
Two-level predictors improve branch prediction accu-
racy by allowing predictor tables to hold multiple
predictions per branch. Unfortunately, the accuracy of such
predictors is impaired by two detrimental effects. Capacity
misses increase since each branch may occupy many entries,
depending on the number of different path histories leading
up to the branch. The working set of a given program there-
fore increases with history length. Similarly, cold start
misses increase with history length since the predictor must
first store a prediction separately for each history pattern
before it can predict branches with that history.

We describe a new hybrid predictor architecture,
cascaded branch prediction, which can alleviate both of
these effects while retaining the superior accuracy of two-
level predictors. Cascaded predictors dynamically classify
and predict easily predicted branches using an inexpensive
predictor, preventing insertion of these branches into a more
powerful second stage predictor. We show that for path-
based indirect branch predictors, cascaded prediction
obtains prediction rates equivalent to that of two-level
predictors at approximately one fourth the cost. For
example, a cascaded predictor with 64+1024 entries
achieves the same prediction accuracy as a 4096-entry two-
level predictor. Although we have evaluated cascaded
prediction only on indirect branches, we believe that it could
also improve conditional branch prediction and value
prediction.

1. Introduction

Indirect branches, which transfer control to an address
(recently) loaded into a register, are hard to predict accu-
rately. Unlike conditional branches, they can have more than
two targets, so that prediction requires a full 32-bit or 64-bit
address rather than just a “taken” or “not taken” bit. Further-
more, their behavior is often directly determined by data
loaded from memory, such as virtual function pointers in
object-oriented programs written in languages such as C++
and Java.

Indirect branches occur frequently in some programs of
widely used benchmark sets like the SPECint95 suite,
although they remain less common than conditional
branches. However, indirect branches are much more
frequent in object-oriented languages. These languages
promote a programming style in which late binding of
subroutine invocations is the main instrument for clean,
modular code design. Virtual function tables, the implemen-
tation of choice for most C++ and Java compilers, execute an
indirect branch for every lately bound call. The C++
programs studied here execute an indirect branch as
frequently as once every 50 instructions; other studies
[CGZ94] have shown similar results. Java programs (where
all non-static calls are virtual) are likely to use indirect calls
even more frequently.

Even today, indirect branch misses can cause significant
overheads. The overhead of virtual function calls in C++
programs on superscalar processors with a large BTB is as
high as 29% [DH96]. Similarly, Chang, Hao, and Patt show
that for the SPECint95 programsperl andgcc the indirect
branch overhead is approximately 15% and 8% with a BTB
[CHP97].

Two-level path-based prediction can reduce the indirect
branch overhead considerably, compared to standard BTBs
[DH98]. Unfortunately, the improved accuracy comes at the
cost of much larger prediction tables. For example, to
achieve a prediction accuracy of 90%, a path-based two-level
predictor requires a table with 1024entries.

We describe a new predictor architecture, cascaded
branch prediction, which dynamically classifies branches
into “easy” and “hard” branches and uses a simple BTB to
handle the easy cases, preventing insertion of these branches
into the more powerful second stage predictor. Cascaded
predictors improve upon two-level and hybrid predictors by
using a different update rule, significantly reducing the table
size needed to achieve a given accuracy. For example, a
cascaded predictor with a total of 288 prediction table entries
achieves virtually the same prediction accuracy as the stan-
dard1024-entry two-level predictor above.

The Cascaded Predictor:
Economical and Adaptive Branch Target Prediction

Karel Driesen and Urs Hölzle
Department of Computer Science

University of California
Santa Barbara, CA 93106
{karel,urs}@cs.ucsb.edu

http://www.cs.ucsb.edu/oocsb

MICRO-31, Dallas, TX, December 1998

2

2. Benchmarks

Our main benchmark suite consists of large object-
oriented C++ applications ranging from 8,000 to over 75,000
non-blank lines of C++ code each (see Table1), andbeta, a
compiler for the Beta programming language [MMN93],
written in Beta. We also measured the SPECint95 benchmark
suite with the exception ofcompress whichexecutes only 590

a SunSoft version 1.3
b Java High-level Class Modifier
c hardware description language compiler
d SUIF 1.0
e Fresco X11R6 library

branches during a complete run. Together, the benchmarks
represent over 500,000 non-comment source lines.

All C and C++ programs exceptself1 were compiled with
GNU gcc 2.7.2 with options-O2 -multrasparc plus static
linking (required byshade) and run under theshade instruc-
tion-level simulator [CK93] to obtain traces of all indirect
branches. Procedure returns were excluded because they can
be predicted accurately with a return address stack [KE91].
All programs were run to completion or until six million indi-
rect branches were executed.2 In jhm andself we excluded the

1 self does not execute correctly when compiled with -O2 and was thus
compiled with “-O” optimization. Also,self was not fully statically linked;
our experiments exclude instructions executed in dynamically-linked
libraries.

