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Motifs

Networks can be analyzed at different levels of detail.





Network Dynamics

Not all neurons were born equal! 

• “Party” hubs: always the same partners (same time & space)

•  “Date” hubs: different partners in different conditions 
(different time and/or space)

Difference is important for inter-process communication

Not all interactions among neurons are active all the time



Showing the major Internet Service Providers (ISPs)





The topology of the Internet

The Internet topology at the beginning of the 21st century. The image was produced by 
CAIDA, an organization based at University of California in San Diego, devoted to 
collect, analyze, and visualize Internet data. The map illustrates Internet’s scale-free 
nature: A few highly connected hubs hold together numerous small nodes.



Connection between political groups blogs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 
http://www.mmds.org 9

Polarization of the Network 
[Adamic-Glance, 2005]



Facebook Network – 4 Degrees of Separation

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

104-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]



C. elegans
neuronal net
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Important Network Models

• Random graph model (Erdős & Rényi, 1959)
• Small-world model (Watts & Strogatz, 1998)
• Scale-free model (Barabasi & Alert, 1999)





Six Degrees of Separation

Everyone is on average approximately six steps away from any other 
person on Earth 14
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Stanley Milgram 
(1933-1984)

• Controversial social psychologist
• Yale & Harvard
• Small world experiment, 1967

– 6 degrees of separation
• Obedience to authority - 1963



Modeling a Network as a Graph

• Graph: an ordered pair G = (V, E) of a set V of vertices (nodes) & a set 
E of edges (2-element subsets of V ). 

• Can be extended to include the set W of the weights of all edges in E.

• Edge: models the interaction between the neurons it connects.
• The weight of an edge can model the strength of the interaction.

• Directed graph: each edge has a direction 
e.g., the edge (a,b) indicates that there is an edge from a to b.
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Degree Distribution of a Network

• in-degree of a vertex (ki ): number of incoming edges of a vertex
• out-degree of a vertex (ko ): number of outgoing edges of a vertex
• degree (k): the total number of connections k = ki+ko

ki ko

When modeled as a directed graph:

Presenter
Presentation Notes
Σε ένα κατευθυνόμενο δίκτυο ονομάζουμε το ki να είναι το in-degree ενός κόμβου i,Ko, το out-degree του και k το συνολικό αριθμό συνδέσεων.



Diameter & Paths

Diameter of a graph is the “longest shortest path”.

n1

n2

n3

n4

n5

n6

n7

Path in a graph is a finite or 
infinite sequence of edges which 
connect a sequence of vertices which, 
by most definitions, are all distinct from 
one another.
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Average Median Max Min Hubs Nodes Edges
11.8554 8 45 1 9 (10.84%) 83 (65.87%) 492 (6.25%)

Degree of Connectivity Number (Percentage)

The big connected component,
formed by 83 neurons (43 neurons
were not connected to any other
neuron).



Simple Building Blocks of Complex Networks
• Focused on directed, cyclic subgraphs of 3 or 4 nodes in yeast (no 

self-loops)

Network Motif

Milo et al. Science (2002) Vol. 298 no. 5594 pp. 824-827 
23



Jure Leskovec

Network motifs

• Biological networks
– Feed-forward loop
– Bi-fan motif

Others ?
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is isomorphic to
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The discovery of the isomorphic subgraphs is a computationally 
hard task!
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STAR TREE

GRID

BUS RING

Regular Network Topologies



Random NetworkRegular Network
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Clustering Coefficient of a Network

• The clustering coefficient characterizes the “connectedness” of the 
environment close to a node.

ni: number of connections among the neighbors 
ki(ki-1)/2: number of possible connections among the neighbors
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Εδώ το clustering coefficient δείχνει τη συνδεσιμότητα ενός δικτύου.Είναι ο αριθμός των συνδέσεων μεταξύ των γειτόνων 
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Clustering coefficient of a network 

The average clustering coefficient value      reflects how connected are the 
neighboring nodes

also shows the “density” of small loops of length 3

of a tree is 0

of a fully connected graph (clique) is 1    
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Clustering Coefficient

𝐶𝐶𝑔𝑔△ =
3 x 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛𝑐𝑐 𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑐𝑐𝑛𝑛𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑝 2

Average shortest Path Length
– Smallest number of steps to travel from node u to node v

𝐿𝐿𝑔𝑔 = 2
𝑛𝑛 𝑛𝑛−1

∑𝑐𝑐 𝑛𝑛, 𝑣𝑣
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• High clustering coefficient
• High average shortest path length

• Low clustering coefficient
• Average shortest path length close to one

Τhe randomness makes it less likely that 
nearby nodes will have lots of connections, 
but introduces more links that connect one 
part of the network to another.

