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INTRODUCTION: In the absence of sensory
inputs, the brain produces structured patterns
of activity, which can be as large as or larger
than sensory-driven activity. Ongoing activity
exists even in primary sensory cortices and
has been hypothesized to reflect recapitulation
of previous sensory experiences, or expecta-
tions of possible sensory events. Alternatively,
ongoing activity could be related to behavioral
and cognitive states.

RATIONALE:Much previous work has linked
spontaneous neural activity to behavior through
one-dimensional measures like running speed
and pupil diameter. However, mice perform di-
verse behaviors consisting of whisking, licking,
sniffing, and other facial movements. We hy-

pothesized that there exists a multidimensional
representation of behavior in visual cortex and
that previously reported “noise” during stimulus
presentationsmay in fact bebehaviorally driven.
To investigate this, we recorded the activity of
~10,000 neurons in visual cortex of awake mice
using two-photon calcium imaging,while simul-
taneously monitoring the facial movements
using an infrared camera. In a second set of
experiments, we recorded the activity of thou-
sands of neurons across the brain using eight
simultaneous Neuropixels probes, again video-
graphically monitoring facial behavior.

RESULTS: First, we found that ongoing ac-
tivity in visual cortex is high dimensional:More
than a hundred latent dimensions could be

reliably extracted from the population activ-
ity.We found that a third of this activity could
be predicted by a multidimensional model of
the mouse’s behavior, extracted from the face
video. This behaviorally related activity was
not limited to visual cortex. We observed mul-
tidimensional representations of behavior in
electrophysiological recordings from frontal,

sensorimotor, and retro-
splenial cortex; hippocam-
pus; striatum; thalamus;
andmidbrain.Eventhough
both behavior and neural
activity contained fast–
time scale fluctuations on

the order of 200 ms, they were only related to
each other at a time scale of about 1 s. We next
investigated how this spontaneous, behavior-
related signal interacts with stimulus responses.
The representation of sensory stimuli and
behavioral variables was mixed in the same
neurons: The fractions of each neuron’s var-
iance explained by stimuli and by behavior
were only slightly negatively correlated, and
neurons with similar stimulus responses did
not have more similar behavioral correlates.
Nevertheless, at a population level, the neural
dimensions encoding motor variables over-
lappedwith those encoding visual stimuli along
only one dimension,which coherently increased
or decreased the activity of the entire popula-
tion. Activity in all other behaviorally driven
dimensions continued unperturbed regardless
of sensory stimulation.

CONCLUSION: The brainwide representation
of behavioral variables suggests that informa-
tion encoded nearly anywhere in the forebrain
is combined with behavioral state variables
into a mixed representation. We found that
these multidimensional signals are present
both during ongoing activity and during pas-
sive viewing of a stimulus. This suggests that
previously reported noise during stimulus pre-
sentations may consist primarily of behavioral-
state information. What benefit could this
ubiquitousmixing of sensory andmotor infor-
mation provide? Themost appropriate behavior
for an animal to perform at any moment de-
pends on the combination of available sensory
data, ongoingmotor actions, andpurely internal
variables such as motivational drives. Integra-
tion of sensory inputs with motor actions must
therefore occur somewhere in the nervous sys-
tem. Our data indicate that it happens as early
as primary sensory cortex.▪
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Recordings of thousands of neurons
Eight–probe Neuropixels recordings

10,000 neurons with calcium imaging
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Large-scale neural population recordings can be predicted from behavior.We used new
recording technologies to simultaneously monitor the activity of ~10,000 neurons in a single
brain area and ~3000 neurons from across the brain (top left). These neurons showed slow–
time scale patterns of coactivation restricted to subsets of neurons which were distributed
across the brain (top right). The patterns of neural activity appeared to be driven by specific
spontaneous behaviors that the animals engaged in during the experiment. We tracked these
spontaneous behaviors by projecting a video recording of the mouse face onto a set of
canonical “eigenfaces” (bottom left) and used these projections to predict a large fraction of
the neural activity (bottom right). t, time; PC, principal component.
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Neuronal populations in sensory cortex produce variable responses to sensory stimuli and
exhibit intricate spontaneous activity even without external sensory input. Cortical
variability and spontaneous activity have been variously proposed to represent random
noise, recall of prior experience, or encoding of ongoing behavioral and cognitive variables.
Recording more than 10,000 neurons in mouse visual cortex, we observed that
spontaneous activity reliably encoded a high-dimensional latent state, which was
partially related to the mouse’s ongoing behavior and was represented not just in visual
cortex but also across the forebrain. Sensory inputs did not interrupt this ongoing signal
but added onto it a representation of external stimuli in orthogonal dimensions. Thus,
visual cortical population activity, despite its apparently noisy structure, reliably encodes
an orthogonal fusion of sensory and multidimensional behavioral information.

I
n the absence of sensory inputs, the brain
produces structured patterns of activity,
which can be as large as or larger than
sensory-driven activity (1). Ongoing activity
exists even in primary sensory cortices and

has been hypothesized to reflect recapitulation
or expectation of sensory experience. This hy-
pothesis is supported by studies that found sim-
ilarities between sensory-driven and spontaneous
firing events (2–7). Alternatively, ongoing activ-
ity could be related to behavioral and cognitive
states. The firing of sensory cortical and sensory
thalamic neurons correlates with behavioral var-
iables such as locomotion, pupil diameter, and
whisking (8–23). Continued encoding of non-
visual variables when visual stimuli are present
could at least in part explain the trial-to-trial
variability in cortical responses to repeated pre-
sentation of identical sensory stimuli (24).
The influence of trial-to-trial variability on

stimulus encoding depends on its population-
level structure. Variability that is independent
across cells—such as the Poisson-like variability
produced in balanced recurrent networks (25)—
presents little impediment to information coding,
because reliable signals can still be extracted as
weighted sums over a large enough population.
By contrast, correlated variability has conse-
quences that depend on the form of the corre-
lations. If correlated variabilitymimics differences

in responses to different stimuli, it can com-
promise stimulus encoding (26, 27). Conversely,
correlated variability in dimensions orthogonal
to those encoding stimuli has no adverse impact
on coding (28) and might instead reflect encod-
ing of signals other than visual inputs.

Spontaneous cortical activity
reliably encodes a high-dimensional
latent signal

To distinguish between these possibilities, we
characterized the structure of neural activity and
sensory variability in mouse visual cortex. We
simultaneously recorded from 11,262 ± 2282
(mean ± SD) excitatory neurons, over nine ses-
sions in six mice using two-photon imaging of
a fluorescent calcium indicator in an 11-plane
configuration (29) (Fig. 1, A and B, andMovie 1).
These neurons’ responses to classical grating
stimuli revealed robust orientation tuning as
expected in visual cortex (fig. S1).
We began by analyzing spontaneous activity

in mice free to run on an air-floating ball. Six of
nine recordings were performed in darkness,
but we did not observe differences between
these recordings (shown in red in Figs. 1 and 2)
and recordings with gray screen (yellow in Figs. 1
and 2). Mice spontaneously performed behaviors
such as running, whisking, sniffing, and other
facial movements, which we monitored with an
infrared camera.
Ongoing population activity in visual cortex

was highly structured (Fig. 1, C to H). Correla-
tions between neuron pairs were reliable (fig. S2),
and their spread was larger than would be ex-
pected by chance (Fig. 1, C and D), suggesting
structured activity (30). Fluctuations in the first
principal component (PC) occurred over a time
scale of many seconds (fig. S3) and were coupled
to running, whisking, and pupil diameter. These

arousal-related variables correlated with each
other (fig. S4, A and B) and together accounted
for about 50% of the variance of the first neural
PC (Fig. 1E and fig. S4C). Correlation with the
first PC was positive or negative in approximately
similar numbers of neurons (57 ± 6.7% SE posi-
tive), indicating that two large subpopulations of
neurons alternate their activity (Fig. 1, F and G).
The slowness of these fluctuations suggests a
different underlying phenomenon to previously
studied “up and down phases” (5, 31–34), which
alternate at a much faster time scale (~100 ms
instead of multiple seconds) and correlate with
most neurons positively. Indeed, up-down phases
could not even have been detected in our
recordings, which scanned the cortex every 400ms.
Spontaneous activity had a high-dimensional

structure, more complex thanwould be predicted
by a single factor such as arousal. We sorted the
raster diagram so that nearby neurons showed
strong correlations (Fig. 1H and fig. S5). Posi-
tion on this continuum bore little relation to
actual distances in the imaged tissue (fig. S6),
suggesting that this activity was not organized
topographically.
Despite its noisy appearance, spontaneous

