The Cascaded Predictor:
Economical and Adaptive Branch Target Prediction

Karel Driesen and Urs Holzle
Department of Computer Science
University of California
Santa Barbara, CA 93106
{karel,urs}@cs.ucskedu
http://www.cs.ucskedu/oocsh

Two-level predictors improve branch prediction accu-
racy by allowing predictor tables to hold multiple
predictions per branch. Unfortunately, the accuracy of such
predictors isimpaired by two detrimental effects. Capacity
misses increase since each branch may occupy many entries,
depending on the number of different path histories leading
up to the branch. The working set of a given program there-
fore increases with history length. Smilarly, cold start
misses increase with history length since the predictor must
first store a prediction separately for each history pattern
before it can predict branches with that history.

We describe a new hybrid predictor architecture,
cascaded branch prediction, which can alleviate both of
these effects while retaining the superior accuracy of two-
level predictors. Cascaded predictors dynamically classify
and predict easily predicted branches using an inexpensive
predictor, preventing insertion of these branchesinto amore
powerful second stage predictor. We show that for path-
based indirect branch predictors, cascaded prediction
obtains prediction rates equivalent to that of two-level
predictors at approximately one fourth the cost. For
example, a cascaded predictor with 64+1024 entries
achieves the same prediction accuracy as a 4096-entry two-
level predictor. Although we have evaluated cascaded
prediction only onindirect branches, we believe that it could
also improve conditional branch prediction and value
prediction.

1. I ntroduction

Indirect branches occur frequently in some programs of
widely used benchmark sets dikthe SPECIint95 suite,
although thg remain less common than conditional
branches. Hwmever, indirect branches are much more
frequent in object-oriented languages. These languages
promote a programming style in which late binding of
subroutine imocations is the main instrument for clean,
modular code design.idual function tables, the implemen-
tation of choice for most C++ andvdacompilers, ecute an
indirect branch for eery lately bound call. The C++
programs studied herexexute an indirect branch as
frequently as oncevery 50 instructions; other studies
[CGZ94] hare shavn similar results. @ programs (where
all non-static calls are virtual) aredily to use indirect calls
even more frequently

Even today indirect branch misses can cause significant
overheads. Thewerhead of virtual function calls in C++
programs on superscalar processors withgel&TB is as
high as 29% [DH96]. SimilarlyChang, Hao, anda® shaov
that for the SPECIint95 prograrpsrl andgcc the indirect
branch eerhead is approximately 15% and 8% with a BTB
[CHP97].

Two-level path-based prediction can reduce the indirect
branch @erhead considerahlgompared to standard BTBs
[DH98]. Unfortunatelythe impraed accurag comes at the
cost of much lager prediction tables. df example, to
achiese a prediction accurgof 90%, a path-based dalevel
predictor requires a table with 1084tries.

We describe a new predictor architecture, cascaded
branch prediction, which dynamically classifies branches

Indirect branches, which transfer control to an addressnto “easy” and “hard” branches and uses a simple BTB to

(recently) loaded into a gester are hard to predict accu-
rately Unlike conditional branches, thean hae more than

handle the easy cases, preventing insertion of these branches
into the more powerful second stage predictor. Cascaded

two tagets, so that prediction requires a full 32-bit or 64-bit Predictors improve upon two-level and hybrid predictors by

address rather than just a “éak or “not talen” bit. Further-

using a different update rule, significantly reducing the table

more, their behdor is often directly determined by data Size needed to achieve a given accuracy. For example, a
loaded from memorysuch as virtual function pointers in cascaded predlctor with a total of 288 predICtlon table entries

Object-oriented programs written in |anguages such as C+-aChieveS virtually the same prediCtion accuracy as the stan-

and Jaa.

dard1024entry two-level predictor above.

