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SUMMARY

We present a modular approach for analyzing cal-
cium imaging recordings of large neuronal ensem-
bles. Our goal is to simultaneously identify the
locations of the neurons, demix spatially overlapping
components, and denoise and deconvolve the
spiking activity from the slow dynamics of the cal-
cium indicator. Our approach relies on a constrained
nonnegative matrix factorization that expresses the
spatiotemporal fluorescence activity as the product
of a spatial matrix that encodes the spatial footprint
of each neuron in the optical field and a temporal ma-
trix that characterizes the calcium concentration of
each neuron over time. This framework is combined
with a novel constrained deconvolution approach
that extracts estimates of neural activity from fluo-
rescence traces, to create a spatiotemporal process-
ing algorithm that requiresminimal parameter tuning.
We demonstrate the general applicability of our
method by applying it to in vitro and in vivo multi-
neuronal imaging data, whole-brain light-sheet imag-
ing data, and dendritic imaging data.

INTRODUCTION

Calcium imaging is becoming a standard tool for monitoring

large neuron populations. Recent technical advances have

enabled complete imaging of small cortical volumes (e.g., Cotton

et al., 2013), and whole-brain imaging of small animals (Ahrens

et al., 2013; Prevedel et al., 2014) at reasonable imaging rates.

In parallel, engineering of genetically encoded calcium indicators

offers increasingly sensitive indicators that can reliably detect

action potentials in vivo (Chen et al., 2013). From a statistical

perspective, these developments pose significant challenges,
which can be condensed to three major problems: (1) identifying

the spatial footprint of each neuron in the optical field, (2) demix-

ing spatially overlapping neurons (where overlap is due either to

the projection of a 3D volume onto a 2D imaging plane or to

insufficient spatial resolution in 3D imaging methods), and (3) de-

convolving the spiking activity of each neuron from the much

slower dynamics of the calcium indicator. These tasks become

harder due to the existence of measurement noise, unaccounted

neural processes and/or neuropil activity, and limitations in im-

aging rate.

Traditionally, these three problems have been dealt with

separately. Calcium deconvolution methods have focused

largely on analyzing one-dimensional fluorescence time series

data from one neuron at a time. Such methods include fast

nonnegative deconvolution (Vogelstein et al., 2010), greedy al-

gorithms (Grewe et al., 2010), finite rate of innovation methods

(Oñativia et al., 2013), supervised learning (Theis et al., 2015),

as well as particle filtering (Vogelstein et al., 2009) and Markov

chain Monte Carlo (MCMC) methods (Pnevmatikakis et al.,

2013). Although effective in the analysis of single fluorescence

traces, these methods do not take full advantage of the spatio-

temporal structure in the data, and in some cases require either

data with available ground truth and/or significant parameter

tuning.

Solutions to the spatial location identification problem are

usually based on two observations: first, neurons are often

spatially localized, yielding methods based on local correlations

of neighboring pixels (Smith and Häusser, 2010), dictionary

learning (Pachitariu et al., 2013), or graph-cut-related algorithms

(Kaifosh et al., 2014). These methods typically aggregate the ac-

tivity over time to produce a summary statistic (e.g., the mean,

maximum, or correlation image or a weighted graph representa-

tion between the different imaged pixels) that is then processed

(e.g., segmented) to identify the spatial components. While these

methods can yield localized estimates, they do not account

explicitly for the calcium dynamics, and more importantly their

performance can deteriorate in the case of significant spatial

overlap, since an aggregated summary image (e.g., the mean)
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will not be able to distinguish between different overlapping

neurons.

A second approach stems from the observation that spatio-

temporal calcium activity can be approximated as a product of

two matrices: a spatial matrix that encodes the location of

each neuron in the optical field, and a temporal matrix that char-

acterizes the calcium concentration evolution of each neuron.

Based on this observation Mukamel et al. (2009) proposed an In-

dependent Component Analysis (ICA) approach that seeks

spatiotemporal components that have reduced dependence.

While simple and widely used in practice, ICA is an inherently

linear demixing method and can fail in practice when no linear

demixing matrix is available to produce independent outputs,

as is often the case when the neural components exhibit signif-

icant spatial overlap.