Nearby nodes have a large numbers of 
interconnections but "distant" nodes 
have few. 



Less variance, more scariance





Describes the degree of distribution of a random network

Most 
frequently 
encountered
distribution



Heavy tailed:
Whose decay at 
large x
is slower than
exponential

Rare events



PDF: λ e−λx

Cumulative Distribution Function (CDF) 1 − e−λx

The exponential distribution describes
the time between events in a Poisson process

Exponential Distribution

Number of occurrence: index k
The CDF is discontinuous at the integers of k
λ: expected number of occurrences
PMF: λk e-λ /k!

CDF

CDF



Poisson Distribution
Cumulative Distribution Function (CDF)

The CDF is discontinuous at the integers of k and flat everywhere else because a variable that is 
Poisson distributed takes on only integer values.



National highway network 
Nodes are cities, links are major highways 
No cities with hundreds of highways 
No city disconnected from the highway 
system



Nodes are airports & links are direct flights between them. 
Most airports have only a few flights. 
Yet, we have a few very large airports, acting as major hubs, connecting many smaller 
airports. 
Once hubs are present, they change the way we navigate the network. E.g. if we 
travel from Boston to Los Angeles by car, we must drive through many cities. On the 
airplane network, however, we can reach most destinations via a single hub, like 
Chicago.



. Random Networks have a degree of connectivity that follows Poisson
distribution





Poisson vs. Power-law Distributions

A random network with ⟨k⟩= 3 & N = 
50, illustrating that most nodes 
have comparable degree k≈⟨k⟩.

A scale-free network with γ=2.1 &
⟨k⟩= 3, illustrating that numerous 
small-degree nodes coexist with 
a few highly connected hubs. 
The size of each node is 
proportional to its degree.



Poisson vs. Power-law Distributions

Comparing a Poisson function with a power-law function (γ= 2.1) on a linear plot. 
Both distributions have ⟨k⟩= 11



Generation of small-world networks

A small-world network can be generated from a regular one by
1. randomly disconnecting a few points, &
2. randomly reconnecting them elsewhere. 

For the creation of this small world network, 
some 'shortcut' links are added 
to a regular network.

Shortcuts because they allow 
travel from node a to node b to 
occur in only 3 steps, instead of 5 
without the shortcuts. 



Small-World Phenomenon

Any two nodes of a complex & high clustered network would be 
connected by a relatively small paths distances.

Watts & Strogatz define simple network models by rewiring 
regular lattice networks with a probability 

Such networks have:
– Highly clustered like lattice  
– Very small path length like random graphs

46



Barabasi et al. found that the structure of the WWW did not conform to the 
then-accepted model of random connectivity. 
Instead, their experiment yielded a connectivity that they named "scale-free." 

Scale-free Networks

In a scale-free network, the 
characteristic clustering is 
maintained even as the 
networks themselves grow 
arbitrarily large.

Scale-free means there is no 
characterizing degree in the 
network

Presenter
Presentation Notes
Using a Web crawler, physicist Albert-Laszlo Barabasi and his colleagues at the University of Notre Dame in Indiana in 1998 mapped the connectedness of the Web. They were surprised to find that the structure of the Web didn't conform to the then-accepted model of random connectivity. Instead, their experiment yielded a connectivity map that they christened "scale-free." 



Small world vs. Scale-free Networks

Some small-world networks of modest size do not follow a 
power law but are exponential. 

This point can be significant when trying to understand the 
rules that underlie the network. 

Often small-world networks are also scale-free.



Power Law Distribution

In a log-log scale, data points form 
an approximate straight line, 
suggesting that the distribution is 
well approximated with

degree exponent γ



The 80/20 Rule & the top one percent
• A few wealthy individuals earned most of the money, while the 

majority of the population earned rather small amounts
• Incomes follow a power law
• 80/20 rule: Roughly 80 percent of money is earned by only 20 

percent of the population
• US 1% of the population earns a disproportionate 15% of the total US 

income



The emergence of the 80/20 rule in various areas:

Management  
i. 80% of profits are produced by only 20% of the employees
ii. 80% of decisions are made during 20% of meeting time

Networks 
i. 80% of links on the Web point to only 15% of webpages
ii. 80% of citations go to only 38% of scientists
iii. 80% of links in Hollywood are connected to 30% of actors

Most quantities following a power law distribution obey the 80/20 rule





Internet

• Link between routers in Boston and Budapest would require to lay a 
cable between North America and Europe:  prohibitively expensive

• The degree distribution of the Internet is well approximated by a 
power law

• Few high-degree routers hold together a large number of routers 
with only a few links



History: first map of the WWW

Objective: To understand the structure of the network behind it.
• Generated by Hawoong Jeong at University of Notre Dame.
• Mapped out the nd.edu domain, consisting of about 300,000 

documents and 1.5 million links. 
• Compared the properties of the Web graph to the random network 

model.