MICRO-31, Dallas, TX, December 1998

S .g I R I R active
—_— 2 | lines of | # of indirect § E c:_\u i % % % % branches
Name Description % code | branches E S| 2 }..EJ % g o g < | 8
idl | IDL compiler® 00 13,900, 1,883,641 47 6/ 93.2| 3.2| 3.6//97.1| 0.1] 2.8|| 70| 543
jhm JHMP 6-12M 00 15,000, 6,000,00(47 5/193.6| 1.2/ 5.2||58.7| 1.4| 39.9| 34| 155
self| Self-93 VM: 5-6M (e]e) 76,900 1,000,00C 56 7/ 76.0) 4.4| 19.6/| 40.1| 31.6| 28.3]| 848, 185
5
xlisp| SPEC95 Cc 4,700, 6,000,00¢ 69| 11| 0.0/ 0.1} 99.9|38.9] 9.0/ 52.1 4| 13
troff | GNU grof 1.09 00 19,200, 1,110,592 90 13)| 73.7| 12.5| 13.8|| 41.9| 13.6| 44.5| 61| 161
Icom| HDL® compiler 0OO| 14,100, 1,737,751 97| 10| 63.2| 36.8/ 0.0|| 33.5| 54.0| 12.5| 87| 328
AVG-100: instr/indirect < 100 23,967| 2,955,331 68 9| 66.6| 9.7| 23.7|| 51.7| 18.3| 30.0| 184| 509
perl| SPEC95 C 21,400 300,000 113] 17|| 0.0| 31.7| 68.3)| 41.2| 0.0/ 58.8 7| 24
porky scalaroptimizé’r 00| 22,900 5,392,890 138 19| 70.6| 23.8/ 5.6/ 15.6] 8.1| 76.3]] 89| 285
ixx | IDL parsef 00 11,600 212,035 139) 18| 46.5| 52.2| 1.3||37.1) 6.4| 56.5| 91| 203
edg| C++ front end C| 114,300 548,893 149| 23|| 0.0| 62.4| 37.6/| 7.9| 29.6| 62.5/| 186| 350
eqgn| equation typesetter (e]0) 8,300 296,425 159| 25|/ 33.8| 66.2| 0.0] 4.2| 37.8| 58.0| 58| 114
gcc| SPEC95 C| 130,800 864,838/ 176| 31| 0.0| 31.5| 68.5| 0.8] 1.7| 97.5| 95| 166
beta] BETA compiler 00 72,500, 1,005,995 188| 23|| 0.0) 2.3] 97.7| 18.7| 28.1| 53.2|| 135| 376
AVG-200: 100 < instr/indirect < 200 54,543 1,231,582 152| 22|| 21.6| 38.6| 39.9|| 17.9| 16.0| 66.1| 94| 217
AVG: instr/indirect < 200 40,431 2,027,158 113| 16|| 42.4| 25.3| 32.4|| 33.5| 17.0) 49.5| 136/ 352
AVG-0O0: 0O, instr/indirect < 200 28,267 2,071,037| 107| 14| 61.2| 22.5| 16.3|| 38.5| 20.1| 41.3|| 164| 447
AVG-C: C, instr/indirect < 200 67,800, 1,928,433 127| 21|| 0.0| 31.4| 68.6 22.2| 10.1| 67.7]| 73| 138
m88ksim SPEC95 C| 12,200 300,000; 1827 233| 0.0| 46.2| 53.8| 2.9| 10.3| 86.8 5 17
vortex | SPEC95 C| 45,200, 3,000,000 3480, 525/| 0.0 30.7| 69.3| 23.1| 16.9| 60.0, 10, 37
ijpeg | SPEC95 Cc| 16,800 32,975| 5770, 441 0.0/ 97.8| 2.2/ 96.7] 3.2| 01| 7| 60
go| SPEC95 C| 29,200 549,656| 56355/ 7123| 0.0| 99.0 1.0 0.2 0.0| 99.8 5 14
AV G-infreq: instr/indirect > 200 25,850 970,658 16858 2081| 0.0| 68.4| 31.6| 30.7| 7.6/ 617| 7, 32
Table 1. Benchmarks and commonly shio averages (arithmetic means)
a8 SunSoft ersion 1.3 branches during a complete ruragéthey the benchmarks
b Java High-level Class Modifier representeer 500,000 non-comment source lines.
Z hardware description languagempiler All C and C++ p_rogram_sxaaeptself1 were compiled wifch
. SUIF 1.0 _ GNU gcc 2.7.2 with optionsO2 -multrasparc plus: static
Fresco X11R6 library linking (required byshade) and run under thshade instruc-
tion-level simulator [CK93] to obtain traces of all indirect
2. Benchmarks branches. Procedure returns wexeleded because thean

be predicted accurately with a return address stack [KE91].
Our main benchmark suite consists ofgtarobject- All programs were run to completion or until six million indi-
oriented C++ applications ranging from 8,000 ¥ero75,000 rect branches wereecuted? Injhmandself we excluded the
non-blank lines of C++ code each (sebl€1), andbeta, a
compiler for the Beta programming language [MMN93],1 sdf does not xecute correctly when compiled with -O2 andsathus
written in Beta. V@ also measured the SPECint95 benchmarkompiled with “-O” optimization. Alsoself was not fully statically linkd;

suite with the eception ofcompress whichexecutes only 590 our eperiments eclude instructions >ecuted in dynamically-lindd
libraries.

initialization phases by skipping the first 5 and 6 million indi-in the table entry Alternatvely, a tagless table simply
rect branches, respealy. shortens thedy pattern by discarding the high-order bits.
For each benchmarkablel lists the number of indirect BTBs may mispredict for seral reasons @ble2).
branches xecuted, the number of instructionseeuted per Compulsory missegccur the first time a branch is encoun-
indirect branch, the number of conditional brancheseted teredMisprediction missesccur when the branch is found in
per indirect branch, and the source of the indirect branchdke predictor table ui the predicted tget is incorrect. &r
(switch statements, virtual function calls, or indirect functionideal BTBs, with full-precision addresses and unlimited, fully
calls). It also shws the percentage of indirect brancie®i- associatie prediction tables, misprediction misses occur
tions that correspond to the branch classes used in s8¢tion25% of the timeCapacity missesccur when the prediction
as well as the number of branch sites responsible for 99%pom the current branchas &icted from the table by a more
and 100% of the branchxecutions. Br example, only 5 recently &ecuted branchConflict missesoccur when the
different branch sites are responsible for 99% of the dynamiable is not fully associat and an entry is/eted by another
indirect branches igo. The SPECint95 programs are domi- branch with the same inddi.e., a conflict miss is lk a
nated by ery few indirect branches, with less than ten capacity miss, it it is the size of the associaty set that is
interesting branches for all program&eptgcc Four of the the limiting factor). In this study we use associdyi sets of
SPEC benchmarksecute more than 1,000 instructions persize four unless mentioned otherwiser & table with 256
indirect branch. Since the impact of branch prediction will beentries (64 associatty sets of size four), most BTB capacity
very low for the latter four benchmarks, wactude them and conflict misses disappear
when optimizing predictor performance. Most results welo

refer to the G misprediction rate, i.e., theverage of all Miss cause Summary contrikution to overall
benchmarks with fger than 200 instructions between indi- BTB misprediction
rect branches (sealilel). rate
Compulsory |First branch gecution negligible
3. Background (no taget)
Misprediction | Target is wrong 25%
Before discussing cascaded predictors, we briefligne Capacity |Tamget got gicted negligible
path-based terlevel indirect branch predictors [DH98] and for >256 entries
categyorize the difierent sources of misprediction for indirect Conflict | Tamget got gicted from negligible
branches. associatiity set for associatiity 4
Pattern Key pattern not precise enough negligible
3.1 Branch Target Buffers (BTB) Interference for 24-bit pattern

