljencrants-Fant Model.

where Tc, Te, Ta are illustrated on Figure 1.3, and represent the glottal closure,

the glottal excitation, and the return phase. The four parameters of the model are

α, ωg, E0, which describe the open phase, and Ta, which describes the return phase.

The parameter β is dependent on Ta and although there is no closed form for the

relationship of β and Ta, it can be assumed that β ≈ 1
Ta

for small values of β. An-

other assumption is that the glottal closure instant, Tc, can be considered to coincide

with the glottal opening instant, To, of the next period. The four parameters do not

include the timings of glottal opening, excitation, and closure, so these timing values

must be given.
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Due to the large dependence of E0 on α [53], the parameter Ee, the value of the

waveform at time Te, can be estimated instead of E0. To calculate E0 from Ee the

equation

E0 =
Ee

eαTe sin(ωgTe)

is used.

The parameter Ta is the most important parameter in terms of human perception,

as it controls the amount of spectral tilt present in the source. The return phase of

the LF-model is equivalent to a first order lowpass filter [22] with a corner frequency

of

Fa =
1

2πTa

The LF-model parameters and their significance is illustrated in Table 1.1.

LF model parameters

Ee The value of the waveform at time Te

α Determines the ratio of Ee to the height of

the positive portion of the glottal flow derivative

ωg Determines the curvature of the left side

of the glottal pulse.

Ta An exponential time constant which determines

how quickly the waveform returns to zero after time Te

Table 1.1 The four parameters of the Liljencrant-Fant model for the glottal
flow derivative waveform.
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1.2 Evaluation of Inverse Filtering Methods

A major obstacle both in developing new IF algorithms and in comparing existing

methods is the complication of assessing the performance of an IF technique. This

happens mostly because the signal to be estimated, the glottal flow, is unavailable.

Therefore, when IF is used to estimate the glottal flow of natural speech, it is actually

never possible to assess in detail how closely the estimated waveform corrseponds to

the true glottal flow generated by the vibrating vocal folds.

However, it is possible to use synthesized speech that has been created using artificial

glottal flow waveforms to assess the accuracy and efficiency of an IF technique. The

success of the algorithm can be judged by quantifying the error between the known

input waveform and the version recovered by the algorithm. Although this approach

is typically used in the literature [5], [6], [45], [65], [70], this kind of evaluation is not

truly objective because speech synthesis and IF analysis are based on similar models of

the human voice production system, such as the source-filter model. An improvement

would be to provide synthesized speech generated by a more sophisticated articulatory

model [34], which allows source-tract interaction [47] [8] [9]. A similar approach will

be followed in this thesis, as it will be presented later.

Once the algorithm has been verified and is being used for inverse filtering real

speech samples, there are two possible approaches to evaluate the results. One is to

compare the waveforms obtained with those obtained by earlier methods. As, typi-

cally, the aim of this is to establish that the new method is superior, the objectivity

of this approach is also doubtful. This approach can be made most objective when

methods are compared using synthetic speech and results can be compared with the

original source, as in [6]. In many works, no comparisons are made, a stance which

is not wholly unjustified because there is not enough data available to say which are
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the correct glottal flow waveforms.

On the other hand, using two different methods to extract the glottal flow could

be an effective way to confirm the appearance of the waveform as correct. If new

techniques for glottal inverse filtering produce waveforms which ’look like’ the other

waveforms that have been produced before, then they are evaluated as better than

those which do not: examples of the latter include [4], [19].

In the direction of evaluation of IF methods, a physiological-based model of vocal

folds and vocal tract is used in order to evaluate different IF methods. In this model,

time-varying waveforms of the glottal flow and radiated acoustic pressure are simu-

lated. A detailed description of this model follows next.

1.3 Physical Modeling of Speech Signals

A computational model of the vocal folds and acoustic wave propagation generated the

sound pressure and glottal flow waveforms used in this thesis. In detail, self sustained

vocal fold vibration was simulated with three masses coupled to one another through

stiffness and damping elements [60]. A schematic diagram depicting this model is

shown in Figure 1.4, where the arrangement of the masses was designed to emulate

the body-cover structure of the vocal folds [29].

The input parameters of this model are the lung pressure, prephonatory glottal

half-width (adduction), resulting vocal fold length and thickness, and normalized acti-

vation levels of the cricothyroid (CT) and thyroarytenoid (TA) muscles. These values

were transformed into mechanical parameters of the model, such as mass, stiffness,
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Figure 1.4 Schematic diagram of the lumped-element vocal fold model. The cover-body
structure of each vocal fold is represented by three masses that are coupled to each other
by spring and damping elements. Bilateral symmetry was assumed for all simulations.

and damping, acording to [67]. In [66], through aerodynamic and acoustic considera-

tions, the vocal fold model was coupled to the pressures and air flows in the trachea

and vocal tract. Bilateral symmetry was assumed for all simulations such that iden-

tical vibrations occur within both the left and right folds. The modification of the

resting vocal fold length and activation levels of CT and TA muscles resulted into

eight different fundamental frequency values (105, 115, 130, 145, 205, 210, 230, and 255

Hz). These values roughly approximate the range of the fundamental frequency in

adult male and female speech [30]. The input parameters for all nine cases are shown

in Table 1.2.

Acoustic wave propagation in both the trachea and vocal tract was computed in

time synchrony with the vocal fold model. This was performed with a wave-reflection
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Parameter value 105 115 130 145 205 210 230 255

aCT 0.1 0.4 0.1 0.4 0.2 0.3 0.3 0.4

aTA 0.1 0.1 0.4 0.4 0.2 0.2 0.3 0.4

L0(cm) 1.6 1.6 1.6 1.6 0.9 0.9 0.9 0.9

T0(cm) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

ξ01(cm) 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

ξ02(cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PL(dyn/cm
2) 7840 7840 7840 7840 7840 7840 7840 7840

Table 1.2 Input parameters for the vocal fold model used to generate the
nine different fundamental frequencies. Notation is identical to that used in
Titze and Story (2002). The aCT and aTA are normalized activation levels
(can range from 0 to 1) of the CT and TA muscles, respectively. Lo and To are
the resting length and thickness of the vocal folds, respectively. ξ01 and ξ02
are the prephonatory glottal half-widths at the inferior and superior edges
of vocal folds, respectively, and PL is the respiratory pressure applied at the
entrance of the trachea. The value of PL shown in the table is equivalent to
a pressure of 8 cm H2O.

approach [63] [39], where the area function of the vocal tract and trachea were dis-

cretized into short cylindrical sections or tubelets. Reflection and transmission coef-

ficients were calculated at the junctions of consecutive tubelets, at each time sample.

From these, pressure and volume velocity were then computed to propagate the acous-

tic waves through the system. The glottal flow was determined by the interaction of

the glottal area with the time-varying pressures present just inferior and superior to

the glottis, as described by Titze [66]. At the lip termination, the forward and back-

ward traveling pressure wave components were subjected to a radiation load modeled

as a resistance in parallel with an inductance, as suggested by Flanagan [25], intended

to approximate a piston in an infinite plane baffle. The output pressure is assumed to

be representative of the pressure radiated at the lips. To the extent that the piston-
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in-a-baffle reasonably approximates the radiaton load, the calculated output pressure

can also be assumed to be representative of the pressure that would be transduced by

a microphone in a non-reflective environment. The specific implementation of the vo-

cal tract model used for in this thesis was presented in Story [59], and included energy

losses due to viscosity, yielding walls, heat conduction, as well as radiation at the lips.

