Published in the Proc. of the 23rd Annual International

Symposium on Computer Architecture, May 1996.

An Analysis of Dynamic Branch Prediction Schemes
on System Workloads

Nicolas Gloy, Cliff Young, J. Bradley Chen, and Michael D. Smith
Division of Applied Sciences, Harvard University

{ng, cyoung, bchen, smith} @eecs.harvard.edu

Abstract

Recent studies of dynamic branch prediction schemes rely almost
exclusively on user-only simulations to evaluate performance. We
find that an evaluation of these schemes with user and kernel refer-
ences often leads to different conclusions. By analyzing our own
Atom-generated system traces and the system traces from the
Instruction Benchmark Suite, we quantify the effects of kernel and
user interactions on branch prediction accuracy. We find that user-
only traces yield accurate prediction results only when the kernel
accounts for less than 5% of the total executed instructions.
Schemes that appear to predict well under user-only traces are not
aways the most effective on full-system traces: the recently-pro-
posed two-level adaptive schemes can suffer from higher aliasing
than the original per-branch 2-bit counter scheme. We also find that
flushing the branch history state at fixed intervas does not accu-
rately model the true effects of user/kernel interaction.

Keywords: branch prediction, correlation, 2-level adaptive predic-
tion, system traces

1 Introduction

With the explosion of new superscalar microarchitectures, there
has been a mounting pressure on microprocessor architects to
improve the predictability of the conditiona branches in the pro-
gram flow. With the trend toward larger branch misprediction pen-
alties due to the use of deeper pipelines, breaks in the program flow
can quickly throttle the performance of these wide-issue micropro-
cessors. Several recent studies [11, 14, 20] have proposed new
hardware branch prediction schemes to address this problem. To
date, the evaluation of these new techniques has been done almost
exclusively with user-level traces of applications such as those
found in the SPEC92 benchmark suite. This study goes beyond that
work to use full-system traces (i.e. traces with user and kernel ref-
erences) to evaluate the effectiveness of several two-level adaptive
branch prediction schemes. This study also anayzes the perfor-
mance of these dynamic branch prediction schemes on kernel-
intensive applications such as an HTTP server and those found in
the IBS benchmark suite [18].

All dynamic branch prediction schemes in this study are similar in
that they use a table of two-bit, up-down, saturating counters. A 2-
bit counter summarizes the past outcomes of a branch stream,
using this information to predict the next branch outcome [10, 17].
The method of selection of a 2-bit counter in this table defines the
type of dynamic branch prediction implemented. We evaluate four

dynamic schemes that have been shown to be particularly success-
ful at predicting user-level branches. simple per-branch dynamic
[17], GAs [14, 21], gshare [11], and PAs [21]. The last three
schemes are two-level adaptive schemes which exploit patterns in
the recent loca or global branch history to improve prediction
accuracy.

While recent studies have demonstrated the benefit of two-level
adaptive schemes on benchmarks such as SPEC92, Young et al.
[23] point out some potential problems with these approaches as
the number of static branches to predict increases. Since a large
number of programs in the SPEC92 benchmark suite contain very
few static branch sites, these benchmarks do not stress the size of
the hardware branch prediction tables in most studies. We evaluate
two-level adaptive schemes on larger applications, such as those
found in the Instruction Benchmark Suite (IBS) [18]. Since these
benchmarks do not cover the entire spectrum of applications, we
a so evaluate the two-level adaptive schemes using our own system
traces. We gathered these traces with the Atom tool-building sys-
tem [5]. Overal, our Atom traces include a selection of the
SPEC92 benchmarks and several large, system-intensive applica
tions like an HTTP server. Unlike the SPEC92 benchmarks, the
HTTP server spends a significant amount of its execution time in
kernel routines. In summary, through the use of the IBS traces and
our own system traces, we are able to analyze the performance of
two-level adaptive branch prediction schemes under three operat-
ing systems and on a wide spectrum of applications.

Different workloads spend different amounts of time in user and
kernel code. We find that user-level traces of applications that
spend the vast mgjority of their time in user code (for example the
SPEC92 benchmarks) give good approximations of overall predic-
tion accuracy. However, the prediction accuracy on benchmarks
with an even relatively small amount of kernel activity (just 10% of
instructions) is not modeled well by user-only traces. Schemes that
appear the best in user-only traces (e.g. gshare with alarge branch
history depth) do not aways perform best on full-system traces.
Our results show that including kernel branches in the branch trace
can greatly increase the number of static branches predicted and
thus worsen the effects of aliasing. The negative effect of aliasing
on prediction accuracy is more pronounced in the two-level
schemes with large history depths than in locally-oriented schemes
that rely on small history depths[16]. We also find that flushing the
branch history state [13, 15] at fixed intervals does not accurately
model the true effects of user/kernel interactions: some schemes
are more sensitive than others to periodic flushing.

Section 2 summarizes the recent advances in branch prediction,
and it describes the major reasons for poor prediction accuracy in a
dynamic branch prediction scheme. Section 3 presents our simula
tion methodology and our benchmark applications. Section 4 dis-
cusses our experimental results. Section 5 presents the conclusions
of thiswork.

2 Understanding Branch Prediction Schemes

In the last five years, reseachers have made steady improvements
in the acuragy of static and dynamic branch prediction schemes
by exploiting the relationships between program branches and the
patterns of behavior of individual branches. To understand the
operation and to compare the performance of these schemes,
Young et a. [23] introduced an analytical framework for today’s
branch prediction schemes. Figure 1 summari zes the main compo-
nents of that framework. As illustrated by this figure, the recently
proposed branch prediction schemes predict the future outcome of
a branch by aacessing a predictor which summarizes some portion
of the past outcome of this branch. For example, most dynamic
branch prediction schemes summarize the past history of abranch
through the use of a simple finite-state machine implemented as a
2-bit, up/down, saturating counter. The divider in Figure 1 selects
the predictor, e.g. a 2-bit counter, used for each prediction. Before
1991, the divider in the best branch prediction schemes chose a
predictor based on the address of the branch to predict [10, 12, 17].
The dynamic versions of these schemes maintained a table of 2-bit
counters, referred to as a branch history table (BHT), indexed by
the branch address. Figure 2a illustrates the hardware for this
approach, which we refer to as 2bc.

Divider Predictors
Substreams
Execution Prediction
Stream Stream
b4 [b5 | b4 »
1|10 4ERENE!

Figure 1. Framework for describing a branch prediction scheme [23].
The divider mechanism splits the program exeaution stream into sub-
streams, each of which is predicted by asingle predictor.

j bits
-
L me-
j bit branch hi ; 5
0 g eniit register | 1] (] s« (7] 3
= =)
O[3 I P E
BHT of 2+2l bits = I;’—'k it [[ee[1]
BHT of 2*2/ bits
(a) 2bc scheme (b) GAs scheme
j bits
BHSR rkbits BHSRs CI0e-[| _
=] | Dm0, §
§ ibsp{IleelP| | s 3 3| B
°©
HEaE gl [u[aflla
= k bits

BHT of 2*2/ K bits
(d) PAs scheme

BHT of 22X bits
(c) gshare scheme

Figure 2. Block diagrams for the four dynamic branch prediction
schemes evaluated in this dudy. The branch history table (BHT) com-
prises an array of 2-bit, up/down, saturating counters used as predictors.