population activity reliably encoded a high-
dimensional latent signal (Fig. 1, I to K). We
devised a method to identify dimensions of
neural variance that are reliably determined
by common underlying signals, termed shared
variance component analysis (SVCA). We divided
the recorded neurons into two spatially segre-
gated sets and divided the recorded time points
into two equal halves (training and test; Fig. 1I).
The training time points were used to find the
dimensions in each cell set’s activity that maxi-
mally covary with each other. These dimensions
are termed shared variance components (SVCs).
Activity in the test time points was then projected
onto each SVC (Fig. 1J), and the correlation
between projections from the two cell sets (Fig.
1K) provided an estimate of the reliable variance
in that SVC (see methods and appendix). The
fraction of reliable variance in the first SVC was
97% (Fig. 1, K and L), implying that only 3% of
the variance along this dimension reflected in-
dependent noise. The reliable variance fraction
of successive SVCs decreased slowly, with the
50th SVC at ~50% reliable variance and the
512th at ~9% (Fig. 1L).
The magnitude of reliable spontaneous var-

iance was distributed across dimensions accord-
ing to a power law of exponent 1.14 (Fig. 1M).
This value is larger than the power law expo-
nents close to 1.0 seen for stimulus responses
(35) but still indicates a high-dimensional sig-
nal. The first 128 SVCs together accounted for
86 ± 1% SE of the complete population’s reliable
variance, and 67 ± 3% SE of the total variance in
these 128 dimensions was reliable. Arousal varia-
bles accounted for 11 ± 1% SE of the total variance
in these 128 components (16% of their reliable
variance) and primarily correlated with the top
SVCs (Fig. 1, N and O). Thousands of neurons
were required to reliably characterize activity
in hundreds of dimensions, and the estimated
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reliability of higher SVCs increased with the
number of neurons analyzed (fig. S7, A to E),
suggesting that recordings of larger populations
would identify yet more dimensions.

Ongoing neural activity encodes
multidimensional behavioral information

Although arousal measures only accounted for
a small fraction of the reliable variance of
spontaneous population activity, it is possible
that higher-dimensional measures of ongoing
behavior could explain a larger fraction (Fig. 2,
A to C, and Movie 2). We extracted a 1000-
dimensional summary of the motor actions visi-
ble on the mouse’s face by applying principal
components analysis to the spatial distribution
of facial motion at each moment in time (36).
The first PC captured motion anywhere on the
mouse’s face and was strongly correlated with
explicit arousal measures (fig. S4B), whereas
higher PCs distinguished different types of facial
motion. We predicted neuronal population ac-
tivity from this behavioral signal using reduced
rank regression: For any N, we found the N
dimensions of the video signal predicting the
largest fraction of the reliable spontaneous
variance (Fig. 2D).
This multidimensional behavior measure pre-

dicted approximately twice as much variance as
the three arousal variables (Fig. 2, D to J, and
Movie 3). To visualize how multidimensional
behavior predicts ongoing population activity,
we compared a raster representation of raw ac-
tivity (vertically sorted as in Fig. 1H) with the
prediction based on multidimensional videog-
raphy (Fig. 2F; see fig. S5 for all recordings).
To quantify the quality of prediction, and the
dimensionality of the behavioral signal en-
coded in visual cortex, we focused on the first
128 SVCs (accounting for 86% of the population’s
reliable variance). The best one-dimensional
predictor extracted from the facial motion movie
captured the same amount of variance as the
best one-dimensional combination of whisk-
ing, running, and pupil (Fig. 2G). Prediction
quality continued to increase with up to 16
dimensions of videographic information (and
beyond, in some recordings), suggesting that
visual cortex encodes at least 16 dimensions
of motor information. These dimensions to-
gether accounted for 21 ± 1% SE of the total
population variance (31 ± 3% of the reliable
variance; Fig. 2H), substantially more than the
three-dimensional model of neural activity using
running, pupil area, and whisking (11 ± 1% SE
of the total variance, 17 ± 1% SE of the reliable
variance). Moreover, adding these three expli-
cit predictors to the video signal increased the
explained variance by less than 1% (Fig. 2I),
even though the running signal provided infor-
mation not derived from video. A neuron’s pre-
dictability from behavior was not related to its
cortical location (fig. S8). The time scale with
which neural activity could be predicted from
facial behavior was ~1 s (Fig. 2J and fig. S7H),
reflecting the slow nature of these behavioral
fluctuations.
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Fig. 1. Structured ongoing population activity in visual cortex. (A and B) Two-photon calcium
imaging of ~10,000 neurons in visual cortex using multiplane resonance scanning of 11 planes
spaced 35 mm apart. Detected neurons are randomly colored for visualization. (C) Distribution of
pairwise correlations in ongoing activity, computed in 1.2-s time bins (yellow). Gray indicates
distribution of correlations after randomly time-shifting each cell’s activity. (D) Distribution of
pairwise correlations for each recording (showing 5th and 95th percentiles). (E) First PC (normalized)
versus running speed in 1.2-s time bins. a.u., arbitrary units. (F) Example time course of running speed
(green), pupil area (gray), whisking (light green), and first PC of population activity (magenta dashed).
(G) Neuronal activity, with neurons sorted vertically by first PC weighting and the same time segment
as in (F). (H) Same neurons as in (G), sorted by a manifold embedding algorithm. (I) SVCA method
for estimating reliable variance. (J) Example time courses of SVCs from each cell set in the test epoch
(1.2-s bins). (K) Same as (J), plotted as a scatter plot. The r value is the Pearson correlation between
cell sets, which is an estimate of that dimension’s reliable variance. (L) Percentage of reliable variance
for successive dimensions. (M) Reliable variance spectrum, power law decay of exponent 1.14.
(N) Percentage of each SVC’s total variance that can be reliably predicted from arousal variables [colors
as in (F)]. (O) Percentage of total variance in first 128 dimensions explainable by arousal variables.
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Behaviorally related activity is spread
across the brain
Patterns of spontaneous V1 activity were a re-
flection of activity patterns spread across the
brain (Fig. 3, A to E). To show this, we used
eight Neuropixels probes (37) to simultaneously
record from frontal, sensorimotor, visual, and
retrosplenial cortex, hippocampus, striatum,
thalamus, and midbrain (Fig. 3, A and B). The
mice were awake and free to rotate a wheel with
their front paws. From recordings in three mice,
we extracted 2296, 2668, and 1462 units stable
across ~1 hour of ongoing activity and binned neu-
ral activity into 1.2-s bins, as for the imaging data.
Neurons correlated most strongly with others

in the same area but also correlatedwith neurons
in other areas, suggesting nonlocalized patterns
of neural activity (Fig. 3C). All areas contained
neurons positively and negatively correlated with
the arousal-related top facialmotion PC, although
neurons in thalamus showed predominantly pos-
itive correlations (Fig. 3D, P < 10−8, two-sided
Wilcoxon sign-rank test). Sorting the neurons
by correlation revealed a rich activity structure
(Fig. 3E). All brain areas contained a sampling
of neurons from the entire continuum (Fig. 3E,
right), suggesting that amultidimensional struc-
ture of ongoing activity is distributed throughout
the brain. This spontaneous activity spanned at
least 128 dimensions, with 35% of the variance
of individual neurons reliably predictable from
population activity (fig. S9).
Similar to visual cortical activity, the activity

of brainwide populations was partially predict-
able from facial videography (Fig. 3, F to H).
Predictability of brainwide activity again satu-
rated around 16 behavioral dimensions, which
predicted on average across areas 21.9% of the
total variance (40% of the estimated maximum
possible) (Fig. 3F). The amount of behavioral
modulation differed between brain regions,
with neurons in thalamus predicted best (35.7%
of total variance, 59% of estimated maximum).
The time scale of videographic prediction was
again broad: Neural activity was best predicted
from instantaneous behavior, decaying slowly
over time lags of multiple seconds (Fig. 3, G and
H, and fig. S10), with a full width at half-max
of 2.5 ± 0.4 s (mean ± SE). Neural population
activity showed coherent structure at time scales

faster than this behavioral correlation (280 ±
43 ms, mean ± SE) (fig. S10). The fast–time scale
structure modulated nearly all neurons in the
same direction, leading to rapid fluctuations in
the total population rate (up and down phases);
by contrast, the structure seen at lower time
scales was dominated by alternation in the ac-
tivity of different neuronal populations, and
steadier total activity [figs. S10 to S12 and (38)].