The simplest design for indirect branctyetrprediction is Table 2. Indirect branch misprediction causes for a BTB
a Branch amget Bufer (see Figurd). Its uses a selection of
bits of the current branch address thategls ady pattern Finally, apattern interfeence missesults from the projec-
into a table that stores the most recently olexbrtaget for tion of a full-precision address to the reduced siae it
the pattern. If thedy pattern is longer than needed to ixde pattern (some branches may project to the sameédttern).
all entries of the table (as is dily with the 24-bit pattern For our benchmark suite, using the 2d/ést order bits of the
shovn abae), the laver-order bits of the pattern are used tobranch address dides to eliminate all BTB pattern
index into the table and the high-order bits are stored as tagsterference.

3.2 Two-level path based predictors
Unlike a BTB, a tw-level predictor [YP91] can store

Branch Target Buffer

Address Bit Selection Taget Table more than one tget for each branch. It does this by
constructing a & pattern from the tgets of recently
24-bit key patter executed branches leading up to the current branch. After
BWHW prediction combination with the branch address, this patterresess a
key to lookup the most recent ¢t in a prediction table.

Since we are westigating indirect branch prediction, our

Figure 1. Branch Tuget Bufer. Address bits of a branch are us ~ Predictors use bits from the gat addresses of pieus

to access a Predictiomfile that stores the most recently obeet ~ Pranches rather than the éaknot takn history bits
target addresses. commonly used in conditional branch predictiore ¥¥low

Nair's terminology [Nair95] and call thigath-based padic-
2 We reduced the traces of three of the SPEC benchmarks in order to redJ&gn- Thepath IengtI’Df a two-level predlctor is the number of

simulation time. In all of these cases, the BTB misprediction rafrsity ~ recent tagets incorporated in thesk pattern. Figur@ shavs

less than 1% (relatt) between the full and truncated traces, and thus wea two-level predictor of path length three. A 24-bit global
believe that the results obtained with the truncated traces are accurate.

constitute 6% of all branchesut are &ecuted only 34% of

Pattern projection Target Table the time. V& diided polymorphic branches (branches with

Global History Bufer more than one tget) into tw classes. 18% of all branches
jump to two tagets, for 17% of all branchxecutions.
prediction Branches with three or more gats constitutel5% of all

branches bt are eecuted 49% of the time.

Figure3 shavs AVG misprediction rates per branch class
Figure 2. Two-level predictor of path length 3. The pattern prc ~ and path length. (Recall tha¥/& includes all benchmarks
tor constructs ady by concatenation of 8 bits of the most rece except those »xecuting indirect branchesery infrequently
obsered indirect branch tgets, xored with the current bran see HAblel). We first discuss monomorphic branches, which
address. Thisdy pattern is used to access the table, as in a B are perfectly predicted by a BTB. Longer path lengths

history huffer stores 8 bits each from the three most recerif!créase the number of mispredictions sineerg different
indirect branch tayets (unless mentioned otherwise, all pathpath Igadlng to t.he. branch causes an |.n|t|al miss. Teude
based predictors in this paper use a total path length of ¥t missesare similar to compulsory missesitioccur once
bits). The lover-order branch address bits are-gdrwith this 10 €ach pattern, instead of once per branch. As the path
pattern, resulting in a 24-biek pattern. Wo-level predictors ~ 1€Ngth gravs, so does the number of cold start misses
with longer path lengths usenfer bits of each tget address, [ncurred for monomorphic branches. Since monomorphic
so that the length of the pattern remains constaot. F Pranches occyp multiple table entries, capacity misses
example, a path length 6 predictor uses 4 bits from eagéttar NCrease as a secondarfeet. . .
address. Note that a owevel predictor with path length 0 [N contrast, branches with aatagets benefit from history
reverts to a BTB. The 24-bitey pattern is used, as in a BTB, and hae an optimal path length of tycausing fe mispre-

to access the prediction table (Histogb or Brget Cache dictions. The blk of mispredictions comes from branches
in [CHP97]) by splitting it into table indeand tag as with three or more tgets, which are best predicted with path

explained in the préous section. length three (for 1K-entry tables).
A two-level predictor su€rs from the same misprediction

Branch Address

causes as a BTBybto a diferent ectent. Compulsory misses | Miss cause Summary contritution to averall
remain the same, since yhenly depend on the branch trace. misprediction rate

Only few pattern interference misses occur due to reduced Compulsory | First branch gecution negligible

precision of taget addresses, and conflict misses become (no taget)

negligible with 4-way associate tables (data not sivo for Cold start | First time patternis |small, increase with path length
space reasons)_ encountered (no tget)

Capacity misses are afdéifent matterThe number of table | Misprediction | Target is wrong 5.8%, for optimé path length 6
entries stored per branch is proportional to the number of capacity |Tamet got eicted large, increase with path length
different paths leading up to the branch. Where a path length™ conflict | Tamet got sicted from| negligible for associatity 4
0 predictor (BTB) stores one entry faregy branch, a longer associatiity set
pat_h length predictor stores an_ entry f_me@ taget combi- .| Pattern Key pattern not precise negligible for 24-bit pattern
nation that leads to the branch in a entire program run. This is interference |enough

exactly what maks two-level predictors wrk well: if the

target pattern in the historyulfer correlates with the current

branch taget, a tvo-level predictor captures this correlation ~ *forafully associatie, unlimited prediction table (see [DH98))

by storing a diferent taget address for each pattern. Unfortu-

nately longer path lengths can actually reduce prediction o 14%-] —o— 1target

accuray by inflating capacity misses; each branch needs a§ — 2targets
—o—

Table 3. Indirect branch misprediction causes for 2elepredictor

larger number of entries (one for each path), and the numberng%’
of paths increases with path length. 9 10%-

