
1

An Analysis of Dynamic Branch Prediction Schemes
on System Workloads

Nicolas Gloy, Cliff Young, J. Bradley Chen, and Michael D. Smith
Division of Applied Sciences, Harvard University

{ng, cyoung, bchen, smith}@eecs.harvard.edu

Abstract
Recent studies of dynamic branch prediction schemes rely almost
exclusively on user-only simulations to evaluate performance. We
find that an evaluation of these schemes with user and kernel refer-
ences often leads to different conclusions. By analyzing our own
Atom-generated system traces and the system traces from the
Instruction Benchmark Suite, we quantify the effects of kernel and
user interactions on branch prediction accuracy. We find that user-
only traces yield accurate prediction results only when the kernel
accounts for less than 5% of the total executed instructions.
Schemes that appear to predict well under user-only traces are not
always the most effective on full-system traces: the recently-pro-
posed two-level adaptive schemes can suffer from higher aliasing
than the original per-branch 2-bit counter scheme. We also find that
flushing the branch history state at fixed intervals does not accu-
rately model the true effects of user/kernel interaction.

Keywords: branch prediction, correlation, 2-level adaptive predic-
tion, system traces

1 Introduction

With the explosion of new superscalar microarchitectures, there
has been a mounting pressure on microprocessor architects to
improve the predictability of the conditional branches in the pro-
gram flow. With the trend toward larger branch misprediction pen-
alties due to the use of deeper pipelines, breaks in the program flow
can quickly throttle the performance of these wide-issue micropro-
cessors. Several recent studies [11, 14, 20] have proposed new
hardware branch prediction schemes to address this problem. To
date, the evaluation of these new techniques has been done almost
exclusively with user-level traces of applications such as those
found in the SPEC92 benchmark suite. This study goes beyond that
work to use full-system traces (i.e. traces with user and kernel ref-
erences) to evaluate the effectiveness of several two-level adaptive
branch prediction schemes. This study also analyzes the perfor-
mance of these dynamic branch prediction schemes on kernel-
intensive applications such as an HTTP server and those found in
the IBS benchmark suite [18].

All dynamic branch prediction schemes in this study are similar in
that they use a table of two-bit, up-down, saturating counters. A 2-
bit counter summarizes the past outcomes of a branch stream,
using this information to predict the next branch outcome [10, 17].
The method of selection of a 2-bit counter in this table defines the
type of dynamic branch prediction implemented. We evaluate four

dynamic schemes that have been shown to be particularly success-
ful at predicting user-level branches: simple per-branch dynamic
[17], GAs [14, 21], gshare [11], and PAs [21]. The last three
schemes are two-level adaptive schemes which exploit patterns in
the recent local or global branch history to improve prediction
accuracy.

While recent studies have demonstrated the benefit of two-level
adaptive schemes on benchmarks such as SPEC92, Young et al.
[23] point out some potential problems with these approaches as
the number of static branches to predict increases. Since a large
number of programs in the SPEC92 benchmark suite contain very
few static branch sites, these benchmarks do not stress the size of
the hardware branch prediction tables in most studies. We evaluate
two-level adaptive schemes on larger applications, such as those
found in the Instruction Benchmark Suite (IBS) [18]. Since these
benchmarks do not cover the entire spectrum of applications, we
also evaluate the two-level adaptive schemes using our own system
traces. We gathered these traces with the Atom tool-building sys-
tem [5]. Overall, our Atom traces include a selection of the
SPEC92 benchmarks and several large, system-intensive applica-
tions like an HTTP server. Unlike the SPEC92 benchmarks, the
HTTP server spends a significant amount of its execution time in
kernel routines. In summary, through the use of the IBS traces and
our own system traces, we are able to analyze the performance of
two-level adaptive branch prediction schemes under three operat-
ing systems and on a wide spectrum of applications.

Different workloads spend different amounts of time in user and
kernel code. We find that user-level traces of applications that
spend the vast majority of their time in user code (for example the
SPEC92 benchmarks) give good approximations of overall predic-
tion accuracy. However, the prediction accuracy on benchmarks
with an even relatively small amount of kernel activity (just 10% of
instructions) is not modeled well by user-only traces. Schemes that
appear the best in user-only traces (e.g. gshare with a large branch
history depth) do not always perform best on full-system traces.
Our results show that including kernel branches in the branch trace
can greatly increase the number of static branches predicted and
thus worsen the effects of aliasing. The negative effect of aliasing
on prediction accuracy is more pronounced in the two-level
schemes with large history depths than in locally-oriented schemes
that rely on small history depths [16]. We also find that flushing the
branch history state [13, 15] at fixed intervals does not accurately
model the true effects of user/kernel interactions: some schemes
are more sensitive than others to periodic flushing.

Section 2 summarizes the recent advances in branch prediction,
and it describes the major reasons for poor prediction accuracy in a
dynamic branch prediction scheme. Section 3 presents our simula-
tion methodology and our benchmark applications. Section 4 dis-
cusses our experimental results. Section 5 presents the conclusions
of this work.

Published in the Proc. of the 23rd Annual International
Symposium on Computer Architecture, May 1996.

2

2 Understanding Branch Prediction Schemes

In the last five years, researchers have made steady improvements
in the accuracy of static and dynamic branch prediction schemes
by exploiting the relationships between program branches and the
patterns of behavior of individual branches. To understand the
operation and to compare the performance of these schemes,
Young et al. [23] introduced an analytical framework for today’s
branch prediction schemes. Figure 1 summarizes the main compo-
nents of that framework. As il lustrated by this figure, the recently
proposed branch prediction schemes predict the future outcome of
a branch by accessing a predictor which summarizes some portion
of the past outcome of this branch. For example, most dynamic
branch prediction schemes summarize the past history of a branch
through the use of a simple finite-state machine implemented as a
2-bit, up/down, saturating counter. The divider in Figure 1 selects
the predictor, e.g. a 2-bit counter, used for each prediction. Before
1991, the divider in the best branch prediction schemes chose a
predictor based on the address of the branch to predict [10, 12, 17].
The dynamic versions of these schemes maintained a table of 2-bit
counters, referred to as a branch history table (BHT), indexed by
the branch address. Figure 2a il lustrates the hardware for this
approach, which we refer to as 2bc.

Figure 1. Framework for describing a branch prediction scheme [23].
The divider mechanism splits the program execution stream into sub-

streams, each of which is predicted by a single predictor.

Execution

b4
1

b5
1

b4
0

Prediction

1 1 1

Stream Stream

Divider
Substreams

Predictors

Figure 2. Block diagrams for the four dynamic branch prediction
schemes evaluated in this study. The branch history table (BHT) com-

prises an array of 2-bit, up/down, saturating counters used as predictors.

 p
re

di
ct

io
n

j bits

BHT of 2*2j bits

branch addr

(a) 2bc scheme

 p
re

di
ct

io
n

j bits

BHT of 2*2j+k bits

branch addr

branch history
shift register

k bits

(b) GAs scheme

 p
re

di
ct

io
n

k bits

BHT of 2*2k bits

branch addr

(c) gshare scheme

 p
re

di
ct

io
n

j bits

BHT of 2*2j+k bits

branch addr

k bits

(d) PAs scheme

k bits

BHSR
BHSRs

i bits

Recently, several researchers have empirically shown that we can
improve branch prediction accuracy by building more elaborate
divider mechanisms [11, 14, 20]. By appropriately dividing a pro-
gram’s dynamic branch stream into many substreams, we can pro-
duce substreams that are more predictable. For dynamic schemes,
Yeh and Patt [20] introduced the concept of “ two-level adaptive”
branch prediction schemes whose dividers include branch history
shift registers (BHSRs) which record the recent directions of pro-
gram branches. Their divider mechanisms use the contents of these
shift registers in addition to branch address information to create
highly predictable substreams. Krall [9] and Young and Smith [22]
describe code transformations that yield similar results for static
branch prediction approaches.