Recently, several reseachers have empirically shown that we an
improve branch prediction accuracy by building more daborate
divider mechanisms [11, 14, 20]. By appropriately dividing a pro-
gram'’s dynamic branch stream into many substreams, we @an pro-
duce substreams that are more predictable. For dynamic schemes,
Yeh and Patt [20] introduced the concept of “two-level adaptive”
branch prediction schemes whose dividers include branch history
shift registers (BHSRs) which record the recent directions of pro-
gram branches. Their divider mechanisms use the contents of these
shift registers in addition to branch address information to crede
highly predictable substreams. Krall [9] and Young and Smith [22]
describe @de transformations that yield similar results for static
branch prediction approaches.

In this paper, we focus on three two-level adaptive branch predic-
tion schemes that have been shown to be effective on user-level
code [11, 14, 21]. Figure 2 depicts each o these schemes. The first
iscdled GAs, and it uses a single, global BHSR to record the out-
come of the past k branches. As discussed by Pan, So, and Rahmeh
[14], GAs explaits the correlation between branch exeautionsin a
program; correlation occurs when the outcome of one or more
branch exeautions helps to determine the outcome of a future
branch. GAs chooses a 2-hit counter from the BHT by concatenat-
ing the contents of the global BHSR with the current branch
address. McFarling [11] proposes a modification to this scheme
where the BHSR contents are exclusive-or-ed with the branch
address. McFarling refersto this new scheme as gshare. The exclu-
sive-or function permitsthe use of longer history and more address
bits for a fixed size BHT than GAs. Ideally, this extrainformation
results in more substreams that are more predictable. The final
two-level adaptive branch prediction scheme that we consider is
caled PAs[21]. The PAs <£heme maps each program branch into a
table of BHSRs; the mntents of the selected BHSR are mncate-
nated to a portion o the branch address to seled a 2-bit counter
from the BHT. This scheme eploits repeating petterns in the exe-
cution of asingle program branch (e.g. loop branches that iterate a
constant number of times), but not correlation between dstinct
static branches. GAs and gshare may be ale to capture some of
the same looping petterns as PAs on short loop branches, but their
use of global history prevents them from exploiting petterns in
longer loops.

The anadysis performed by Young et al. [23] suggests that the pre-
diction accuracies generated by the aurrent implementation of
dynamic prediction schemes like those in Figure 2 are negatively
affected by problems of aliasing and training overhead. Aliasing
occurs when the hardware divider assgns streams from different
branches to the same 2-bit counter. Though the intermingling o
the individual branch streams can constructively, destructively, or
neutrally impact the prediction accuracy of the individua
branches, Young et al. showed that destructive aliasing occurs
more frequently and with larger magnitude than constructive aias-
ing, espedally if the working set of the application is large or the
BHT is snal in size. Training overhead refers to the fact that a 2-
bit courter needsto be “primed” for aparticular condtional branch
by observing a few executions of that branch. Young et al. did not
discuss the effects of training overhead in detail, but this effect is
observable in some of their shorter benchmark runs. For these runs,
the schemes with finer dividers did not always achieve better pre-
diction accuracies than simpler schemes because the training over-
head of many substreans became anaticeable percentage of the
total number of predictions. In a simple scheme with a small num-
ber of substreams, the few predictions done during 2-bit counter
training amounts to a negligible number of mispredictions. As we
will see in Section 4, the problem of aiasing can become even
more pronounced for traces of system activity.

Though there have been several studies exploring the effects of
system references on instruction cache performance, the vast
majority of the work in branch prediction hasfocused on user-only
traces. Nair [13] and Perleberg and Smith [15] attempt to model
the effeds of context switches on the user-level comporent of
branch misprediction by regularly flushing the BHT during a user-
only trace. We are familiar with only one study that has performed
branch prediction simulations with system-level traces. The study
by Lee aad Smith [10] contains three traces of the MV S operating
system executing a a@mmercial workload. Since this work
occurred before the invention o two-level adaptive branch predic-
tion schemes, Lee and Smith report only the performance of these
traces on a 2bc scheme (in additionto ather 2bc-like schemes).

3 Methodology

We use trace-driven simul ation of user and kernel activity to evalu-
ate prediction accuragy on arange of branch prediction techniques.
We use traces that were mlleded by two dfferent measurement
systems, one hardware-based and the other software-based, on
three different operating systems. By using traces from two inde-
pendent sources, we can benefit from the complementary advan-
tages of hardware and software systems and achieve a higher
overall degreeof confidence in the quality of our simulations.

For our first set of traces, we used the IBS traces from the Univer-
sity of Michigan [18]. These traces were generated on a DECsta-
tion 3100 with a MIPS R2000 processor. The traces are designed
to provide arealistic instruction reference stream, overcoming lim-
itations of benchmark suites uch as SFEC92 which fitin most on-
chipinstruction caches and do na induce significant operating sys-
tem adivity. IBS contains traces for two dfferent operating sys-
tems, ULTRIX from Digital Equipment Corporation [19] and
Mach 3.0 from Carnegie Mellon University [1, 3].

For our simulations, we used the following items from the IBS
trace record: the memory address referenced; the flag that indicates
whether the reference was to instruction o data space; the flag that
indicates user or kernel mode; and the opcode fetched by an
instruction reference. With thisinformation, we generated abranch
stream (as illustrated in Figure 1) that we used as inpu for our
branch prediction scheme simulator. The top d Table 1 gives a
description d the IBS benchmarks. Table 2 presents some general
statistics for each IBS trace.

We collected additional traces using Atom [5] on an Digital Alpha-
Station 400/233 running Digital Unix (formally OSF1), release
3.2. With the Atom tool-building system, it is possible to instru-
ment both user programs and the Digital Unix kernel, thereby col-
lecting complete data for the simulation with no special-purpose
hardware and o source-code modifications to the operating sys-
tem.

When software-based measurements of system adivity are used
for architectural simulation, care must be taken to avoid excessive
distortion in measured behavior due to the overhead of the mea-
surement system. Two kinds of distortion occur: space dilation and
time dilation [2]. To remove space dilation effeds, we ran our
experiments on a machine with enough physical memory so addi-
tiona system adivity due to virtual memory effeds did not occur.
To compensate for time dilation, we scaled clock interrupts via a
software technique, warmed the file system buffer cache before
any measured runs, avoided disk-bound workloads (where branch
misprediction penalties do ot matter anyway), and used a dedi-
cated network. A more detailed discussion o time dilation in
Atom tools and techniques for avoiding their ill effects can be
foundin a separate technical report [4].