Figure 1.5 Area function representation of the trachea and vocal tract used to simulate
the male “a”vowel. The vocal fold model of Fig. 1.4 would be located at the 0 cm point
indicated by the dashed vertical line. Examples of the glottal flow and output pressure
waveforms are shown near the locations at which they would be generated.

In this thesis, glottal flow and speech pressure waveforms were generated for 4

vowels (/aa/, /ae/, /eh/, and /ih/) in both male and female configurations. The

area functions were taken from those reported for an adult male in Story et al [61].

For the simulations of male speech, the area functions were used directly with the

exception of the vocal tract length, which was normalized to 17.46 cm. For female

speech simulations, the same male area factors were based on those reported in Fitch
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and Giedd [24]. The trachea in all cases was the same as that shown in Figure 1.5.

In summary, the model is a simplified but physically motivated representation of a

speaker. It generates both the signal on which inverse filtering is typically performed

(microphone signal) and the signal that is seeked to be determined (glottal flow).

This provides an idealized test case for inverse filtering algorithms.

1.4 Thesis Contribution

In this thesis, a physiological-based model of the vocal folds and vocal tract is used

in order to evaluate different IF methods. In this model, time-varying waveforms of

the glottal flow and radiated acoustic pressure are simulated. By using this simulated

speech pressure waveform as an input to an IF method, it is possible to determnine

how close the obtained estimate of the glottal flow is to the simulated glottal flow.

This approach differs from using synthetic speech excited by an artificial glottal flow

because the glottal flow waveform results from the interaction of the self-sustained

oscillations of the vocal folds with subglottal and supraglottal pressures, as it would

happen during real speech production. Therefore, this model generates a glottal flow

waveform that is expected to provide a more firm and realistic test of the IF method

than a parametric flow model, where no source-tract interaction is taken into account.

In order to evaluate the different IF techniques, robust time and frequency do-

main parametrization measures are typically used. In this way, the most important

features of the glottal flow (or its derivative) estimates are expressed using a few nu-

merical values. The parametrization measures used in this thesis are the Normalized

Amplitude Quotient (NAQ), the Signal to Reconstruction Error ratio (SRER), the
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difference in dB between the first two harmonics of the glottal spectrum (H1-H2),

and the Harmonic Richness Factor (HRF), which were previously discussed.

1.5 Thesis Organization

In this chapter, the basic concepts of source-filter voice production system were intro-

duced, and their relation to the inverse filtering process. The problem of evaluation of

IF techniques was illustrated, and a database of physically modeled speech pressure

signals was delineated. This database will greatly help in comparing and evaluating

different methods of IF. In Chapter 2, we will discuss the different vocal tract filter

estimation methods and their properties, as well as the inverse filtering procedure

followed for each method. Chapter 3 covers the results of each IF method, using the

measures introduced in this chapter, and finally Chapter 4 concludes the thesis and

discusses ideas for future directions in related research.



Chapter 2

Vocal Tract Filter Estimation with

Linear Prediction

As discussed in Chapter 1, most of the IF approaches suggest the use of Linear Pre-

diction Analysis in order to estimate the vocal tract filter. In this chapter, we firstly

discuss the linear prediction techniques that are used througout the rest of the thesis.

Next, we describe the inverse filtering procedure that we follow to estimate the glottal

flow waveforms.

2.1 Autocorrelation based methods

2.1.1 Classic Linear Prediction - Autocorrelation Method

If we assume that the speech signal is zero outside an interval 0 ≤ n ≤ N − 1, then

the error signal e[n] will be nonzero in the interval 0 ≤ n ≤ N + p− 1. That interval

is the region R. Since we are trying to predict nonzero samples from zero samples at

the beginning of the interval, this will result in large errors at that point. This is also

21
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valid for the end of the interval, where zero samples are predicted from nonzero ones.

For this reason, a tapered window (e.g., Hamming) is often used. The forementioned

assumptions result in the autocorrelation method of linear prediction. It can be for-

mulated as follows:

By using Hamming window w[n] with lengthN , we get a windowed speech segment

sN [n], where sN [n] = s[n]w[n]. Then the mean squared prediction error is defined as:

EN =
∞∑

n=−∞
e2[n] =

∞∑
n=−∞

(sN [n]−
p∑

k=1

aksN [n− k])2. (2.1)

The values of ak that minimize EN are found by assigning the partial derivatives

of EN with respect to ak to zeros. This follows in the following p equations with p

unknown variables ak:

p∑
k=1

ak

∞∑
n=−∞

sN [n− i]sN [n− k] =
∞∑

n=−∞
sN [n− i]sN [n], 1 ≤ i ≤ p. (2.2)

Noticing that the windowed speech signal sN [n] = 0 outside the window w[n], and by

introducing the autocorrelation function

R(i) =

N−1∑
n=i

sN [n]sN [n− i], 0 ≤ i ≤ p, (2.3)

equation X becomes

p∑
k=1

R(|i− k|)ak = R(i), 1 ≤ i ≤ p. (2.4)

Using matrix notation, the latter equation can be written as

Φ�a = �r, (2.5)

where matrix Φ is called the autocorrelation matrix and its elements are given by

Φi,j = R(|i− j|), 1 ≤ i, j ≤ p. The other two vectors are given by
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�a = [a1, a2, a3, ..., ap]
T and �r = [R(1), R(2), R(3), ..., R(p)]T .

The main advantage of the autocorrelation method is that it always produces a

stable filter with a reasonable computational load and that there are fast algorithms,

such as the Levinson-Durbin recursion algorithm [55], for solving the matrix system.

The effects of the problems at the beggining and end of the analysis region can be

reduced using a non-rectangular window, such as a Hamming window.

2.1.2 Stabilized Weighted Linear Prediction

Stabilized Weighted Linear Prediction (SWLP), introduced by Magi et al [42], is an

all-pole modeling method based on Weighted Linear Prediction (WLP) [41]. WLP

uses time domain weighting of the square of the prediction error signal. This tempo-

ral weighting emphasizes the speech samples which have a high signal-to-noise ratio,

and thus it has been shown that WLP improves the spectral envelope estimation of

noisy speech in comparison to the conventional LP analysis. Moreover, in contrast to

other robust methods of LP [40] [73], the WLP filter parameters can be calculated

without any iterative update. A problem is that the WLP filter is not guaranteed

to be stable. This drawback is dissolved through SWLP, where the weighting is such

that the all-pole model is always stable.

The formulation of WLP is presented next, as well as the SWLP algorithm that en-

sures stability of the all-pole model.
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Weighted Linear Prediction

As in conventional LP, sample x[n] is estimated by a linear combination of the past

p samples:

x̂[n] = −
p∑

i=1

aix[n− i], (2.6)

where the coefficients ai ∈ �. The prediction error en(a), the residual, is defined

as

en(a) = x[n]− x̂[n] = x[n] +

p∑
i=1

aix[n− i] = aTx[n], (2.7)

where a = [a0a1...ap]
T with a0 = 1 and x[n] = [x[n]...x[n − p]]T . The prediction

error energy E(a) in the WLP method is

E(a) =

N+p∑
n=1

(en(a))
2wn = aT

( N+p∑
n=1

wnx[n]x
T [n])a = aTRa, (2.8)

where wn is the weight imposed on sample n, N is the length of the signal x[n],

and R =
∑N+p

n=1 wnx[n]x
T [n]. This problem is a constrained minimization problem,

minimize E(a) subject to aTu = 1,

where u is the vector defined as u = [1 0 ... 0]T . It can be seen that the autocor-

relation matrix R is weighted, in difference to the conventional LP analysis.