Stimulus-evoked and ongoing activity
overlap along one dimension

We next asked how ongoing activity and be-
havioral information relates to sensory responses
(Fig. 4, A and B). We thus interspersed blocks of
visual stimulation (flashed natural images, pre-
sented one per second on average) with extended
periods of spontaneous activity (gray screen),

while imaging visual cortical population activ-
ity (Fig. 4A). During stimulus presentation, the
mice continued to exhibit the same behaviors
as in darkness, resulting in a similar distribu-
tion of facial motion components (Fig. 4B).
There were not separate sets of neurons en-

coding stimuli and behavioral variables; instead,
representations of sensory and behavioral infor-
mation were mixed together in the same cell
population. The fractions of each neuron’s var-
iance explained by stimuli and by behavior were
only slightly negatively correlated [fig. S13; corre-
lation coefficient (r) = −0.18,P< 0.01, Spearman’s
rank correlation], and neurons with similar stim-
ulus responses did not have more similar behav-
ioral correlates (fig. S13; r = −0.005, P > 0.05).
The subspaces encoding sensory and behavior

information overlapped in only one dimension
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Fig. 2. Multidimensional behavior predicts neural activity. (A) Frames from a video recording of
a mouse’s face. t and t+1 indicate two consecutive frames. (B) Motion energy, computed as the
absolute value of the difference of consecutive frames. (C) Spatial masks corresponding to the top
three PCs of the motion energy movie. The scale on the right indicates low-motion energy (blue) to
high-motion energy (red). (D) Schematic of reduced rank regression technique used to predict
neural activity from motion energy PCs. (E) Cross-validated fraction of successive neural SVCs
predictable from face motion (blue), together with fraction of variance predictable from running,
pupil, and whisking (green), and fraction of reliable variance (the maximum explainable, gray;
compare with Fig. 1L). (F) Prediction of population activity from behavior. Raster representation (top)
of ongoing neural activity in an example experiment, with neurons arranged vertically as in Fig. 1H
so correlated cells are close together. Prediction of this activity (bottom) from facial videography
(predicted using separate training time points). (G) Percentage of the first 128 SVCs’ total variance
that can be predicted from facial information, as a function of number of facial dimensions used.
(H) Prediction quality from multidimensional facial information, compared with the amount of
reliable variance, both as a percentage of variance explained. (I) Adding explicit running, pupil, and
whisker information to facial features provides little improvement in neural prediction quality,
measured as percentage of variance explained. (J) Prediction quality as a function of time lag used
to predict neural activity from behavioral traces.

Movie 1. Spontaneous activity of more than
10,000 neurons in visual cortex of awake
mice. Two-photon calcium imaging of 11 planes
spaced 35 mm apart. Movie speed is 10× real time.
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(Fig. 4, C to E). The space that encoded be-
havioral variables contained 11% of the total
stimulus-related variance, 96% of which was
contained in a single dimension (Fig. 4C) with
largely positive weights onto all neurons (85%
positive weights, Fig. 4D). Similarly, the space
of ongoing activity, defined by the top 128 prin-
cipal components of spontaneous firing, con-
tained 23%of the total stimulus-related variance,
86% of which was contained in one dimension
(85% positive weights). Thus, overlap in the
spaces encoding sensory and behavioral variables
arises primarily because both can change the
mean firing rate of the population: The precise
patterns of increases and decreases about this
change in mean were essentially orthogonal
(Fig. 4E). Analysis of electrophysiological
recordings confirmed that the relationship be-
tween stimulus-driven and spontaneous activity
was dominated by a single shared dimension:
The correlation between spontaneous and signal
correlations was greatly reduced after projecting
out this one-dimensional activity (fig. S14).
Stimulus decoding analysis further confirmed

that information about sensory stimuli was con-
centrated in the stimulus-only subspace. To show
this, we trained a linear classifier to identify
which stimulus had been presented, from activ-
ity in different 32-dimensional neural subspaces.
Decoding from the stimulus space yielded a
cross-validated error rate of 10.1 ± 4.0%; activity
in the spontaneous- or behavior-only spaces yielded
errors of 53.1 ± 6.4 and 56.8 ± 6.7%, no better
than randomly chosen dimensions (Fig. 4F).
To visualize how the V1 population integrated

sensory and behavior-related activity, we exam-
ined the projection of this activity onto three
orthogonal subspaces: a multidimensional sub-
space encoding only sensory information (stim-
ulus only), amultidimensional subspace encoding
only behavioral information (behavior only), and
the one-dimensional subspace encoding both
(stimulus-behavior shared dimension) (Fig. 4G
and fig. S15). During gray-screen periods, there
was no activity in the stimulus-only subspace,
but when the stimuli appeared, this subspace
became very active. By contrast, activity in the
behavior-only subspace was present before stim-
ulus presentation and continuedunchangedwhen
the stimulus appeared. The one-dimensional
shared subspace showed an intermediate pat-
tern: Activity in this subspace was weak before
stimulus onset and increased when stimuli were
presented. Similar results were seen for the
spontaneous-only and stimulus-spontaneous
spaces (Fig. 4G, lower traces). Across all experi-
ments, variance in the stimulus-only subspace was
119 ± 81 SE times larger during stimulus presen-
tation than during spontaneous epochs (Fig. 4H),
whereas activity in the shared subspace was 19 ±
12 SE times larger; activity in the face-only and
spontaneous-only subspaces was only modestly
increased by sensory stimulation (1.4 ± 0.13 SE
and 1.7 ± 0.2 SE times larger, respectively).
Trial-to-trial variability in population responses

to repeated stimulus presentations reflected a
combination of multiplicative modulation in

the stimulus space and additive modulation in
orthogonal dimensions. To visualize how stimuli
affected activity in these subspaces, we plotted
population responses to multiple repeats of two
example stimuli (Fig. 4, I and J). When projected
into the stimulus-only space, the resulting clouds
were tightly defined with no overlap (Fig. 4I),
but in the behavior-only space, responses to the
two stimuli were directly superimposed (Fig. 4J).
Variability within the stimulus subspace consisted
of changes in the length of the projected activ-
ity vectors between trials, resulting in narrowly
elongated clouds of points (Fig. 4I), consistent
with previous reports of multiplicative variabil-
ity in stimulus responses (39–42). A model in
which stimulus responses are multiplied by a
trial-dependent factor accurately captured the
data, accounting for 89 ± 0.1% SE of the var-
iance in the stimulus subspace (Fig. 4K). Fur-

thermore, the multiplicative gain on each trial
could be predicted from facial motion energy
(r = 0.61 ± 0.02 SE, cross-validated) and closely
matched activity in the shared subspace (r =
0.73 ± 0.06 SE, cross-validated; Fig. 4L). Although
ongoing activity in the behavior-only subspace
and visual responses in the stimulus-only sub-
space added independently, we did not observe
additive variability within the stimulus-only space
itself: An “affine”model also including an additive
term did not significantly increase explained var-
iance over the multiplicative model (P > 0.05,
Wilcoxon rank-sum test). Similar results were
obtained when analyzing responses to grating
stimuli rather than natural images (fig. S16).

Discussion

Ongoing population activity in visual cortex
reliably encoded a latent signal of at least 100
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Fig. 3. Behaviorally related activity across the forebrain in simultaneous recordings with
eight Neuropixels probes. (A) Reconstructed probe locations of recordings in three mice.
(B) Example histology slice showing orthogonal penetrations of eight electrode tracks
(DiI fluorescent dye, red) through a calbindin-counterstained (green) horizontal section.
(C) Comparison of mean correlation between cell pairs in a single area, with mean correlation
between pairs with one cell in that area and the other elsewhere. Each dot represents the mean over
all cell pairs from all recordings, color coded as in (D). (D) Mean correlation of cells in each brain
region with first PC of facial motion. Error bars represent standard deviation. (E) Prediction of
population activity from behavior. Raster representation (top left) of ongoing population activity for
an example experiment, sorted vertically so nearby neurons have correlated ongoing activity.
Prediction of this activity (bottom left) from facial videography. Anatomical location of neurons along
this vertical continuum (top right), with each point representing a cell, colored by brain area as in
(C) and (D), and the x-axis showing the neuron’s depth from the brain surface. (F) Percentage of
population activity explainable from orofacial behaviors as a function of dimensions of reduced
rank regression. Each curve shows average prediction quality for neurons in a particular brain area,
using the same color coding as in (D). (G) Explained variance as a function of time lag between
neural activity and behavioral traces. Each curve shows the average for a particular brain area, using
the same color coding as in (D). (H) Same as (G) in 200-ms bins.
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Fig. 4. Neural subspaces encoding stimuli and spontaneous and
behavioral variables overlap along one dimension. (A) PCs of facial
motion energy (top) and firing of 10 example V1 neurons (bottom).
(B) Comparison of normalized face motion energy variance for each PC
during stimulus presentation and spontaneous periods. Color represents
recording identity. (C) The percentage of stimulus-related variance in
each dimension of the shared subspace between stimulus- and behavior-
driven activity. (D) Distribution of cells’ weights (a.u.) on the single dimension
of overlap between stimulus and behavior subspaces. (E) Schematic of
population activity geometry. Stimulus- and behavior-driven subspaces are
orthogonal, while a single dimension [gray; characterized in panels (C)
and (D)] is shared. (F) Stimulus decoding analysis for 32 natural image
stimuli from 32 dimensions of activity in the stimulus-only, behavior-only,
and spontaneous-only subspaces, together with randomly chosen
32-dimensional subspaces. The y-axis shows the fraction of stimuli that