Benchmark Abbr. Description
GNU C++ implementation o ‘nroff’;
groff [mu].groff version 1.09 P
Ghostscript version 24.1, single page
9 [mu].gs of text and graphics
)) ‘xloadimage’ version 30; displaystwo
« jpeg_play [mul-iPeg | 1pEG images
5 ‘mpeg_play’ version 2.0, 85 frames
" 'g mpeg_play [mu].mpeg from compressed file
a g nroff [mu].nroff Ultrix 3.1 version o nroff
-§ red_gcc [mu].gce GNU C compiler, version 26
= Multi process benchmark from the
sdet [mu].sdet | SpEC SDM suite
) Verilog-XL version 1.6b; simulating a
verilog [mu].viog miCroprocessor
video,_play [mu].video modified ‘mpeg_play’; 610 frames

from uncompressed file

026.compress 0.co ‘ref.in’ input (1M file size)

008.espresso 0.65 ‘bcain’ input

8 gee 0.0¢ comlpiles‘tree.i’ from its own source,
O version 26.3
g 022.li oli shortened version o ‘ref.Isp’ input
072.sc 0.5C ‘loadl’ input
089.su2cor o.su ‘short.in’ input

Digital Unix

Andrew bench 0.ab Andrew without the compil ation part

version 2.6.1; displays a 10-page
conference paper; includes X server

NCSA httpd version 14; 8 server
processes; 1000 requests

Version 22; does not use shared
memory; includes X server

ghostscript 0.0s

Other

HTTP daemon o.ht

mpeg_play o.mp

Table 1: Description of our benchmark programs. We replaced the
SPECIint92 version of gccwith version 2.6.3 because we had trouble
compiling it on aur Alpha madhines. The descriptions of the IBS
benchmarks are based onthose provided in [18].

The bottom of Table 1 includes a brief description d the bench-
marks traced under Atom. Table 3 presents the statistics for these
benchmarks. They represent a range of applications with differing
degrees of kernel and user adivity. Most of the recent previous
work in branch prediction has focused on the SPEC92 benchmark
suite. We chose a sample of these benchmarks, and as shown in
Table 3, they spend very little of their total instruction count in the
kernel. In addition to these benchmarks, we esauated four bench-
marks chosen for their high level of kernel adivity.

From the Atom trace, we @nstruct a branch stream that is identical
in format to the strean produced from the IBS benchmarks. We
then feed this stream to our simulator code. Though Sedion 4 pre-
sents the results from only a single simulation run o each bench-
mark, we ran each benchmark in Table 3 three times to verify the
stability of our results. We found that the maximum difference in
the prediction accuracy between two runs with the same branch
prediction scheme was always less than 0.3% (typicaly less than
0.1%). For a particular benchmark, the prediction accuragy differ-
ence between schemes and sizes was always much greater than the
difference between runs.

4 Experimental Results

Our experiments concentrated on two basic questions: are the sim-
ulation results of user-level traces representative of the prediction
accuragy of adynamic branch prediction scheme on a full-system
trace, and does periodic flushing of the BHT during a user-level

Dynamic ingtruction Dynamic branch Protedion
Benchmark count count boundary
user kernel user kernd | crossings
mgroff 105.3M 10.6M 11.8M 0.8M 25990
- (91%) (09%) (94%) (06%)
" 102.0M 17.1M 14M 1.4M 86778
g8 (86%) (14%) (91%) (09%)
o 69.8M 21.2M 11.8M LM| 177212
1Py (77%) (23%) (87%) (13%)
68.7M 42.1M 5.2M 43M| 232144
o m.mpeg (62%) (38%) (55%) (45%)
pll I 124.2M 11M 21.8M 1IM 58018
g |mno (92%) (08%) (95%) (05%)
= e 113.6M 12.5M 15.3M 1.2M 20008
9 (90%) (10%) (93%) (07%)
msdet 12.2M 30.8M 1.6M 26M| 108562
: (28%) (72%) (38%) (62%)
vl 41.9M 9.6M 5.6M 0.8M 24760
viog (81%) (19%) (88%) (13%)
myvideo 25.2M 30.2M 2.7M 20M| 190402
2 - (45%) (55%) (48%) (52%)
= Laroff 90.7M 14.2M 10.5M 1.4M 7054
9 (86%) (14%) (88%) (12%)
85.7M 14.1M 12.3M 1.6M 8836
u.gs (86%) (14%) (88%) (12%)
o 138.9M 12.2M 20.6M 1.6M 12170
1Py (92%) (08%) (93%) (07%)
um 77.8M 21.6M 6.8M 2.7M 14804
‘MPeg (78%) (22%) (72%) (28%)
Z | ot 119.4M 10.9M 21.1M 1.5M 7034
£ |uno (92%) (08%) (93%) (07%)
e 93.7M 13.7M 12.9M 1.4M 7858
9 (87%) (13%) (90%) (10%)
et 0.6M 41.5M 0.1M 5.4M 5744
- (01%) (99%) (029%) (98%)
vl 36.4M 10.6M 5.4M 0.8M 7470
viog (77%) (23%) (87%) (13%)
Lvideo 15.8M 36.7M 1.8M 3.9M 14470
- (30%) (70%) (32%) (68%)

Table 2: Basic statistics for the IBS benchmark programs. “ Protection
boundary crossngs’ counts the number of timesthat the trace switches
from a user processto kernel plus the switches from the kernel to a user
process Please note that the UNIX server isauser processunder Mach and
its adivity is counted in the user categories.

trace acurately reflect the dfect of kernel branches on the user-
level component of prediction accuracy? Sections 4.1 and 4.2,
respectively, discuss our findings for these two questions.

Throughout this section, we report the mispredict rates for predic-
tion schemes with herdware state of 4K hits, 16K bits, and 64K
bits] We refer to a particular scheme with the identifier
“name.siz€’, where “siz€’ is the number of bits in that scheme's
hardware state. For example, the identifier “2bc.4K” indicates that
the simulator used the hardware “2bc” branch prediction scheme
with aBHT size of 2K 2-bit counters. The smallest hardware sizes
correspond roughly to the anount of branch prediction hardware
found in today’s microprocessors [6, 7]. We chose the largest
scheme size because it has the same number of storage bits as an 8-
kilobyte ade.

1. For 2bc, GAs, and gshare, these sizes correspond to BHTs with 2K, 8K, and 32K
2-bit counters. We omit the relatively small hardware sts of the BHSRs on the
GAs and gshare schemes. We assumed that two BHSR bits have the same hard-
ware @st as one 2-hit counter for the PAs schemes.

Dynamic instruction Dynamic branch Protedion
Benchmark count count boundary
user kernel user kernel crossings
oo | 709M 35M .M 0.6M 162
: ©5%) (05%) | (95%) (05%)
3323M 6.2M 60.0M 1.4M
o.es ©8%) (02%) | (98%) (02%) 34388
1457M 43M 30.6M 0.8M
§ |0 @M% (03%) | (98%) (02%) 18890
. 1214M 46M 325M 0.9M
o |odi ©6%) (04%) | ©@™%) (03%) 32072
x 81.8M 7.8M 20.4M 1.6M
5| |°% ©1%) ©%%) | ©@%) (O7%) 26360
2l |oe | 32m 22m 10.7M 0.4M 5842
3 : Q%) (01%) | (96%) (04%)
18OM 202M | 42M 5.3M
o.ab (G8%) (62%) | 44%) (56%) 11870
ogs | 180M 240M | 206M 5.1M o811
o | %9 (88%) (12%) (85%) (15%)
°
o) 53.2M 180.3M 10.6M 39.0M
oAt @) (k) | (%) (7o) | 018
QM 136M 6.6M 2.7M
OMP g7 (13%) | (71%) (29%) 10636

Table 3: Basic statistics for our Digital Unix benchmark programs.
“Protection boundary crossngs’ counts the number of times that the trace
switches from a user process to kernel plus the switches from the kernel to

auser process

Branch address BHSR bhits)
bits used for used for Sizeof
Scheme . .) scheme
BHSRseledtion | BHTindex | BHTindex | yihioy
0) [0) ®
2bc.4K 0 11 0 4
2hc.16K 0 13 0 16
2hc.64K 0 15 0
pas.4K 10 3 4
pas.16K 12 3 16
pas.64K 14 10 3
gas.4K 0 7 4
gas. 16K 0 8 16
gas.64K 0 9
gsh.4K 0 1 1 4
gsh.16K 0 13 13 16
gsh.64K 0 15 15 64

Table 4: Spedfic parameters used for each dynamic branch prediction
scheme evaluated in this gudy. The aldressbits used are the lower i/j bits
of the branch’s word address. The BHT sizeis 2™ (0. K) pits for gshare

schemes and 2! * K bits for other schemes.