To overcome this problem, two nonlinear matrix factorization

methods have been proposed: multilevel sparse matrix factor-

ization (Diego-Andilla and Hamprecht, 2013) and nonnegative

matrix factorization (NMF) (Maruyama et al., 2014). These

methods can deal more effectively with overlapping neural sour-

ces but do not explicitly model the calcium indicator dynamics

and do not always provide compact spatial footprint estimates.

In this paper, we approach the factorization, deconvolution,

and denoising problems simultaneously, by introducing a con-

strained matrix factorization method that decomposes the

spatiotemporal activity into spatial components with local struc-

ture and temporal components that model the dynamics of the

calcium. By accounting for overlapping neuronal spatial foot-

prints, we can obtain improved temporal deconvolution results,

and conversely by imposing a structured model of the dynamics

of the calcium indicator, we can obtain improved identification of

the spatial footprints of the observed neurons, especially in low

signal-to-noise ratio (SNR) areas.

A key characteristic of our approach is that it requires no tun-

ing of regularization parameters that control the tradeoff be-

tween the fidelity to the data and some desired signal structure

(e.g., sparsity), as is necessary in related methods that have ap-

peared recently in the literature (Pnevmatikakis and Paninski

2013; Haeffele et al., 2014; Diego-Andilla and Hamprecht,

2014). Instead, we take a constrained deconvolution (CD)

approach, in which we seek the sparsest neural activity signal

that can explain the observed fluorescence up to an estimated

measurement noise level. We then embed this CD approach

within a constrained nonnegative matrix factorization (CNMF)

framework that enforces the dynamics of the calcium indicator

and automatically sets individual sparsity constraints for both

the spiking activity and the shape of each inferred neuron.

We first apply our deconvolution and denoising methods to

time series calcium imaging datasets for which ground truth is

available. Such datasets are important for quantitatively assess-

ing the performance of deconvolution algorithms, but in practice

are typically not available, emphasizing the need for unsuper-

vised methods like those described here. Next, we apply our

CNMF framework to analyze a variety of large scale in vitro

and in vivo datasets. The results indicate that our framework

can handle different types of imaging data in terms of imaged

brain location, frame rate, imaging technology, and imaging

scale, in a flexible and computationally efficient way that requires
286 Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc.
minimal human intervention. A further example is provided in the

companion paper (Yang et al., 2015), where our new analysis

methods help enable a novel multi-plane imaging technique.

We discuss the results of these various analyses next, deferring

all technical methodological details to the Experimental Proce-

dures and the Supplemental Experimental Procedures.

RESULTS

Constrained Sparse Nonnegative Calcium
Deconvolution
We first address the problem of deconvolving the neural activity

from a time series trace of recorded fluorescence. In principle,

this is achievable when the imaging rate is fast, i.e., the time be-

tween two consecutive measurements is small compared to the

calcium indicator decay time constant. Modern resonant scan-

ning (Rochefort et al., 2009), random access microscopy (Due-

mani Reddy et al., 2008), and scanless imaging (Nikolenko

et al., 2008) protocols can allow for this, by recording neural en-

sembles at high rates. Under this regime, we take a completely

unsupervised approach for performing deconvolution that can

be summarized as follows: first, we estimate a parametric model

for the calcium concentration transient response that would be

evoked by a single spike. Instead of fitting a parametric model

to isolated calcium transients evoked by single spikes (often

only available from dual electrophysiological recording and im-

aging experiments, as in e.g., Grewe et al. [2010]), we approxi-

mate the calcium transient as the impulse response of an autor-

egressive (AR) process of order p (with p small, just 1 or 2 in all

the examples presented here), which models the rise and decay

time constants; this AR(p) model is estimated by adapting stan-

dard AR estimation methods. After determining the shape of the

calcium transient, we estimate the spiking signal by solving a

non-negative, sparse constrained deconvolution (CD) problem:

we seek the sparsest nonnegative neural activity signal that fits

the data up to a desired noise level, which is estimated from

the power spectral density of the observed fluorescence

trace. The resulting optimization problem is convex, i.e., it has

no local minima, and can be solved efficiently, with complexity

that scales just linearly with the number of observed timesteps,

and quadratically with the (modest) AR order p, and not with

the length of the transient response; see Experimental Proce-

dures and the Supplemental Experimental Procedures for full

details.