Name Description

S
ty

le lines of
code

of indirect
branches

in
st

r.
/ i

nd
ire

ct

co
nd

. /
 in

di
re

ct

vi
rt

ua
l %

sw
itc

h
%

in
di

re
ct

 %

1
ta

rg
et

 %

2
ta

rg
et

s
%

>
 2

 ta
rg

et
s

% active
branches

99
 %

10
0

%

idl IDL compilera OO 13,900 1,883,641 47 6 93.2 3.2 3.6 97.1 0.1 2.8 70 543

jhm JHMb 6-12M OO 15,000 6,000,000 47 5 93.6 1.2 5.2 58.7 1.4 39.9 34 155

self Self-93 VM: 5-6M OO 76,900 1,000,000 56 7 76.0 4.4 19.6 40.1 31.6 28.3 848 185

5

xlisp SPEC95 C 4,700 6,000,000 69 11 0.0 0.1 99.9 38.9 9.0 52.1 4 13

troff GNU groff 1.09 OO 19,200 1,110,592 90 13 73.7 12.5 13.8 41.9 13.6 44.5 61 161

lcom HDLc compiler OO 14,100 1,737,751 97 10 63.2 36.8 0.0 33.5 54.0 12.5 87 328

AVG-100: instr/indirect < 100 23,967 2,955,331 68 9 66.6 9.7 23.7 51.7 18.3 30.0 184 509

perl SPEC95 C 21,400 300,000 113 17 0.0 31.7 68.3 41.2 0.0 58.8 7 24

porky scalar optimizerd OO 22,900 5,392,890 138 19 70.6 23.8 5.6 15.6 8.1 76.3 89 285

ixx IDL parsere OO 11,600 212,035 139 18 46.5 52.2 1.3 37.1 6.4 56.5 91 203

edg C++ front end C 114,300 548,893 149 23 0.0 62.4 37.6 7.9 29.6 62.5 186 350

eqn equation typesetter OO 8,300 296,425 159 25 33.8 66.2 0.0 4.2 37.8 58.0 58 114

gcc SPEC95 C 130,800 864,838 176 31 0.0 31.5 68.5 0.8 1.7 97.5 95 166

beta BETA compiler OO 72,500 1,005,995 188 23 0.0 2.3 97.7 18.7 28.1 53.2 135 376

AVG-200: 100 < instr/indirect < 200 54,543 1,231,582 152 22 21.6 38.6 39.9 17.9 16.0 66.1 94 217

AVG: instr/indirect < 200 40,431 2,027,158 113 16 42.4 25.3 32.4 33.5 17.0 49.5 136 352

AVG-OO: OO, instr/indirect < 200 28,267 2,071,037 107 14 61.2 22.5 16.3 38.5 20.1 41.3 164 447

AVG-C: C, instr/indirect < 200 67,800 1,928,433 127 21 0.0 31.4 68.6 22.2 10.1 67.7 73 138

m88ksim SPEC95 C 12,200 300,000 1827 233 0.0 46.2 53.8 2.9 10.3 86.8 5 17

vortex SPEC95 C 45,200 3,000,000 3480 525 0.0 30.7 69.3 23.1 16.9 60.0 10 37

ijpeg SPEC95 C 16,800 32,975 5770 441 0.0 97.8 2.2 96.7 3.2 0.1 7 60

go SPEC95 C 29,200 549,656 56355 7123 0.0 99.0 1.0 0.2 0.0 99.8 5 14

AVG-infreq: instr/indirect > 200 25,850 970,658 16858 2081 0.0 68.4 31.6 30.7 7.6 61.7 7 32

Table 1. Benchmarks and commonly shown averages (arithmetic means)

3

initialization phases by skipping the first 5 and 6 million indi-
rect branches, respectively.

For each benchmark, Table1 lists the number of indirect
branches executed, the number of instructions executed per
indirect branch, the number of conditional branches executed
per indirect branch, and the source of the indirect branches
(switch statements, virtual function calls, or indirect function
calls). It also shows the percentage of indirect branch execu-
tions that correspond to the branch classes used in section3,
as well as the number of branch sites responsible for 99%,
and 100% of the branch executions. For example, only 5
different branch sites are responsible for 99% of the dynamic
indirect branches ingo. The SPECint95 programs are domi-
nated by very few indirect branches, with less than ten
interesting branches for all programs exceptgcc. Four of the
SPEC benchmarks execute more than 1,000 instructions per
indirect branch. Since the impact of branch prediction will be
very low for the latter four benchmarks, we exclude them
when optimizing predictor performance. Most results below
refer to the AVG misprediction rate, i.e., the average of all
benchmarks with fewer than 200 instructions between indi-
rect branches (see Table1).

3. Background

Before discussing cascaded predictors, we briefly review
path-based two-level indirect branch predictors [DH98] and
categorize the different sources of misprediction for indirect
branches.

3.1 Branch Target Buffers (BTB)
The simplest design for indirect branch target prediction is

a Branch Target Buffer (see Figure1). Its uses a selection of
bits of the current branch address that serves as a key pattern
into a table that stores the most recently observed target for
the pattern. If the key pattern is longer than needed to index
all entries of the table (as is likely with the 24-bit pattern
shown above), the lower-order bits of the pattern are used to
index into the table and the high-order bits are stored as tags

2 We reduced the traces of three of the SPEC benchmarks in order to reduce
simulation time. In all of these cases, the BTB misprediction rate differs by
less than 1% (relative) between the full and truncated traces, and thus we
believe that the results obtained with the truncated traces are accurate.

in the table entry. Alternatively, a tagless table simply
shortens the key pattern by discarding the high-order bits.