> 2 targets
total

—
3.3 Branch classes S 8%
To better understand the remaining miss causes (mispre-‘LG 6%
. . 4%-|
number of diferent tagets encountered in a program run, or ’
brancharity. Thearity of each branch as determined in a
separate profiling run, and a subsequent simulation produce
prediction data for each class of branches. o d Mo ~ooo o ua
After some &perimentation, we chose to form three History Path Length

classes: one tget, two tagets, and more th,an omagets. Figure 3. Misprediction rates for a 1K-entry 4ay associatie
Branches with only one et (monomorphic branches) pregiction table

sprediction

2%

o

0%

The difering behsior of these branch classes can be The main diference to xisting hybrid predictors lies in
exploited to achiee better prediction with a classifying the handling of table updates. If the first-stage predictor
hybrid predictor which uses d#rent component predictors predicted the branch correctlye do not allv the second-
for the diferent classes. In particujaif monomorphic stage predictor to createaw entry for the branch. Reever,
branches were predicted with a BTB andereentered into a if the entry is already present, thegetris updated if neces-
more &pensve path-based predictdhe load on the second sary alloving patterns already obsexd to require second-
table could be significantly reduced (thuswvéming its stage prediction to continue to be updated. In contrast, the
capacity misses as well). A simpleperiment with a ipo- first-stage predictor is\&hys allaved to update its table.
thetical classifying predictor confirms this intuition: fom, We look specifically at the case where the first-stage
a 256-entry predictor predicting all branchepeariences a predictor is a BTB, i.e., does not emplbistory A BTB
table miss rate of 2.3%ubthis miss ratedlls to 0.9% if stores at most one entry per branch, whicficas for mono-
monomorphic branches are revad. The net section morphic branches. Non-monomorphic branches are better
discusses a practicalay to eploit this efect with dynamic predicted by a longer path length predictas shan in
target-based classification (i.e., requiring no separateection3, and such branches will ahce to the second stage
profiling run, compiler changes, or changes to the instructioof the predictor cascade.

set architecture). We examined tvo variants of cascading predictors. Predic-
tors with astrict filter only allov branches into the second-
4. Cascaded pediction stage predictor if the first-stage predictor mispredicts ¢etar

prediction is present in the tablatht is wrong). In other

A cascaded pdictoris similar to a tw-level predictor t ~ Words, branches only aauce to the second stage ifytrare
uses a more sophisticated update rule. It classifies branchgvably non-monomorphic. A strict filter thus pests
dynamically by observing their performance on a simple firstcompulsory misses in the first stage from causingereries
stage predictorOnly when this predictorafls to predict a in the second stage. In contrasiealy filter also allavs nev
branch Correct|y iS a more werfu| Second_stage predictor Second-stage entries on ﬁrSt'Stage table misses. ThUS, the
permitted to store predictions forwly encountered history Second-stage table may contain one entry for each monomor-
patterns of that branch. By memting easily predicted Phic branch.
branches to occypprediction table space in the second-stage o
predictor the first-stage functions as a filtBy filtering out ~ 4.1 Strict filters

easily predicted branches, the first-stage predictorepte Successful prediction in the filter classifies a branch as
them from eerloading the second-stage table, therebynonomorphic (if only temporarily). If a branch misses in the
increasing its ééctive capacity andwerall prediction perfor- fiiter predictor nothing conclusie is knavn: every branch
mance. As a result, the second-stage predscmediction jncurs a compulsory table miss in the fileen if it is purely
table space is used to predict only those branches that actuaiipnomorphic. @ prevent compulsory misses of the filter to
need history-based prediction. pass through to the second-stage predicttict filtering
Figure4 shavs the prediction and update scheme for &jjsallans nev entry insertion in the second-stage predictor on
cascaded predictorf. both predictors hae a prediction, the 3 table miss (@ it passes omispedicted branches). @
second-stage predictor &k precedence. Therefore, theimplement this strict filter design, the filtertable must be
second-stage predicterprediction table must he tagged associatie (i.e. it must check for pattern equality using tags).

entries, so that table misses can be detected. Figure5 shavs the misprediction rates for three selected
second-stage predictors (each with optimal path length for its
Branch Brget Update size). W also shw the misprediction rate of a cascaded
m— predictor without filtering. Esn without filtering, the first-
¥ stage predictor reducesarall misprediction rates compared
% First-stage predictoF to the stand-alone predictor (sho as filter size 0) by

providing an educated guess in the case of a table miss in the
second-stage predictoin other vords, a staged predictor

L , consisting of a BTB and a path-based predictor reduces cold-
Branch ; N\ L/ Predict rule : . s
Address aggtﬁéluggt?;eofrﬂ'yei . use second start misseswen without filtering.
I

stage if no

— Strict filters do not perform well for small filter table sizes.
table miss

For 16 entries or less\verall misprediction rates areven
higher than that of the stand-alone predicEssentially a
strict filter predictor recognizes branches as non-monomor-
L phic only if the branch remains in the filter table long enough
ﬁ Second-stage Pfedic#’l to incur a taget change (and thus a misprediction). But with
small filters, map branches are displaced from the filter
Figure4. Cascaded predictor before thg mispredict, and thus thenever enter the second

first-stage predictio
incorrect

Prediction

stage. When the filter becomesgarenough toweid most misprediction rate is only slightly better than that of a strict
capacity misses, thisfett disappears and filtering starts to filter (not shevn in the figure).