While the AR parameter identification process is often very

useful in estimating the transient response that would arise

from a single spike, it is useful to refine these estimates given

initial estimates of the spike times. We found that an extension

of the Markov Chain Monte Carlo (MCMC) methods described

in Pnevmatikakis et al. (2013) provided an effective strategy

(see the Supplemental Experimental Procedures for full details).

We tested these methods using an in vitro dataset of n= 207

spinal motor neurons obtained from seven sequentially acquired

imaging fields in a single preparation (Figure 1). The neurons ex-

pressed the GCaMP6s indicator and were stimulated under an

antidromic stimulation protocol that caused them to reliably

fire in patterns that matched the stimulus pulses (similar to Ma-

chado et al., 2015); we treat the antidromic stimulus spike times
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Figure 1. Application of the CD Method to Antidromically Driven In Vitro Spinal Cord Data

(A) Raw fluorescence data from an example neuron (gray) and reconstructed fluorescence trace with the proposed CD method (blue) and the mean sample

obtained by the fully BayesianMCMCmethod of Pnevmatikakis et al. (2013), with time constant updating (red). The CDmethod effectively denoises the observed

fluorescence trace but overestimates the time constants slightly, while the more expensive MCMC method fine-tunes the time constants to match better the

observed data.

(B) Color-coded depiction of the empirical posterior marginal histogram obtained with the MCMC method and true number of antidromic spikes during each

timebin (white dots). The colormap displays the probability of a certain number of spikes within a given timebin. The MCMCmethod can quantify uncertainty and

identify multiple spikes within a single timebin.

(C) Estimated neural activity (normalized) from the CDmethod (blue) andmean of the posterior marginal per timebin with theMCMCmethod (red). The legend also

shows the spike correlation for each method at the imaged resolution. All methods detect accurately the bursting intervals of the neurons. The more expensive

MCMC method gives a significant improvement in the spike deconvolution according to the spike correlation metric.

(D) Zoomed-in version of (A).

(E) MCMC outperforms CD for this dataset (Wilcoxon signed ranked test). Each circle corresponds to a single cell.

(F) Correlation values at the imaged resolution for all n = 207 cells as a function of the signal-to-noise ratio for the two methods. Performance increases with the

SNR for all methods. Again, each circle corresponds to a single cell.

(G) Median correlation values for all n = 207 cells at various timebin widths. Error bars indicate the 0.25 and 0.75 quantiles, respectively.
as ground truth in this setting, though this neglects the effect

of spontaneous (non-antidromically driven) activity on the

observed fluorescence data. The imaging rate was 14.6 Hz

and a first-order AR model ðp= 1Þ was found to be sufficient to

model the calcium dynamics in this case. To quantify the perfor-

mance, we computed the correlation between the true spiking

signal (as is defined by the stimulus timing) and the inferred

spiking signal, binned at the resolution defined by the imaging

rate or coarser.

Figure 1A shows the reconstructed calcium trace for the CD

algorithm (blue), and the mean calcium trace obtained with 500

samples from the MCMC algorithm (red) superimposed on the

raw data (gray), and indicates that both methods track the

observed fluorescence trace fairly well; however, the MCMC

method can modify the inferred time constants to better fit the

data (Figure 1A). Note that the MCMC method here was initial-

ized with the results obtained with the CD approach. The
MCMC method produces samples of spike trains with contin-

uous time resolution, and thus it can provide further insight into

the number of spikes produced at every timebin and the uncer-

tainty of these estimates due to noise and finite imaging rate. This

is shown in panel B, where the marginal posterior of the number

of spikes at each timebin is plotted and the true number of spikes

(or stimulations) in this case is also shown (purple dots). This

temporal uncertainty quantification is not available with the CD

algorithm, which is based on a convex optimization framework

and thus provides just a single estimate of the neural activity,

binned at the imaging rate resolution. Panel C shows the inferred

spiking signals for bothmethods and panel D displays the recov-

ered traces and true antidromic stimulus spikes in more detail in

a zoomed-in temporal interval. A comparison of the twomethods

for the whole population of the 207 neurons is shown in Figures

1E–1G. The computationally more intensive MCMC approach

outperforms the CD method for almost every cell (Wilcoxon
Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc. 287



signed rank test). The achieved correlation values increase, on

average, with SNR (Figure 1F; SNR computed as the ratio be-

tween the standard deviation (SD) of the inferred calcium trace

and the SD of the noise, as inferred from the MCMC method).