BTBs may mispredict for several reasons (Table2).
Compulsory misses occur the first time a branch is encoun-
tered.Misprediction missesoccur when the branch is found in
the predictor table but the predicted target is incorrect. For
ideal BTBs, with full-precision addresses and unlimited, fully
associative prediction tables, misprediction misses occur
25% of the time.Capacity misses occur when the prediction
from the current branch was evicted from the table by a more
recently executed branch.Conflict misses occur when the
table is not fully associative and an entry is evicted by another
branch with the same index (i.e., a conflict miss is like a
capacity miss, but it is the size of the associativity set that is
the limiting factor). In this study we use associativity sets of
size four unless mentioned otherwise. For a table with 256
entries (64 associativity sets of size four), most BTB capacity
and conflict misses disappear.

Finally, apattern interference missresults from the projec-
tion of a full-precision address to the reduced size key bit
pattern (some branches may project to the same key pattern).
For our benchmark suite, using the 24 lowest order bits of the
branch address suffices to eliminate all BTB pattern
interference.

3.2 Two-level path based predictors
Unlike a BTB, a two-level predictor [YP91] can store

more than one target for each branch. It does this by
constructing a key pattern from the targets of recently
executed branches leading up to the current branch. After
combination with the branch address, this pattern serves as a
key to lookup the most recent target in a prediction table.
Since we are investigating indirect branch prediction, our
predictors use bits from the target addresses of previous
branches rather than the taken/not taken history bits
commonly used in conditional branch prediction. We follow
Nair’s terminology [Nair95] and call thispath-based predic-
tion. Thepath length of a two-level predictor is the number of
recent targets incorporated in the key pattern. Figure2 shows
a two-level predictor of path length three. A 24-bit global

Branch Address

Target Table

Figure 1. Branch Target Buffer. Address bits of a branch are used
to access a Prediction Table that stores the most recently observed
target addresses.

24-bit key pattern
prediction

Address Bit Selection

Branch Target Buffer

Miss cause Summary contribution to overall
BTB misprediction

rate

Compulsory First branch execution
(no target)

negligible

Misprediction Target is wrong 25%

Capacity Target got evicted negligible
for >256 entries

Conflict Target got evicted from
associativity set

negligible
for associativity 4

Pattern
Interference

Key pattern not precise enough negligible
for 24-bit pattern

Table 2. Indirect branch misprediction causes for a BTB

4

history buffer stores 8 bits each from the three most recent
indirect branch targets (unless mentioned otherwise, all path-
based predictors in this paper use a total path length of 24
bits). The lower-order branch address bits are xor-ed with this
pattern, resulting in a 24-bit key pattern. Two-level predictors
with longer path lengths use fewer bits of each target address,
so that the length of the pattern remains constant. For
example, a path length 6 predictor uses 4 bits from each target
address. Note that a two-level predictor with path length 0
reverts to a BTB. The 24-bit key pattern is used, as in a BTB,
to access the prediction table (History Table or Target Cache
in [CHP97]) by splitting it into table index and tag as
explained in the previous section.

A two-level predictor suffers from the same misprediction
causes as a BTB, but to a different extent. Compulsory misses
remain the same, since they only depend on the branch trace.
Only few pattern interference misses occur due to reduced
precision of target addresses, and conflict misses become
negligible with 4-way associative tables (data not shown for
space reasons).

Capacity misses are a different matter. The number of table
entries stored per branch is proportional to the number of
different paths leading up to the branch. Where a path length
0 predictor (BTB) stores one entry for every branch, a longer
path length predictor stores an entry for every target combi-
nation that leads to the branch in a entire program run. This is
exactly what makes two-level predictors work well: if the
target pattern in the history buffer correlates with the current
branch target, a two-level predictor captures this correlation
by storing a different target address for each pattern. Unfortu-
nately, longer path lengths can actually reduce prediction
accuracy by inflating capacity misses; each branch needs a
larger number of entries (one for each path), and the number
of paths increases with path length.

3.3 Branch classes
To better understand the remaining miss causes (mispre-

diction misses), we classified branches according to the
number of different targets encountered in a program run, or
brancharity. Thearity of each branch was determined in a
separate profiling run, and a subsequent simulation produced
prediction data for each class of branches.

After some experimentation, we chose to form three
classes: one target, two targets, and more than two targets.
Branches with only one target (monomorphic branches)

constitute 67% of all branches but are executed only 34% of
the time. We divided polymorphic branches (branches with
more than one target) into two classes. 18% of all branches
jump to two targets, for 17% of all branch executions.
Branches with three or more targets constitute15% of all
branches but are executed 49% of the time.

Figure3 shows AVG misprediction rates per branch class
and path length. (Recall that AVG includes all benchmarks
except those executing indirect branches very infrequently,
see Table1). We first discuss monomorphic branches, which
are perfectly predicted by a BTB. Longer path lengths
increase the number of mispredictions since every different
path leading to the branch causes an initial miss. Thesecold
start misses are similar to compulsory misses, but occur once
for each pattern, instead of once per branch. As the path
length grows, so does the number of cold start misses
incurred for monomorphic branches. Since monomorphic
branches occupy multiple table entries, capacity misses
increase as a secondary effect.