In this paper, we focus on three two-level adaptive branch predic-
tion schemes that have been shown to be effective on user-level
code [11, 14, 21]. Figure 2 depicts each of these schemes. The first
is called GAs, and it uses a single, global BHSR to record the out-
come of the past k branches. As discussed by Pan, So, and Rahmeh
[14], GAs exploits the correlation between branch executions in a
program; correlation occurs when the outcome of one or more
branch executions helps to determine the outcome of a future
branch. GAs chooses a 2-bit counter from the BHT by concatenat-
ing the contents of the global BHSR with the current branch
address. McFarling [11] proposes a modification to this scheme
where the BHSR contents are exclusive-or-ed with the branch
address. McFarling refers to this new scheme as gshare. The exclu-
sive-or function permits the use of longer history and more address
bits for a fixed size BHT than GAs. Ideally, this extra information
results in more substreams that are more predictable. The final
two-level adaptive branch prediction scheme that we consider is
called PAs [21]. The PAs scheme maps each program branch into a
table of BHSRs; the contents of the selected BHSR are concate-
nated to a portion of the branch address to select a 2-bit counter
from the BHT. This scheme exploits repeating patterns in the exe-
cution of a single program branch (e.g. loop branches that iterate a
constant number of times), but not correlation between distinct
static branches. GAs and gshare may be able to capture some of
the same looping patterns as PAs on short loop branches, but their
use of global history prevents them from exploiting patterns in
longer loops.

The analysis performed by Young et al. [23] suggests that the pre-
diction accuracies generated by the current implementation of
dynamic prediction schemes like those in Figure 2 are negatively
affected by problems of aliasing and training overhead. Aliasing
occurs when the hardware divider assigns streams from different
branches to the same 2-bit counter. Though the intermingling of
the individual branch streams can constructively, destructively, or
neutrally impact the prediction accuracy of the individual
branches, Young et al. showed that destructive aliasing occurs
more frequently and with larger magnitude than constructive alias-
ing, especially if the working set of the application is large or the
BHT is small in size. Training overhead refers to the fact that a 2-
bit counter needs to be “primed” for a particular conditional branch
by observing a few executions of that branch. Young et al. did not
discuss the effects of training overhead in detail, but this effect is
observable in some of their shorter benchmark runs. For these runs,
the schemes with finer dividers did not always achieve better pre-
diction accuracies than simpler schemes because the training over-
head of many substreams became a noticeable percentage of the
total number of predictions. In a simple scheme with a small num-
ber of substreams, the few predictions done during 2-bit counter
training amounts to a negligible number of mispredictions. As we
will see in Section 4, the problem of aliasing can become even
more pronounced for traces of system activity.

3

Though there have been several studies exploring the effects of
system references on instruction cache performance, the vast
majority of the work in branch prediction has focused on user-only
traces. Nair [13] and Perleberg and Smith [15] attempt to model
the effects of context switches on the user-level component of
branch misprediction by regularly flushing the BHT during a user-
only trace. We are famil iar with only one study that has performed
branch prediction simulations with system-level traces. The study
by Lee and Smith [10] contains three traces of the MVS operating
system executing a commercial workload. Since this work
occurred before the invention of two-level adaptive branch predic-
tion schemes, Lee and Smith report only the performance of these
traces on a 2bc scheme (in addition to other 2bc-like schemes).

3 Methodology

We use trace-driven simulation of user and kernel activity to evalu-
ate prediction accuracy on a range of branch prediction techniques.
We use traces that were collected by two different measurement
systems, one hardware-based and the other software-based, on
three different operating systems. By using traces from two inde-
pendent sources, we can benefit from the complementary advan-
tages of hardware and software systems and achieve a higher
overall degree of confidence in the quality of our simulations.

For our first set of traces, we used the IBS traces from the Univer-
sity of Michigan [18]. These traces were generated on a DECsta-
tion 3100 with a MIPS R2000 processor. The traces are designed
to provide a realistic instruction reference stream, overcoming lim-
itations of benchmark suites such as SPEC92 which fit in most on-
chip instruction caches and do not induce significant operating sys-
tem activity. IBS contains traces for two different operating sys-
tems, ULTRIX from Digital Equipment Corporation [19] and
Mach 3.0 from Carnegie Mellon University [1, 3].

For our simulations, we used the following items from the IBS
trace record: the memory address referenced; the flag that indicates
whether the reference was to instruction or data space; the flag that
indicates user or kernel mode; and the opcode fetched by an
instruction reference. With this information, we generated a branch
stream (as illustrated in Figure 1) that we used as input for our
branch prediction scheme simulator. The top of Table 1 gives a
description of the IBS benchmarks. Table 2 presents some general
statistics for each IBS trace.

We collected additional traces using Atom [5] on an Digital Alpha-
Station 400/233 running Digital Unix (formally OSF-1), release
3.2. With the Atom tool-building system, it is possible to instru-
ment both user programs and the Digital Unix kernel, thereby col-
lecting complete data for the simulation with no special-purpose
hardware and no source-code modifications to the operating sys-
tem.

When software-based measurements of system activity are used
for architectural simulation, care must be taken to avoid excessive
distortion in measured behavior due to the overhead of the mea-
surement system. Two kinds of distortion occur: space dilation and
time dilation [2]. To remove space dilation effects, we ran our
experiments on a machine with enough physical memory so addi-
tional system activity due to virtual memory effects did not occur.
To compensate for time dilation, we scaled clock interrupts via a
software technique, warmed the file system buffer cache before
any measured runs, avoided disk-bound workloads (where branch
misprediction penalties do not matter anyway), and used a dedi-
cated network. A more detailed discussion of time dilation in
Atom tools and techniques for avoiding their i ll effects can be
found in a separate technical report [4].

The bottom of Table 1 includes a brief description of the bench-
marks traced under Atom. Table 3 presents the statistics for these
benchmarks. They represent a range of applications with differing
degrees of kernel and user activity. Most of the recent previous
work in branch prediction has focused on the SPEC92 benchmark
suite. We chose a sample of these benchmarks, and as shown in
Table 3, they spend very little of their total instruction count in the
kernel. In addition to these benchmarks, we evaluated four bench-
marks chosen for their high level of kernel activity.

From the Atom trace, we construct a branch stream that is identical
in format to the stream produced from the IBS benchmarks. We
then feed this stream to our simulator code. Though Section 4 pre-
sents the results from only a single simulation run of each bench-
mark, we ran each benchmark in Table 3 three times to verify the
stability of our results. We found that the maximum difference in
the prediction accuracy between two runs with the same branch
prediction scheme was always less than 0.3% (typically less than
0.1%). For a particular benchmark, the prediction accuracy differ-
ence between schemes and sizes was always much greater than the
difference between runs.