Matrix R is symmetric but not Toeplitz, due to the weighting process. However, it

is positive definite, and this makes the minimization problem convex. Using Lagrange

multipliers, it can be shown that a satisfies the linear equation

Ra = σ2u, (2.9)

where σ2 = aTRa is the error energy. Finally, the WLP all-pole model is obtained

as H(z) = 1/A(z), where A(z) is the Z-transform of vector a.
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Weighting function

The time domain weighting function wn is the key point of both WLP and SWLP.

In [41], the weighting function was chosen to be the Short-Time Energy (STE)

wn =

M−1∑
i=0

x2n−i−1, (2.10)

whereM is the length of the STE window. The use of STE window can be justified

as following. The STE function emphasizes the speech samples of large amplitude. It

is well-known that applying LP analysis on speech samples that belong to the glottal

closed phase interval will generally result in a more robust spectral representation of

the vocal tract. So, by emphasizing on these samples that occur during the glottal

closed phase, it is likely to yield more robust acoustical cues for the formants. In

Figure 2.1, the focus on the glottal closed phase of the STE weighting function is

illustrated on a clean vowel.

Stability

However, the WLP method with the STE window does not ensure stability of the

all-pole model. Therefore, in [42], a formula for a generalized weighting function to

be used in WLP is developed in order to guarantee stability. The autocorrelation

matrix R in Eq. X can be expressed as

R = YTY, (2.11)

where

Y = [y0 y1 · · ·yp] ∈ �(N+p)x(p+1)

and

y0 = [
√
w1x[1] · · ·√wNx[N ] 0 · · ·0]T .
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Figure 2.1 Upper panel: time domain waveforms of speech (vowel /a/ produced by
male speaker) and short-time energy (STE) weight function (M=8).
Lower panel: Glottal flow waveform of the vowel /a/ together with the STE weight function
(M=8).

The column vectors are given by

yk+1 = Byk, k = 0, 1, · · · , p− 1, (2.12)
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where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
√
w2/w1 0 0 · · · 0

0
√
w3/w2 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0
√
wN+p/wN+p−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

So, before forming the matrixY, the elements of the secondary diagonal of the matrix

B are defined for all i = 1, · · · , N + p− 1 as

Bi+1,i =

⎧⎪⎨
⎪⎩

√
wi+1/wi, if wi ≤ wi+1

1, if wi > wi+1

Finally, the WLP method computed using matrix B is called the Stabilized Weighted

Linear Prediction model, and the stability of the all-pole filter is ensured. For more

information on the stability of SWLP, see [42].

2.2 Covariance based methods

2.2.1 Classic Linear Prediction - Covariance Method

If we assume that the speech signal is zero outside an interval p ≤ n ≤ N − 1, thus

p samples outside the region are available, then the mean squared prediction error is

given by

EN =

N−1∑
m=0

e2[m] (2.13)
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where e[m] = s[m] −
p∑

k=1

aks[m − k], 0 ≤ m ≤ N − 1 and the interval [0, N − 1] is

the prediction error interval.

Using a similar approach with the autocorrelation method in minimizing the pre-

diction error, we result in the covariance method of linear prediction, which is given

by the following equation:

Φ�a = �ψ, (2.14)

where the elements of the covariance matrix Φ are given by

φi,j =

N−1∑
n=0

s[n− i]s[n− j], (2.15)

where 1 ≤ i ≤ p and 1 ≤ j ≤ p. The other two vectors are given by

�a = [a1, a2, a3, ..., ap]
T , �ψ = [φ0,1, φ0,2, φ0,3, ..., φ0,p]

T . (2.16)

Matrix Φ has the properties of a covariance matrix and thus the system can be

efficiently solved using Cholesky Decomposition.

The main advantage of the covariance method is that it always results in the cor-

rect solution for any window length greater than p. Also, if the boundaries of the

window are handled properly, a rectangular window can be used. Finally, the main

disadvantage of this method is that stability of the filter is not always guaranteed.

It should also be noted that in high pitched speakers, the closed phase interval is

typically too short, and thus the estimation of the vocal tract filter is not accurate.

This yields severe distortions on the estimated glottal flow, such as increased ripple

in its closed phase interval.
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As it was mentioned in Chapter 1, it is advantageous to restrict the analysis re-

gion in the closed phase interval of the glottal flow waveform. This approach is called

Closed Phase (CP) Covariance LP Analysis and it is the covariance technique that

is tested in this thesis.

2.2.2 Constrained Closed Phase Covariance Linear Predic-

tion

Problems with conventional CP covariance analysis

The classic CP covariance LP analysis described in the previous section suffers from

certain shortcomings. Several previous studies [38] [69] [72] [57] indicate that the CP

analysis is very sensitive to the position of the covariance frame, thus giving glottal

flow estimated that vary greatly. This is understandable if we consider that CP length

is typically short, and the amount of data used to define the parametric model of the

vocal tract is sparse. If the position of this frame is misaligned, then this results in

poor modeling of the vocal tract resonances, and thus severe distortion of the glottal

flow estimates. The problem is more apparent in high pitch speakers, where the length

of the CP interval is very short. This type of distortion is demonstrated in Figure 2.2.

In this figure, three glottal flow estimates are shown on the left, which were inverse

filtered from the same token of a male subject uttering the vowel [a], by using a mi-

nor change in the position of the covariance frame. This example shows how a minor

change in the position of the covariance frame has resulted in a major change in the

glottal flow estimates. On the right of this figure, the corresponding pole-root loca-

tions of the glottal flow estimates are shown. It is interesting to notice that in Figs.
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Figure 2.2 Covariance Frame Misalignment and Glottal Flow Distortion.

2.2(a), 2.2(b), and 2.2(c), the inverse filters have one root on the positive real axis in

the z-domain. The effect of an inverse filter root which is located on the positive real

axis has the properties of a first order differentiator, when the root approaches the

unit circle, and a similar effect is also produced by a pair of complex conjugate roots

at low frequencies. Thus, the glottal flow estimate in such cases becomes similar to a

time-derivative of the flow candidate given by an inverse filter with no such roots or

roots located in a more neutral position near the origin of the z-plane. This distortion

is more apparent at the time instants where the glottal flow changes more rapidly,
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that is, near glottal closure. As it can be seen in Figs. 2.2(b), 2.2(c), this distortion

is typically seen as sharp negative peaks, called ”jags” by Wong et al [71], at the time

instants of glottal closure.

The theory of source-filter speech production suggests that poles of the vocal

tract for non-nasalized voiced sounds occur at complex conjugate pairs and the low

frequency emphasis of the spectrum results from the glottal source. However, as it

can be seen in Figs. 2.2(b), 2.2(c), the estimated vocal tract model has roots on

the positive real axis or at low frequencies, and thus the amplitude spectrum shows

boosting of low frequencies, which comes in contrast with Fant’s suggested theory.