In contrast, branches with two targets benefit from history
and have an optimal path length of two, causing few mispre-
dictions. The bulk of mispredictions comes from branches
with three or more targets, which are best predicted with path
length three (for 1K-entry tables).

a for a fully associative, unlimited prediction table (see [DH98])

XOR

Global History Buffer

Figure 2. Two-level predictor of path length 3. The pattern projec-
tor constructs a key by concatenation of 8 bits of the most recently
observed indirect branch targets, xor-ed with the current branch
address. This key pattern is used to access the table, as in a BTB.

t1t2t3

Branch Address

Target Table

24-bit key pattern
prediction

Pattern projection

Miss cause Summary contribution to overall
misprediction rate

Compulsory First branch execution
(no target)

negligible

Cold start First time pattern is
encountered (no target)

small, increase with path length

Misprediction Target is wrong 5.8%, for optimala path length 6

Capacity Target got evicted large, increase with path length

Conflict Target got evicted from
associativity set

negligible for associativity 4

Pattern
Interference

Key pattern not precise
enough

negligible for 24-bit pattern

Table 3. Indirect branch misprediction causes for 2-level predictor

0 1 2 3 4 5 6 7 8 9 10 11 12

0%

2%

4%

6%

8%

10%

12%

14%

M
is

pr
ed

ic
tio

n
ra

te
 fo

r
1K

-e
nt

ry
 ta

bl
e

History Path Length

1 target

2 targets

> 2 targets

total

Figure 3. Misprediction rates for a 1K-entry 4-way associative
prediction table

5

The differing behavior of these branch classes can be
exploited to achieve better prediction with a classifying
hybrid predictor which uses different component predictors
for the different classes. In particular, if monomorphic
branches were predicted with a BTB and never entered into a
more expensive path-based predictor, the load on the second
table could be significantly reduced (thus lowering its
capacity misses as well). A simple experiment with a hypo-
thetical classifying predictor confirms this intuition: forjhm,
a 256-entry predictor predicting all branches experiences a
table miss rate of 2.3%, but this miss rate falls to 0.9% if
monomorphic branches are removed. The next section
discusses a practical way to exploit this effect with dynamic
target-based classification (i.e., requiring no separate
profiling run, compiler changes, or changes to the instruction
set architecture).

4. Cascaded prediction

A cascaded predictor is similar to a two-level predictor but
uses a more sophisticated update rule. It classifies branches
dynamically by observing their performance on a simple first-
stage predictor. Only when this predictor fails to predict a
branch correctly is a more powerful second-stage predictor
permitted to store predictions for newly encountered history
patterns of that branch. By preventing easily predicted
branches to occupy prediction table space in the second-stage
predictor, the first-stage functions as a filter. By filtering out
easily predicted branches, the first-stage predictor prevents
them from overloading the second-stage table, thereby
increasing its effective capacity and overall prediction perfor-
mance. As a result, the second-stage predictor’s prediction
table space is used to predict only those branches that actually
need history-based prediction.

Figure4 shows the prediction and update scheme for a
cascaded predictor. If both predictors have a prediction, the
second-stage predictor takes precedence. Therefore, the
second-stage predictor’s prediction table must have tagged
entries, so that table misses can be detected.

The main difference to existing hybrid predictors lies in
the handling of table updates. If the first-stage predictor
predicted the branch correctly, we do not allow the second-
stage predictor to create anew entry for the branch. However,
if the entry is already present, the target is updated if neces-
sary, allowing patterns already observed to require second-
stage prediction to continue to be updated. In contrast, the
first-stage predictor is always allowed to update its table.

We look specifically at the case where the first-stage
predictor is a BTB, i.e., does not employ history. A BTB
stores at most one entry per branch, which suffices for mono-
morphic branches. Non-monomorphic branches are better
predicted by a longer path length predictor, as shown in
section3, and such branches will advance to the second stage
of the predictor cascade.

We examined two variants of cascading predictors. Predic-
tors with astrict filter only allow branches into the second-
stage predictor if the first-stage predictor mispredicts (a target
prediction is present in the table but it is wrong). In other
words, branches only advance to the second stage if they are
provably non-monomorphic. A strict filter thus prevents
compulsory misses in the first stage from causing new entries
in the second stage. In contrast, aleaky filter also allows new
second-stage entries on first-stage table misses. Thus, the
second-stage table may contain one entry for each monomor-
phic branch.

4.1 Strict filters
Successful prediction in the filter classifies a branch as

monomorphic (if only temporarily). If a branch misses in the
filter predictor, nothing conclusive is known: every branch
incurs a compulsory table miss in the filter, even if it is purely
monomorphic. To prevent compulsory misses of the filter to
pass through to the second-stage predictor, strict filtering
disallows new entry insertion in the second-stage predictor on
a table miss (but it passes onmispredicted branches). To
implement this strict filter design, the filter’s table must be
associative (i.e. it must check for pattern equality using tags).

Figure5 shows the misprediction rates for three selected
second-stage predictors (each with optimal path length for its
size). We also show the misprediction rate of a cascaded
predictor without filtering. Even without filtering, the first-
stage predictor reduces overall misprediction rates compared
to the stand-alone predictor (shown as filter size 0) by
providing an educated guess in the case of a table miss in the
second-stage predictor. In other words, a staged predictor
consisting of a BTB and a path-based predictor reduces cold-
start misses even without filtering.