4 Experimental Results

Our experiments concentrated on two basic questions: are the sim-
ulation results of user-level traces representative of the prediction
accuracy of a dynamic branch prediction scheme on a full-system
trace, and does periodic flushing of the BHT during a user-level

Benchmark Abbr. Description

IB
S

M
ac

h
3.

0
an

d
U

ltr
ix

groff [mu].groff GNU C++ implementation of ‘ nroff ’ ;
version 1.09

gs [mu].gs
Ghostscript version 2.4.1, single page
of text and graphics

jpeg_play [mu].jpeg
‘xloadimage’ version 3.0; displays two
JPEG images

mpeg_play [mu].mpeg ‘mpeg_play’ version 2.0, 85 frames
from compressed file

nroff [mu].nroff Ultrix 3.1 version of nroff

real_gcc [mu].gcc GNU C compiler, version 2.6

sdet [mu].sdet
Multiprocess benchmark from the
SPEC SDM suite

verilog [mu].vlog
Verilog-XL version 1.6b; simulating a
microprocessor

video_play [mu].video modified ‘mpeg_play’ ; 610 frames
from uncompressed file

SP
E

C
92

D
ig

it
al

 U
ni

x

026.compress o.co ‘ref.in’ input (1M file size)

008.espresso o.es ‘bca.in’ input

gcc o.gc
compiles ‘ tree.i’ f rom its own source,
version 2.6.3

022.li o.li shortened version of ‘r ef.lsp’ input

072.sc o.sc ‘ load1’ input

089.su2cor o.su ‘short.in’ input

O
th

er
Andrew bench o.ab Andrew without the compilation part

ghostscript o.gs
version 2.6.1; displays a 10-page
conference paper; includes X server

HTTP daemon o.ht NCSA httpd version 1.4; 8 server
processes; 1000 requests

mpeg_play o.mp
Version 2.2; does not use shared
memory; includes X server

Table 1: Description of our benchmark programs. We replaced the
SPECint92 version of gcc with version 2.6.3 because we had trouble

compil ing it on our Alpha machines. The descriptions of the IBS
benchmarks are based on those provided in [18].

4

trace accurately reflect the effect of kernel branches on the user-
level component of prediction accuracy? Sections 4.1 and 4.2,
respectively, discuss our findings for these two questions.

Throughout this section, we report the mispredict rates for predic-
tion schemes with hardware state of 4K bits, 16K bits, and 64K
bits.1 We refer to a particular scheme with the identifier
“name.size”, where “size” is the number of bits in that scheme’s
hardware state. For example, the identifier “2bc.4K” indicates that
the simulator used the hardware “2bc” branch prediction scheme
with a BHT size of 2K 2-bit counters. The smallest hardware sizes
correspond roughly to the amount of branch prediction hardware
found in today’s microprocessors [6, 7]. We chose the largest
scheme size because it has the same number of storage bits as an 8-
kilobyte cache.

1. For 2bc, GAs, and gshare, these sizes correspond to BHTs with 2K, 8K, and 32K
2-bit counters. We omit the relatively small hardware costs of the BHSRs on the
GAs and gshare schemes. We assumed that two BHSR bits have the same hard-
ware cost as one 2-bit counter for the PAs schemes.

Benchmark
Dynamic instruction

count
Dynamic branch

count
Protection
boundary
crossingsuser kernel user kernel

IB
S

M
ac

h
3.

0

m.groff 105.3M
(91%)

10.6M
(09%)

11.8M
(94%)

0.8M
(06%)

25990

m.gs
102.9M

(86%)
17.1M
(14%)

14M
(91%)

1.4M
(09%)

86778

m.jpeg
69.8M
(77%)

21.2M
(23%)

11.8M
(87%)

1.7M
(13%)

177212

m.mpeg 68.7M
(62%)

42.1M
(38%)

5.2M
(55%)

4.3M
(45%)

232144

m.nroff
124.2M

(92%)
11M

(08%)
21.8M
(95%)

1.1M
(05%)

58018

m.gcc
113.6M

(90%)
12.5M
(10%)

15.3M
(93%)

1.2M
(07%)

20008

m.sdet 12.2M
(28%)

30.8M
(72%)

1.6M
(38%)

2.6M
(62%)

108562

m.vlog
41.9M
(81%)

9.6M
(19%)

5.6M
(88%)

0.8M
(13%)

24760

m.video
25.2M
(45%)

30.2M
(55%)

2.7M
(48%)

2.9M
(52%)

190402

U
ltr

ix

u.groff 90.7M
(86%)

14.2M
(14%)

10.5M
(88%)

1.4M
(12%)

7054

u.gs
85.7M
(86%)

14.1M
(14%)

12.3M
(88%)

1.6M
(12%)

8836

u.jpeg
138.9M

(92%)
12.2M
(08%)

20.6M
(93%)

1.6M
(07%)

12170

u.mpeg 77.8M
(78%)

21.6M
(22%)

6.8M
(72%)

2.7M
(28%)

14804

u.nroff
119.4M

(92%)
10.9M
(08%)

21.1M
(93%)

1.5M
(07%)

7034

u.gcc
93.7M
(87%)

13.7M
(13%)

12.9M
(90%)

1.4M
(10%)

7858

u.sdet 0.6M
(01%)

41.5M
(99%)

0.1M
(02%)

5.4M
(98%)

5744

u.vlog
36.4M
(77%)

10.6M
(23%)

5.4M
(87%)

0.8M
(13%)

7470

u.video
15.8M
(30%)

36.7M
(70%)

1.8M
(32%)

3.9M
(68%)

14470

Table 2: Basic statistics for the IBS benchmark programs. “Protection
boundary crossings” counts the number of times that the trace switches
from a user process to kernel plus the switches from the kernel to a user

process. Please note that the UNIX server is a user process under Mach and
its activity is counted in the user categories.

Table 4 lists the specific parameters of each hardware scheme. The
gas.4K entry matches the size and organization of the branch pre-
diction hardware in the NexGen Nx586 [7]. The larger GAs
schemes were chosen by scaling up the NexGen parameters.2 For
PAs, we initially experimented with an organization that corre-
sponded to the reported parameters used by the branch prediction
unit in the Pentium Pro processor (i = 9, j = 9, k = 4) [6]. However,
this organization did not achieve misprediction rates as low as the
PAs configurations in Table 4. Similarly, PAs implementations

2. One might be tempted to run a set of GAs simulations to determine the best trade-
off between j and k parameters for our benchmarks. However, as will be seen later
in this section, the best “GAs” scheme for some of our benchmarks has a k value of
zero (i.e. a 2bc scheme). Hence, we use the NexGen design parameters as a reason-
able starting point for experiments.

Benchmark

Dynamic instruction
count

Dynamic branch
count

Protection
boundary
crossingsuser kernel user kernel

D
ig

ita
l U

ni
x

S
PE

C
92

o.co
70.9M
(95%)

3.5M
(05%)

12.1M
(95%)

0.6M
(05%) 6462

o.es
332.3M
(98%)

6.2M
(02%)

60.0M
(98%)

1.4M
(02%)

34388

o.gc 145.7M
(97%)

4.3M
(03%)

30.6M
(98%)

0.8M
(02%)

18890

o.li
121.4M
(96%)

4.6M
(04%)

32.5M
(97%)

0.9M
(03%) 32072

o.sc
81.8M
(91%)

7.8M
(09%)

20.4M
(93%)

1.6M
(07%)

26360

o.su 385.2M
(99%)

2.2M
(01%)

10.7M
(96%)

0.4M
(04%)

5842

O
th

er

o.ab
18.0M
(38%)

29.2M
(62%)

4.2M
(44%)

5.3M
(56%) 11870

o.gs
183.0M
(88%)

24.0M
(12%)

29.6M
(85%)

5.1M
(15%)

28112

o.ht 53.2M
(23%)

180.3M
(77%)

10.6M
(21%)

39.0M
(79%)

170138

o.mp
92.7M
(87%)

13.6M
(13%)

6.6M
(71%)

2.7M
(29%) 10636

Table 3: Basic statistics for our Digital Unix benchmark programs.
“Protection boundary crossings” counts the number of times that the trace
switches from a user process to kernel plus the switches from the kernel to

a user process.