Hence, it can be argued that among the three vocal tract models, the one depicted

in Fig. 2.2(a) is the one that is more close to represent an amplitude spectrum of an

all-pole vocal tract of a vowel. Also, the removal of the roots of the vocal tract model

located on the real axis results in glottal flow estimates which are less dependent on

the covariance frame location [71] [13].

Another source of distortion in conventional CP covariance analysis is the fact that

the inverse filter might be non-minimum phase, that is, the filter has roots outside the

unit circle in the z-domain. From a stability point of view, this is not a problem, since

the IF is computed using a FIR filter, and thus non-minimum phase filters do not

cause stability problems. However, the use of non-minimum phase filters does cause

other kinds of distortion. According to the source-filter theory of speech production,

the glottal flow is filtered through the vocal tract, which is considered to be a stable

all-pole system for vowels and liquids. In the z-domain, this system must have all its

poles inside the unit circle. Its inverse filter cancels the vocal tract contribution by

mapping each pole of the vocal tract into a zero of the IF filter inside the unit circle,
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this resulting in a minimum phase filter. However, it is well-known in the theory of

digital signal processing that a zero of a FIR filter can be mirrored, that is, it can be

replaced by its mirror image partner. A zero at z = z0 can be replaced by a zero at

z = 1/z∗0 , without changing the shape of the amplitude spectrum of the filter. Hence,

from an inverse filtering point of view, there are several inverse filters: one of them

is minimum phase and the others are non-minimum phase, and all of them are con-

sidered equal. These filters, however, are different in terms of phase characteristics.

This difference can cause severe distortion, and it is particularly strong in cases where

zeros of the inverse filter located in the vicinity of the lowest two formants are moved

from inside to outside the unit circle.

Figure 2.3 demonstrates this distortion caused by IF a vowel waveform with a

minimum and a non-minimum phase FIR filter. In Fig. 2.3(a), the glottal flow es-

timated with a minimum phase filter is shown on the left, and the corresponding

z-plane representation is shown on the right. In Fig. 2.3(b), the complex conjugate

root pair that models the first formant is replaced by its counterpart outside the unit

circle. Even though this slight modification only changed the root radius by 0.04, the

distortion caused in the glottal flow estimate is severe and is displayed as increased

ripple during the closed phase interval of the glottal cycle, as shown in the left panel

of Fig. 2.3(b).

Mathematically Constrained Linear Prediction

The concept of mathematically constrained linear prediction is the modification of

the conventional covariance analysis in order to reduce the distortion which is caused

by unrealistic vocal tract model roots location. This is achieved by not allowing the
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Figure 2.3 Distortion caused by non-minimum phase filter.

mean square error (MSE) criterion to locate the roots freely on the z-domain, thus

providing certain restrictions in the predictor structure, which results in more realistic

root locations, from the viewpoint of the acoustic theory described by Fant.

In order to implement such restrictions in the MSE error, someone has to find a

method to express the constraint in a form of a concise mathematical equation and

apply the constraint in the MSE minimization problem. One such constraint can be
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expressed with the help of the DC gain of the LP filter. The DC gain can be expressed

as the sum of the predictor coefficients

V (ej0) =

p∑
k=0

αk = lDC . (2.17)

where αk are the filter coefficients of the constrained inverse filter and the lDC is a

pre-defined real value for the gain of the filter at DC. The reason for selecting the con-

straint on the DC gain is that, without it, it is possible that the amplitude response

of the vocal tract model shows excessive boost at zero frequency. It is known from

Fant’s suggested source-filter theory, that the amplitude response of voiced sounds

approaches unity at zero frequency [21]. Therefore, if a misplaced and short covari-

ance frame occurs, it might even lead to an amplitude response with larger gain at

zero frequency than at formants, which is a clear violation of the source-filter theory

and its underlying acoustical theory of tube shapes. By imposing this constraint on

the DC gain of the covariance linear prediction analysis, one might expect that the

amplitude response of the resulting vocal tract estimates will better match Fant’s

source-filter theory.

However, it should be noted that this method still leaves the determination of

the exact z-domain root locations of the vocal tract model to the MSE criterion, and

does not bias the root locations prior the optimization. The formulation of the DC-

constrained LP follows.

A mathematically straightforward way to implement such a restriction in the

conventional LP, as it is described in a previous section, is to set a certain pre-defined

value for the frequency response of the all-pole model at zero frequency, as it is written

in Eq. 2.17. Using matrix notation, the DC-constrained minimization problem can
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now be formulated as follows:

minimize aTΦa subject to ΓTa = b,

where a = [a0, · · · , ap]T is the filter coefficient vector with a0 = 1, b = [1, lDC ]
T ,

and Γ is a (p+ 1) by 2 constraint matrix defined as

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1

0 1

...
...

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)

The Γ matrix is positive definite. Thus, the minimization problem is convex. The

Lagrange multiplier method is suitable for efficient solution of this problem. The

objective function is defined as:

η(α, g) = αTΦα− 2gT (ΓTα− b), (2.19)

where g = [g1 g2]
T > 0 is the Lagrange multiplier vector. The above equation can

be minimized by setting the derivative with respect to vector α to zero. Thus, by

taking into account that matrix Φ is symmetric, we have:

∂η

∂α
(α, g) = αT (ΦT +Φ)− 2gTΓT = 2αTΦ− 2gTΓT = 2(Φα− Γg) = 0. (2.20)

Vector c can be solved from the group of equations

Φα− Γg = 0 (2.21)

ΓTα− b = 0 (2.22)

which finally gives that the optimal coefficients of the constrained inverse filter

are:

α = Φ−1Γ(ΓTΦ−1Γ)−1b (2.23)
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Figure 2.4 Examples of all-pole spectra computed in the closed phase covariance
analysis by the conventional LP and by the DC-π constrained LP.

In a similar manner, a constrained at ω = π can be formed. By denoting the trans-

fer function of a pth order π-constrained inverse filter D(z), the following equation

can be written:

D(z) =

p∑
k=0

dkz
−k ⇒ D(ejπ) =

p∑
k=0

dk(−1)k = lπ. (2.24)

The π-constrained minimization problem can now be formulated:

minimize dTΦd subject to ΓTd = e,

where d = [d0 · · · dp]T is the filter coefficient vector with d0 = 1, e = [1 lπ]
T , and Γ
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the new (p+ 1) by 2 constraint matrix is defined as:

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

0 −1

0 1

0 −1

...
...

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.25)

It is also possible to assign a third constraint by imposing simultaneously that

the first inverse filter coefficient is equal to unity and that the filter gain at both

ω = 0 and ω = π are equal to lDC and lπ respectively. Then, the constraint equation

becomes ΓTv = h, where v = [v0 · · · vp]T is the filter coefficient vector with v0 = 1,

h = [1 lDC lπ] and the resulting (p+ 1) by 3 constraint matrix is defined as:

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

0 1 −1

0 1 1

0 1 −1

...
...

0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

An example of the vocal tract filter estimations during a closed phase region for

the Constrained Covariance method and the conventional one is depicted in Figure

2.4.
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2.3 Inverse Filtering Procedure

The inverse filtering procedure that is followed in this thesis is illustrated in Figure

2.5.