Table 4 lists the specific parameters of each hardware scheme. The
gas.4K entry matches the size and organization o the branch pre-
diction hardware in the NexGen Nx586 [7]. The larger GAs
schemes were chosen by scaling up the NexGen parameters.© For
PAs, we initially experimented with an organization that corre-
sponded to the reported parameters used by the branch prediction
unit in the Pentium Pro processor (i =9, j = 9, k= 4) [6]. However,
this organization did na achieve misprediction rates as low as the
PAs configurations in Table4. Similarly, PAs implementations

2. Onemight be tempted to run a set of GAs smulations to determine the best trade-
off between j and k parameters for our benchmarks. However, as will be seen later
in this sdion, thebest “GAs’ scheme for some of our benchmarks has ak value of
zero (i.e. a 2bc scheme). Hence, we use the NexGen design parameters as a reason-
able starting point for experiments.

Count of static branches in percentile]
Benchmark 5% 90% 9% 99% Count of static branches touched
user full user full user full user full user kernel full

m.groff 106 115 383 497 558 813 1219 2069 6678 2590 9268

m.gs 84 100 864 1095 1430 1874 3181 4177 12488 2379 14867
m.jpeg 3 4 44 157 159 405 647 1373 1812 1711 3523

o |m.mpeg 70 78 625 1006 1037 1576 2128 2908 7140 2473 9613

% m.nroff 25 27 171 237 297 457 732 1254 5654 2305 7959

= |m.gcc 435 444 3307 3589 4892 5381 8383 9403 17038 2316 19354
m.sdet 63 115 711 1221 1198 1990 2471 3578 4825 2703 7528
m.viog 77 99 612 941 912 1434 1825 2918 5673 2495 8168

» m.video 12 31 649 999 1077 1575 1958 2765 4816 2309 7125
2 u.groff 108 122 356 454 485 690 889 1658 3344 2989 6333
u.gs 137 156 911 1113 1227 1633 2476 3772 9521 3144 12665

u.jpeg 3 3 27 57 52 179 153 898 5558 2328 7886

u.mpeg 36 64 140 490 195 785 666 1899 2589 3009 5598

g u.nroff 27 30 183 227 273 374 516 966 2487 2762 5249

> u.gcc 316 322 2786 3057 4134 4685 7416 8698 14516 2845 17361
u.sdet 27 8 418 467 598 817 1231 1920 1928 3382 5310

u.viog 74 92 551 802 842 1281 1491 2387 2720 1916 4636

u.video 27 75 146 710 252 1037 619 1736 1724 2882 4606

0.co 4 5 13 16 16 19 18 249 375 4505 4880

o.es 16 17 145 178 251 318 523 652 3221 4354 7575

% o.gc 349 372 3072 3261 4590 4930 8531 9587 21397 5446 26843
g = |oli 23 24 71 81 95 122 147 266 1108 4254 5362
53 0.sC 56 66 279 469 418 748 734 1219 2923 5081 8004
g o.su 6 26 32 36 63 79 445 1937 4210 6147

8 o 17 19 783 28 1318 100 2983 1124 5564 6688

o) 0.gs 108 145 509 844 854 1411 1769 3172 8235 6549 14784
g o.ht 13 82 242 988 371 1413 648 2373 2094 7679 9773
o.mp 16 25 74 352 111 684 282 2103 2129 6076 8205

Table 5: Counts of static branches touched in our benchmarks during the trace &ong with counts of the minimum number of
static branches acounting for 50%, 90%, 95%, and 9% of the dynamic branch executions.

with the same bit cost and a longer history depth (k = 6) aso per-
formed worse than the selected PAs schemes at the 4K and 16K
sizes.

The SPEC92 benchmarks have been criticized because asignificant
portion d their dynamic branch exeaution count is due to a very
small numbers of static branches. The datain Table 5 supports this
claim. Only o.gc, o.sc, and passibly o.es exercise asignificant num-
ber of user static branches in the 95% column. The same statement
can be made of the distribution of branch executionsin the full (ker-
nel and user) trace. Table 5 also provides proof that our non-SPEC
benchmarks are a challenging workload for the sizes of our branch
prediction schemes. Except for a few benchmarks (e.g. u.jpeg and
u.nroff), it takeswell over 400 static branchesto account for 95% of
the dynamic branch exeautions in the full-system trace. Often, the
user branches alone ae alarge portion of thistotal.

4.1 Predicting user and kernel branches

Researchers have evaluated two-level adaptive branch prediction
schemes using single-process traces of user-only adivity. Their
studies repeatedly concluded that the addition of extra hardware to
exploit more specific patterns in the branch stream, as found in
gshare or PAs, achieved better branch prediction accuracies than the
simpler hardware foundin the GAs or 2bc schemes. These results

have encouraged reseachers to develop even more el aborate hard-
ware and convinced microprocessor vendars to implement these
two-level adaptive schemesin new superscalar processors [6, 7, 8].
The results in this sction show that the mispredict rate obtained
from a trace of user-level branches is often a poor indicator of a
scheme’s mispredict rate on user and kernel branches. We dso find
that 2bc can provide the lowest mispredict rate in some @ses.

Figure 3 summarizes the results of our simulations, counting how
many times each scheme showed the best mispredict rate at a partic-
ular scheme size, for user-only and full-system traces. Even from
this summary, we can make a number of interesting observations.
First, the best dynamic prediction scheme for a trace of user-only
branchesis not dways the same & the best scheme for afull-system
trace of user and kernel branches. Secnd, for both user-only and
full-system traces, a scheme like gshare that usesalong branch his-
tory predicts better as the scheme sizeincreases. The PAsschemeis
the best prediction scheme & the small (4K) scheme size; PAs and
GAs do best a the midde (16K) scheme size, while GAs and
gshare are best at the large (64K) scheme size. To make the same
point a different way, the use of long branch histories appears to
penalize schemes at small scheme sizes. In addition, the inclusion
of kernel branches appears to have a similar effed to that of
decreasing the size: schemes with shorter histories do better. Aswe

Best User-Only Scheme
20

£15
[
E M 2bc
[5)
< 10 Opas
a gas
o
= [gsh
3
O 5
o
4K 16K 64K
Scheme Size (bits)
Best Full-System Scheme

20
£15
[
E M 2bc
[=)
< 10 Opas
E gas
o
= Egsh
3
O 5 %

0 -+ } }

4K 16K 64K
Scheme Size (bits)

Figure 3. Distribution d benchmark smulations grouped by the
scheme that yields the lowest mispredict rate. The top and bottom
plots dow results from user-only and full -system traces respectively.
Thisfigure summarizes datain Tables 8, 9, and 10.

will show later in this section, these observed trends are due to the
effects of aliasing [23].