Scheme

Branch address
bits used for

BHSR bits
used for

BHT index
(k)

Size of
scheme
(Kbits)BHSR selection

(i)
BHT index

(j)

2bc.4K 0 11 0 4

2bc.16K 0 13 0 16

2bc.64K 0 15 0 64

pas.4K 10 6 3 4

pas.16K 12 8 3 16

pas.64K 14 10 3 64

gas.4K 0 4 7 4

gas.16K 0 5 8 16

gas.64K 0 6 9 64

gsh.4K 0 11 11 4

gsh.16K 0 13 13 16

gsh.64K 0 15 15 64

Table 4: Specific parameters used for each dynamic branch prediction
scheme evaluated in this study. The address bits used are the lower i/j bits
of the branch’s word address. The BHT size is bits for gshare

schemes and bits for other schemes.
2max j k,()

2j k+

5

Benchmark

Count of static branches in percentile
Count of static branches touched

50% 90% 95% 99%

user full user full user full user full user kernel full

IB
S

M
ac

h
3.

0

m.groff 106 115 383 497 558 813 1219 2069 6678 2590 9268

m.gs 84 100 864 1095 1430 1874 3181 4177 12488 2379 14867

m.jpeg 3 4 44 157 159 405 647 1373 1812 1711 3523

m.mpeg 70 78 625 1006 1037 1576 2128 2908 7140 2473 9613

m.nroff 25 27 171 237 297 457 732 1254 5654 2305 7959

m.gcc 435 444 3307 3589 4892 5381 8383 9403 17038 2316 19354

m.sdet 63 115 711 1221 1198 1990 2471 3578 4825 2703 7528

m.vlog 77 99 612 941 912 1434 1825 2918 5673 2495 8168

m.video 12 31 649 999 1077 1575 1958 2765 4816 2309 7125

U
ltr

ix

u.groff 108 122 356 454 485 690 889 1658 3344 2989 6333

u.gs 137 156 911 1113 1227 1633 2476 3772 9521 3144 12665

u.jpeg 3 3 27 57 52 179 153 898 5558 2328 7886

u.mpeg 36 64 140 490 195 785 666 1899 2589 3009 5598

u.nroff 27 30 183 227 273 374 516 966 2487 2762 5249

u.gcc 316 322 2786 3057 4134 4685 7416 8698 14516 2845 17361

u.sdet 27 8 418 467 598 817 1231 1920 1928 3382 5310

u.vlog 74 92 551 802 842 1281 1491 2387 2720 1916 4636

u.video 27 75 146 710 252 1037 619 1736 1724 2882 4606

SP
E

C
92

D
ig

it
al

 U
ni

x

o.co 4 5 13 16 16 19 18 249 375 4505 4880

o.es 16 17 145 178 251 318 523 652 3221 4354 7575

o.gc 349 372 3072 3261 4590 4930 8531 9587 21397 5446 26843

o.li 23 24 71 81 95 122 147 266 1108 4254 5362

o.sc 56 66 279 469 418 748 734 1219 2923 5081 8004

o.su 5 6 26 32 36 63 79 445 1937 4210 6147

O
th

er

o.ab 6 17 19 783 28 1318 100 2983 1124 5564 6688

o.gs 108 145 509 844 854 1411 1769 3172 8235 6549 14784

o.ht 13 82 242 988 371 1413 648 2373 2094 7679 9773

o.mp 16 25 74 352 111 684 282 2103 2129 6076 8205

Table 5: Counts of static branches touched in our benchmarks during the trace along with counts of the minimum number of
static branches accounting for 50%, 90%, 95%, and 99% of the dynamic branch executions.

with the same bit cost and a longer history depth (k = 6) also per-
formed worse than the selected PAs schemes at the 4K and 16K
sizes.

The SPEC92 benchmarks have been criticized because a significant
portion of their dynamic branch execution count is due to a very
small numbers of static branches. The data in Table 5 supports this
claim. Only o.gc, o.sc, and possibly o.es exercise a significant num-
ber of user static branches in the 95% column. The same statement
can be made of the distribution of branch executions in the full (ker-
nel and user) trace. Table 5 also provides proof that our non-SPEC
benchmarks are a challenging workload for the sizes of our branch
prediction schemes. Except for a few benchmarks (e.g. u.jpeg and
u.nroff), it takes well over 400 static branches to account for 95% of
the dynamic branch executions in the full-system trace. Often, the
user branches alone are a large portion of this total.

4.1 Predicting user and kernel branches

Researchers have evaluated two-level adaptive branch prediction
schemes using single-process traces of user-only activity. Their
studies repeatedly concluded that the addition of extra hardware to
exploit more specific patterns in the branch stream, as found in
gshare or PAs, achieved better branch prediction accuracies than the
simpler hardware found in the GAs or 2bc schemes. These results

have encouraged researchers to develop even more elaborate hard-
ware and convinced microprocessor vendors to implement these
two-level adaptive schemes in new superscalar processors [6, 7, 8].
The results in this section show that the mispredict rate obtained
from a trace of user-level branches is often a poor indicator of a
scheme’s mispredict rate on user and kernel branches. We also find
that 2bc can provide the lowest mispredict rate in some cases.

Figure 3 summarizes the results of our simulations, counting how
many times each scheme showed the best mispredict rate at a partic-
ular scheme size, for user-only and full-system traces. Even from
this summary, we can make a number of interesting observations.
First, the best dynamic prediction scheme for a trace of user-only
branches is not always the same as the best scheme for a full-system
trace of user and kernel branches. Second, for both user-only and
full-system traces, a scheme like gshare that uses a long branch his-
tory predicts better as the scheme size increases. The PAs scheme is
the best prediction scheme at the small (4K) scheme size; PAs and
GAs do best at the middle (16K) scheme size, while GAs and
gshare are best at the large (64K) scheme size. To make the same
point a different way, the use of long branch histories appears to
penalize schemes at small scheme sizes. In addition, the inclusion
of kernel branches appears to have a similar effect to that of
decreasing the size: schemes with shorter histories do better. As we

6

will show later in this section, these observed trends are due to the
effects of aliasing [23].

Tables 8, 9, and 10 (at the end of the paper) present the user-only
and full-system mispredict rates for each benchmark under our
range of 2bc, PAs, GAs, and gshare schemes. The data in these
tables demonstrates that a mispredict rate as measured in a simula-
tion of user-only activity is not necessarily a reliable indicator of
the true mispredict rate on the full-system trace. For example,
u.video at gas.64K achieves a user-only mispredict rate of 1.17%
while the full -system trace mispredict rate is 3.71%; more than a
factor of three worse. Fortunately, the user-only mispredict rates
for the SPEC92 benchmarks under Digital Unix match fairly well
with the mispredict rates achieved under full-system tracing, pro-
viding some credibili ty to the results of previous studies. As illus-
trated by the results for o.sc, the match becomes worse as the
scheme size decreases or as the history depth of the prediction
scheme increases. Furthermore, as the percentage of total instruc-
tions executed in user mode decreases, the user-only mispredict
rate for user-only experiments quickly deviates from that achieved
under full -system tracing. This observation makes sense intu-
itively, provided that the kernel-only and user-only mispredict rates
differ.