Voiced/Unvoiced
     Detection

speech
   Sinusoidal 
Pitch Estimator

Pitch Synchronous
   Covariance LP

Excitation

Covariance based LP Autocorrelation based LP

      Closed Phase 
Interval Identification

Autocorrelation based 
       LP analysis

Glottal Flow Estimate

Lip Radiation 
   Removal

Lip Radiation 
   Removal

Covariance based
    LP analysis

Glottal Flow Estimate

Figure 2.5 Inverse Filtering Procedure.

Before processing, the speech and airflow signals are downsampled from 44 kHz to

8 kHz. Care is taken in order to avoid aliasing before downsampling. This is achieved

by using a FIR filter with a cutoff frequency at 4 kHz.

An analytic description of each sub-system follows next.
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2.3.1 VUS detector

As first, the speech waveforms generated by physical modeling of the vocal tract

are passed through a voiced/unvoiced/silence (VUS) detection algorithm in order to

cut any silent or unvoiced regions. Any VUS detection algorithm can be used at

this point, but one based on energy and zero crossings is preferred here due to its

simplicity, low complexity, and speed. The analysis is performed small segments of

speech, with 30 ms of duration and a 15 ms of overlap between successive segments.

2.3.2 Pitch Estimation

Afterwards, an estimate of the pitch of the voiced parts of the waveform is obtained.

Although any pitch estimator can be used in this part, the sinusoidal pitch estima-

tor [44] is used here. Pitch estimates are calculated on a speech frame of 30 ms with

a 15 ms overlap.

2.3.3 Excitation Instants Detection

According to the pitch estimates generated by the previous algorithm, a pitch-synchronous

covariance-based LP analysis on the waveform is performed, with an order of p = 10,

for speech signals with sampling frequency Fs = 8 kHz. The purpose of this analysis

is not an accurate estimate of the vocal tract or the glottal flow in each frame, but

a rough approximation of the excitation and the glottal excitation instants, which

indicate glottal closure. The reason for this analysis is the identification of pitch pe-

riods throughout the whole speech signal and it is an initial step for CP covariance
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analysis, as it will be shown later.

After this point, the analysis differs depending on the LP method that is used.

2.3.4 Covariance-based LP Analysis

For CP covariance-based methods, it is necessary to identify the closed phase inter-

val. This is achieved by using the sliding covariance analysis suggested by Plumpe et

al [53], which provides a robust method to extract the glottal closed phase interval

out of the speech signal. Specifically, this method of glottal closed phase estimation

relies on a sliding covariance analysis and uses vocal tract formant modulation which

is predicted by Ananthapadmanabha and Fant [2] to vary more slowly in the glottal

closed phase than in its open phase and to respond quickly to a change in glottal area.

A ”stationary” region of formant modulation gives a closed-phase time interval, over

which we estimate the vocal tract transfer function. A stationary region is present

even when the vocal folds remain partly open [53]. For high pitch speakers, where the

closed phase samples are less than twice the order of the LP analysis, a fixed length

of NCP + order closed phase samples was used.

Then, before inverse filtering, the lip radiation is cancelled using a first order

all-pole filter with its pole at z = 0.999. Having the closed phase intervals for each

period, a covariance-based LP analysis with order p = 10 is set up on the correspond-

ing speech samples. Finally, the vocal tract estimate that is obtained inverse filters

pitch synchronously a speech segment consisting of two pitch periods, and thus the

glottal flow is obtained.
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2.3.5 Autocorrelation-based LP Analysis

For autocorrelation based methods, the analysis is simpler. The lip radiation is can-

celled using a first order all-pole filter with its pole at z = 0.999. Next, using the

glottal pulses identified in a previous step, a pitch-synchronous LP analysis with order

p = 10 is performed over a speech segment of 250 ms. The vocal tract contribution is

then cancelled by inverse filtering over a region of two pitch periods, with an overlap

of one pitch period.

The overall glottal flow is synthesized using the well-known Overlap-Add method

(OLA) [55].

2.4 Summary

In this chapter, four LP-based spectral estimation techniques were discussed and

applied to an inverse filtering process; two of them are well-kwown and widely used:

the conventional autocorrelation and covariance LP. The other two were recently

developed and they are referred to as Stabilised Weighted Linear Prediction and

Constrained Closed Phase Covariance LP. SWLP is suggested for IF since it has the

interesting property of emphasizing the speech samples that typically occur during the

closed phase region. Finally, an automatic system for inverse filtering was described.



42 Chapter 2 Vocal Tract Filter Estimation with Linear Prediction



Chapter 3

Results

In this chapter, we firstly present glottal flow estimates of several vowels of different

frequencies, using the IF techniques described in Chapter 2. Then, parametrization

measures in time and frequency domain are applied on the estimates, in order to

compare and evaluate the performance of different IF techniques. Finally, comments

are presented on both the shape of the glottal flow estimates and the parametrization

measures.

3.1 Glottal Flow Estimates Examples

The database consists of four physically modeled speech waveforms, all vowels (/aa/,

/ae/, /eh/, /ih/), each one in eight different frequencies (105, 115, 130, 145, 205, 210, 230,

and 255 Hz). That is a total of 32 speech signals. For brevity, we present here char-

acteristic examples for each of the five vowels. In each figure (from left to right), we

show first the actual glottal flow waveform, which is encapsulated by a thick-line box.

Then, it follows the estimates using the autocorrelation-based LPC IF technique,

43
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the Stabilized Weighted LPC IF technique with parameter M = 8, the Stabilized

Weighted LPC IF technique with parameter M = 24, the covariance-based LPC IF

technique, and finally the constrained covariance-based LPC IF technique.
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Figure 3.1 Glottal flow estimates for vowel /aa/, fundamental frequency of 105 Hz.

As it can be seen in the figures, the estimated glottal flow waveforms are, in gen-

eral, close to the original one. However, the best fit is achieved by the CP covariance

methods, because of a more accurate extraction of the vocal tract filter during the

closed phase interval. Also, the SWLP24 waveform, which corresponds to the SWLP
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Figure 3.2 Glottal flow estimates for vowel /aa/, fundamental frequency of 145 Hz.

with M = 24, is closer to the original one, compared to the autocorrelation method

of LP.

3.2 Parametrization Results

In order to parametrize our results, the previously discussed time and frequency do-

main measures were applied on the glottal flow estimates. In this chapter, the IF

methods are abbreviated as: WLPC8 stands for Stabilized Weighted Linear Predic-
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Figure 3.3 Glottal flow estimates for vowel /ae/, fundamental frequency of 145 Hz.

tion with STE window of length M = 8, WLPC24 stands for Stabilized Weighted

Linear Prediction with STE window of length M = 24, LPC stands for the con-

ventional autocorrelation Linear Prediction, CovLPC stands for the conventional CP

covariance Linear Prediction and CLPC stands for the Constrained CP covariance

Linear Prediction.
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Figure 3.4 Glottal flow estimates for vowel /ae/, fundamental frequency of 210 Hz.

3.2.1 Signal to Recontruction Error Ratio - SRER

A typical measure in signal processing algorithms is the Signal to Reconstruction

Error Ratio (SRER). SRER is defined as:

SRER = 10log10

(σs[n]
σe[n]

)
)

(3.1)

where s[n] is the obtained glottal flow in our case, e[n] = s[n] − ŝ[n] is the error

between the original and the obtained glottal flow, and σ denotes the corresponding
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Figure 3.5 Glottal flow estimates for vowel /ih/, fundamental frequency of 115 Hz.

standard deviation. SRER is a means to estimate how well the estimated glottal flow

”fits” on the original one. In other words, it is an index of the quality of the pitch

synchronously resynthesized glottal flow waveform.