Tables 8, 9, and 10 (at the end o the paper) present the user-only
and full-system mispredict rates for each benchmark under our
range of 2bc, PAs, GAs, and gshare schemes. The data in these
tables demonstrates that a mispredict rate & measured in asimula-
tion o user-only activity is not necessarily a reliable indicator of
the true mispredict rate on the full-system trace. For example,
u.video at gas.64K achieves a user-only mispredict rate of 1.17%
while the full-system trace mispredict rate is 3.71%; more than a
fador of three worse. Fortunately, the user-only mispredict rates
for the SPEC92 benchmarks under Digital Unix match fairly well
with the mispredict rates achieved under full-system tracing, pro-
viding some credibility to the results of previous studies. Asillus-
trated by the results for o.sc, the match becomes worse as the
scheme size decreases or as the history depth of the prediction
scheme increases. Furthermore, as the percentage of total instruc-
tions executed in user mode deaeases, the user-only mispredict
rate for user-only experiments quickly deviates from that achieved
under full-system tracing. This observation makes sense intu-
itively, provided that the kernel-only and user-only mispredict rates
differ.

The scatter plotsin Figures 4 and 5 (on the next two pages) depict
the distortions introduced in the mispredict rate by eliminating ker-
nel references from our branch prediction simulations. For each
chart, the horizontal axis shows the user-only mispredict rate,
while the vertical axis shows the full-system mispredict rate. If
user-only traces accurately represent the full-system mispredict

Benchmark Scheme Size (bits)
Scheme
group 4K 16K 64K
2bc 0.05 0.03 0.04
0.10 0.08 0.06
IBS pas
gas 0.12 0.11 0.09
gsh 0.12 0.12 0.10
2bc 0.01 0.01 0.01
0.03 0.02 0.02
SFEC92 pas
gas 0.02 0.01 0.01
gsh 0.03 0.02 0.01
2bc 0.07 0.09 0.10
Other 0.20 0.16 0.10
Digital pes
Unix gas 0.10 0.03 0.07
gsh 0.17 0.12 0.06

Table 6: Arithmetic mean of distortion for each benchmark group.
Distortionis caculated using theformula (Ju—f]) / (u+f) ,where u is
the user-only mispredict rate and f isthe full-system mispredict rate. A
value of 0 means no distortion while avalue of 1 meansthat one rate
dwarfs the other.

rate, then we would exped al points to appear on the diagonal. As
expected, thisistrue for the SFEC benchmarks (the solid circlesin
Figures 4 and 5). The IBS and the Other Digital Unix benchmarks
show some significant deviations from the diagonal, although these
deviations decrease with larger scheme sizes.

Focusing on Figure 4, the 2bc graphs appea similar across all
scheme sizes. This suggests that the 2bc scheme goproaches the
point of diminishing returns at BHT sizes of 4K bits; enlarging the
table does not significantly reduce the mispredict rate since little
aliasing is occurring. This is intuitively borne out by the static
branch percentiles in Table5; few of our benchmarks use more
than 4K static branches at the 95th percentile of static branches.
However, the IBS benchmarks, which tend to have smaller overall
mispredict rates and thus are less visudly striking in the scatter
plots, till show reasonable improvements from larger scheme
sizes.

In Figures 4 and 5, the two-level adaptive schemes do not appear to
reach the paint of diminishing returns for the scheme sizes that we
examined. With increasing scheme size, each graph looks like a
scaled-down version of its predecessor, corresponding to better
overal mispredict rates from the larger sizes. It also appeas that
the deviations from the diagonal deaease with larger sizes. Both of
these trends make intuitive sense, since the larger sizes shoud
reduce aliasing within the cmbined set of user and kerne
branches.

To quentify our intuitions of reduced distortions at larger scheme
sizes, we eamined the normalized distortion, the difference
between wser-only and full-system mispredict rates divided by
their sum. This metric rangesfrom O to 1, where O indicates no dis-
tortion, and 1 indicaes that one of the mispredict rates is a tiny
fraction of the other (high distortion). Table 6 summarizes this
metric for each grouping of benchmark, scheme, and size The dis-
tortion for the SPEC benchmarks is aways below 0.03. The distor-
tion for the IBS benchmarks hovers arourd 0.1, while the Other
Digital Unix benchmarks have adightly higher distortion ranging
from 0.1 to 0.2. Aswe suspected from visua examination o Fig-
ures 4 and 5, the distortion generally decreases with larger scheme
sizes. It sometimes increases due to the fact that we measure the
distortion between the user-only mispredict rate and the full-sys-
tem mispredict rate, while several of the IBS and the Other Digital
Unix benchmarks are dominated by kernel and ot user branches.

4K

20 20

16K 64K

20

15 15

15

2 b C 10 e 10 : 10 S
o o
a%] 3 e ¢ 5
o ¢ & a E‘Dﬁ
5 o 5 5 o
&
0 0 0
0 5 10 15 20 0 10 15 20 0 5 10 15 20
20 20 20
15 15 15
P A S 10 - = 10 10
° & . o
59‘:' E‘D o a
o o = oo
5 = 5 - 5+—3
Pyt
0 0 0
0 5 10 15 20 0 10 15 20 0 5 10 15 20

Figure 4. Scatter plots comparing user-only mispredict rates (horizontal axis) with full-system traces (verticd axis) for 2bc
schemes (top) and PAs shemes (bottom). Hollow squares show IBS benchmark results; solid circles show SPEC92 resullts,
and hdlow triangles show the Other Digital Unix results. The 2bc graphs omit results for 0.co, which are off the scale.

The addition of kernel branches to the simulation hes increased
aliasing (contention) in the prediction scheme hardware. Table 11
presents the full-system mispredict rates where dl aliasing (both
BHSR and BHT address aliasing) has been removed. Unsurpris-
ingly, unaliased mispredict rates are aways better than the mispre-
dict rate of the corresponding scheme in our study. As we observed
earlier, for the same scheme, smaller sizes suffer more diasing than
larger sizes. Thisisborne out by the larger differencesin mispredict
rates of unaliased and practica implementation at smaller scheme
sizes. For example, under gas.4K, o.ht shows a mispredict rate of
10.27%, while the eguivalent k = 7 unaliased GAs <heme
achieves 2.65%. Aliasing adds ailmost 300% more mispredictions.
The gas64K scheme shows a mispredict rate of 3.78%; the
unaliased k = 9 GAs sheme ahieves a rate of 2.36%. Aliasing
adds just 60% more mispredictions. Similarly, schemeswith deeper
branch histories aiffer more diasing than schemes with shallow
branch histories. For example, m.video under gas.16K shows a
mispredict rate of 7.26%, while the equivalent k = 8 unaliased
GAs <heme adieves 2.79%. Aliasing adds almost 160% more
mispredictions. The gsh.16K scheme shows a mispredict rate of
7.51%; the corresponding urdliased k = 13 GAs <heme
achieves arate of 2.03%. Aliasing adds 270% more mispredictions.