were identified incorrectly. (G) Example of neural population activity
projected onto the subspaces defined in (E). (H) Amount of variance of
each of the projections illustrated in (E) and (G), during stimulus
presentation and spontaneous periods. Each point represents summed
variances of the dimensions in the subspace corresponding to the symbol
color for a single experiment. (I) Projection of neural responses to two
example stimuli into two dimensions of the stimulus-only subspace. Each
dot is a different stimulus response. Red is the fit of each stimulus
response using the multiplicative gain model. (J) Same as (I) for the
behavior-only subspace. (K) Fraction of variance in the stimulus-only
subspace explained by constant response on each trial of the same
stimulus (avg. model), multiplicative gain that varies across trials
(mult. model), and a model with both multiplicative and additive terms
(affine model). (L) The multiplicative gain on each trial (red) and its
prediction from the face motion PCs (blue).
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linear dimensions, and possibly many more. The
largest dimension correlated with arousal and
modulated about half of the neurons positively
and half negatively. At least 16 further dimen-
sions were related to behaviors visible by facial
videography, which were also encoded across
the forebrain. The dimensions encoding motor
variables overlapped with those encoding visual
stimuli along only one dimension, which coher-
ently increased or decreased the activity of the
entire population. Activity in all other behavior-
related dimensions continued unperturbed re-
gardless of sensory stimulation. Trial-to-trial
variability of sensory responses comprised addi-
tive ongoing activity in the behavior subspace,
and multiplicative modulation in the stimulus
subspace, resolving apparently conflicting find-
ings concerning the additive or multiplicative
nature of cortical variability (39–42).
Our data are consistent with previous re-

ports describing low-dimensional correlates
of locomotion and arousal in visual cortex
(8, 10–16, 33) but suggest that these results were
glimpses of a much larger set of nonvisual var-
iables encoded by ongoing activity patterns. Six-
teen dimensions of facial motor activity can
predict 31% of the reliable spontaneous variance.
The remaining dimensions and variance might
in part reflect motor activity not visible on the
face or only decodable by more advanced meth-
ods (43–48), or they might reflect internal cog-
nitive variables such as motivational drives.
Many studies have reported similarities be-

tween spontaneous activity and sensory responses
(2–7). We also observed a similarity but found
it arose nearly exclusively from one dimension
of neural activity. This dimension summarized
the mean activity of all cells in the population,
and variations along it reflected both spontane-
ous alternation of up and down phases and dif-
ferences in mean population response between
stimuli. These results therefore demonstrate that
the statistical similarity of firing patterns during
stimulation and ongoing activity need not imply
recapitulation of previous sensory experiences
but merely that cortex exhibits mean rate fluc-
tuations with or without sensory inputs. Although
our results do not exclude that genuine reca-
pitulation could occur in other behavioral cir-
cumstances, they reinforce the need for careful

statistical analysis before drawing this conclu-
sion: Even a single dimension of common rate
fluctuation is sufficient for some previously ap-
plied statistical methods to report similar pop-
ulation activity (49).
The brainwide representation of behavioral

variables suggests that information encoded
nearly anywhere in the forebrain is combined
with behavioral-state variables into a mixed rep-
resentation. We found that these multidimen-
sional signals are present both during ongoing
activity and during passive viewing of a stimu-
lus. Recent evidence indicates that they may also
be present during a decision-making task (50).
What benefit could this ubiquitous mixing of
sensory and motor information provide? The
most appropriate behavior for an animal to
perform at any moment depends on the com-
bination of available sensory data, ongoing motor
actions, and purely internal variables such as
motivational drives. Integration of sensory inputs
with motor actions must therefore occur some-
where in the nervous system. Our data indicate
that it happens as early as primary sensory cortex.
This is consistent with neuroanatomy: Primary
sensory cortex receives innervation both from neu-
romodulatory systems carrying state information
and from higher-order cortices that can encode
fine-grained behavioral variables (9). This and oth-
er examples of pervasive whole-brain connectivity
(51–54) may coordinate the brainwide encoding of
behavioral variables we have reported here.

Materials and methods

All experimental procedures were conducted
according to the UK Animals Scientific Proce-
dures Act (1986). Experiments were performed
at University College London under personal and
project licenses released by the Home Office
following appropriate ethics review.

Preparation for two-photon calcium
imaging in visual cortex

The imaging methods were similar to those de-
scribed elsewhere (14). Briefly, surgeries were
performed in seven adult mice (P35 to P125) in a
stereotaxic frame and under isoflurane anes-
thesia (5% for induction, 0.5 to 1% during the
surgery).We usedmice bred to express GCaMP6s
in excitatory neurons (1 EMX-CRExAi94GCaMP6s
mouse, 3 CamKII x tetO GCaMP6s mice, and
1 Rasgrf-CRE x Ai94 GCaMP6s mouse) or mice
bred to express tdTomato in GAD+ inhibitory
neurons (2GAD-Cre x tdTomatomice), allowing
inhibitory neurons to be identified and excluded
from further analysis. We did not observe epi-
leptiform activity in any of these mice (55).
Before surgery, Rimadyl was administered

as a systemic analgesic, and lidocaine was ad-
ministered locally at the surgery site. During
the surgery we implanted a headplate for later
head-fixation, made a craniotomy of 3 to 4 mm
in diameter with a cranial window implant for
optical access, and, in Gad-Cre x tdTomato trans-
genics, performed virus injections with a beveled
micropipette using a Nanoject II injector
(Drummond Scientific Company, Broomall, PA 1)

attached to a stereotaxic micromanipulator. We
used AAV2/1-hSyn-GCaMP6s, acquired from Uni-
versity of Pennsylvania Viral Vector Core. In-
jections of 50 to 200 nl virus (1 × 1012 to 3 ×
1012 GC/ml) were targeted to monocular V1, 2.1
to 3.3 mm laterally and 3.5 to 4.0 mm poste-
riorly from Bregma. To obtain large fields of
view for imaging, we typically performed 4 to
8 injections at nearby locations, at multiple
depths (~500 and ~200 mm). Rimadyl was then
used as a postoperative analgesic for 3 days,
delivered to the mice via their drinking water.

Data acquisition

We optically recorded neural activity in head-
fixed awake mice implanted with 3- to 4-mm
cranial windows centered over visual cortex,
obtaining ~10,000 neurons in all recordings.
The recordings were performed using multiplane
acquisition controlled by a resonance scanner,
with planes spaced 30 to 35 mm apart in depth.
In nine recordings, 10 or 12 planes were acquired
simultaneously at a scan rate of 3 or 2.5 Hz. For
three further recordings, we used single-plane
configuration, with a scan rate of 30 Hz. The
mice were free to run on an air-floating ball and
were surrounded by three computer monitors.
Spontaneous activity was recorded in darkness
(monitors off), or with a gray background or with
presented visual stimuli on these monitors ar-
ranged at 90° angles to the left, front, and right
of the animal, so that the animal’s head was ap-
proximately in the geometric center of the setup.
For eachmouse imaged, we typically spent the

first imaging day finding a suitable recording
location, where the following three conditions
held: (i) the GCaMP signal was strong, in the
sense that clear transients could be observed in
large numbers of cells; (ii) a large enough field
of view could be obtained for 10,000 neuron
recordings; and (iii) the receptive fields of the
neuropil were clearly spatially localized on our
three monitors.
In animals for which there was a choice over

multiple valid recording locations, we chose
either: (i) a horizontally and vertically central
retinotopic location or (ii) a lateral retinotopic
location, at 90° from the center but still cen-
tered vertically. We did not observe differences
related to retinotopic location (central or lateral)
and thus pooled data across recording locations.
We also did not observe significant differences
between recordings obtained fromGCaMP trans-
genic animals and from virus injections nor be-
tween recordingsmade in complete darkness or
with a gray screen. Thus, we pooled data over all
conditions.

Recording protocol and visual stimuli

Spontaneousmultiple-plane recordingswere per-
formed with either constant gray-screen back-
ground (three recordings) or monitors switched
off (six recordings). The nine multiplane record-
ings were of lengths 162, 155, 120, 117, 105, 90, 70,
70, and 70 min. We also performed three gray-
screen recordings in single-plane mode (30-Hz
frame rate) of lengths 93, 87, and 49 min.
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Movie 2. Multidimensional spontaneous
behaviors. Movie speed is 5× real time.
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Natural image responses were recorded by
presenting 90 to 114 repetitions of 32 images
manually selected from the ImageNet database
(56), from ethologically relevant categories: birds,
cat, flowers, hamster, holes, insects, mice, mush-
rooms, nests, pellets, snakes, and wildcat. We
chose images in which less than 50% of the
image was a uniform background and which
contained a balance of low and high spatial
frequencies. Images were flashed on all three
screens for 0.5 s, with a randomized gray-screen
interstimulus interval between 0.3 and 1.1 s. The
images were shown in a random order during
each repeat block. In three sessions, a 30-s pe-
riod of gray-screen period occurred
in between each repeat block; each
of these sessions lasted at least
110 min in total. In one session, we
first recorded a gray-screen period
(10 min), then interleaved longer
blocks of stimuli (25 min) and gray
screen (15 min) three times, for a
total of 130 min of recording.
In four recordings, we presented

full-field drifting gratings on all
three monitors at 1 of 32 directions
evenly spaced at 11°, with a spatial
frequency of 0.05 cycles per degree
and temporal frequency of 2 Hz.
Each direction was presented 70 to
128 times with a duration of 0.5 s
and a gray-screen interstimulus in-
terval randomly distributed between
0.3 and 1.1 s. Gratingswere presented
in random order in blocks of 32, and
in between blocks, there was an ad-
ditional gray-screen period of length
30 s (four recordings) or 0.5 s (one recording).
Each recording session was at least 90 min long.
In six electrophysiological recordings (six

mice), we targeted visual cortexwithNeuropixels
probes while presenting natural images from
the ImageNet database. Stimuli were presented
for 400 ms, with a random gray-screen inter-
stimulus interval of 300 to 700ms.We presented
700 different stimuli, two times each.