The scatter plots in Figures 4 and 5 (on the next two pages) depict
the distortions introduced in the mispredict rate by eliminating ker-
nel references from our branch prediction simulations. For each
chart, the horizontal axis shows the user-only mispredict rate,
while the vertical axis shows the full -system mispredict rate. If
user-only traces accurately represent the full-system mispredict

Figure 3. Distribution of benchmark simulations grouped by the
scheme that yields the lowest mispredict rate. The top and bottom

plots show results from user-only and full -system traces respectively.
This figure summarizes data in Tables 8, 9, and 10.

Best User-Only Scheme

0

5

10

15

20

4K 16K 64K

Scheme Size (bits)

C
ou

nt
 o

f B
en

ch
m

ar
ks

2bc
pas
gas
gsh

Best Full-System Scheme

0

5

10

15

20

4K 16K 64K

Scheme Size (bits)

C
ou

nt
 o

f B
en

ch
m

ar
ks

2bc
pas
gas
gsh

rate, then we would expect all points to appear on the diagonal. As
expected, this is true for the SPEC benchmarks (the solid circles in
Figures 4 and 5). The IBS and the Other Digital Unix benchmarks
show some significant deviations from the diagonal, although these
deviations decrease with larger scheme sizes.

Focusing on Figure 4, the 2bc graphs appear similar across all
scheme sizes. This suggests that the 2bc scheme approaches the
point of diminishing returns at BHT sizes of 4K bits; enlarging the
table does not significantly reduce the mispredict rate since little
aliasing is occurring. This is intuitively borne out by the static
branch percentiles in Table 5; few of our benchmarks use more
than 4K static branches at the 95th percentile of static branches.
However, the IBS benchmarks, which tend to have smaller overall
mispredict rates and thus are less visually striking in the scatter
plots, stil l show reasonable improvements from larger scheme
sizes.

In Figures 4 and 5, the two-level adaptive schemes do not appear to
reach the point of diminishing returns for the scheme sizes that we
examined. With increasing scheme size, each graph looks like a
scaled-down version of its predecessor, corresponding to better
overall mispredict rates from the larger sizes. It also appears that
the deviations from the diagonal decrease with larger sizes. Both of
these trends make intuitive sense, since the larger sizes should
reduce aliasing within the combined set of user and kernel
branches.

To quantify our intuitions of reduced distortions at larger scheme
sizes, we examined the normalized distortion, the difference
between user-only and full-system mispredict rates divided by
their sum. This metric ranges from 0 to 1, where 0 indicates no dis-
tortion, and 1 indicates that one of the mispredict rates is a tiny
fraction of the other (high distortion). Table 6 summarizes this
metric for each grouping of benchmark, scheme, and size. The dis-
tortion for the SPEC benchmarks is always below 0.03. The distor-
tion for the IBS benchmarks hovers around 0.1, while the Other
Digital Unix benchmarks have a slightly higher distortion ranging
from 0.1 to 0.2. As we suspected from visual examination of Fig-
ures 4 and 5, the distortion generally decreases with larger scheme
sizes. It sometimes increases due to the fact that we measure the
distortion between the user-only mispredict rate and the full-sys-
tem mispredict rate, while several of the IBS and the Other Digital
Unix benchmarks are dominated by kernel and not user branches.

Benchmark
group Scheme

Scheme Size (bits)

4K 16K 64K

IBS

2bc 0.05 0.03 0.04

pas 0.10 0.08 0.06

gas 0.12 0.11 0.09

gsh 0.12 0.12 0.10

SPEC92

2bc 0.01 0.01 0.01

pas 0.03 0.02 0.02

gas 0.02 0.01 0.01

gsh 0.03 0.02 0.01

Other
Digital
Unix

2bc 0.07 0.09 0.10

pas 0.20 0.16 0.10

gas 0.10 0.03 0.07

gsh 0.17 0.12 0.06

Table 6: Arithmetic mean of distortion for each benchmark group.
Distortion is calculated using the formula / , where is

the user-only mispredict rate and is the full-system mispredict rate. A
value of 0 means no distortion while a value of 1 means that one rate

dwarfs the other.

u f–() u f+() u
f

7

Figure 4. Scatter plots comparing user-only mispredict rates (horizontal axis) with full -system traces (vertical axis) for 2bc
schemes (top) and PAs schemes (bottom). Hollow squares show IBS benchmark results; solid circles show SPEC92 results,

and hollow triangles show the Other Digital Unix results. The 2bc graphs omit results for o.co, which are off the scale.

2bc

PAs

4K 16K 64K

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

The addition of kernel branches to the simulation has increased
aliasing (contention) in the prediction scheme hardware. Table 11
presents the full-system mispredict rates where all aliasing (both
BHSR and BHT address aliasing) has been removed. Unsurpris-
ingly, unaliased mispredict rates are always better than the mispre-
dict rate of the corresponding scheme in our study. As we observed
earlier, for the same scheme, smaller sizes suffer more aliasing than
larger sizes. This is borne out by the larger differences in mispredict
rates of unaliased and practical implementation at smaller scheme
sizes. For example, under gas.4K, o.ht shows a mispredict rate of
10.27%, while the equivalent unaliased GAs scheme
achieves 2.65%. Aliasing adds almost 300% more mispredictions.
The gas.64K scheme shows a mispredict rate of 3.78%; the
unaliased GAs scheme achieves a rate of 2.36%. Aliasing
adds just 60% more mispredictions. Similarly, schemes with deeper
branch histories suffer more aliasing than schemes with shallow
branch histories. For example, m.video under gas.16K shows a
mispredict rate of 7.26%, while the equivalent unaliased
GAs scheme achieves 2.79%. Aliasing adds almost 160% more
mispredictions. The gsh.16K scheme shows a mispredict rate of
7.51%; the corresponding unaliased GAs scheme3

achieves a rate of 2.03%. Aliasing adds 270% more mispredictions.

From our data, it appears that a user-only mispredict rate accurately
reflects the full-system mispredict rate if the percentage of the total
instruction count spent in user mode is greater than 95%. If the per-
centage is less than 90%, the results of a user-only trace cannot be
trusted. The 90–95% range is a grey area. The reverse of this obser-

3. Unaliased gshare schemes are GAs schemes of the same history depth.

k 7=

k 9=

k 8=

k 13=

vation is demonstrated by u.sdet, which spends less than 2% of the
total instruction count in user mode. In this case, we found that the
mispredict rate of the kernel-only trace is a good indicator of the
full-system mispredict rate.