From our data, it appears that a user-only mispredict rate acurately
reflects the full-system mispredict rate if the percentage of the total
instruction count spent in user mode is greater than 95%. If the per-
centage is less than 90%, the results of a user-only trace cannot be
trusted. The 90-9%% range is agrey area The reverse of this obser-

3. Unaliased gshare schemes are GAs shemes of the same history depth.

vation is demonstrated by u.sdet, which spends less than 2% of the
total instruction count in user mode. In this case, we found that the
mispredict rate of the kernel-only trace is a good indicator of the
full-system mispredict rate.

4.2 Simulating the effect of kernel branches

To date, very few branch prediction studies have @mnsidered the
effects of user/kernel interaction an prediction accuracy. Nair [13]
and Perleberg and Smith [15] each attempt to modd the effects of
context switching on the user-only branch mispredict rates by flush-
ing the BHT at a fixed interval of instructions. This method is inex-
ad, because interactions with the kernel or other processes do ot
necessarily flush the branch history state. A short switch may have
little fect on the state, and a large table may suffer lower conten-
tion and thus suffer less ill effed. Nair, Perleberg, and Smith use
traces that omit system adivity, and hence they are not able to ver-
ify the true dfects of kernel branches on the user-only component
of the mispredict rate. To evaluate the validity of this approach, we
modified our simulator to flush the BHTs and BHSRs at fixed inter-
vals of instructions during a user-only trace. We then compared the
resulting mispredict rates to the user component of the full-system
trace simulation. Some flush interval will produce the same mispre-
dict rate as the user component of the full-system trace; we cl this
number the effective flush interval (EFI). If flushing at fixed inter-
vals is an accurate methoddogy, then we would exped the EFI to
remain constant acoss different prediction scheme organizations
and sizes.

20 20

16K 64K

20

15 15

15

10 - . 10
GAs ‘o

10

S ° . a°
. . o
o % o
. o g~ m
a =
0 0 0
0 5 10 15 20 0 10 15 20 0 5 10 15 20
20 20 20
15 SR 15 15
") v
g S h 10 o 10 10
m o =]
A * o pe * o °
5 5 Faa 5 =
0 : . &
0 0 0
0 5 10 15 20 0 10 15 20 0 5 10 15 20

Figure 5. Scatter plots comparing wser-only mispredict rates (horizontal axis) with full-system traces (vertica axis) for
GAs shemes (top) and gshare schemes (bottom). Hollow squares how IBS benchmark results; solid circles show
SPEC92 results, and hollow triangles ow the Other Digital Unix results.

Our full-system traces include both user and kernel references. So,
we @n evaluate the acuragy of periodic flushing as a methodology
for estimating the effect of user and kernel contention onthe branch
prediction hardware. It suffices to show one example where peri-
odic flushing produces inaccurate and mideading results. Our
u.video benchmark is such an example. This benchmark spends
more than two-thirds of its time in the kernel, so one might think
that the “pollution” of the branch prediction scheme caused by ker-
nel branches would resemble flushing.

Table 7 compares the full-system mispredict rate and the mispredict
rates generated by periodic flushing for u.video. We can see two
crucial problems. First, under each scheme, the EFI increases with
increasing scheme size. This means that periodic flushing canna be
used to compare different scheme sizes for the same scheme,
because it can overly penalize the larger sizes. The 2bc entries a a
flush interval of 10,000 instructions give a mncrete example of this:
the periodic flushing results imply that larger 2bc tables result in
only small improvements in prediction accuracy. But the user com-
ponent of the full-system trace shows dgnificant improvements
with increasing scheme size. Larger scheme sizes remove diasing
between user and kernel branchesin this case. Since periodic flush-
ing provides no model for the other branches contending for the
table, it cannot model the benefits from reduced aliasing.

The second important problem is that the EFl for u.video varies
between prediction schemes even a a constant scheme size. This
makes periodic flushing a useless methodology for comparing dif-
ferent branch prediction schemes. The scheme with the larger EFI
will be unfairly penalized by the dfects of periodic flushes. For

example, using a flush interval of 10,000 instructions to compare
64K -bit implementations would lead one to believe that PAs gives
the best mispredict rate, followed by GAs, 2bc, and gshare. The
order ordering from the full-system trace simulation is different:
gshare and GAs achieve the best mispredict rates, followed by PAs
and 2bc.

The previous discussion proves that we canna trust the numerical
values produced by periodic flushing. Table 7 demonstrates that we
cannot even trust the overall trends implied by periodic flushing
results. Using aflush interval of 10,000 instructions, periodic flush-
ing reports that gshare predicts worse with increasing scheme
size—exactly the opposite of the truth.

5 Conclusions

Using full-system (i.e. combined user/kernel) traces gives realistic
results that lead to different conclusions about the eff ectiveness of
existing dynamic branch prediction schemes than do the results
from user-only traces. We find that including kernel references
often increases aliasing, and this effect may cause schemes with
short branch histories to achieve better prediction accuracies than
those with deep branch histories. While SPEC92 is user-dominated
(so prior work in branch prediction retains value), system designers
and customers probably want to match their test workloads to a
wider range of user/kernel mixes. Simulations that ignore kernel
adivity risk dangerousinaccuracy: elaborate two-level schemes that
appea good under user-only traces may turn out to belessattractive
when the whole system is considered. These problems appea even

Mispredict rate (%)
Size ad Scheme EFI Full- Periodic flush interval
system
trace 10K 100K M
2bc 90-100K 5.19 6.69 513 4.36
4K PAs 50-60K 5.36 6.68 4.80 3.29
GAs 20-30K 5.39 6.62 451 342
gshare 10-20K 5.05 6.21 3.67 2.39
2bc 300-400K 4.26 6.58 493 4.05
16K PAs 200-300K 3.30 6.03 4.27 2.69
GAs 100-200K 2.87 5.63 317 1.79
gshare 100-200K 3.00 6.41 343 1.72
2bc 11-1.2M 3.92 6.55 4.85 3.94
PAs 1.7-1.8M 222 5.79 3.88 2.37
oK GAs 600-700K 171 5.81 314 158
gshare 14-1.5M 1.45 6.57 342 158

Table 7: Comparison of the user component of the mispredict rate from a

full-system trace with the mispredict rates derived from periodic flushing

intervals. The benchmark inthesesimulationsisu.video. The dfediveflush

interval isthe periodic flush interval that achieves the same mispredict rate
as the full-system tracesimulation.

worse for small scheme sizes. Asarule of thumb, if both the kernel
and the user account for more than 5% of the instruction mix, then
combined system and kernel traces should be used.

Flushing at fixed intervals poorly models the effect of kernel
branches on dyramic branch prediction schemes. It is misleading
to use periodic flushing to compare different schemes with the
same amount of hardware or to compare the same scheme with
varying amounts of hardware. More specificadly, periodic flushing
failsto capture differencesin the organization and size of schemes.
It assumes the same amourt of contention exists in a 4K-hit
scheme & in a 64K-bit scheme. And, it assumes the same amount
of contention in a 2bc scheme as in a gshare scheme of the same
hardware size. These underlying fallacies in the periodic flushing
model will persist and yield inaccurate results when periodic flush-
ing is used to model multitasking workloads.