The web played an important role in the development of 
network theory.

• WWW: network whose nodes are documents & links are the URLs 
• With an estimated size of over one trillion documents (N≈1012), the 

Web is the largest network humanity has ever built
• Exceeds in size even the human brain (N ≈ 1011 neurons)

Standard testbed for most network measures



Scale-free property: A deeper organizing principle
Numerous small-degree nodes coexist with a few hubs, nodes with an 
exceptionally large number of links

The topology of the World Wide Web



WWW has power-law degree distribution

Outgoing links
The tail of the distributions follows 
P(k)≈k-r, with rout=2.45
Incoming links: rin=2.1

Average of the shortest path between 
two documents as a function of 
system size

R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)

The degree distribution scales as a 
power-law

57



WWW follows a power law

• If the WWW were to be a random network, the degrees of the Web 
documents would  follow a Poisson distribution

• Poisson form offers a poor fit for the WWW’s degree distribution
• Instead of a log-log scale data points form an approximate straight 

line, suggesting that the degree distribution of the WWW is well 
approximated with

Power law distribution (exponent γ is its degree exponent)



The Degree Distribution of the WWW

The incoming degree distribution The outgoing  degree distribution 

Degree distribution predicted by a Poisson function with the average 
degree 〈kin〉 = 〈kout〉 = 4.60 of the WWW sample (green line).



Scale-free Networks Lack a Scale
Random Network
Randomly chosen node:  Scale: ⟨k⟩

Scale-Free Network
Randomly chosen node:
Scale: none

The degree of a randomly chosen 
node in Poisson or Gaussian is in the 

vicinity of ⟨k⟩. 

Hence ⟨k⟩ serves as the network’s 
scale.



Random networks vs. Scale-free networks

• Main difference between a random vs. a scale-free network comes in 
the tail of the degree distribution

• For small k, power law is above Poisson function, indicating that a 
scale-free network has a large number of small degree nodes, 
most of which are absent in a random network

• For k in the vicinity of 〈k〉, Poisson distribution is above power law, 
indicating that in a random network there is an excess of nodes with 
degree k≈〈k〉



Scale-free Networks Lack a Scale

• Scale-free name captures the lack of an internal scale, a consequence 
of the fact that nodes with widely different degrees coexist in the 
same network

This feature distinguishes scale-free networks from 
• lattices, in which all nodes have exactly the same degree (σ = 0), 
• random networks, whose degrees vary in a narrow range (σ = ⟨𝑘𝑘1/2⟩)



Degree of Distribution of two Scale-free Networks

Presenter
Presentation Notes
The green dotted line shows the Poisson distribution with the same <k> as the real network, illustrating that the random network model cannot account for the observed pk



Examples of Scale-free Networks



THE MEANING OF SCALE-FREE

• 𝑛𝑛𝑡𝑡𝑡 moment

• n=1, mean ⟨k⟩
• n=2, variance σ2 = ⟨𝑘𝑘2⟩
• n=3: skewness (how symmetric is the distribution around the mean)

Let’s first talk about moments!



THE MEANING OF SCALE-FREE (con’td)
For a scale-free network, the n-th moment of the degree distribution is

• For many scale-free networks, the degree exponent γ ϵ [2, 3]. 
• For these in the N → ∞ limit, the mean is finite, but the 2nd & higher 

moments (e.g., ⟨𝑘𝑘2⟩, ⟨𝑘𝑘3⟩) go to infinity

This divergence indicates that  fluctuations around the average can 
be arbitrary large.
A degree of a randomly selected node, could be tiny or arbitrarily 
large.
Hence networks with γ < 3 do not have a meaningful internal scale, 
but are “scale-free”



Random Networks Have a Scale

• For a random network with a Poisson degree distribution σk = ⟨𝑘𝑘1/2⟩, 
which is always smaller than ⟨k⟩
Network’s nodes have degrees in the range k = ⟨k⟩±⟨k⟩1/2

• Nodes have comparable degrees: 
the average degree ⟨k⟩ serves as the “scale” of a random network



Is the network scale-free?