4.2 Simulating the effect of kernel branches

To date, very few branch prediction studies have considered the
effects of user/kernel interaction on prediction accuracy. Nair [13]
and Perleberg and Smith [15] each attempt to model the effects of
context switching on the user-only branch mispredict rates by flush-
ing the BHT at a fixed interval of instructions. This method is inex-
act, because interactions with the kernel or other processes do not
necessarily flush the branch history state. A short switch may have
little effect on the state, and a large table may suffer lower conten-
tion and thus suffer less il l effect. Nair, Perleberg, and Smith use
traces that omit system activity, and hence they are not able to ver-
ify the true effects of kernel branches on the user-only component
of the mispredict rate. To evaluate the validity of this approach, we
modified our simulator to flush the BHTs and BHSRs at fixed inter-
vals of instructions during a user-only trace. We then compared the
resulting mispredict rates to the user component of the full-system
trace simulation. Some flush interval will produce the same mispre-
dict rate as the user component of the full-system trace; we call this
number the effective flush interval (EFI). If f lushing at fixed inter-
vals is an accurate methodology, then we would expect the EFI to
remain constant across different prediction scheme organizations
and sizes.

8

Figure 5. Scatter plots comparing user-only mispredict rates (horizontal axis) with full-system traces (vertical axis) for
GAs schemes (top) and gshare schemes (bottom). Hollow squares show IBS benchmark results; solid circles show

SPEC92 results, and hollow triangles show the Other Digital Unix results.

gsh

GAs

4K 16K 64K

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

Our full-system traces include both user and kernel references. So,
we can evaluate the accuracy of periodic flushing as a methodology
for estimating the effect of user and kernel contention on the branch
prediction hardware. It suffices to show one example where peri-
odic flushing produces inaccurate and misleading results. Our
u.video benchmark is such an example. This benchmark spends
more than two-thirds of its time in the kernel, so one might think
that the “pollution” of the branch prediction scheme caused by ker-
nel branches would resemble flushing.

Table 7 compares the full-system mispredict rate and the mispredict
rates generated by periodic flushing for u.video. We can see two
crucial problems. First, under each scheme, the EFI increases with
increasing scheme size. This means that periodic flushing cannot be
used to compare different scheme sizes for the same scheme,
because it can overly penalize the larger sizes. The 2bc entries at a
flush interval of 10,000 instructions give a concrete example of this:
the periodic flushing results imply that larger 2bc tables result in
only small improvements in prediction accuracy. But the user com-
ponent of the full-system trace shows significant improvements
with increasing scheme size. Larger scheme sizes remove aliasing
between user and kernel branches in this case. Since periodic flush-
ing provides no model for the other branches contending for the
table, it cannot model the benefits from reduced aliasing.

The second important problem is that the EFI for u.video varies
between prediction schemes even at a constant scheme size. This
makes periodic flushing a useless methodology for comparing dif-
ferent branch prediction schemes. The scheme with the larger EFI
will be unfairly penalized by the effects of periodic flushes. For

example, using a flush interval of 10,000 instructions to compare
64K-bit implementations would lead one to believe that PAs gives
the best mispredict rate, followed by GAs, 2bc, and gshare. The
order ordering from the full -system trace simulation is different:
gshare and GAs achieve the best mispredict rates, followed by PAs
and 2bc.

The previous discussion proves that we cannot trust the numerical
values produced by periodic flushing. Table 7 demonstrates that we
cannot even trust the overall trends implied by periodic flushing
results. Using a flush interval of 10,000 instructions, periodic flush-
ing reports that gshare predicts worse with increasing scheme
size—exactly the opposite of the truth.

5 Conclusions

Using full-system (i.e. combined user/kernel) traces gives realistic
results that lead to different conclusions about the effectiveness of
existing dynamic branch prediction schemes than do the results
from user-only traces. We find that including kernel references
often increases aliasing, and this effect may cause schemes with
short branch histories to achieve better prediction accuracies than
those with deep branch histories. While SPEC92 is user-dominated
(so prior work in branch prediction retains value), system designers
and customers probably want to match their test workloads to a
wider range of user/kernel mixes. Simulations that ignore kernel
activity risk dangerous inaccuracy: elaborate two-level schemes that
appear good under user-only traces may turn out to be less attractive
when the whole system is considered. These problems appear even

9

worse for small scheme sizes. As a rule of thumb, if both the kernel
and the user account for more than 5% of the instruction mix, then
combined system and kernel traces should be used.

Flushing at fixed intervals poorly models the effect of kernel
branches on dynamic branch prediction schemes. It is misleading
to use periodic flushing to compare different schemes with the
same amount of hardware or to compare the same scheme with
varying amounts of hardware. More specifically, periodic flushing
fails to capture differences in the organization and size of schemes.
It assumes the same amount of contention exists in a 4K-bit
scheme as in a 64K-bit scheme. And, it assumes the same amount
of contention in a 2bc scheme as in a gshare scheme of the same
hardware size. These underlying fallacies in the periodic flushing
model wil l persist and yield inaccurate results when periodic flush-
ing is used to model multitasking workloads.

6 Acknowledgments

This research was sponsored in part by grants from Digital Equip-
ment, Hewlett-Packard, and Intel. Cliff Young is funded by a Grad-
uate Fellowship from the Office of Naval Research and an IBM
Cooperative Fellowship. Brad Chen is supported by an NSF Career
Award, grant number CCR-9501365. Michael D. Smith is sup-
ported by a National Science Foundation Young Investigator
award, grant number CCR-9457779.

7 References
[1] M. Accetta, et al. “Mach: A New Kernel Foundation for Unix

Development,” Proc. Summer 1986 USENIX Conf., Jul. 1986.

[2] J. Chen. “Software Methods for System Address Tracing,”
Proc. Fourth Workshop on Workstation Operating Systems,
Oct. 1993.

[3] J. Chen and B. Bershad. “The Impact of Operating System
Structure on Memory System Performance,” Proc. 14th ACM
Symp. on Operating System Principles, Dec. 1993.

Size and Scheme EFI

Mispredict rate (%)

Full -
system
trace

Periodic flush interval

10K 100K 1M

4K

2bc 90-100K 5.19 6.69 5.13 4.36

PAs 50-60K 5.36 6.68 4.80 3.29

GAs 20-30K 5.39 6.62 4.51 3.42

gshare 10-20K 5.05 6.21 3.67 2.39

16K

2bc 300-400K 4.26 6.58 4.93 4.05

PAs 200-300K 3.30 6.03 4.27 2.69

GAs 100-200K 2.87 5.63 3.17 1.79

gshare 100-200K 3.00 6.41 3.43 1.72

64K

2bc 1.1-1.2M 3.92 6.55 4.85 3.94

PAs 1.7-1.8M 2.22 5.79 3.88 2.37

GAs 600-700K 1.71 5.81 3.14 1.58

gshare 1.4-1.5M 1.45 6.57 3.42 1.58

Table 7: Comparison of the user component of the mispredict rate from a
full -system trace with the mispredict rates derived from periodic f lushing

intervals. The benchmark in these simulations is u.video. The effective f lush
interval is the periodic flush interval that achieves the same mispredict rate

as the full-system trace simulation.

[4] J. Chen and A. Eustace. “Kernel Instrumentation Tools and
Techniques,” Technical Report 26-95, Center for Research in
Computing Technology, Harvard University, Cambridge, MA,
Nov. 1995.

[5] A. Eustace and A. Srivastava. “ATOM: A Flexible Interface
for Building High Performance Program Analysis Tools”.
Proc. Winter 1995 USENIX Technical Conf. on UNIX and
Advanced Computing Systems, Jan. 1995

[6] L. Gwennap. “New Algorithm Improves Branch Prediction,”
Microprocessor Report, 9(4):17–21, Mar. 27, 1995.