Table 3.1 shows the mean and the standard deviation of SRER for each IF method

per vowel.

In table 3.1, it is clearly seen that the CP covariance methods outperform the au-

tocorrelation methods in terms of the SRER. However, CP covariance methods shows

a small decrease in performance for the /ih/ vowel. This can be justified by the fact
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Figure 3.6 Glottal flow estimates for vowel /ih/, fundamental frequency of 230 Hz.

that the first formant for the /ih/ vowel is typically low, and LP is known to perform

poor in such cases. This, along with a possible misalignment of the CP interval in

some frames, and the short length of the CP interval for high pitch speakers, causes

severe distortion in certain parts of the synthesized glottal flow, and thus leads to

the decreased SRER value. A clearer picture could be illustrated using a segmental

SRER, while discarding frames where the analysis had poor estimation results.

In table 3.2, the SRER mean and standard deviation for each IF method per fre-

quency is illustrated. Here, it is evident that the performance of all IF methods are
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Figure 3.7 Glottal flow estimates for vowel /eh/, fundamental frequency of 105 Hz.

worse when the pitch increases, and especially in the CP covariance methods, where

the covariance frame becomes too short. In almost all frequencies, SWLP24 SRERs

are higher than conventional autocorrelation LP.
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Figure 3.8 Glottal flow estimates for vowel /eh/, fundamental frequency of 255 Hz.

3.2.2 Normalized Amplitude Quotient - NAQ

For the synthesized glottal flows, the NAQ was estimated for each cycle. In order to

compare the NAQ values of the original and the estimated glottal flows, the ratio of

the NAQ of the actual glottal flow to the estimated one is formed, called NAQrat. The

ratio should be equal to unity when the estimation of the glottal flow has succeeded

perfectly.

Table 3.3 shows the mean and the standard deviation of NAQrat for each IF method
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Vowel WLPC8 WLPC24 LPC CovLPC CLPC

/aa/ 33.5(±2.0) 39.7(±4.5) 36.2(±5.7) 34.9(±9.2) 42.1(±13.1)

/ae/ 32.6(±2.8) 38.3(±3.3) 36.9(±5.2) 37.5(±8.4) 46.1(±6.3)

/eh/ 34.0(±1.9) 38.4(±4.2) 34.0(±4.0) 34.5(±8.2) 43.4(±5.6)

/ih/ 37.3(±1.6) 37.6(±3.1) 33.3(±4.6) 32.2(±9.6) 38.8(±8.0)

Table 3.1 In this table, the mean and the standard deviation of the SRER
value for each vowel (all 8 frequencies) is illustrated. All values are in dB.

Frequency WLPC8 WLPC24 LPC CovLPC CLPC

F0 = 105 Hz 37.1(±0.8) 42.8(±2.1) 40.7(±3.7) 41.1(±2.3) 51.5(±4.4)

F0 = 115 Hz 35.4(±1.9) 40.1(±1.8) 37.7(±2.8) 41.5(±2.3) 50.0(±2.4)

F0 = 130 Hz 34.1(±1.0) 39.2(±4.0) 38.7(±3.4) 42.4(±2.1) 48.8(±3.8)

F0 = 145 Hz 34.0(±2.1) 37.1(±0.7) 37.5(±3.0) 40.7(±1.8) 49.3(±6.2)

F0 = 205 Hz 33.5(±3.8) 38.4(±1.8) 32.7(±2.5) 31.4(±7.3) 36.4(±2.6)

F0 = 210 Hz 34.1(±3.6) 37.2(±3.2) 32.4(±4.0) 28.2(±5.3) 36.3(±6.7)

F0 = 230 Hz 33.2(±3.5) 38.8(±3.9) 30.9(±4.0) 32.3(±9.4) 33.5(±7.3)

F0 = 255 Hz 33.3(±3.0) 34.2(±5.7) 30.0(±4.2) 20.7(±2.8) 35.0(±5.0)

Table 3.2 In this table, the mean and the standard deviation of the SRER
value for each frequency (all 4 vowels) is illustrated. All values are in dB.

per vowel.

In table 3.3, it is evident that SWLP outperforms both the conventional autocor-

relation LP and the CP covariance LP. However, an interesting point in this table

is the fact that the CP covariance waveforms, especially the conventional one, have

NAQrat values that are higher than the others. This comes in contrast with the SRER

index, which clearly showed that, in general, the CP covariance glottal flows are closer

to the original glottal flow than the other estimated flows. Since NAQ is a measure

that depends only on the amplitude values of the waveform and its derivative, even a
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Vowel WLPC8 WLPC24 LPC CovLPC CLPC

/aa/ 1.06(±0.12) 1.10(±0.12) 1.23(±0.13) 1.27(±0.18) 1.21(±0.12)

/ae/ 0.99(±0.11) 1.09(±0.11) 1.25(±0.13) 1.23(±0.10) 1.18(±0.08)

/eh/ 1.05(±0.12) 1.13(±0.12) 1.31(±0.14) 1.25(±0.13) 1.18(±0.11)

/ih/ 1.10(±0.12) 1.14(±0.12) 1.32(±0.14) 1.24(±0.16) 1.17(±0.11)

Table 3.3 In this table, the mean and the standard deviation of the ratio,
denoted as NAQrat, between the NAQ of the actual glottal flow to the NAQ
of the estimated one, for each vowel (all 8 frequencies) is illustrated.

small distortion due to an incomplete estimation of the vocal tract filter in the closed

phase might result in sever amplitude changes on the glottal flow. That is the reason

why NAQ is usually not preffered in the literature when the CP covariance method

is examined [8].

In table 3.4, the NAQrat values per frequency are illustrated. The results show no

significant change depending on the frequency.

Frequency WLPC8 WLPC24 LPC CovLPC CLPC

F0 = 105 Hz 1.03(±0.12) 1.12(±0.13) 1.28(±0.14) 1.33(±0.11) 1.20(±0.10)

F0 = 115 Hz 1.07(±0.13) 1.14(±0.14) 1.36(±0.16) 1.33(±0.13) 1.22(±0.12)

F0 = 130 Hz 1.03(±0.11) 1.10(±0.12) 1.27(±0.14) 1.26(±0.12) 1.19(±0.11)

F0 = 145 Hz 1.01(±0.10) 1.05(±0.10) 1.28(±0.12) 1.28(±0.10) 1.15(±0.10)

F0 = 205 Hz 1.03(±0.11) 1.11(±0.10) 1.23(±0.12) 1.20(±0.22) 1.17(±0.09)

F0 = 210 Hz 1.06(±0.13) 1.15(±0.12) 1.23(±0.14) 1.20(±0.22) 1.14(±0.16)

F0 = 230 Hz 1.10(±0.11) 1.13(±0.12) 1.30(±0.14) 1.18(±0.13) 1.16(±0.10)

F0 = 255 Hz 1.09(±0.11) 1.10(±0.11) 1.28(±0.13) 1.26(±0.25) 1.24(±0.07)

Table 3.4 In this table, the mean and the standard deviation of the ratio,
denoted as NAQrat, between the NAQ of the actual glottal flow to the NAQ
of the estimated one, for each frequency (all 4 vowels), is illustrated.
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3.2.3 H1-H2

For the synthesized glottal flows, the H1-H2 parameter was estimated for a speech

frame of five periods. In order to compare the H1-H2 values of the original and the

estimated glottal flows, the difference of the H1-H2 of the actual glottal flow to the

estimated one is formed, called H1 −H2dif . The difference should be equal to zero

when the estimation of the glottal flow has succeeded perfectly. H1-H2 is an index

for the spectral tilt of the glottal spectrum.