• Degree distribution will immediately reveal
• In scale-free networks, the degrees of the smallest & the largest 

nodes are widely different, often spanning several orders of 
magnitude
These nodes have comparable degrees in a random network



Networks of major scientific, technological & societal importance are  scale-free.

Their diversity is    
remarkable!
Internet: 
man-made, with a 
history ~2 decades 

protein interaction: 
product of four billion 
years of evolution



Power Laws and Scale-Free Networks

• The integral of p(k) encountered in the continuum formalism

is the probability that a randomly chosen node has degree between k1
and k2.



Hubs

• Main difference between a random and a scale-free network comes 
in the tail of the degree distribution

• high-k region of pk

• For small k power law is above Poisson function, indicating that a 
scale-free network has a large number of small degree nodes, most 
of which are absent in a random network

• For k in the vicinity of 〈k〉 Poisson distribution is above power law, 
indicating that in a random network there is an excess of nodes with 
degree k≈〈k〉



Hubs

• For large k, the power law is again above the Poisson curve
• The probability of observing a high-degree node, or hub, is several 

orders of magnitude higher in a scale-free than in a random network
• if the WWW were to be a random network with <k>=4.6 & size 

N≈1012, we would expect N k≥100 nodes with at least 100 links:

But we have more than four billion nodes with degree k ≥100 …



Hubs in Scale-free Networks vs. Random Networks 

Hubs in a scale-free network are several orders of magnitude larger 
than the biggest node in a random network with the same N and ⟨k⟩.



Random vs. Scale-free Networks

• Random network most nodes have comparable degrees

• The more nodes a scale-free network has, the larger are its hubs
The size of the hubs grows polynomially with network size: they can 
grow quite large in scale-free networks. 

• In contrast, in a random network the size of the largest node grows 
logarithmically or slower with N, implying that hubs will be tiny even 
in a very large random network



Is the network scale-free?

• Degree distribution will immediately reveal
• In scale-free networks, the degrees of the smallest & the largest 

nodes are widely different, often spanning several orders of 
magnitude

• In random networks, the nodes have comparable degrees
Random networks have a scale



Example – Degree of connectivity considering the significant 
directional STTC edges (before eye opening mouse)



Green: incoming edges
Black: outgoing edges
Legend: Hub id, number of bidirectional edges, one-way edges, outgoing edges, incoming edges
Red: interneurons
Red (filled) when they have edges with the hub   ---- Red (empty) no edges with hub
Before eye-opening mouse







Influence and Centrality

• Hubs: highly or densely connected to the rest of the network
• They facilitate global integrative processes  

• A node is central if it has great control over the flow of information 
within the network 

• This control results from its participation in many of the network’s 
short paths

• Closeness centrality of an individual node: inverse of the average 
path length between that node & all other nodes in the network

• Betweenness centrality of an individual node: fraction of all shortest 
paths in the network that pass through the node



Influence and Centrality (cont.)

• A node with high betweenness centrality can control information 
flow because it is at the intersection of many short paths

• Centrality measures identify elements that are highly interactive 
and/or carry a significant proportion of signal traffic

• A highly central node in a structural network has the potential to 
participate in a large number of functional interactions

• A node that is not central is unlikely to be important in network-
wide integrative processes

• Loss of highly central nodes have a larger impact on the 
functioning of the remaining network



NOT ALL NETWORK ARE SCALE-FREE

• Networks appearing in material science, describing the bonds 
between atoms in crystalline or amorphous materials: 
Each node in these networks has exactly the same degree, 

determined by chemistry

• The neural network of the C. elegans worm

• The power grid, consisting of generators & switches connected by 
transmission lines



Power grid has exponential degree distribution.

R. Albert et al, Phys. Rev. E 69, 025103(R) (2004)
83

The probability that a substation has more than K transmission lines.

fraction of 
generating 
substations 
among 
substations with 
degree k.

Presenter
Presentation Notes
The probability that a substation has more than K transmission lines. The straight line represents the exponential function(1). Inset: the fraction Fg(k) of generating substations among substations with degree k.



• Scale-free property to emerge: nodes need to have the capacity to 
link to an arbitrary number of other nodes. 