6 Acknowledgments

This research was gponsored in part by grants from Digital Equip-
ment, Hewlett-Padkard, and Intel. Cliff Youngisfunded by a Grad-
uate Fellowship from the Office of Naval Research and an IBM
Cooperative Fellowship. Brad Chen is supported by an NSF Career
Award, grant number CCR-9501365. Michad D. Smith is sup-
ported by a Nationa Science Foundation Young Investigator
award, grant number CCR-9457779.

7 References

[1] M. Accetta, et d. “Mach: A New Kernel Foundation for Unix
Development,” Proc. Summer 1986 USENI X Conf., Jul. 1986.

[2] J. Chen. “Software Methods for System Address Tracing,”
Proc. Fourth Workshop on Workstation Operating Systems,
Oct. 1993.

[3] J. Chen and B. Bershad. “The Impact of Operating System
Structure on Memory System Performance,” Proc. 14th ACM
Symp. on Operating System Principles, Dec. 1993

[4] J Chen and A. Eustace. “Kernel Instrumentation Tools and
Techniques,” Technicd Report 26-95, Center for Research in
Computing Technology, Harvard University, Cambridge, MA,
Nov. 1995.

[5] A. Eustace and A. Srivastava. “ATOM: A Flexible Interface
for Building High Performance Program Analysis Tools’.
Proc. Winter 199% USENIX Technical Conf. on UNIX and
Advanced Computing Systems, Jan. 199

[6] L.Gwennap. “New Algorithm Improves Branch Prediction,”
Microprocessor Report, 9(4):17-21, Mar. 27, 19%.

[7] L. Gwennap. “Pentium Competitors Go Head to Head,”
Microprocessor Report, 9(8):16, Jun. 19, 1995.

[8] L. Gwennap. “Nx868 Goes Toe-to-Toe with Pentium Pro,”
Microprocessor Report, 9(14):8, Oct. 23, 1995.

[9] A.Krall. “Improving Semi-static Branch Prediction by Code
Replication,” Proc. ACM SIGPLAN '94 Conf. on Prog. Lang.
Design ard Implementation, Jun. 1994.

[10] J Lee and A. Smith. “Branch Prediction Strategies and
Branch Target Buffer Design,” Computer, 17(1), Jan. 1984.

[11] S. McFarling. “Combining Branch Predictors,” WRL Techni-
cal Note TN-36, June 1993.

[12] S. McFarling and J. Hennessy. “Reducing the Cost of
Branches,” Proc. of 13th Annual Intl. Symp. on Computer
Architecture, Jun. 1986.

[13] R. Nair. “Dynamic Path-Based Branch Correlation,” Proc.
28th Annual Intl. Symp. on Microarchitecture, Nov. 1995.

[14] S. Pan, K. So, and J. Rahmeh. “Improving the Accuracy of
Dynamic Branch Prediction Using Branch Correlation,” Proc.
5th Annua Intl. Conf. on Architectural Support for Prog.
Lang. and Operating Systems, Oct. 1992.

[15] C. Perleberg and A. Smith. “Branch Target Buffer Design and
Optimization,” |EEE Transactions on Computers, 42(4):39-
412, Apr. 1993.

[16] S. Sedrest, C. Lee, and T. Mudge, “ The Role of Adaptivity in
Two-Level Adaptive Branch Prediction,” Proc. 28th Annual
Intl. Symp. on Microarchitecture, Nov. 1995,

[17] J Smith. “A Study of Branch Prediction Strategies,” Proc. 8th
Annual Intl. Symp. on Computer Architecture, Jun. 1981

[18] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer.
“Instruction Fetching: Coping with Code Bloat,” Proc. 22nd
Annual Intl. Symp. on Computer Architecture, Jun. 1995,

[19] ULTRIX Documentation Group. ULTRIX Documentation
Overview for RISC Processors, Digital Equipment Corpora-
tion, 1989,

[20] T. Yeh and Y. Patt. “Two-Level Adaptive Branch Prediction,”
Proc. 24th Annual ACM/IEEE Intl. Symp. and Workshop on
Microarchitecture, Nov. 1991.

[21] T. Yeh and Y. Patt. “A Comparison o Dynamic Branch Pre-
dictors that use Two Levels of Branch History,” Proc. 20th
Annual Intl. Symp. on Computer Architecture, May 1993.

[22] C. Young and M. Smith. “Improving the Accuragy of Static
Branch Prediction Using Branch Corréeation,” Proc. 6th
Annual Intl. Conf. on Architectural Suppart for Prog. Lang.
and Operating Systems, Oct. 1994.

[23] C. Young, N. Gloy, and M. Smith. “A Comparative Analysis
of Schemes for Correlated Branch Prediction,” Proc. 22nd
Annual Intl. Symp. on Computer Architecture, Jun. 1995.