Strict filters do not perform well for small filter table sizes.
For 16 entries or less, overall misprediction rates are even
higher than that of the stand-alone predictor. Essentially, a
strict filter predictor recognizes branches as non-monomor-
phic only if the branch remains in the filter table long enough
to incur a target change (and thus a misprediction). But with
small filters, many branches are displaced from the filter
before they mispredict, and thus they never enter the second

Filter update rule:
add new entry only if
first-stage prediction

incorrect

Branch

First-stage predictor

Second-stage predictor

Branch Target Update

Figure4. Cascaded predictor

Prediction

Predict rule:
use second
stage if no
table miss

Address

6

stage. When the filter becomes large enough to avoid most
capacity misses, this effect disappears and filtering starts to
pay off. At 256 entries, strict filtering performs as intended,
i.e., it prevents monomorphic branches from overloading the
second-stage predictor, resulting in lower misprediction rates
than those of a non-filtering staged predictor.

4.2 Leaky filters
The sensitivity of strict filters to capacity misses is a

serious flaw; the performance of a filtered predictor should
remain at least as good as that of a stand-alone second-stage
predictor. To prevent filter capacity miss problems, a leaky
filter inserts an entry into both predictors upon a first-stage
table miss. That is, only correctly predicted branches are
stopped by the filter. Thus, every branch is introduced at least
once into the second-stage predictor, but filtering still occurs
for later executions of the same branch: as long as the branch
remains in the filter table and doesn’t mispredict, no further
second-stage entries will be permitted. If the load on the
second-stage predictor table is high, the compulsory entries
for monomorphic branches will eventually be displaced by
entries for non-monomorphic branches. Leaky filters are
cheaper to implement than strict filters: since a misprediction
and a table miss is treated the same way (new entry in second-
stage table), the filtering predictor can use a tagless table. The
second-stage predictor still needs tags in order to recognize a
table miss.

Figure6 shows the performance of leaky filters. Even for
very small filters, the filtering effect is pronounced and
improves misprediction rates compared to a non-filtering
cascaded predictor. For example, a 32-entry BTB filter
improves the misprediction rate of a 256-entry monopredictor
from 11.7% to 10.7%. Filtering still helps even with very
large (4K) predictors, reducing mispredictions by about
0.5%. For large filters of 256 entries or more, the leaky filter’s

misprediction rate is only slightly better than that of a strict
filter (not shown in the figure).

Table4 shows the best path length and misprediction rate
for cascaded predictors with second stage two-level predic-
tors. Even very small BTB filters increase the effective
capacity of the second-stage table, allowing it to accommo-
date longer paths without incurring extensive capacity
misses. For example, a 16-entry filter reduces the mispredic-
tion rate for all second-stage sizes to below that of a
monopredictor with twice the number of entries and uses the
path length of a monopredictor that is four times larger. A 64-
entry filter lowers the misprediction rate below that of a
monopredictor four times as large, and for all table sizes
smaller than 1K entries, beyond that of a dual-path hybrid
predictor of twice the size.

We also studied cascaded predictors that use dual-path
hybrid predictors (see [DH98]) in the second stage, antici-
pating that filtering would again reduce second-stage misses
and allow longer path lengths. For each filtered hybrid of
table size T, we simulated the best path length couples of
hybrid predictors with table sizes T, 2T and 4T

The resulting improvements were equally pronounced
(Table5). Again, filtering reduces the misprediction rate and
increases the best path length choices for each table size.
Whereas dual-path hybrid predictors need at least 1024 table
entries to achieve misprediction rates below 9%, a filtered
dual-path hybrid attains this threshold with only 544 entries
(32-entry filter BTB plus 512-entry dual-path hybrid).
Adding an 8-entry filter to a 1K-entry hybrid predictor lowers
its misprediction rate from 9.0% to 8.2%. A 128-entry filter
reduces this to 7.5%. Across all table sizes, cascaded predic-
tion reduces table size by roughly a factor of two.

Figure7 shows AVG misprediction rates for selected
prediction schemes. For all schemes and table sizes, filtering
reduces misprediction rates. For tables of 512 entries or less,
the resulting misprediction rate of filtered monopredictors is
equal to or lower than that of filtered dual-path hybrid predic-

0 4 8 16 32 64 12
8

25
6

51
2

10
24

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

M
is

pr
ed

ic
tio

n
ra

te

Filter table size

nofilter-256

nofilter-1K

nofilter-4K

strict-256

strict-1K

strict-4K

Figure5. Misprediction rates, cascaded predictor with strict filter

Second-stage predictor table size is 256, 1K and 4K entries; both predictor
tables are 4-way associative. Also shown is a cascaded predictor without
filtering.

0 4 8 16 32 64 12
8

25
6

51
2

10
24

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

M
is

pr
ed

ic
tio

n
ra

te

Filter table size

nofilter-256

nofilter-1K

nofilter-4K

leaky-256

leaky-1K

leaky-4K

Figure6. Misprediction rates, cascaded predictor with leaky filter

Second-stage predictor table size is 256, 1K and 4K entries; both predictor
tables are 4-way associative. Also shown is a cascaded predictor without
filtering.

7

64 12
8

25
6

51
2

10
24

6%

8%

10%

12%

14%

16%

18%

20%

M
is

pr
ed

ic
tio

n
ra

te

Table size

10
24

20
48

40
96

81
92

16
38

4

5%

6%

7%

8%

9%

10%

M
is

pr
ed

ic
tio

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

Figure 7. AVG Misprediction rates for mono and hybrid predictors without filters and with 8 and 128-entry filters. We use dif-
ferent scales for small and large table sizes to increase visibility.