These links do not need to be concurrent
We do not constantly chat with each of our acquaintances 
A protein in the cell does not simultaneously bind to each of its    

potential interaction partners

• The scale-free property is absent in systems that limit the number of 
links a node can have, effectively restricting the maximum size of the 
hubs. 

• Such limitations are common in materials 
(explaining why they cannot develop a scale-free topology)



(d) C60 (buckminsterfullerene) 
(e) C540 (a fullerene) 
(f) C70 (another fullerene) 

graphitediamond lonsdaleit

Material 
Networks

amorphous carbon single-walled carbon nanotube
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Rewire with a 
probability p

For p = 1, we have a 
random graph

Lattice and random graphs should have:
• Same number of nodes 
• Same number of edges







Random Graphs
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Construction of Random Networks & Lattice

They can follow different approaches:
1. Erdös-Rényi
2. Sporns Erdös-like
3. Sporns real-based

90

They use different input.



Erdös-Rényi Randomization
Start from a lattice network and rewire an edge with a probability p.

• N : number of nodes
• p : rewiring probability
• k : average degree of connectivity (it must be an even 

number)

– Random network, p = 1 All the edges are rewired
– Lattice network, p = 0 No edge is rewired
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Erdös-Rényi Randomization

1. Create a lattice by connecting the k/2 nodes closer to the left & right
neighbours of each node.

2. For the creation of the random graph (p=1)
i. Disconnect all edges  (|E| edges)
ii. For |E| iterations  

a) Select two different nodes randomly 
b) Create a new edge between these two nodes

Note that the random graph may have a smaller number of edges than 
the lattice



Sporns Erdös-like – Creation of Lattice

Input:  N : number of nodes, K : total number of edges 
1. Place the nodes at the periphery of a circle
2. Connect each node with its immediate left & right neighbour
3. Compute the total number of edges (E)

i. If E=K, the lattice has been constructed
ii. If E>K, randomly disconnect (E-K) edges
iii. If E< K, connect each node with its second degree 

neighbours  (left & right) in the circle
Repeat the step (3)
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Sporns Erdös-like – Creation of Random Network

Input:  N : number of nodes, K : total number of edges 

1. Place the nodes at the periphery of a circle
2. Repeat the following steps for K iterations

i. Select two different nodes randomly 
ii. Connect them with an edge

End
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Sporns real-based – Creation of Lattice
Input:  G: graph (V, E) of real network, R: number of iterations
1. Repeat the following steps for R iterations
2. Repeat the following steps for |E| iterations
3. Select randomly two different edges from G, e.g., (A,B), (C,D)

If these 4 nodes are not different, return to step 3
4. If (A,D) ϵ E or (B,C) ϵ E,  return to step 3

Otherwise
If ||A,B||+||C,D||> ||A,D||+||B,C||

create the new edges (A,D) & (B,C)
destroy the (A,B), (C,D)

end
Return to step 3

95
||A,B||: denotes the Euclidian distance between A &B



Sporns real-based – Creation of Random Network

Input:  G: graph (V, E) of real network, R: number of iterations
1. Repeat the following steps for R iterations
2. Repeat the following steps for |E| iterations
3. Select randomly two different edges from G, e.g., (A,B), (C,D)

If these 4 nodes are not different,  return to step 3
4. If (A,D) ϵ E or (B,C) ϵ E,  return to step 3

Otherwise
create the new edges (A,D) & (B,C)
destroy the (A,B), (C,D)

end
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Small-world networks
L = characteristic path length         C = clustering coefficient

• A small-world network is much more highly clustered than an 
equally sparse random graph (C >> Crandom) & its characteristic 
path length L is close to the theoretical minimum shown by a 
random graph (L ~ Lrandom). 

• The reason a graph can have small L despite being highly 
clustered is that a few nodes connecting distant clusters are 
sufficient to lower L. 

• Because C changes little as small-worldliness develops, it 
follows that small-worldliness is a global graph property that 
cannot be found by studying local graph properties. 