Table 3.5 shows the mean and the standard deviation of H1 − H2dif for each IF

method per vowel.

Vowel WLPC8 WLPC24 LPC CovLPC CLPC

/aa/ 0.61(±0.03) 0.20(±0.03) 0.54(±0.03) 0.20(±0.15) 0.08(±0.08)

/ae/ 0.19(±0.03) 0.18(±0.02) 0.38(±0.01) 0.18(±0.12) 0.07(±0.04)

/eh/ 0.23(±0.03) 0.32(±0.02) 0.44(±0.01) 0.38(±0.15) 0.15(±0.05)

/ih/ -0.16(±0.01) -0.029(±0.01) 0.26(±0.01) 1.10(±0.34) 0.27(±0.15)

Table 3.5 In this table, the mean and the standard deviation of the difference
in dB, denoted as H1−H2dif , between the H1-H2 of the actual glottal flow
and the H1-H2 of the estimated one, for each vowel (all 8 frequencies) is
illustrated.

The data on Table 3.5 shows that the performance of CP covariance methods

outperforms the autocorrelation methods, except for the /ih/ vowel, where the prob-

lem of estimating the formants and the length of the CP length affects the resulting

waveforms. This is consistent with the theory of CP analysis. However, it is not clear

whether SWLP with M = 8 or M = 24 performs better with this criterion. In any

case, they both outperform conventional autocorrelation LP.

In table 3.6, the H1 −H2dif values per frequency is illustrated. Here, the H1 −
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H2dif metric performs worse when the frequency increases, which is expected.

Vowel WLPC8 WLPC24 LPC CovLPC CLPC

F0 = 105 Hz 0.13(±0.03) 0.18(±0.01) 0.20(±0.01) 0.20(±0.04) 0.16(±0.03)

F0 = 115 Hz -0.11(±0.04) -0.02(±0.02) -0.03(±0.02) 0.14(±0.04) 0.07(±0.04)

F0 = 130 Hz 0.05(±0.09) 0.09(±0.01) 0.15(±0.01) 0.19(±0.03) 0.11(±0.02)

F0 = 145 Hz -0.12(±0.01) -0.05(±0.01) -0.07(±0.01) 0.15(±0.03) 0.14(±0.04)

F0 = 205 Hz 0.35(±0.01) 0.25(±0.01) 0.53(±0.01) 0.35(±0.19) 0.11(±0.08)

F0 = 210 Hz 0.54(±0.05) 0.36(±0.03) 0.62(±0.04) 0.56(±0.31) 0.18(±0.14)

F0 = 230 Hz 0.33(±0.03) 0.23(±0.02) 0.52(±0.01) 0.60(±0.31) 0.24(±0.21)

F0 = 255 Hz 0.38(±0.02) 0.28(±0.02) 1.32(±0.01) 2.81(±0.56) 0.35(±0.06)

Table 3.6 In this table, the mean and the standard deviation of the difference
in dB, denoted as H1−H2dif , between the H1-H2 of the actual glottal flow
and the H1-H2 of the estimated one, for each frequency (all 4 vowels) is
illustrated.

3.2.4 Harmonic Richness Factor - HRF

For the synthesized glottal flows, the HRF parameter was estimated for a frame of

five glottal periods. HRF is defined as the ratio, in dB, of the sum of the harmonic

amplitudes above the fundamental to the amplitude of the fundamental:

HRFN =

∑N
n≥2Hn

H1

(3.2)

where H1 is the amplitude of the fundamental andHn are the amplitudes of the higher

harmonics. In order to compare the HRF values of the original and the estimated

glottal flows, the difference of the HRF of the actual glottal flow to the estimated one

is formed, called HRFdif . The difference should be equal to zero when the estimation

of the glottal flow has succeeded. The HRF criterion is an extension of the H1-H2,

illustrating the relationship of the fundamental with the higher harmonics. For the
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calculation of the HRF, the first eight (N = 8) harmonics were included.

Vowel WLPC8 WLPC24 LPC CovLPC CLPC

/aa/ -0.23(±0.02) -0.16(±0.02) -0.45(±0.04) -0.14(±0.16) -0.19(±0.10)

/ae/ 0.12(±0.01) -0.19(±0.01) -0.44(±0.01) -0.04(±0.08) -0.18(±0.05)

/eh/ 0.01(±0.02) -0.24(±0.02) -0.46(±0.02) -0.02(±0.15) -0.08(±0.05)

/ih/ -0.23(±0.01) -0.29(±0.01) -0.53(±0.02) 0.09(±0.15) -0.03(±0.09)

Table 3.7 In this table, the mean and the standard deviation of the difference
in dB, denoted as HRFdif , between the HRF of the actual glottal flow and
the HRF of the estimated one, for each vowel (all 8 frequencies) is illustrated.

Table 3.7 shows the mean and the standard deviation of HRFdif for each IF

method per vowel. It is evident that CP covariance techniques outperforms the auto-

correlation methods, thus proving that the vocal tract estimation in higher formant

regions is more accurate when an accurate CP analysis is applied on the speech sig-

nal. In addition, the SWLP method provides better results than the conventional

autocorrelation LP.

In table 3.8, theHRFdif values per frequency is illustrated. It is interesting to note

that, except for the constrained CP covariance method, all other methods perform

worse when the frequency increases.

3.3 Summary

In this chapter, the resulting waveforms of the IF techniques were parametrized using

well known measures in time and frequency domain. The prevalence of the covariance

methods is depicted, although the required analysis for this method has certain issues,
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Frequency WLPC8 WLPC24 LPC CovLPC CLPC

F0 = 105 Hz -0.024(±0.003) -0.119(±0.003) -0.180(±0.003) -0.112(±0.03) -0.098(±0.03)

F0 = 115 Hz -0.033(±0.006) -0.096(±0.006) -0.195(±0.008) -0.129(±0.025) -0.093(±0.03)

F0 = 130 Hz 0.041(±0.008) -0.118(±0.007) -0.297(±0.005) -0.133(±0.036) -0.107(±0.032)

F0 = 145 Hz 0.019(±0.004) -0.122(±0.004) -0.382(±0.007) -0.165(±0.028) -0.078(±0.025)

F0 = 205 Hz -0.086(±0.017) -0.288(±0.017) -0.630(±0.019) 0.106(±0.243) -0.154(±0.108)

F0 = 210 Hz -0.224(±0.032) -0.427(±0.042) -0.669(±0.061) -0.118(±0.258) -0.143(±0.140)

F0 = 230 Hz -0.202(±0.037) -0.335(±0.034) -0.712(±0.041) 0.072(±0.223) -0.015(±0.167)

F0 = 255 Hz -0.152(±0.033) -0.276(±0.042) -0.711(±0.046) 0.272(±0.267) -0.288(±0.097)

Table 3.8 In this table, the mean and the standard deviation of the difference
in dB, denoted as HRFdif , between the HRF of the actual glottal flow and
the HRF of the estimated one, for each frequency (all 4 vowels) is illustrated.

such as the accurate identification of the closed phase region. However, it is interesting

that the IF method based on SWLP with M = 24 performs better, in general and

given a long enough analysis window, than the conventional autocorrelation method.
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Chapter 4

Conclusions

4.1 Summary of Findings

In this thesis, an evaluation of inverse filtering techniques for reliably estimating the

glottal flow waveform directly from speech, and to quantify the quality of the es-

timated glottal flows using parametrization measures. The volume velocity airflow

through the glottis, called the glottal flow, is the source for voiced speech. Previous

studes have shown the importance of the glottal flow in several areas of speech sci-

ences.