Second
stage
table
size

m
on

o

Best P per filter table size

m
on

o

Miss% per filter table size

hy
br

id4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2

64 1 2 2 2 2 2 2 2 2 19.8 18.6 17.4 15.8 14.7 13.7 12.7 12.0 11.7 19.8

128 1 2 2 2 2 3 3 3 3 17.0 14.8 14.1 13.3 12.7 11.9 11.1 10.5 10.3 16.7

256 2 2 2 3 3 3 3 3 3 13.7 12.3 11.9 11.3 10.7 10.2 9.7 9.2 9.0 13.3

512 2 3 3 3 3 3 3 3 3 11.3 10.2 9.7 9.3 8.9 8.7 8.4 8.1 8.0 10.9

1024 3 3 3 3 4 4 4 5 5 9.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.3 9.0

2048 3 4 4 4 5 6 6 6 6 8.5 7.8 7.6 7.4 7.2 7.0 6.9 6.7 6.7 7.8

4096 3 4 4 6 6 6 6 6 6 7.8 7.1 6.9 6.6 6.4 6.3 6.2 6.1 6.1 6.7

8192 4 5 6 6 6 6 6 6 6 7.3 6.5 6.3 6.1 6.0 5.9 5.8 5.8 5.7 6.0

16384 5 6 6 6 6 6 8 8 8 6.8 6.2 6.0 5.8 5.7 5.7 5.6 5.6 5.5 5.5

Table 4. Path length and misprediction rate for second-stage monopredictors

Second
level
table
size

hy
br

id

Best P per filter table size

hy
br

id

Misprediction rate (%) per filter table size

4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2

64 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 19.8 20.6 19.3 18.3 17.5 15.8 14.7 13.9 13.6

128 2.0 2.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 16.7 15.5 14.9 13.9 13.1 12.4 11.4 10.7 10.4

256 2.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 13.3 12.3 11.8 11.3 10.9 10.5 9.9 9.3 9.1

512 3.1 3.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 10.9 10.0 9.6 9.3 9.0 8.8 8.5 8.1 8.0

1024 3.1 5.1 5.1 6.2 6.2 6.2 6.2 6.2 6.2 9.0 8.2 8.0 7.7 7.5 7.3 7.1 6.9 6.8

2048 5.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 7.8 7.1 6.9 6.7 6.5 6.5 6.4 6.3 6.2

4096 6.2 6.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 6.7 6.3 6.1 6.0 5.9 5.9 5.8 5.8 5.7

8192 6.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 6.0 5.6 5.5 5.5 5.4 5.4 5.4 5.3 5.3

16384 7.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 5.3 5.2 5.2 5.2 5.1 5.1 5.1 5.1

Table 5. Path length and misprediction rate for second-stage dual-path hybrid predictors

For comparison, the table also shows the best monopredictor (“mono”) and the best dual-path hybrid predictor (“hybrid”) of equivalent size. The best hybrid
predictors were chosen using data from [DH96].

For comparison, the table also shows the best the best dual-path hybrid predictor (“hybrid”) of equivalent size. The best hybrid predictors were chosen using
data from [DH96].

8

tors. This is due to a filter’s cold-start miss reduction (it
usually has a zero path length prediction if the second stage
has not yet encountered the longer path). A dual-path hybrid
predictor does not get extra benefit from this effect at small
table sizes, since its shorter component’s path length is
already close or equal to zero. Most of the misprediction rate
reduction of small hybrid predictors is therefore due solely to
the filter’s capacity miss reduction. Two-level predictors, with
path lengths of two or three, benefit both from capacity miss
reduction and cold-start miss reduction. The resulting mispre-
diction rates end up being fairly similar for two-level and
hybrid predictors. However, for second-stage tables of 1K
entries and larger, the filtered hybrid predictor’s mispredic-
tion rate is substantially lower than that of a filtered
monopredictor at all filter sizes. Since the short component
path length is two in most of these cases, a filter’s cold-start
miss reduction also benefits a dual-path length hybrid
predictor. At the high end of the table size range (+8K),
conflict and capacity misses become less frequent, and the
benefit of filtering starts to diminish.

Figure8 shows misprediction rates for theself, edg and
gcc benchmarks. The former two programs have the largest
number of active branches in the benchmark suite. The reduc-
tion in misprediction rate is higher than the reductions on
AVG of Figure7, which shows that the benefit of filtering is
especially pronounced for large programs.

Although we did not measure the actual performance
impact of improved prediction in this study, previous studies
indicate that it can be significant. For example, Chang et al.
[CHP97] measure an execution overhead of 15% and 8% for
perl andgcc with a BTB, respectively. A 32+256 cascaded
predictor reduces the misprediction ratio from 5.6% to 0.1%
for perl (7.5% to 2.7% forgcc), suggesting considerable
savings in execution time.