pay of. At 256 entries, strict filtering performs as intended, Table4 shavs the best path length and misprediction rate
i.e., it presents monomorphic branches frowedoading the for cascaded predictors with second stage-lwvel predic-
second-stage predictaesulting in lever misprediction rates tors. Ewen \ery small BTB filters increase the fedtive

than those of a non-filtering staged predictor capacity of the second-stage table,aiig it to accommo-
date longer paths without incurringxtensve capacity
4.2 Leaky filters misses. Br example, a 16-entry filter reduces the mispredic-

tion rate for all second-stage sizes to helthat of a
serious flav; the performance of a filtered predictor Shomdmonopredmtor with twice the number of entries and uses the

remain at least as good as that of a stand-alone second-st& Iefr;gth IOf a mor&opredicto:jt_hgt is four tibn;‘egﬁam 6f4'
predictor To prevent filter capacity miss problems, a lgak €'Y llter lavers the misprediction rate balothat of a

filter inserts an entry into both predictors upon a first-staggwnc’pred'Ctor four times as g, and for all table sizes

table miss. That is, only correctly predicted branches argmaller than 1K entries, end that of a dual-pathybrid

: o dictor of twice the size.
stopped by the filtehus, gery branch is introduced at least P"® : _
once into the second-stage predicbott filtering still occurs We also studied cascaded predictors that use dual-path

for later xecutions of the same branch: as long as the branéﬁ'b.rid predi_ctor_s (see [DH9.8]) in the second stage, r_:mtici—
remains in the filter table and doesmiispredict, no further P2ting that filtering wuld agin reduce second-stage misses
second-stage entries will be permitted. If the load on th nbdl aII_(w Igl)_nger patr? Ieggtﬂs.g? each ;'Itlered:b”d ?f f
second-stage predictor table is high, the compulsory entri §betds'zed’. we S”T‘ﬁ atebl the ezs_lt_ pa'é 4_(;:ngt couples o
for monomorphic branches willventually be displaced by ybrid predictors with table sizes 2T an

entries for non-monomorphic branches. Ledkters are The resulting impreements were equally pronounced
cheaper to implement than strict filters: since a mispredictioh@P€2)- Again, filtering reduces the misprediction rate and
and a table miss is treated the sarag (nav entry in second- Increases the best pqth Iength choices for each table size.
stage table), the filtering predictor can use a tagless table. TH&1€reas dual-pathybrid predictors need at least 1024 table

second-stage predictor still needs tags in order to reco nizeeﬂtries to ach'ma mi.spred_iction rates be_yiog%, a filtered_
table miss.g P g g dual-path lgbrid attains this threshold with only 544 entries

: . 32-entry filter BTB plus 512-entry dual-pathylnid).
Figure6 shavs the performance of lepfilters. Exen for (.) .)
very small filters, the filtering &fct is pronounced and Addlng an S—gntry filter to a 1K-entryhrid predictor |GNeI’S'
improves misprediction rates compared to a non-filteringtS MiSPrediction rate from 9.0% to 8.2%. A 128-entry filter
cascaded predictorFor example, a 32-entry BTB filter educes this to 7.5%. Across all table sizes, cascaded predic-

improves the misprediction rate of a 256-entry monopredicto©" reéduces table size by roughlyaator of tvo.
from 11.7% to 10.7%. Filtering still helps/@n with \ery Figure7 shavs AV/G misprediction rates for selected

large (4K) predictors, reducing mispredictions by aboutprediction §cheme§oFaII schemes and table siz_es, filtering
0.5%. For lamge filters 01,‘ 256 entries or more, the lgéiker's reduces misprediction raterRables of 512 entries or less,
R ' the resulting misprediction rate of filtered monopredictors is

equal to or laver than that of filtered dual-patltirid predic-

The sensitiity of strict filters to capacity misses is a

15% 15% .
— nofilter-256 — nofilter-256
14% 14% .
—— nofilter-1K —— nofilter-1K
13%- 13%-| ,
—e— nofilter-4K —o— nofilter-4K
L 12% L 12%
© —a— strict-256 < —=— |eaky-256
= 11% = 11%
2 —— strict-1K 2 —— leaky-1K
B 10%-) 5 10%-
B —e— strict-4K 3 —o— leaky-4K
5 9% 5 9%+
2 %)
S 8% S 8%
7% 7% \Eﬁ%
6% 6%
5% T T T T T T T T T 50/0 T T T T T T T T T
- N R R
Filter table size Filter table size
Figure5. Misprediction rates, cascaded predictor with strict fi Figure 6. Misprediction rates, cascaded predictor with jefilker
Second-stage predictor table size is 256, 1K and 4K entries; both pi Second-stage predictor table size is 256, 1K and 4K entries; both pr
tables are 4-ay associatie. Also shwn is a cascaded predictor with tables are 4-ay associatie. Also shan is a cascaded predictor with
filtering. filtering.