Calcium imaging processing

The preprocessing of all raw calcium movie
data was done using a toolbox we developed
called Suite2p, using the default settings (29).
The software is available at www.github.com/
Mouseland/suite2p.
Briefly, Suite2p first aligns all frames of a

calcium movie using two-dimensional rigid
registration based on regularized phase corre-
lation, subpixel interpolation, and kriging. For
all recordings, we validated the inferred X and
Y offset traces to monitor any potential outlier
frames that may have been incorrectly aligned.
In a few recordings, a very small percentage
(<0.01%) of frames that had registration artifacts
were removed, and the extracted traces were re-
placed with interpolated values at those frames.
In all recordings, the registered movie appeared
well aligned by visual inspection. Next, Suite2p
performs automated cell detection and neuropil

correction. To detect cells, Suite2p computes a
low-dimensional decomposition of the data, which
is used to run a clustering algorithm that finds
regions of interest (ROIs) based on the correla-
tion of the pixels inside them. The extraction of
ROIs stops when the pixel correlations of new
potential ROIs drops below a threshold param-
eter, which is set as a fraction of the correlation
in the high SNR ROIs; thus, it does not require
the number of clusters to be set a priori. A further
step in the Suite2p GUI classifies ROIs as somatic
or not. This classifier learns from user input,
reaching 95% performance on this data (29), thus
allowing us to skip the manual step altogether for

most recordings. We note that the 5% errors
might be attributable to human labeling error
or to dendritic signals from backpropagating
APs, reflecting the spiking of deeper cells. Thus,
there is little risk of ROIs measuring signals
other than neuronal action potentials.
We took great care to compensate cellular

fluorescence traces for the surrounding neuro-
pil signal (57). This contamination is typically
removed by subtracting out from the ROI signal
a scaled-down version of the neuropil signal
around the ROI; the scaling factor was set to 0.7
for all neurons. Importantly, for computing the
neuropil signal, we excluded all pixels that Suite2p
attributed to anROI,whether somatic or dendritic.
After neuropil subtraction, we subtracted a run-
ning baseline of the calcium traces with a sliding
window of 60 s to remove long time scale drift in
baseline, then applied nonnegative spike decon-
volution using the OASIS algorithm with a fixed
time scale of calcium indicator decay of 2 s (58, 59).
To further ensure that out-of-focus fluorescence
could not contribute to our results, we excluded
neurons whose signal might span two planes by
excluding neurons in sequential planes that had
a greater than a 0.6 correlation (in 1.2-s bins)
with each other, and whose centers were within
5 mm of each other in XY.
In addition, we ensured that the cell sets used

for reliable variance estimation (Fig. 1I) were

spatially nonoverlapping: We segregated the
field of view into 16 strips in XY (encompass-
ing all Z) of width 60 mm and put cells from
the odd strips in one group and the cells in the
even strips in the other group. This ensured that
no cells from different groups were at the same
XY position but at a different depth. For peer
prediction analyses (fig. S9), we excluded all
peer cells within 70 mm of the target (Euclidean
distance in three-dimensional space).

Facial videography

Infrared LEDs (850 nm) were pointed at the face
of themouse to enable infrared video acquisition

indarkness. The videoswere acquired
at 30 Hz using a camera with a zoom
lens and an infrared filter (850 nm,
50 nm cutoff). The wavelength of
850 nm was chosen to avoid the
970 nmwavelengthof the two-photon
laser, while remaining outside the vi-
sual detection range of the mice.
Running speedwas notmonitored

videographically but rather by optical
mice placed orthogonally to the air
floating ball on which the mouse
stood.

Automated extraction of
orofacial behaviors of mice

We developed a toolbox with a GUI
for videographic processing of orofacial
movements of mice. The software is
termed FaceMap and is available at
www.github.com/MouseLand/FaceMap.
The processing time taken by the
software scales linearly with the num-

ber of frames and runs 4× faster than real-time
on 30-Hz videos.

Motion processing of regions of interest

To extract defined behavioral variables (e.g.,
pupil diameter and whisking), we used a graph-
ical user interface that allows manual selection
of face areas. The user can choose any region of
the frame in which to compute the total absolute
motion energy, the SVDs of the absolute motion
energy, or the SVDs of the raw frames.
The absolute motion energy at each time T is

computed as the absolute value of the difference
between consecutive frames, resulting in amatrix
M
→

of size Npixels × Ntime points. The whisker signal
used in the current study (Fig. 1F) was defined
to be the total motion energy summed over all
pixels in a manually defined region covering the
whisker pad.

SVD computation for large matrices

To extract a high-dimensional representation of
the facial signal, the toolbox applies singular
value decomposition (SVD) to the raw movie,
the motion energy movie, or both. The compu-
tation is identical in both cases.
The movie matrices are too large to decom-

pose in their raw form. To compute their SVD,
we first split themovieM

→
into temporal segments

M
→

i of length ~1min and compute the SVD of each
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Movie 3. Spontaneous behaviors are correlated with spontaneous
neural activity.Video of mouse face recorded simultaneously with neural
activity. Movie speed is 10× real time.
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segment individually. Because the number of
pixels is very large (>1 million), we compute
the SVD of each movie segment by computing
the top 200 eigenvectors V

→

i of its time by time
covariance matrix. We then compute the spatial
projections of the segment onto these compo-
nents,Ui

→ ¼ M
→

iVi

→
. EachmatrixUi

→
consists of the

left singular vectors of M
→

i, scaled by the singular
values and is thus a 200-dimensional summary
of the segment M

→

i , related via an orthogonal
projection. To estimate the SVD of the entire
movie, we concatenate theUi

→
for all segments of

the movie and recompute the SVD: ½U→i…Un

→ � ¼
U
→
S
→
V
→ ⊤

. The matrixU
→
represents the spatial com-

ponents of the full movie, and we project the
movie onto the top 1000 components of it, to
obtain their temporal profiles:W

→

motion ¼ U
→ ⊤

M
→
.

Pupil processing

To compute pupil area, the user first defines a
region of interest using the FaceMap interface.
The minimum value in this region is subtracted
from all pixels for robustness across illumina-
tion changes. The darkest pixels in this region,
identified by a user-selected threshold, corre-
spond to the pupil. We estimate the pupil center
as the center of mass of these dark pixels:

→
x ¼

Sx
→x
→
Rðx→Þ=Sx

→Rðx→Þ, wherex→ is the two-dimensional
pixel location,Rðx→Þ is that pixel’s darkness level
relative to the threshold, and the sum runs over
all pixels x

→
darker than the threshold. We com-

pute the covariance of a two-dimensional Gaussian
fit to the region of interest: Sx

→ðx→ � →
xÞðx→ � →

xÞ⊤=Nx
→,

where the sum runs over all pixels darker than
the threshold and Nx

→ is the number of such
pixels. For robustness, this process is iterated
four times after reselecting only pixels that are
two standard deviations away from the center
and recomputing the Gaussian covariance fit. The
final result is an outline of the pupil defined by
an ellipse two standard deviations from the
center of mass.

Neuropixels recordings

Neuropixels electrode arrays (37) were used to
record extracellularly from neurons in seven
mice. In three of these mice, eight Neuropixels
probes were used to target multiple brain areas.
The three mice were (i) 73 days old, male, wild
type (mouse 1); (ii) 113 days old, female, TetO-
GCaMP6s;Camk2a-tTa (mouse 2); and (iii) 99 days
old, male, Ai32;Pvalb-Cre (mouse 3). In four of
these mice, one to four Neuropixels probes were
used to target visual cortex. These mice were
between 8 and 24 weeks old at the time of
recording and were of either gender. The geno-
types of these mice were Slc17a7-Cre;Ai95,
Snap25-GCaMP6s, Ai32;Pvalb-Cre, or Emx1-
Cre;CaMKIIa-tTA;Ai94.
In all cases, a brief (<1 hour) surgery to im-

plant a steel headplate and 3D-printed plastic
recording chamber (~12 mm diameter) was first
performed. Following recovery, mice were accli-
mated to head-fixation in the recording setup.
During head-fixation, mice were seated on a
plastic apparatus with forepaws on a rotating
rubber wheel. Three computer screens were po-

sitioned around the mouse at right angles. On
the day of recording, mice were again briefly
anesthetized with isoflurane while two to eight
small craniotomies were made with a dental
drill. After several hours of recovery, mice were
head-fixed in the setup. Probes had a silver wire
soldered onto the reference pad and shorted to
ground; these reference wires were connected
to a Ag/AgCl wire positioned on the skull. The
craniotomies as well as the wire were covered
with saline-based agar, which was covered with
silicone oil to prevent drying. Each probe was
mounted on a rod held by an electronically po-
sitionable micromanipulator (uMP-4, Sensapex
Inc.) and was advanced through the agar and
through the dura. Once electrodes punctured
dura, they were advanced slowly (~10 mm/s) to
their final depth (4 or 5 mm deep). Electrodes
were allowed to settle for approximately 15 min
before starting recording. Recordings were made
in external reference mode with LFP gain = 250
and AP gain = 500, using SpikeGLX software.
The mice were in a light-isolated enclosure and,
during the spontaneous part of the recording,
the computer screens were black. Data were
preprocessed by rereferencing to the common
median across all channels (60).