5. Related work

Branch classification was first proposed for conditional
branches in [CHP94]. Conditional branches are divided in six
classes, corresponding to the frequency with which a branch
is taken in a profiling run, with boundary values 5%, 10%,
50%, 90%, 95% and 100%. The authors present a GAs
predictor with multiple branch history length and shared
prediction table. A dynamically classifying predictor uses a
fully associative branch address cache (BAC), consisting of
2-bit saturating counters that indicate the component predic-
tors which best predicts a given branch. Since we use a simple
predictor both to predict indirect branches and to classify
them as “hard-to-predict”, a BAC is unnecessary in a dynam-
ically classifying cascaded predictor. By combining profile-
guided classification for mostly monomorphic branches with
dynamic classification for mixed-direction branches
(between 10% and 90% taken), prediction accuracy of 96.4%
is achieved in [CHP94] for conditional branches of the
SPECint92 benchmark suite.

Chang et al. [CEP96] study a conditional branch predictor
which uses a BTB to filter out easily predicted branches.
Their predictor inhibits the history table update if the BTB’s
confidence counter is at maximum (e.g., “strongly taken”). In
comparison, the update rule of cascaded predictors is more
flexible and potentially more accurate since it allows a branch
to be predicted by more than one component predictor. For
example, consider a branch that is always taken except for
one (long) path history for which it is always not taken. A
two-stage cascaded predictor can perfectly predict this branch
using one entry in each table, whereas the predictor proposed
by Chang et al would incur misses.

Indirect branch prediction has been studied by Lee and
Smith [LS84] (several forms of BTBs), Jacobson et al. [J+96]
(path-based history schemes), Emer and Gloy [EG97]
(single-level indirect branch predictors), Chang et al.
[CHP97] (two-level indirect branch prediction), and Driesen
and Hölzle [DH96] (two-level and hybrid indirect branch
prediction). In [CHP97] a limited range of two-level predic-
tors for indirect branches is explored and the resulting
speedups of selected SPECint95 programs are measured by
simulation for a superscalar processor. The misprediction rate
of a BTB is reduced by half to 30.9% forgcc with a Pattern
History Tagless Target Cache with configuration gshare(9),
resulting in 14% speedup. In [DH96], a comparable non-
hybrid predictor (p=3, tagless 512-entry) reaches a mispre-
diction ratio of 31.5% forgcc. The cascaded predictor in
presented in this study, with 4-entry filter, obtains 23.7%
misprediction rate with a 512-entry, four-way associative
dual-path hybrid predictor as second stage.

Hybrid prediction for conditional branches was first
proposed in [McFar93]. Recent results can be found in
[CHP95] and [ECP96]. Chen et al. [CCM96] propose Partial
Prefix Matching prediction for conditional branch prediction
and show that a PPM predictor performs better than a two-
level predictor for a similar hardware budget. Since a PPM
predictor chooses the prediction of the longest pattern for
which a prediction is available (choosing progressively
shorter path lengths until a prediction is found), a cascaded
predictor’s prediction rule mimics this behavior.

6. Conclusions and future work

We have described a new predictor architecture, the
cascaded branch predictor, which dynamically classifies
easily predicted branches using a simple first-stage predictor.
By preventing correctly predicted branches from entering a
more expensive second-stage predictor, the latter’s prediction
table is more effectively used. Not only does a cascaded
predictor reduce the capacity misses of the second-stage
predictor, it also reduces cold-start misses for monomorphic
branches (branches with a single target). We tested two
different update rules to implement this filtering effect: strict
filtering, which prevents compulsory misses from entering
the second stage, andleaky filtering, which passes on first-
stage table misses. We found that the performance of strict

9

64 12
8

25
6

51
2

10
24

10%

15%

20%

25%

30%

35%

40%
M

is
pr

ed
ic

tio
n

ra
te

Table size

10
24

20
48

40
96

81
92

16
38

4

8%

9%

10%

11%

12%

13%

14%

15%

16%

17%

18%

M
is

pr
ed

ic
tio

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

self

64 12
8

25
6

51
2

10
24

10%

15%

20%

25%

30%

35%

M
is

pr
ed

ic
tio

n
ra

te

Table size

10
24

20
48

40
96

81
92

16
38

4
7%

8%

9%

10%

11%

12%

13%

14%

15%

M
is

pr
ed

ic
tio

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

edg

64 12
8

25
6

51
2

10
24

15%

20%

25%

30%

35%

40%

45%

M
is

pr
ed

ic
tio

n
ra

te

Table size

10
24

20
48

40
96

81
92

16
38

4

10%
11%
12%
13%
14%
15%
16%
17%
18%
19%
20%
21%
22%
23%
24%

M
is

pr
ed

ic
tio

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

gcc

Figure 8. Misprediction rates for mono and hybrid predictors without filters and with 8 and 128-entry filters, for theself, edg and
gcc benchmarks. Best mono predictor path lengths are determined separately for each benchmark; hybrid predictor path lengths are
picked from the AVG path length choices.

10

filtering deteriorates badly for small tables, and that leaky
filtering performs better at all table sizes, in spite of the
compulsory misses it allows.