[7] L. Gwennap. “Pentium Competitors Go Head to Head,”
Microprocessor Report, 9(8):16, Jun. 19, 1995.

[8] L. Gwennap. “Nx868 Goes Toe-to-Toe with Pentium Pro,”
Microprocessor Report, 9(14):8, Oct. 23, 1995.

[9] A. Krall. “ Improving Semi-static Branch Prediction by Code
Replication,” Proc. ACM SIGPLAN ’94 Conf. on Prog. Lang.
Design and Implementation, Jun. 1994.

[10] J. Lee and A. Smith. “Branch Prediction Strategies and
Branch Target Buffer Design,” Computer, 17(1), Jan. 1984.

[11] S. McFarling. “Combining Branch Predictors,” WRL Techni-
cal Note TN-36, June 1993.

[12] S. McFarling and J. Hennessy. “Reducing the Cost of
Branches,” Proc. of 13th Annual Intl. Symp. on Computer
Architecture, Jun. 1986.

[13] R. Nair. “Dynamic Path-Based Branch Correlation,” Proc.
28th Annual Intl. Symp. on Microarchitecture, Nov. 1995.

[14] S. Pan, K. So, and J. Rahmeh. “ Improving the Accuracy of
Dynamic Branch Prediction Using Branch Correlation,” Proc.
5th Annual Intl. Conf. on Architectural Support for Prog.
Lang. and Operating Systems, Oct. 1992.

[15] C. Perleberg and A. Smith. “Branch Target Buffer Design and
Optimization,” IEEE Transactions on Computers, 42(4):396-
412, Apr. 1993.

[16] S. Sechrest, C. Lee, and T. Mudge, “The Role of Adaptivity in
Two-Level Adaptive Branch Prediction,” Proc. 28th Annual
Intl. Symp. on Microarchitecture, Nov. 1995.

[17] J. Smith. “A Study of Branch Prediction Strategies,” Proc. 8th
Annual Intl. Symp. on Computer Architecture, Jun. 1981.

[18] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer.
“ Instruction Fetching: Coping with Code Bloat,” Proc. 22nd
Annual Intl. Symp. on Computer Architecture, Jun. 1995.

[19] ULTRIX Documentation Group. ULTRIX Documentation
Overview for RISC Processors, Digital Equipment Corpora-
tion, 1989.

[20] T. Yeh and Y. Patt. “Two-Level Adaptive Branch Prediction,”
Proc. 24th Annual ACM/IEEE Intl. Symp. and Workshop on
Microarchitecture, Nov. 1991.

[21] T. Yeh and Y. Patt. “A Comparison of Dynamic Branch Pre-
dictors that use Two Levels of Branch History,” Proc. 20th
Annual Intl. Symp. on Computer Architecture, May 1993.

[22] C. Young and M. Smith. “ Improving the Accuracy of Static
Branch Prediction Using Branch Correlation,” Proc. 6th
Annual Intl. Conf. on Architectural Support for Prog. Lang.
and Operating Systems, Oct. 1994.

[23] C. Young, N. Gloy, and M. Smith. “A Comparative Analysis
of Schemes for Correlated Branch Prediction,” Proc. 22nd
Annual Intl. Symp. on Computer Architecture, Jun. 1995.

10

Benchmark Scheme
Scheme Size (bits)

4K 16K 64K
user full user full user full

m.groff
2bc 6.31 6.63 5.85 5.93 5.09 5.15
PAs 6.05 6.48 5.24 5.38 4.42 4.47
GAs 7.90 8.74 4.80 5.35 3.54 3.81
gsh 9.65 10.48 5.79 6.47 3.78 4.21

m.gs
2bc 7.27 7.59 6.38 6.46 6.17 6.16
PAs 6.38 7.04 5.21 5.48 4.62 4.71
GAs 9.18 9.93 5.94 6.48 4.25 4.52
gsh 9.51 10.48 5.95 6.64 4.18 4.61

m.jpeg
2bc 13.23 12.72 13.05 12.23 12.98 12.07
PAs 1.45 2.48 1.20 1.74 1.13 1.52
GAs 1.71 3.52 1.16 2.28 0.96 1.48
gsh 1.94 3.83 1.24 2.12 0.92 1.34

m.mpeg
2bc 9.90 9.34 8.89 7.51 8.53 6.88
PAs 8.58 9.02 6.61 6.22 5.93 5.22
GAs 11.80 12.86 8.38 8.82 6.69 5.95
gsh 12.99 14.36 9.19 9.09 6.51 5.92

m.nroff
2bc 4.60 4.83 4.08 4.19 4.00 4.06
PAs 4.52 4.89 3.72 3.81 3.55 3.56
GAs 5.14 5.69 3.45 3.80 2.67 2.84
gsh 8.24 8.77 4.01 4.42 2.74 2.97

m.gcc
2bc 13.38 13.19 11.98 11.64 11.37 10.99
PAs 12.52 12.58 10.13 10.09 8.68 8.51
GAs 14.05 14.15 10.86 10.84 8.33 8.29
gsh 16.45 16.59 12.68 12.73 10.18 10.20

m.sdet
2bc 7.67 9.52 6.28 6.99 5.81 6.34
PAs 7.06 9.26 5.18 6.41 4.49 5.18
GAs 10.91 13.83 7.09 8.71 4.94 5.94
gsh 11.31 15.75 7.56 10.04 4.61 6.24

m.vlog
2bc 7.46 7.79 6.02 6.09 5.67 5.65
PAs 5.47 6.31 3.76 4.22 3.12 3.39
GAs 7.14 8.11 4.08 4.75 3.08 3.44
gsh 7.37 8.59 4.39 5.27 2.99 3.52

m.video

2bc 7.61 8.28 6.11 5.97 5.67 5.33
PAs 6.25 7.83 4.45 5.20 3.67 4.09
GAs 8.71 11.67 5.83 7.26 3.78 4.34
gsh 9.68 12.95 5.76 7.51 3.57 4.34

Table 8: User-only and full-system mispredict rates for the Mach 3.0 IBS benchmarks. For each
benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations.

Benchmark Scheme
Scheme Size (bits)

4K 16K 64K
user full user full user full

u.groff
2bc 5.29 5.58 4.46 4.53 4.41 4.45
PAs 5.15 5.52 4.25 4.33 3.78 3.74
GAs 6.74 7.27 4.10 4.45 3.05 3.20
gsh 8.28 8.85 5.04 5.56 3.13 3.47

u.gs
2bc 6.91 7.22 6.05 6.14 5.97 5.96
PAs 5.22 5.81 4.08 4.38 3.62 3.78
GAs 8.22 8.75 5.07 5.49 3.67 3.89
gsh 8.61 9.38 4.75 5.40 3.07 3.52

u.jpeg
2bc 12.4 12.06 12.42 11.93 12.41 11.90
PAs 0.87 1.30 0.85 1.15 0.84 1.05
GAs 0.77 1.49 0.70 1.07 0.68 0.88
gsh 0.86 1.56 0.76 1.14 0.72 0.96

u.mpeg
2bc 7.19 8.01 6.94 7.13 6.88 6.97
PAs 6.32 7.24 5.56 5.87 5.39 5.32
GAs 7.64 9.39 5.68 6.48 5.03 4.96
gsh 7.13 9.40 5.19 6.40 4.65 4.90