Spike sorting the Neuropixels data

We spike sorted the data using a modification
of Kilosort (61), termed Kilosort2, that tracks
drifting clusters (fig. S17). Code is available at
www.github.com/MouseLand/Kilosort2. With-
out the modifications, the original Kilosort and
similar algorithms can split clusters according
to drift of the electrode, which would confound
our behavioral-related analyses. Kilosort2 tracks
neurons across drift levels and for longer pe-
riods of time (~1 hour in our case). In addition,
Kilosort2 performed automated splits and merges
similar to what a human curator would do on the
basis of spike waveform similarity, the bimodality
of the distribution of waveform features, and the
spike auto- and cross-correlograms.
The final single units used were from sev-

eral cortical areas (visual: 709, sensorimotor: 371,
frontal: 842, and retrosplenial: 122), hippocam-
pal formation (753), striatum (310), thalamus
(2743), and midbrain (570).

Correlations

Pairwise correlations were computed after bin-
ning activity at 1.2 to 1.3 s (three or four frames
respectively for 12 and 10 plane recordings; 1.2-s
bins for Neuropixels recordings). To compute
shuffled correlations (Fig. 1C), we circularly
shifted each neuron’s activity in time by a ran-
dom number of bins (at least ±1000) and cor-
related all the shifted traces with all the original
traces.

Arranging rasters by correlation

To visualize high-dimensional structure in raw
data, raster plots were sorted vertically along a
one-dimensional continuum so that nearby neu-
ronsweremost correlated. To do this, the binned
activity of each neuron was first z scored, and

electrode data was high-pass filtered (100-s
Gaussian kernel; this was not necessary for
2p data because traces had already been high-
passed in preprocessing). Neurons were sorted
using a generalization of scaled k-means clus-
tering, where the clusters are ordered along a
one-dimensional axis to have similar means to
their nearby clusters. Neurons were initially or-
dered on the basis of their weights onto the first
principal component of population activity and
divided into 30 equal-sized clusters along this
ordering. On each iteration, we computed the
mean activity of each cluster, smoothed it across
clusterswith aGaussianwindow, then reassigned
each neuron to the cluster whose smoothed ac-
tivity it was most correlated with. This process
was repeated for 75 iterations. The width of the
Gaussian smoothing window was held at three
clusters for the first 25 iterations, then annealed
to one over the following 50 iterations. On the
final pass, we up-sampled the neurons’ correla-
tions with each cluster by a factor of 100 via
kriging interpolation with a smoothing constant
of one cluster. This allowed us to determine sub-
integer assignments of neurons to clusters, re-
sulting in a continuous distribution of neurons
along a one-dimensional axis. The algorithm is
available, implemented in Python and MATLAB
at www.github.com/MouseLand/RasterMap.We
ran the MATLAB version on the data here.
Although the electrode data was high-pass

filtered to compute sorting, we display the orig-
inal raw activity in Fig. 3E.

Shared variance component analysis

The SVCA method gives an asymptotically un-
biased lower-bound estimate for the amount
of a neural population’s variance reliably encod-
ing a latent signal. A mathematical proof of this
is given in the appendix; here, we describe how
the algorithm was implemented for the current
study.
We first split the population into two spa-

tially segregated populations. To do so, we di-
vided the XY plane into 16 nonoverlapping strips
of width 60 mm and assigned the neurons in the
even strips to one group and the neurons in the
odd strips to the other group, regardless of
the neuron’s depth. Thus, there did not exist
neuron pairs in the two sets that had the same
XY position but a different depth, avoiding a po-
tential confound that a neuron could be predicted
from its own out-of-focus fluorescence.
Neural population activity was binned at 1.2-

to 1.3-s resolution (see above), and each neuron’s
mean activity was subtracted from its firing
trace. We divided the recording into training
and test time points (alternating periods of 72 s
each), thereby obtaining four neural activity
matrices: F

→

train , F
→

test , G
→

train , and G
→

test of size

N
→

neurons � N
→

time points, where F
→
andG

→
represent

activity of the two cell sets. We compute the
covariance matrix between the two cell sets on
the training time points as

Ŝk ¼ u
→⊤

k F
→

testG
→ ⊤

testv
→
k=Ntime points
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To obtain the fraction of reliable variance (Fig. 1L),
we normalize this reliable variance by the arith-
metic mean of the variances of the test set data for
each cell set on the corresponding projections,

Sk; tot ¼ ðu→⊤

kF
→

testF
→⊤

testu
→
k þ v

→⊤

kG
→

testG
→⊤

testv
→
kÞ=2.

Predicting neural activity from
behavioral variables
To estimate the fraction of neural variance that
could be predicted from explicitly computed
arousal variables (Fig. 1, N and O), we resampled
their traces into the same 1.2- to 1.3-s bins as the
neural data. The arousal variables (either single
traces of running, whisking, pupil area, or all
three together) defined predictor matrices X

→

train

and X
→

test for the training and test sets. We pre-
dicted the SVCs of neural activity U

→ ⊤
F
→

train and
V
→ ⊤

G
→

train from the training-set behavior traces by
unregularized multivariate linear regression, ob-
taining weight matrices A

→
and B

→
that minimized

the squared errors ∥U
→ ⊤

F
→

train� A
→
X
→

train∥2 and
∥V

→ ⊤
G
→

train � B
→
X
→

train∥2. We then used these
weight matrices to predict activity in the test set
and computed the covariance matrix of the resi-
dual error of each SVC:

Sk;res ¼

u
→⊤
kF
→

test � a
→
kX
→

test

� �
v
→⊤
kG
→

test � b
→

kX
→

test

� �⊤
=Nsamples

Sk; res represents the amount of variance along
SVC k that cannot be predicted by the behav-
ioral traces, and ðŜk � Sk;resÞ=Ŝk represents the
fraction of reliable variance that can be so
predicted. To compute the fraction of total var-
iance explainable by behavioral traces (Figs. 1, N
and O, and 2, E and G to J), we normalize instead
by the total test-set variance: ðŜk � Sk;resÞ=Sk;tot.
To predict the fraction of neural variance that

could be predicted from unsupervised video-
graphic analysis (Fig. 2), we took a similar
approach but computed the weight matrices
A
→
and B

→
by reduced-rank regression. Reduced-

rank regression is a form of regularized linear
regression, with the prediction weights matrix
restricted to a specific rank (62), reducing the
number of parameters andmaking itmore robust
to overfitting. Figure 2E shows the fraction of
total variance in successive dimensions that can
be predicted by rank-16 prediction, whereas
Fig. 2G shows how the predicted fraction of
variance in the first 128 dimensions depends on
the rank of the predictor.

Peer prediction analysis

The shared variance component analysis described
above—like a related algorithm for estimating
reliable stimulus coding (35)—provides unbiased
estimates but requires thousands of simulta-
neously recorded neurons per brain area. Because
this many neurons were not available in our
Neuropixels recordings, we turned to another
method to estimate the reliable variance in these
data. This method is an adaptation of the pre-
viously described “peer prediction”method (63, 64).
Peer prediction analysis attempts to predict each
neuron individually from the other simultane-

ously recorded cells (the neuron’s “peers”). By
contrast, SVCA finds the dimensions of activity
in a large population that can be most reliably
predicted from a held-out set of neurons. Be-
cause a substantial fraction of a single neuron’s
variance arises from independent noise, which
is averaged out when projecting onto the SVCA
dimensions, peer prediction gives systematically
lower values of variance explained than SVCA.
To apply peer prediction to our data, we

again binned neural activity with 1.2- to 1.3-s
resolution and divided these time points into
a training set and a test set, consisting of al-
ternating blocks of duration 72 s. Each neuron
took a turn as target for prediction from the
activity of simultaneously recorded peer cells,
defined to be any cells on all other probes and
cells on the same probe greater than five sites
away (40 mm) for Neuropixels recordings; for
2p recordings, we used all neurons greater than
70 mm from the cell in three-dimensional dis-
tance, in order to avoid potential optical con-
tamination from the target neuron. We denote
peer cell activity in the training and test sets by
Ncells � Ntime points matrices F

→

train and F
→

test , re-
spectively, and target cell activity in the train-
ing and sets as 1� Ntime points vectors g

→
train and

g
→
test. We first computed the singular value de-

composition of peer cell activity on the training

set:F
→

train ¼ U
→
S
→
V
→ ⊤

. We then predicted the target
neuron activity by ridge regression from n sin-
gular value components of peer cell activity, where
n took values n ¼ 1;2;4;8;16;:::; 512; 1024 . The
prediction weights were thus

w
→
n ¼

h
ðg→trainV

→

nS
→

nÞ
�
ðV→ nS

→

nÞ⊤ðV
→

nS
→

nÞ þ lI
��1i

U
→ ⊤

n

where U
→

n;V
→

n; S
→

n are matrices containing the
top n singular vectors. Then the prediction of
the single-neuron activity on the test set was
g
→n

test ¼ w
→
nF
→

test, and the fraction of variance ex-
plained was 1� ∥g→test � g

→n

test∥2=∥g→test∥2. We chose
l to be 10 by hand.