Second Best P per filter table size Miss% per filter table size

size

64 1 2] 2| 2| 2| 2| 2| 2| 2|| 19.8 18.6| 17.4| 15.8 14.7| 13.7| 12.7| 12.0, 11.7| 19.8
128 |1 2| 2| 2| 2| 3| 3] 3| 3| 17.0 14.8/ 14.1) 13.3 12.7) 11.9 11.1] 10.5 10.3] 16.7
256 |2 2| 2| 3| 3| 3] 3] 3| 3| 13.7| 12.3] 11.9| 11.3] 10.7| 10.2| 9.7 9.2 9.0| 13.3
512 |2 | 3| 3| 3| 3| 3| 3| 3| 3| 11.3 10.21 9.7| 9.3] 89 87 84 81 8.0 109
1024 |3 | 3| 3| 3| 4 4 4| 5| 5| 9.8/ 86| 84| 82 80 7.8 7.6 7.4 73 90
2048 |3 | 4| 4| 4| 5| 6| 6| 6| 6| 85 7.8 76 7.4 7.2 7.0 69 67 6.7 7.8
4096 (3 | 4] 4| 6| 6| 6/ 6/ 6/ 6| 7.8 7.1 6.9 6.6 6.4 6.3 6.2@ 6.1 6.1 6.7
8192 |4 | 5 6| 6| 6| 6| 6| 6| 6| 7.3 6.5 6.3 6.1 6.0 59 58 58 57 6.0
16384 |5 | 6 6| 6| 8 8 8| 6.8 6.2 6.0 58 57 57 56 56 55 55

Table 4. Path length and misprediction rate for second-stage monopredictors

For comparison, the table also sfsthe best monopredictor (“mono”) and the best dual-pdihichpredictor (“lybrid”) of equivalent size. The besyhrid
predictors were chosen using data from [DH96].

Second Best P per filter table size Misprediction rate (%) per filter table size

. £ £

size

64 |1.1| 2.0 2.0/ 2.0 2.0 2.0 2.0/ 2.0] 2.0| 19.8/ 20.6/ 19.3 18.3 17.5 15.8 14.7| 13.9] 13.6
128 |2.0| 2.0 3.1} 3.1] 3.1 3.1 3.1 3.1 3.1| 16.7| 15.5 14.9 13.9| 13.1] 12.4 11.4 10.7| 10.4
256 (2.0 3.1 3.1} 3.1 3.1 3.1 3.1 3.1 3.1 13.3 12.3] 11.8 11.3 10.9] 10.5 9.9 93] 9.1
512 |3.1| 3.1 5.1} 5.1} 5.1 5.1 5.1} 5.1f 5.1 10.9 10.00 9.6/ 9.3] 9.0, 8.8 85 81 8.0
1024 |3.1 | 5.1} 5.1 6.2] 6.2] 6.2] 6.2] 6.2 6.2| 9.0, 82 80 7.7 75 73 7.1 69 6.8
2048 |5.1 | 6.2| 6.2| 6.2| 6.2| 6.2 6.2| 6.2/ 6.2/ 7.8 7.1 6.9 6.7 6.5 6.5 6.4 6.3 6.2
4096 (6.2 | 6.2| 7.2| 7.2/ 7.2 7.2| 7.2| 7.2 7.2| 6.7 6.3 6.1 6.0 59 59 58 58 57
8192 (6.2 | 8.2| 8.2| 8.2| 8.2 8.2 8.2 82 82| 6.0 56/ 55 55 54/ 54 54 53 53
16384 (7.2 | 8.2| 8.2| 8.2 8.2 8.2 8.2| 8.2 82| 55 53 52 52 52 51 51 51 51

Table 5. Path length and misprediction rate for second-stage dual-phtidipredictors

For comparison, the table also sthe best the best dual-pagtbhid predictor (“lybrid”) of equialent size. The besyhbrid predictors were chosen usi

data from [DH96].

20%

18%+

16%

ion rate

14%+

12%+

Mispredicti

10%-

8%

6%

64

128

©o
Te]
N

512

Table size

1024

Misprediction rate

10%

9%

8%

7%

6%

5%

1024

2048

4096

8192

Table size

16384

R SR

mono
8/mono
128/mono
hybrid
8/hybrid
128/hybrid

Figure 7. AVG Misprediction rates for mono angtirid predictors without filters and with 8 and 128-entry filters. W¥e dif-
ferent scales for small and dgrtable sizes to increase visibility

tors. This is due to a filtex’cold-start miss reduction (it Chang et al. [CEP96] study a conditional branch predictor
usually has a zero path length prediction if the second stagehich uses a BTB to filter out easily predicted branches.
has not yet encountered the longer path). A dual-pditich Their predictor inhibits the history table update if the BB’
predictor does not gekia benefit from this &ct at small confidence counter is at maximum (e.qg., “stronglgték In
table sizes, since its shorter comporergath length is comparison, the update rule of cascaded predictors is more
already close or equal to zero. Most of the misprediction ratiéexible and potentially more accurate since itwia branch
reduction of small ybrid predictors is therefore due solely to to be predicted by more than one component predietor
the filter’s capacity miss reductionw®-level predictors, with example, consider a branch that isvays talen except for
path lengths of tev or three, benefit both from capacity missone (long) path history for which it isvedys not takn. A
reduction and cold-start miss reduction. The resulting misprewo-stage cascaded predictor can perfectly predict this branch
diction rates end up beingifly similar for two-level and using one entry in each table, whereas the predictor proposed
hybrid predictors. Havever, for second-stage tables of 1K by Chang et al wuld incur misses.
entries and layer, the filtered kibrid predictors mispredic- Indirect branch prediction has been studied by Lee and
tion rate is substantially Weer than that of a filtered Smith [LS84] (seeral forms of BTBs), Jacobson et al. [J+96]
monopredictor at all filter sizes. Since the short componer{path-based history schemes), Emer andyG[BG97]
path length is tw in most of these cases, a filtecold-start (single-level indirect branch predictors), Chang et al.
miss reduction also benefits a dual-path lengyrid [CHP97] (two-level indirect branch prediction), and Driesen
predictor At the high end of the table size range (+8K),and Holzle [DH96] (tw-level and lybrid indirect branch
conflict and capacity misses become less frequent, and tpeediction). In [CHP97] a limited range of awevel predic-
benefit of filtering starts to diminish. tors for indirect branches isxglored and the resulting
Figure8 shavs misprediction rates for theelf edgand speedups of selected SPECInt95 programs are measured by
gcc benchmarks. The former éwprograms hee the lagest simulation for a superscalar procesddre misprediction rate
number of actie branches in the benchmark suite. The reducef a BTB is reduced by half to 30.9% fgcc with a Rattern
tion in misprediction rate is higher than the reductions orHistory Tagless @met Cache with configuration gshare(9),
AVG of Figure7, which shars that the benefit of filtering is resulting in 14% speedup. In [DH96], a comparable non-
especially pronounced for & programs. hybrid predictor (p=3, tagless 512-entry) reaches a mispre-
Although we did not measure the actual performanceliction ratio of 31.5% fomgcc The cascaded predictor in
impact of impreed prediction in this studyrevious studies presented in this studwith 4-entry filter obtains 23.7%
indicate that it can be significantofFexample, Chang et al. misprediction rate with a 512-entrfourway associatie
[CHP97] measure arxecution @erhead of 15% and 8% for dual-path kbrid predictor as second stage.
perl andgcc with a BTB, respectely. A 32+256 cascaded Hybrid prediction for conditional branchesasv first
predictor reduces the misprediction ratio from 5.6% to 0.1%roposed in [McBr93]. Recent results can be found in
for perl (7.5% to 2.7% forgco, suggesting considerable [CHP95] and [ECP96]. Chen et al. [CCM96] proposetigl