u.nroff
2bc 4.20 4.38 3.88 3.95 3.72 3.77
PAs 4.20 4.43 3.57 3.66 3.31 3.30
GAs 4.73 5.16 3.19 3.48 2.49 2.65
gsh 7.54 7.84 3.65 4.01 2.69 2.85

u.gcc
2bc 11.68 11.29 10.53 10.07 10.11 9.61
PAs 10.72 10.59 8.77 8.57 7.63 7.30
GAs 11.88 11.85 9.21 9.10 7.13 6.98
gsh 13.92 13.92 10.77 10.73 8.60 8.55

u.sdet
2bc 6.23 6.39 5.69 5.08 5.49 4.56
PAs 6.37 5.62 5.73 4.16 5.19 3.57
GAs 7.21 9.34 5.79 5.82 5.48 3.95
gsh 8.34 9.47 6.46 5.45 6.01 3.60

u.vlog
2bc 7.79 8.33 6.45 6.71 6.32 6.43
PAs 5.40 6.50 3.91 4.49 3.18 3.52
GAs 7.12 8.27 4.25 4.98 3.20 3.52
gsh 7.15 8.56 4.33 5.27 3.06 3.58

u.video

2bc 4.29 8.32 3.95 6.45 3.84 6.02
PAs 2.55 7.59 2.34 5.48 2.01 4.27
GAs 3.16 10.83 1.42 6.47 1.17 3.71
gsh 2.06 11.08 1.27 6.38 1.04 3.38

Table 9: User-only and full-system mispredict rates for the Ultrix IBS benchmarks. For each
benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations.

Benchmark Scheme
Scheme Size (bits)

4K 16K 64K
user full user full user full

o.co
2bc 25.74 24.82 25.74 24.82 25.74 24.84
PAs 10.98 10.78 10.97 10.65 10.97 10.57
GAs 10.89 10.73 10.80 10.51 10.46 10.10
gsh 11.38 11.37 10.02 9.91 9.70 9.48

o.es
2bc 6.14 6.00 6.17 6.08 6.11 6.08
PAs 4.28 4.29 4.12 4.07 3.97 3.90
GAs 3.88 4.03 3.58 3.62 3.44 3.42
gsh 4.07 4.24 3.52 3.61 3.28 3.32

o.gc
2bc 16.32 16.31 14.75 14.63 14.59 14.42
PAs 14.57 14.82 10.69 10.76 8.85 8.79
GAs 14.86 15.16 11.06 11.21 8.16 8.26
gsh 17.48 17.80 13.24 13.47 10.28 10.48

o.li
2bc 13.33 13.19 13.33 13.20 13.33 13.21
PAs 8.01 8.12 7.82 7.70 7.60 7.44
GAs 6.09 6.38 4.94 5.06 4.16 4.16
gsh 5.41 5.77 3.59 3.71 3.24 3.33

o.sc
2bc 7.36 7.64 7.15 7.20 7.09 7.18
PAs 4.80 5.82 3.55 3.74 3.22 3.16
GAs 4.87 6.08 3.38 3.98 2.75 2.83
gsh 6.13 7.40 3.50 4.09 2.55 2.82

o.su
2bc 7.00 7.08 7.00 7.06 7.00 7.06
PAs 6.92 6.99 6.91 6.82 6.90 6.78
GAs 6.92 7.04 6.87 6.84 6.86 6.76
gsh 7.26 7.39 7.05 7.07 6.95 6.91

o.ab
2bc 18.21 13.43 18.21 12.60 18.22 12.26
PAs 6.12 9.06 6.09 6.21 6.08 4.95
GAs 3.15 7.61 3.03 5.08 2.77 3.37
gsh 3.14 8.91 2.73 5.72 2.69 3.58

o.gs
2bc 11.01 10.73 10.64 10.21 10.66 10.17
PAs 5.71 6.42 4.43 4.52 4.13 3.98
GAs 5.28 6.16 3.82 4.22 3.09 3.15
gsh 5.98 7.12 4.00 4.60 2.85 3.17

o.ht
2bc 14.05 12.04 13.37 10.77 13.32 10.34
PAs 7.84 10.29 5.66 6.05 4.91 4.27
GAs 7.28 10.27 4.63 6.04 3.38 3.78
gsh 8.56 12.22 4.80 7.23 2.92 3.84

o.mp

2bc 12.37 11.30 12.33 10.84 12.31 10.89
PAs 9.63 9.81 8.61 7.63 8.26 6.98
GAs 9.94 10.11 8.29 7.60 7.13 6.05
gsh 10.54 11.57 8.42 8.33 7.12 6.27

Table 10: User-only and full-system mispredict rates for the Digital Unix benchmarks. For each
benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations

Benchmark
Unaliased GAs of history depth (k) Unaliased PAs

0 7 8 9 11 13 15 k = 3

m.groff 5.06 3.19 3.00 2.82 2.57 2.40 2.38 4.09

m.gs 6.02 3.61 3.42 3.21 2.83 2.70 2.64 4.23

m.jpeg 12.03 1.21 1.14 1.04 0.95 0.89 0.91 1.34

m.mpeg 6.73 4.57 4.24 4.00 3.47 3.30 3.30 4.55

m.nroff 4.02 2.72 2.47 2.36 2.22 2.17 2.15 3.43

m.gcc 10.76 5.83 5.49 5.16 4.82 4.62 4.45 7.63

m.sdet 6.11 3.84 3.63 3.49 3.28 3.06 3.06 4.34

m.vlog 5.50 3.08 2.81 2.74 2.54 2.39 2.35 2.96

m.video 5.21 2.95 2.79 2.46 2.15 2.03 2.02 3.39

u.groff 4.34 2.80 2.63 2.45 2.24 2.12 2.09 3.43

u.gs 5.86 3.67 3.52 3.11 2.62 2.21 2.05 3.25

u.jpeg 11.89 0.82 0.80 0.80 0.78 0.77 0.78 0.99

u.mpeg 6.92 5.24 4.47 4.29 3.83 3.73 3.68 5.03

u.nroff 3.76 2.58 2.34 2.21 2.08 2.04 2.01 3.21

u.gcc 9.40 5.09 4.80 4.50 4.24 4.12 4.00 6.58

u.sdet 4.50 3.23 2.78 2.68 2.53 2.37 2.37 3.08

u.vlog 6.34 3.13 2.87 2.83 2.56 2.46 2.37 3.12

u.video 5.92 3.32 2.56 2.45 2.18 2.01 1.97 3.71

o.co 11.94 10.05 9.98 9.69 9.67 9.41 9.26 10.51

o.es 4.68 3.34 3.31 3.27 3.10 3.04 3.03 3.85

o.gc 10.02 5.46 5.10 4.72 4.29 4.00 3.85 7.00

o.li 10.61 3.79 3.60 3.31 2.99 2.74 2.79 6.48

o.sc 3.95 2.55 2.45 2.36 2.26 2.16 2.12 2.74

o.su 6.87 6.70 6.70 6.70 6.71 6.72 6.72 6.73

o.ab 4.66 2.78 2.69 2.51 2.41 2.37 2.33 3.63

o.gs 6.19 2.97 2.77 2.65 2.37 2.22 2.15 3.49

o.ht 5.36 2.65 2.44 2.36 2.16 1.99 1.91 3.18

o.mp 8.11 6.38 6.19 5.57 5.31 5.23 5.13 6.29

Table 11: Full-system mispredict rates where all aliasing (both BHSR and
BHT address aliasing) has been removed.