Subspaces of stimulus and
behavioral activity

The stimulus subspace (Fig. 4) was defined as the
space spanned by the trial-averaged responses of
each of the 32 stimuli presented. We computed
the Nneurons � Nstimuli matrix of trial-averaged
responses R

→
from one-third of the stimulus

responses, saving the other two-thirds of the
stimulus responses for variance estimation.
The behavior subspace was defined via the

reduced-rank regression prediction method de-
scribed above. We performed the regression on
one-half of the spontaneous activity, leaving
the other half of the spontaneous activity for
variance estimation. This method produces a
weight matrix of sizeNneurons � NfacePCs, that
factorizes as a product of two matrices of sizes
Nneurons � r and r � NfacePCs, where r is the
rank of prediction. We defined the behavior space
as the space spanned by the first 32 columns of
the former matrix, and we define a Nneurons �
32 matrix E

→

B whose columns contain an ortho-
normal basis for this space.

To determine dimensions inside the behav-
ioral subspace that contain stimulus information,
we found the sequence of orthogonal directions
e
→
i maximizing the sum of squared projections

(the power) of the trial-averaged stimulus re-
sponses R

→
:

e
→
i ¼ argmax

�
∥e→

⊤

i R
→
∥2

�

such that

∥e→i∥2 ¼ 1
and

e
→
i D spanðE→BÞ

and

e
→
i ⊥ e

→
1…e

→
i�1

The solution to this maximization problem

is given by the left singular vectors of E
→

⊤

BR
→
. To

determine the amount of stimulus variance
in shared dimension i (Fig. 4C), we projected
test data onto e

→
i and quantified the stimulus-

related variance in this projection using the
unbiased method of (35) on the remaining two-
thirds of stimulus responses. We call e

→
i the

“shared stimulus-behavior” dimension, because
it contains significant stimulus variance, as
opposed to e

→
2; e

→
3;…, which contain very little

(Fig. 4C). A histogram of the weights of e
→
1 on

all neurons is plotted in Fig. 4D.
The behavior-only subspace was defined by

projecting out the shared dimension e
→
1 from

all columns of E
→

B. The stimulus-only subspace
was defined by projecting out from all rows of
R
→

the top right singular vector of the matrix
E
→⊤
BR
→
. Time courses of neural activity projected

into these subspaces are plotted in Fig. 4F. To
quantify the amount of variance in each subspace
(stimulus-only, behavior-only, and stimulus-
behavior) (Fig. 4G), we computed the total pro-
jected variance as the sum of squared projection
lengths along each axis of an orthonormal basis.
An identical analysis was used to define the

stimulus-spontaneous shared dimension and
spontaneous-only subspace by replacing the
subspace of the top 32 behavioral components
with the subspace of the top 128 principal com-
ponents of activity computed in one-half of the
spontaneous period.
To account for trial-to-trial variability in the

stimulus subspace, we fit a multiplicative gain
model. A gain parametergt was fit for each trial
t, and the activity of dimensionn in response to
the stimulusst shown on this trial was modeled
as �f n;st ð1þ gtanÞ . Here, �f n;s represents the
mean activity of dimension n to stimuluss, and
an represents the susceptibility of this dimen-
sion to gain fluctuations. Note that the mean of
gt across trials from the same stimulus is 0 by
definition. We used an alternating optimiza-
tion method to obtain the best fit g

→
given a

→
,

then a
→
given g

→
, repeating for 100 iterations. We

also evaluated an affine model, allowing both the
gain andoffset of eachneuron’s responses to change
on a trial-by-trial basis: �f n;stð1þ gtanÞ þ atbn .
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Here, at is an additive offset on trial t , with each
neuron scaling this offset by a factor bn. The
vector b can therefore describe directions of ad-
ditive variability inside the stimulus subspace.

Stimulus decoding analysis

To predict stimulus identity from population
responses, we fit a linear multiclass support
vector machine (SVM) model, using MATLAB’s
“fitcecoc” function. This function fits K*(K − 1)/2
binary linear SVMmodels, where K is the number
of different stimuli. Stimulus repeats were divided
into equal thirds: one for estimating the stimulus
subspace, one for training the classifier, and one
for evaluating performance. For the 32 natural
image stimuli, decoding error was defined as the
fraction of responses not assigned to the correct
stimulus. For drifting grating responses, we fit
two decoders: one to direction (32 possibilities)
and one to orientation (16 possibilities). We de-
fined the error as the number of degrees the
prediction was off, averaged across all the test
set responses.
Population activity was always decoded from a

32-dimensional subspace. For the spontaneous-
only and behavior-only subspaces, we used the
top 32 dimensions. Random32-dimensional sub-
spaces were found by generating a matrix of
standard Gaussian variates of size neurons ×
32 and normalizing each column so the sum of
its squares was 1. For each experiment we com-
puted 20 different random subspaces, computed
the decoding error and SNR in these subspaces,
and averaged the results.

REFERENCES AND NOTES

1. D. L. Ringach, Spontaneous and driven cortical activity:
Implications for computation. Curr. Opin. Neurobiol. 19,
439–444 (2009). doi: 10.1016/j.conb.2009.07.005;
pmid: 19647992

2. K. L. Hoffman, B. L. McNaughton, Coordinated reactivation of
distributed memory traces in primate neocortex. Science 297,
2070–2073 (2002). doi: 10.1126/science.1073538;
pmid: 12242447

3. T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, A. Arieli,
Spontaneously emerging cortical representations of visual
attributes. Nature 425, 954–956 (2003). doi: 10.1038/
nature02078; pmid: 14586468

4. F. Han, N. Caporale, Y. Dan, Reverberation of recent visual
experience in spontaneous cortical waves. Neuron 60,
321–327 (2008). doi: 10.1016/j.neuron.2008.08.026;
pmid: 18957223

5. A. Luczak, P. Barthó, K. D. Harris, Spontaneous events outline
the realm of possible sensory responses in neocortical
populations. Neuron 62, 413–425 (2009). doi: 10.1016/
j.neuron.2009.03.014; pmid: 19447096

6. P. Berkes, G. Orbán, M. Lengyel, J. Fiser, Spontaneous cortical
activity reveals hallmarks of an optimal internal model of the
environment. Science 331, 83–87 (2011). doi: 10.1126/
science.1195870; pmid: 21212356

7. J. O’Neill, B. Pleydell-Bouverie, D. Dupret, J. Csicsvari, Play it
again: Reactivation of waking experience and memory.
Trends Neurosci. 33, 220–229 (2010). doi: 10.1016/
j.tins.2010.01.006; pmid: 20207025

8. C. M. Niell, M. P. Stryker, Modulation of visual responses by
behavioral state in mouse visual cortex. Neuron 65, 472–479
(2010). doi: 10.1016/j.neuron.2010.01.033; pmid: 20188652

9. L. Petreanu et al., Activity in motor-sensory projections reveals
distributed coding in somatosensation. Nature 489, 299–303
(2012). doi: 10.1038/nature11321; pmid: 22922646

10. P.-O. Polack, J. Friedman, P. Golshani, Cellular mechanisms of
brain state-dependent gain modulation in visual cortex.
Nat. Neurosci. 16, 1331–1339 (2013). doi: 10.1038/nn.3464;
pmid: 23872595

11. M. J. McGinley, S. V. David, D. A. McCormick, Cortical
membrane potential signature of optimal states for sensory
signal detection. Neuron 87, 179–192 (2015). doi: 10.1016/
j.neuron.2015.05.038; pmid: 26074005

12. M. Vinck, R. Batista-Brito, U. Knoblich, J. A. Cardin, Arousal
and locomotion make distinct contributions to cortical activity
patterns and visual encoding. Neuron 86, 740–754 (2015).
doi: 10.1016/j.neuron.2015.03.028; pmid: 25892300