Scheme Size (bits) Scheme Size (bits)
Benchmark | Scheme 4K 16K Benchmark | Scheme 4K 16K
user full user full user full user full user full user full
2bc 6.31 6.63 5.85 5.93 5.09 515 2bc 5.29 558| 446 453 441 4.45
m.groff PAS 605171648 524 538 442 447 ugroff PAS 5150552 42500433 378 374
GAs 7.90 8.74| 480 535| 354 381 GAs 6.74 1.27 410 445| 305 320
gsh 9.65 10.48 5.79 6.47 3.78 4.21 gsh 8.28 8.85 5.04 5.56 3.13 3.47
2bc 7.27 7.59 6.38 6.46 6.17 6.16 2bc 6.91 7.22 6.05 6.14 597 5.96
m.gs PAs 6.38 7.04 521 548 462 4.71 ugs PAs 522 581| 408 438 3.62 3.78
GAs 9.18 9.93 594 6.48| 42571452 GAs 8.22 8.75 5.07 5.49 3.67 3.89
gsh 951 1048 5.95 6.64 4118 461 gsh 8.61 9.38| 475 540 307 352
2bc 1323 12.72| 13.05 1223| 1298 1207 2bc 124 1206| 1242 11.93| 1241 1190
m.jpeg PAs 1.45 248 1.20 1.74 113 152 ujpey PAs 0.87 1.30 0.85 1.15 0.84 1.05
GAs 171 352 1.16 2.28 0.96 1.48 GAs 0.77 1.49 0.70 1.07| 068 088
gsh 1.94 3.83 124 212 0.92 1.34 gsh 0.86 1.56 0.76 114 0.72 0.96
2bc 9.90 9.34 8.89 751 8.53 6.88 2bc 7.19 8.01 6.94 7.13 6.88 6.97
m.mpeg PAs 8.58 9.02 6.61 6.22 5.93 5.22 umpeg PAs 6.32 7.24 5.56 5.87 5.39 5.32
GAs 1180 12.86 8.38 8.82 6.69 5.95 GAs 7.64 9.39 5.68 6.48 503 496
gsh 12.99 14.36 9.19 9.09 6.51 5.92 gsh 7.13 9.40 5.19 6.40| 465 490
2bc 460 483 408 419 400 4.06 2bc 420 438 3.88 3.95 3.72 3.77
mnroff PAs 452 489 372 38l| 355 356 wnroff PAs 420 443| 357 366 33L 330
GAs 514 5.69 345 380 2.67 284 GAs 4.73 516|819 348 249 2.65
gsh 8.24 8.77 4,01 4.42 2.74 297 gsh 7.54 7.84 3.65 4.01 2.69 2.85
2bc 13.38 13.19| 11.98 11.64| 11.37 10.99 2bc 11.68 11.29| 10.53 10.07| 10.11 9.61
m.gce PAs 1252 1258| 1013 10.09 8.68 851 ugee PAs 1072 1059| 877 857 7.63 7.30
) GAs 14.05 14.15| 1086 10.84 8.33 8.29) GAs 11.88 11.85 9.21 9.10 7.13 6.98
gsh 1645 16.59| 12,68 12.73| 10.18 10.20 gsh 1392 1392| 10.77 10.73 8.60 8.55
2bc 7.67 9.52 6.28 6.99 5.81 6.34 2bc 6.23 6.39 5.69 5.08 5.49 4.56
m.sdet PAs 7.06 9.26 5.18 6.41| 449 5.18 u.sdet PAs 6.37 5.62 573 416 519 357
GAs 1091 13.83 7.09 8.71 4,94 594 GAs 7.21 9.34 579 5.82 5.48 3.95
gsh 11.31 15.75 756 10.04 4.61 6.24 gsh 8.34 9.47 6.46 5.45 6.01 3.60
2bc 7.46 7.79 6.02 6.09 5.67 5.65 2bc 7.79 8.33 6.45 6.71 6.32 6.43
mvlog PAs 5.47 63l 376 422 3.12 3.39 uvlog PAs 5.40 650 391 449 3.18 3852
GAs 7.14 8.11 4,08 4.75 3.08 3.44 GAs 712 8.27 4.25 4.98 3.20 352
gsh 7.37 8.59 4.39 5.27 2.99 3.52 gsh 7.15 8.56 4.33 5.27 3.06 3.58
2bc 7.61 8.28 6.11 5.97 5.67 533 2bc 4.29 8.32 3.95 6.45 3.84 6.02
mvideo PAs 6.25 7.83| 445 5.20 3.67 4.09 uvideo PAs 2.55 7.59 2.34 5.48 2.01 4.27
: GAs 871 1167 5.83 7.26 3.78 4.34 : GAs 316 10.83 1.42 6.47 117 371
gsh 968 1295 5.76 751 357 434 gsh 2060 11.08 1.27 6.38 104 338
Table 8: User-only and full-system mispredict rates for the Mach 3.0 IBS benchmarks. For each Table 9: User-only and full-system mispredict rates for the Ultrix |BS benchmarks. For each
benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations. benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations.
Scheme Size (bits) Unaliased GAs of history depth (k) Unaliased PAs
Benchmark | Scheme 4K 16K 64K Benchmark
user full user full user full 0 7 8 9 11 13 15 k=3
2bc 2574 24.82| 2574 24.82| 2574 24.84 m.groff 506| 319 300 282| 257 240 238 4,09
PA. 10. 10.7¢ 10.97 10. 1097 1057
0.00 s O ro| 1057 108 1087 1057 mgs 602| 361 342 321| 283 270 264 423
gsh 155 1157 n00suseon NuoiONmows m.jpeg 1203| 121 114 104| 095 089 091 134
2bc 6.14 6.00 6.17 6.08 6.11 6.08
0.es PAs 4.28 4.29 412 4,07 397 3.90 m.mpeg 6.73| 457 424 400| 347 330 330 455
GAs 388 4.03 3.58 3.62 3.44 3.42
gsh 4.07 4.24 352 361 328 3.32 m.nroff 402 272 247 236| 222 217 215 343
2bc 1632 1631[1475 14.63| 1459 1442 107 4 16| 482 462 44 7
oge s 14571482 | 10691076 88 879 m.gcc 0.76| 583 549 516| 48 6. 45 .63
GAs 1486 1516| 11.06 1121 816 826 m.sdet 6.11| 384 363 349| 328 306 3.06 434
gsh 1748 17.80| 1324 1347| 1028 1048
2bc 133 1319] 1333 1320 1333 1321 m.log 550| 308 281 274| 254 239 235 2.96
i PAs 8.01 8.12 7.82 7.70 7.60 7.44 .
oli GAs 6.00 6.38 4.94 5.06 416 416 m.video 521| 295 279 246| 215 203 202 3.39
gsh SAL ST 389 S84 7883 ugroff 434| 280 263 245 224 212 209 3.43
2bc 7.36 7.64 7.15 7.20 7.09 7.18
0. PAs 4.80 5.82 3.55 374 3.22 3.16 u.gs 586| 367 352 311| 262 221 205 325
GAs 4.87 6.08| 338 3.98 2.75 2.83 .
gsh 6.13 7.40 350 4.09 255 282 ujpeg 11.89| 082 080 080| 078 077 0.78 0.99
2bc 7.00 7.08 7.00 7.06 7.00 7.06 u.mpeg 6.92| 524 447 429| 383 373 368 5.03
osu PAs 6.92 6.99 6.91 6.82 6.90 6.78
GAs 6.92 7.04 6.87 6.84 6.86 6.76 u.nroff 376| 258 234 221| 208 204 201 321
gsh 7.26 7.39 7.05 7.07 6.95 6.91
2bc 1821 1343| 1821 1260| 1822 12.26 u.gcc 940| 509 480 450| 424 412 400 6.58
PAs 6.12 9.06 6.09 6.21 6.08 4.95
o.ab GAs 315 761 303 508 277 337 u.sdet 450 323 278 268| 253 237 237 3.08
gsh 314 89| 278 S572| 269 358 uvlog 6.34| 313 287 283| 256 246 237 312
ogs E,Rg 1%:% 12:‘713 12:% 12:5% 12:?3 1%;; uvideo 592| 332 256 245| 218 201 197 371
’ GAs 5.28 6.16| 382 422 3.09 3.15
gsh 5.08 712 400 460 285 317 0.co 11.94110.05 998 9.69| 967 941 926 10.51
2bc 14.05 12.04| 1337 10.77| 1332 1034 o.es 468| 334 331 327| 310 3.04 3.03 3.85
o.ht PAs 784 1029 5.66 6.05 4,91 4.27
. GAs 728 10.27 4.63 6.04 3.38 3.78 o.gc 10.02| 546 510 472| 429 400 385 7.00
gsh 856 1222 4.80 7.23 292 3.84 .
T 137 1130 1233 1084 1231 1089 oli 1061 379 360 331| 299 274 279 6.48
omp PAs 9.63 9.81 8.61 7.63 8.26 6.98 0.sC 395| 255 245 236| 226 216 212 274
GAs 994 1011 8.29 7.60 7.13 6.05
gsh 1054 1157 8.42 8.33 7.12 6.27 o.su 6.87| 670 670 6.70| 6.71 6.72 6.72 6.73
Table 10: User-only and full-system mispredict rates for the Digital Unix benchmarks. For each oab 466| 278 269 251 241 237 233 363
benchmark, we highlight the lowest overall mispredict rate for each set of scheme simulations 0.gs 6.19| 297 277 265| 237 222 215 3.49
o.ht 536| 265 244 236| 216 199 191 3.18
o.mp 811| 638 6.19 557| 531 523 513 6.29

Table 11: Full-system mispredict rates where all aiasing (both BHSR and
BHT address aliasing) has been removed.

10