Four different techniques were examined in this thesis, all of them based on linear pre-

diction analysis. Two of them are widely used in the literature, and they are based on

autocorrelation and covariance method of linear prediction. The covariance analysis

was restricted inside the closed phase region of the glottal cycle. Also, two recently

developed LP techniques were introduced: Stabilized Weighted Linear Prediction and

Constrained Closed Phase Covariance Linear Prediction. SWLP, which was recently

suggested for robust vocal tract filter extraction in noisy conditions, computes the

all-pole model by imposing temporal weighting of the square of the residual signal.

59
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This is achieved by using STE as a weighting function. Thus, samples that fit the

underlying speech production model well are emphasized. The performance of SWLP

in inverse filtering depends on the length of the STE window. This property makes

it interesting for IF, and it was our motivation for using it. The Constrained CP

Covariance LP is a modified CP algorithm based on imposing certain predefined val-

ues on the gains of the vocal tract inverse filter at angular frequencies of 0 and/or π

in optimizing filter coefficients. With these constraints, vocal tract models are less

prone to show false low-frequency roots.

A major problem in assessing the performance of IF techniques is the lack of direct

comparison of the estimated glottal flow waveforms with the actual glottal flow, since

the latter is can be obtained only with special equipment and in an invasive man-

ner. To this direction, the performance of the discussed techniques is evaluated on

a database of speech signals which are produced by physical modeling of the human

voice production system. In this way, both the glottal airflow signals and the speech

pressure signals are available and direct comparisons can be made. Several frequen-

cies of different vowels were produced and compared to the inverse filtered estimates.

The glottal flows were estimated in a pitch synchronous manner using a system for

inverse filtering. The system inverse filters each waveform using all diefferent LP

methods, and synthesizes the glottal flow estimate. For CP analysis techniques, the

CP interval was determined using a statistical technique, which eliminates dependence

on a particular type of frequency modulation, and allows the algorithm to adapt to

the degree of glottal closure. In order to compare the resulted glottal flow waveforms

with the original one in a qualitative way, time and frequency domain parametrization

measures were used. In time domain, the Normalized Amplitude Quotient and the

Signal to Reconstruction Error ratio was used. In frequency domain, the difference

in dB between the first two harmonics (H1-H2), and the Harmonic Richness Factor
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were used.

Inverse filtering experiments showed that SWLP outperforms the conventional au-

tocorrelation LP for a large STE window in our IF system, and shows comparable

performance to the covariance based methods. However, the prevalence of the covari-

ance methods, when the CP region is accurately estimated, is obvious, as expected.

4.2 Suggestions for Future Work

The results of this work demonstrate the different LP-based vocal tract filter estima-

tion techniques, and their effect on inverse filtering. It was shown that robust and

accurate vocal tract filter estimation is crucial in the process of inverse filtering.

The use of more sophisticated all-pole models for inverse filtering could be used, such

as Discrete All-Pole Modeling (DAP) [20]. DAP tries to fit the all-pole model using

only the finite set of spectral locations that are related to the harmonic positions

of the fundamental frequency. Through DAP, it is possible to obtain estimates of

the formant frequencies that are less biased by the harmonic structure of the speech

spectrum. The DAP model uses the discrete Itakura-Saito (IS) error measure and the

optimisation criterion is derived in the frequency domain, where the error function

reaches the minimum only when the model spectrum coincide on all discrete points.

Moreover, the DAP method tries to maximise the error flatness. This could be use-

ful fow high pitch speakers, as in female speech, where the bias of the low formant

frequencies is more intense.

A further problem is that if the order of the original LP method is increased, then

the corresponding envelope overestimates the original voiced speech power spectrum.

This means that the LP envelope is resolving the harmonics and not the spectral enve-
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lope. The Minimum Variance Distortionless Response (MVDR) method [49] provides

a smooth spectral envelope even when the model order is increased. In particular, if

one chooses the proper order for the MVDR method, the all-pole envelope obtained

models a set of spectral samples exactly.

In the same sense, nearly any vocal tract filter estimation technique can be used in

order to examine how well the effect of the vocal tract filter can be cancelled on a

speech signal.

Finally, since the CP covariance method is the prevalent method for inverse filtering

and a major problem is the accurate identification of the closed phase, the presented

database can be useful in this direction. The closed phases for each phoneme are

available and a direct comparison of the performance of several CP identification al-

gorithms can be made.

On the parametrization of the glottal flow, the LF model could be used to parametrize

both the estimates and the original glottal flow. Since there can be either time or

frequency domain LF-parametrization, a more robust framework of ”similarity” be-

tween glottal flow waveforms can be established, along with the measures described

in this thesis. Also, the accuracy of quotients or spectral parameters is deteriorated

when the glottal flows are severely affected by noise. The LF model can alleviate this

distortion caused by instantaneous noisy peaks of the flow, especially in the case of

NAQ, where the amplitude values of the glottal flow and the flow derivative may be

distorted. Finally, both time and frequency domain metrics that were discussed here

do not take into account the presence of a ripple component in the closed phase, an

event that happens when there is incomplete cancelling of some of the higher formant

by the inverse filter. Alternatively, this component might be explained by the exis-

tence of nonlinear coupling between the source and the tract, which cannot be taken
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into account in any analysis based on linear modeling of the voice production system.

In the direction of evaluating the performance of IF, it can be suggested that a

more detailed simulation of the physical model of the human voice production system

will reveal properties and details that are unknown so far. The database selected for

the experiments in this thesis consists of signals that are produced by a simplified

but physically-motivated representation of a speaker. A problem is that these vowels

sound ”unnatural”. An interesting approach is the ”3D Vocal Tract Project” [74],

which is a three-dimensional vocal tract model for articulatory and visual speech syn-

thesis developed within CTT, the Centre for Speech Technology, KTH Royal Institute

of Technology, Sweden. An ideal physical model would provide realistic waveforms in

several midpoints of the vocal tract, such as near the glottis, inside the oral cavity,

and at the lips.

Furthermore, since the area of Voice Care has shown increased interest in non

invasive methods of extracting the glottal flow waveform, it would be interesting to

implement a real-time system of glottal inverse filtering. Recently, a real time voice

pathology detection system based on pitch estimation and short time jitter estimator

was implemented [12]. This system was implemented in Pure Data (PD), which is

a real-time graphical programming environment for audio and graphical processing.

This worked is also based on short time speech analysis, as in the IF system described

in this thesis, and showed that a real time approach in speech analysis is both efficient

and accurate. In addition, the algorithms embedded in the IF system are low in

computational cost, a fact that supports an effort for a real time approach.
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