Cascaded prediction with leaky filtering achieves predic-
tion rates equivalent to that of the previously best known
predictors for roughly half their table size. For example,
prefixing a 1K-entry predictor with a tiny fully-associative 4-
element BTB filter reduces the overall misprediction rate
from 9.8% to 8.7% for our benchmark suite which contains
over 500,000 non-comment source lines. A 64-entry, 4-way
associative filter reduces this further to 7.8%, the same
performance as a stand-alone predictor with 4096 prediction
table entries. In other words, adding the 64-entry filter allows
us to reduce the size of the path-based predictor by a factor of
four. Similarly, combining a 64-entry filter with a 1K-entry
dual-path hybrid predictor reduces the misprediction rate
from 9.0% to 7.3%, lower than the misprediction rate of a 2K-
entry dual-path hybrid predictor and more than three times
better than a BTB of equivalent size. Even a relatively small
predictor with 32+256 entries achieves a respectable predic-
tion accuracy of 89.3%.To our knowledge, these cascaded
predictors improve upon any indirectbranch predictor
reported to date.

Cascaded prediction works so well because the first-stage
predictor reduces the load on the second-stage predictor.
Generally speaking, longer branch histories require larger
tables. The filtering effect of cascaded predictors removes
virtually all entries for branches that do not actually require a
long path length, and thus the overall table size can be
reduced without compromising prediction accuracy.
Cascaded prediction also generalizes naturally to predictors
with more than two components.

In principle, the filtering effect should occur for any appli-
cation of path- or history-based predictors where the dynamic
frequency of easily predicted cases is high. In particular, it
appears plausible that conditional branch prediction or load
value prediction should behave in qualitatively the same way.
Therefore, we believe that cascaded predictors might also
perform well in those areas. Of course, only empirical work
can confirm this hypothesis, and thus we are planning to
explore these questions in future work.

Acknowledgments. This work was supported in part by
National Science Foundation CAREER grant CCR-9624458,
an IBM Faculty Development Award, Sun Microsystems, and
the State of California MICRO program. We would like to
thank Anurag Acharya and Raimondas Lencevicius for their
comments on earlier versions of this paper.

7. References

[CHP94] Po-Yung Chang, Eric Hao, Yale N. Patt.Branch Classi-
fication: A New Mechanism for Improving Branch
Predictor Performance. MICRO‘27 Proceedings,
November 1994.

[CHP95] Po-Yung Chang, Eric Hao, Yale N. Patt.Alternative
Implementations of Hybrid Branch Predictors.
MICRO‘28 Proceedings, November 1995.

[CEP96] Po-Yung Chang, Marius Evers, and Yale Patt. Improving
Branch Prediction Accuracy by Reducing Pattern
History Table Interference.PACT ‘96 Proceedings,
October 1996.

[CHP97] Po-Yung Chang, Eric Hao, Yale N. Patt. Target Predic-
tion for Indirect Jumps.ISCA’97 Proceedings,July 1997

[CCM96] I-Cheng K.Chen, John T.Coffey, Trevor N. Mudge.
Analysis of Branch Prediction via Data Compression.
ASPLOS’96 Proceedings.

[CGZ94] Brad Calder, Dirk Grunwald, and Benjamin Zorn.
Quantifying Behavioral Differences Between C and C++
Programs. Journal of Programming Languages 2(4):313-
351, December 1994.

[CK93] Robert F. Cmelik and David Keppel. Shade: A Fast
Instruction-Set Simulator for Execution Profiling. Sun
Microsystems Laboratories, Technical Report SMLI TR-
93-12, 1993.

[DH96] Karel Driesen and Urs Hölzle. The Direct Cost of Virtual
Function Calls in C++. InOOPSLA‘96 Conference
proceedings, October 1996.

[DH98] Karel Driesen and Urs Hölzle. Accurate Indirect Branch
Prediction. ISCA‘98 Conference Proceedings, July
1998.

[EG97] Joel Emer and Nikolas Gloy. A Language for Describing
Predictors and its Application to Automatic Synthesis.
ISCA’97 Proceedings,July 1997.

[ECP96] Marius Evers, Po-Yung Chang, Yale N. Patt. Using
Hybrid Branch Predictors to Improve Branch Prediction
Accuracy in the Presence of Context Switches.Proceed-
ings of ISCA’96.

[HP95] Hennessy and Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1995.

[J+96] Quinn Jacobson, Steve Bennet, Nikhil Sharma, and
James E. Smith. Control Flow Speculation in Multiscalar
Processors.HPCA-3 proceedings, February 1996.

[KE91] David Kaeli and P. G. Emma. Branch History Table
Prediction of Moving Target Branches due to Subroutine
Returns.ISCA‘91 Proceedings, May 1991.

[LS84] J. Lee and A. Smith. Branch Prediction Strategies and
Branch Target Buffer Design.IEEE Computer 17(1),
January 1984.

[LS95] James Larus and Eric Schnarr. EEL: Machine-Indepen-
dent Executable Editing. InPLDI ‘95 Conference
Proceedings, June 1995.

[MMN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, Kristen
Nygaard. Object-Oriented Programming in the Beta
Programming Language. Addison-Wesley 1993.

[McFar93]S. McFarling. Combining Branch Predictors.WRL Tech-
nical Note TN-36, Digital Equipment Corporation, June
1993.

[Nair95] Ravi Nair. Dynamic Path-Based Branch Correlation.
Proceedings of MICRO-28, 1995.

[USS97] Augustus K. Uht, Vijay Sindagi, Sajee Somanathan.
Branch Effect Reduction Techniques.IEEE Computer,
May 1997.

[YP91] Tse-Yu Yeh and Yale N. Patt. Two-level Adaptive
Branch Prediction.MICRO24 Proceedings, November
1991.

[YP93] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History.Proceedings of ISCA’93.