savings in &ecution time. Prefix Matching prediction for conditional branch prediction
and shw that a PPM predictor performs better than a-tw
5. Related work level predictor for a similar hardave ludget. Since a PPM

predictor chooses the prediction of the longest pattern for

Branch classification a&s first proposed for conditional Which a prediction is \ailable (choosing progressiy
branches in [CHP94]. Conditional branches aveded in six ~ shorter path lengths until a prediction is found), a cascaded
classes, corresponding to the frequewith which a branch ~ Predictors prediction rule mimics this bevier.
is taken in a profiling run, with boundaryalues 5%, 10%,

50%, 90%, 95% and 100%. The authors present a GAS. Conclusions and future work
predictor with multiple branch history length and shared
prediction table. A dynamically classifying predictor uses a We hae described a me predictor architecture, the
fully associatie branch address cacheA@®), consisting of cascaded kandc predictor, which dynamically classifies
2-bit saturating counters that indicate the component predieasily predicted branches using a simple first-stage predictor
tors which best predicts asgin branch. Since we use a simple By preventing correctly predicted branches from entering a
predictor both to predict indirect branches and to classifynore &pensve second-stage predicttine latters prediction
them as “hard-to-predict”, aC is unnecessary in a dynam- table is more ééctively used. Not only does a cascaded
ically classifying cascaded predict@®y combining profile- predictor reduce the capacity misses of the second-stage
guided classification for mostly monomorphic branches wittpredictor it also reduces cold-start misses for monomorphic
dynamic classification for med-direction branches branches (branches with a singlegtt). We tested tw
(between 10% and 90% &k), prediction accurg®f 96.4% different update rules to implement this filterinfgef: strict
is achieed in [CHP94] for conditional branches of the filtering, which preeents compulsory misses from entering
SPECIint92 benchmark suite. the second stage, ahehky filtering, which passes on first-
stage table misses.éNound that the performance of strict

40%
35%
1o
< 30%-
c
il
5 25%-]
el
o
o
2 20%
=
15%
10% T T T T
< [oe] © N <
[{e) N Te} - N
— N n o
—
Table size
35%
30%{
1o
I
= 25%
2
k3]
k5
5 20%
]
=
15%
10%
<t [o0) o N <
© N Te) — [aN]
— N wn o
-
Table size
45%
40%-{
i}
@ 35%-
c
o
5 30%-
he)
o
o
é’ 25%
20%
15%
< [ee] © N <
© N [Te) — N
- N [Te) 8
Table size

self

18%

17%-
16%-
2 15%-
<
c 14%-]
K]
8 13%-
?
2 12%
0
S 11%-|
10%-
9%

/4

8%

edg

15%

1024

2048

4096

Table size

8192

16384

14%+
13%-

12%-

Misprediction rate

9%

8%

PR

2 L

ISP-
| |

il

7%

gce

1024

2048

4096

Table size

8192

16384

24%
23%-|
22%-|
21%-|

© 20%-

€ 199%-

& 18%-|

g 17%-

D 16%-

3 15%-

= 14%-
13%-
12%-
11%-

10%

1024

2048

Table size

8192

16384

bttt bttt

I BN

mono
8/mono
128/mono
hybrid
8/hybrid
128/hybrid

mono
8/mono
128/mono
hybrid
8/hybrid
128/hybrid

mono
8/mono
128/mono
hybrid
8/hybrid
128/hybrid

Figure 8. Misprediction rates for mono anglrid predictors without filters and with 8 and 128-entry filters, forsttfeedg and
gcc benchmarks. Best mono predictor path lengths are determined separately for each benghridbapkedictor path lengths a
picked from the X G path length choices.

filtering deteriorates badly for small tables, and thatyleak [CHP95]
filtering performs better at all table sizes, in spite of the
compulsory misses it alles.