L(p)/L(0) 



Small-world Criteria

• Small-worldness SΔ> 1 

SΔ = 𝛾𝛾𝑔𝑔△

𝜆𝜆𝑔𝑔
𝛾𝛾𝑔𝑔△ = 𝐶𝐶𝑔𝑔△

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜
△ 𝜆𝜆𝑔𝑔 = 𝐿𝐿𝑔𝑔

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜

• Small-world propensity (φ) close to 1 (suggested reference value 0.6)

Δ𝐿𝐿=
𝐿𝐿𝑔𝑔 − 𝐿𝐿𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑜𝑜𝑜𝑜

𝐿𝐿𝑙𝑙𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑜𝑜𝑜𝑜

φ  = 1 − Δ𝐶𝐶
2+ Δ𝐿𝐿

2

2

Δ𝐶𝐶=
𝐶𝐶𝑙𝑙𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖△ − 𝐶𝐶𝑔𝑔△

𝐶𝐶𝑙𝑙𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖△ − 𝐶𝐶𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑜𝑜𝑜𝑜△

g: real network
rand: random network



n number of nodes
m number of edges
ξ density of edges
<k> mean degree of connectivity
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Average Median Max Min Hubs Nodes Edges
11.8554 8 45 1 9 (10.84%) 83 (65.87%) 492 (6.25%)

Degree of Connectivity Number (Percentage)

The big connected component,
formed by 83 neurons (43 neurons
were not connected to any other
neuron).

The small world analysis has been
done for the connected
component.
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Example: Degree of Connectivity (DoC) using the big connected
component, formed by 83 neurons (43 neurons were not connected to
any other neuron).

The small world analysis has been done for the connected component.



Clustering Coeff Shortest Path
Real-life 0.43 2.22
Erdös Rényi Random 0.15 2.01

Lattice 0.68 3.92
Sporns Erdös-like Random 0.14 1.98

Lattice 0.68 3.92
Sporns real-based Random 0.38 2.10

Lattice 0.41 2.17

𝜸𝜸𝒈𝒈△𝒄𝒄𝒄𝒄 𝝀𝝀𝒈𝒈𝒄𝒄𝒄𝒄 𝑺𝑺△ =
𝜸𝜸𝒈𝒈△𝒄𝒄𝒄𝒄
𝝀𝝀𝒈𝒈𝒄𝒄𝒄𝒄

𝚫𝚫𝑪𝑪 𝚫𝚫𝑳𝑳 𝝓𝝓 = 𝟏𝟏 −
𝚫𝚫𝑪𝑪𝟐𝟐 + 𝚫𝚫𝑳𝑳𝟐𝟐

𝟐𝟐
Erdös Rényi 2.78 1.11 2.50 0.47 0.11 0.66
Sporns Erdös-like 3.08 1.12 2.75 0.46 0.12 0.66
Sporns real-based 1.11 1.06 1.05 0 1 0.29

Animal P36-G8 Small-Worldness Small-World Propensity

Erdös Rényi ✓ ✓
Sporns Erdös-like ✓ ✓
Sporns real-based ✓ ✗



Preferential attachment models the 
growth of a network



Preferential attachment models the growth of a network

• Add a new node
• Probability of linking a node is proportional to its degree

• The preferential attachment process generates a "long-tailed" 
distribution following a Pareto distribution or power law in its tail.

• Based on Herbert Simon’s result
– Power-laws arise from “Rich get richer” (cumulative advantage)

Examples 
1. Citations: new citations of a paper are proportional to the number it already 

has [Price 1965]
2. Growth of the WWW [Albert & Barabasi 1999]



Jure Leskovec

Preferential attachment

• Leads to power-law degree distributions

• There are many generalizations & variants, 
but the preferential selection is the 
key ingredient that leads to power-laws

3−∝ kpk



Jure Leskovec

Network resilience (1)
How does the connectivity (length of 
the paths) of the network changes as 
the vertices get removed?

• Removal of vertices 
– Random
– Targeted
– According to a systematic 

process

• Important for epidemiology
e.g., removal of vertices 
corresponds to vaccination



Jure Leskovec

Network resilience (2)
• Real-world networks are resilient to random attacks

– One has to remove all web-pages of degree > 5 to disconnect the 
web

– But this is a very small percentage of web pages
• Random network has better resilience to targeted attacks

Fraction of removed nodes

M
ea

n 
pa

th
 le

ng
th

Random network

Fraction of removed nodes

Internet (Autonomous systems)

Random
removal

Preferential
removal



Questions that have not been 
answered

• Does the weight of an edge relate with the 
degrees of connectivity of the nodes it connects? 

• What about the types of neurons of an edge?
• Computer the influential nodes in the graph



Presenter
Presentation Notes
That's possibly because there is technically no "Control group" to test this theory as best as possible. "Common sense" most often applies to what is considered the "norm" in one's culture, however culture is constantly evolving. Let's also be mindful of systems of oppression and how they can affect how "common sense" is validated by one's identities and abilities.
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