13. J. M. Pakan et al., Behavioral-state modulation of inhibition is
context-dependent and cell type specific in mouse visual
cortex. eLife 5, e14985 (2016). doi: 10.7554/eLife.14985;
pmid: 27552056

14. M. Dipoppa et al., Vision and locomotion shape the interactions
between neuron types in mouse visual cortex. Neuron 98,
602–615.e8 (2018). doi: 10.1016/j.neuron.2018.03.037;
pmid: 29656873

15. J. Reimer et al., Pupil fluctuations track rapid changes
in adrenergic and cholinergic activity in cortex.
Nat. Commun. 7, 13289 (2016). doi: 10.1038/ncomms13289;
pmid: 27824036

16. A. B. Saleem, A. Ayaz, K. J. Jeffery, K. D. Harris, M. Carandini,
Integration of visual motion and locomotion in mouse visual
cortex. Nat. Neurosci. 16, 1864–1869 (2013). doi: 10.1038/
nn.3567; pmid: 24185423

17. L. J. Gentet et al., Unique functional properties of
somatostatin-expressing GABAergic neurons in mouse barrel
cortex. Nat. Neurosci. 15, 607–612 (2012). doi: 10.1038/
nn.3051; pmid: 22366760

18. S. P. Peron, J. Freeman, V. Iyer, C. Guo, K. Svoboda,
A cellular resolution map of barrel cortex activity during tactile
behavior. Neuron 86, 783–799 (2015). doi: 10.1016/
j.neuron.2015.03.027; pmid: 25913859

19. D. M. Schneider, A. Nelson, R. Mooney, A synaptic and circuit
basis for corollary discharge in the auditory cortex. Nature 513,
189–194 (2014). doi: 10.1038/nature13724; pmid: 25162524

20. R. S. Williamson, K. E. Hancock, B. G. Shinn-Cunningham,
D. B. Polley, Locomotion and task demands differentially
modulate thalamic audiovisual processing during active search.
Curr. Biol. 25, 1885–1891 (2015). doi: 10.1016/j.cub.
2015.05.045; pmid: 26119749

21. S. Erisken et al., Effects of locomotion extend throughout the
mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).
doi: 10.1016/j.cub.2014.10.045; pmid: 25484299

22. M. M. Roth et al., Thalamic nuclei convey diverse contextual
information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307
(2016). doi: 10.1038/nn.4197; pmid: 26691828

23. L. M. J. Fernandez et al., Highly dynamic spatiotemporal
organization of low-frequency activities during behavioral
states in the mouse cerebral cortex. Cereb. Cortex 27,
5444–5462 (2017). pmid: 27742711

24. A. Arieli, A. Sterkin, A. Grinvald, A. Aertsen, Dynamics of
ongoing activity: Explanation of the large variability in evoked
cortical responses. Science 273, 1868–1871 (1996).
doi: 10.1126/science.273.5283.1868; pmid: 8791593

25. C. van Vreeswijk, H. Sompolinsky, Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274,
1724–1726 (1996). doi: 10.1126/science.274.5293.1724;
pmid: 8939866

26. D. A. Ruff, M. R. Cohen, Attention can either increase or
decrease spike count correlations in visual cortex.
Nat. Neurosci. 17, 1591–1597 (2014). doi: 10.1038/nn.3835;
pmid: 25306550

27. R. Moreno-Bote et al., Information-limiting correlations.
Nat. Neurosci. 17, 1410–1417 (2014). doi: 10.1038/nn.3807;
pmid: 25195105

28. J. S. Montijn, G. T. Meijer, C. S. Lansink, C. M. Pennartz,
Population-level neural codes are robust to single-neuron
variability from a multidimensional coding perspective.
Cell Reports 16, 2486–2498 (2016). doi: 10.1016/
j.celrep.2016.07.065; pmid: 27545876

29. M. Pachitariu, C. Stringer, M. Dipoppa, S. Schröder, L. F. Rossi,
H. Dalgleish, M. Carandini, K. D. Harris, Suite2p: beyond
10,000 neurons with standard two-photon microscopy.
bioRxiv 061507 [Preprint]. 20 July 2017. doi: 10.1101/061507

30. M. R. Cohen, A. Kohn, Measuring and interpreting neuronal
correlations. Nat. Neurosci. 14, 811–819 (2011). doi: 10.1038/
nn.2842; pmid: 21709677

31. M. Okun et al., Diverse coupling of neurons to populations in
sensory cortex. Nature 521, 511–515 (2015). doi: 10.1038/
nature14273; pmid: 25849776

32. T. A. Engel et al., Selective modulation of cortical state
during spatial attention. Science 354, 1140–1144 (2016).
doi: 10.1126/science.aag1420; pmid: 27934763

33. C. Stringer et al., Inhibitory control of correlated intrinsic
variability in cortical networks. eLife 5, e19695 (2016).
doi: 10.7554/eLife.19695; pmid: 27926356

34. C. M. Constantinople, R. M. Bruno, Effects and mechanisms
of wakefulness on local cortical networks. Neuron 69,
1061–1068 (2011). doi: 10.1016/j.neuron.2011.02.040;
pmid: 21435553

35. C. Stringer, M. Pachitariu, N. Steinmetz, M. Carandini,
K. D. Harris, High-dimensional geometry of population responses
in visual cortex. bioRxiv 374090 [Preprint]. 22 July 2018.
doi: 10.1101/374090

36. K. Powell, A. Mathy, I. Duguid, M. Häusser, Synaptic
representation of locomotion in single cerebellar granule
cells. eLife 4, e07290 (2015). doi: 10.7554/eLife.07290;
pmid: 26083712

37. J. J. Jun et al., Fully integrated silicon probes for high-density
recording of neural activity. Nature 551, 232–236 (2017).
doi: 10.1038/nature24636; pmid: 29120427

38. M. Okun, N. A. Steinmetz, A. Lak, M. Dervinis, K. D. Harris,
Distinct structure of cortical population activity on
fast and infraslow timescales, Cereb. Cortex 10.1093/cercor/
bhz023 (2019).

39. R. L. T. Goris, J. A. Movshon, E. P. Simoncelli, Partitioning
neuronal variability. Nat. Neurosci. 17, 858–865 (2014).
doi: 10.1038/nn.3711; pmid: 24777419

40. I.-C. Lin, M. Okun, M. Carandini, K. D. Harris, The nature of
shared cortical variability. Neuron 87, 644–656 (2015).
doi: 10.1016/j.neuron.2015.06.035; pmid: 26212710

41. M. C. Dadarlat, M. P. Stryker, Locomotion enhances neural
encoding of visual stimuli in mouse V1. J. Neurosci. 37,
3764–3775 (2017). doi: 10.1523/JNEUROSCI.2728-16.2017;
pmid: 28264980

42. A. J. Christensen, J. W. Pillow, Running reduces firing but
improves coding in rodent higher-order visual
cortex. bioRxiv 214007 [Preprint]. 4 November 2017.
doi: 10.1101/214007

43. A. E. X. Brown, E. I. Yemini, L. J. Grundy, T. Jucikas,
W. R. Schafer, A dictionary of behavioral motifs reveals clusters
of genes affecting Caenorhabditis elegans locomotion.
Proc. Natl. Acad. Sci. U.S.A. 110, 791–796 (2013). doi: 10.1073/
pnas.1211447110; pmid: 23267063

44. A. S. Machado, D. M. Darmohray, J. Fayad, H. G. Marques,
M. R. Carey, A quantitative framework for whole-body
coordination reveals specific deficits in freely walking ataxic
mice. eLife 4, e07892 (2015). doi: 10.7554/eLife.07892;
pmid: 26433022

45. A. A. Robie et al., Mapping the neural substrates of behavior.
Cell 170, 393–406.e28 (2017). doi: 10.1016/j.cell.2017.06.032;
pmid: 28709004

46. A. B. Wiltschko et al., Mapping sub-second structure in mouse
behavior. Neuron 88, 1121–1135 (2015). doi: 10.1016/
j.neuron.2015.11.031; pmid: 26687221

47. A. Kurnikova, J. D. Moore, S.-M. Liao, M. Deschênes,
D. Kleinfeld, Coordination of orofacial motor actions into
exploratory behavior by rat. Curr. Biol. 27, 688–696 (2017).
doi: 10.1016/j.cub.2017.01.013; pmid: 28216320

48. A. Mathis et al., DeepLabCut: Markerless pose estimation of
user-defined body parts with deep learning. Nat. Neurosci. 21,
1281–1289 (2018). doi: 10.1038/s41593-018-0209-y;
pmid: 30127430

49. M. Okun et al., Population rate dynamics and multineuron firing
patterns in sensory cortex. J. Neurosci. 32, 17108–17119
(2012). doi: 10.1523/JNEUROSCI.1831-12.2012; pmid: 23197704

50. S. Musall, M. T. Kaufman, S. Gluf, A. K. Churchland, Movement-
related activity dominates cortext during sensory-guided
decision making. bioRxiv 308288 [Preprint]. 10 May 2018.
doi: 10.1101/308288
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