Cascaded prediction with legalfiltering achi@es predic- [CEP96]
tion rates equialent to that of the pwéusly best knan
predictors for roughly half their table sizeorFexample,
prefixing a 1K-entry predictor with a girfully-associatve 4- [cHP97]

element BTB filter reduces theverall misprediction rate

from 9.8% to 8.7% for our benchmark suite which containgCCM96]
over 500,000 non-comment source lines. A 64-ertryay

associatie filter reduces this further to 7.8%, the same
performance as a stand-alone predictor with 4096 predictio[ﬁezgd']
table entries. In otheravds, adding the 64-entry filter alis

us to reduce the size of the path-based predictor dgtar fof

four. Similarly, combining a 64-entry filter with a 1K-entry [ck93]
dual-path lgbrid predictor reduces the misprediction rate
from 9.0% to 7.3%, Mver than the misprediction rate of a 2K-
entry dual-path ybrid predictor and more than three times
better than a BTB of equalent size. Egn a relatiely small
predictor with 32+256 entries achies a respectable predic-
tion accurag of 89.3%.To our knowledge, these cascaded[DH%]
predictors improve upon any indirediranch predictor

reported to date.

Cascaded predictionarks so well because the first-stage [EG97]
predictor reduces the load on the second-stage predictor
Generally speaking, longer branch histories requirgetar
tables. The filtering édct of cascaded predictors reves [ECP96]
virtually all entries for branches that do not actually require a
long path length, and thus thevepall table size can be
reduced without compromising prediction accyrac [ypgs)
Cascaded prediction also generalizes naturally to predictors
with more than tw components. [3+96]

In principle, the filtering ééct should occur for anappli-
cation of path- or history-based predictors where the dynamic
frequeny of easily predicted cases is high. In particuiar [KE91]
appears plausible that conditional branch prediction or load
value prediction should betmin qualitatvely the same ay. [LS84]
Therefore, we beliee that cascaded predictors might also
perform well in those areas. Of course, only empiriaakw
can confirm this ypothesis, and thus we are planning to[LS95]
explore these questions in futuremk.

[DHY6]

Po-Yung Chang, Eric Hao, Yale N. Pa#lternative
Implementations of Hybrid Branch Predictors.
MICRO28 ProceedingsNovember 1995.

Po-Yung Chang, Marius Evers, and Yale Patt. Improving
Branch Prediction Accuracy by Reducing Pattern
History Table InterferencePACT ‘96 Proceedings
October 1996.

Po-Yung Chang, Eric Hao, Yale N. Patt. Target Predic-
tion for Indirect JumpdSCA'97 Proceedingsiuly 1997
I-Cheng K.Chen, John T.Coffey, Trevor N. Mudge.
Analysis of Branch Prediction via Data Compression.
ASPLOS'96 Proceedings

Brad Calder Dirk Grunwald, and Benjamin Zorn.
Quantifying Behavial Differences Between C and C++
Programs Journal of Programming Languages 2(4):313-
351, December 1994.

Robert F Cmelik and Daid Keppel. Shade: A Bst
Instruction-Set Simulator for Execution dfiting. Sun
Microsystems Laboratoriese&hnical Report SMLI TR-
93-12, 1993.

Karel Driesen and Urs Hélzle. The Direct Cost ofual
Function Calls in C++. InOOPSLA96 Confeence
proceedingsOctober 1996.

Karel Driesen and Urs Hoélzle. Accurate Indirect Branch
Prediction. ISCA'98 Confeence Poceedings July
1998.

Joel Emer and Nias Glg. A Language for Describing
Predictors and its Application to Automatic Synthesis.
ISCA97 ProceedingsJuly 1997.

Marius Evers, Po-Yung Chang, Yale N. Patt. Using
Hybrid Branch Predictors to Improve Branch Prediction
Accuracy in the Presence of Context Switclsceed-
ings of ISCA’96

Hennessy and Patterso@omputer Architecture: A
Quantitative ApproachMorgan Kaufmann, 1995.

Quinn Jacobson, Steve Bennet, Nikhil Sharma, and
James E. Smith. Control Flow Speculation in Multiscalar
ProcessorddPCA-3 proceedingd-ebruary 1996.

David Kaeli and P. G. Emma. Branch History Table
Prediction of Moving Target Branches due to Subroutine
ReturnsISCA'91 Proceeihgs, May 1991.

J. Lee and A. Smith. Branch Prediction Strategies and
Branch Target Buffer DesignEEE Computer 17(1)
January 1984.

James Larus and Eric Schnarr. EEL: Machine-Indepen-
dent Executable Editing. InPLDI'95 Conference
ProceedingsJune 1995.

Acknowledgments. This work was supported in part by [MMN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, Kristen

National Sciencedundation CAREER grant CCR-9624458,
an IBM Faculty Development Avard, Sun Microsystems, and
the State of California MIC& program. W would like to
thank Anurag Acharya and Raimondas Lemdes for their

comments on earlierevsions of this paper [Nair95]
7. References [USS97]
[CHP94] Po-Yung Chang, Eric Hao, Yale N. P&tanch Classi- [YP91]

fication: A New Mechanism for Improving Branch

Predictor Performance. MICRO'27 Proceedings

November 1994. [YP93]

10

Nygaard. Object-Oriented Programming in the Beta
Programming LanguageAddison-Wesley 1993.

[McFar93]S. McFarling. Combining Branch PredictovgRL Tech-

nical Note TN-36Digital Equipment Corporation, June
1993.

Ravi Nair. Dynamic Rth-Based Branch Correlation.
Proceedings of MIC&-28 1995.

Augustus K. Uht, Vijay Sindagi, Sajee Somanathan.
Branch Effect Reduction TechniqudEEE Computer
May 1997.

Tse-Yu Yeh and Yale N. Patt. Two-level Adaptive
Branch PredictionMICRO24 ProceedingsNovember
1991.

Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History. Proceedings of ISCA’93.