Both inference methods improve their correlation coefficient at

more coarse resolutions (Figure 1G). In the Supplemental Infor-

mation (Figure S1), we apply these methods to a different pub-

licly available dataset with ground truth, where the imaging

rate is much higher (60 Hz) and AR(2) methods improve the de-

convolution results significantly. We also illustrate the parameter

identification and time constant updating methods in greater

detail.

The proposed AR framework makes a number of simplifying

assumptions on the fluorescence dynamics, with the benefit of

increased computational tractability. The dynamics are assumed

to be linear and time invariant, and no saturation level is

assumed. It is possible to find clear violations of these assump-

tions in Figure 1A: bursts of spiking activity at the beginning of

the trial, e.g., in the interval [10,20]s, have a weaker effect than

bursts toward the end of the trial, and the strong bursts in the

zoomed interval displayed in Figure 1D do not appear to add

up linearly. It is natural to ask how much the performance of

the algorithm might be limited by these unmodeled nonlinear-

ities. Machado et al. (Machado et al., 2015, their Figure S1) ad-

dressed this question using data nearly identical to that used

here (but with a different calcium indicator), by including an addi-

tional sigmoidal nonlinearity. Although this approach does not

model the biophysical properties of the indicator binding, it can

still be helpful in capturing weak activation from single spikes

and saturation effects. The analysis in that paper showed that

there was no statistically significant difference in the perfor-

mance of the CD algorithm when this nonlinearity was included.

Similar results were obtained here for the data shown in Figure 1

(Wilcoxon signed ranked test, p value 0.65, data not shown).

Thus, in the following we use the simple linear AR model as the

building block for our spatiotemporal framework but note that

the choice of temporal deconvolution method is largely indepen-

dent of the spatiotemporal demixing methods presented next;

therefore, as discussed in the Experimental Procedures, other

deconvolution methods that incorporate nonlinear effects

(such as the particle filter methods discussed in Vogelstein

et al., 2009) could easily be integrated within the framework pre-

sented here.

A Constrained Nonnegative Matrix Factorization
Approach for the Analysis of Spatiotemporal Calcium
Imaging Data
The problem of identifying the spatial footprint of each imaged

neuron is also known in the literature as a problem of region of

interest (ROI) selection or image segmentation. While these

terms are intuitive, we prefer to use the phrase ‘‘spatial footprint

identification,’’ which does not preclude significant overlap be-

tween the footprints of different neurons. In contrast, in (manual)

ROI selection, a compact set of pixels/voxels is typically as-

signed to each neuron and the signal is then obtained by

averaging the spatial ROI. Similarly, in image segmentation

techniques, each pixel/voxel is generally assigned to a dif-

ferent object and overlap is not allowed. Here we argue that pre-
288 Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc.
venting spatial overlap during spatial footprint identification can

potentially lead to significant levels of ‘‘cross-talk’’ between

spatially overlapping components, lower SNR, and therefore to

misleading results; further examples are provided in the com-

panion paper (Yang et al., 2015).

We approach this problem by employing a CNMF framework

that decomposes the data into a spatial matrix that encodes

the spatial footprint of each neuron and a temporalmatrix that en-

codes the time-varying calcium activity of each neuron, together

with components that model the background/neuropil activity.

This procedure denoises the spatiotemporal fluorescence up to

adesired voxel-dependent noise level and infers compact neuron

shapes with fluorescence dynamics that obey the dynamics of

the calcium indicator. We also include methods for merging

spatial components that correspond to the same neuron, by

combining components that overlap spatially and are signifi-

cantly correlated temporally, and methods for removing compo-

nents that do not correspond to neurons and/or have insignificant

temporal contributions. We assume that all the data has been

pre-processed to correct for motion artifacts during acquisition,

although the proposed methods can tolerate small motion arti-

facts compared to the size of the spatial components. Moreover,

our methods can handle missing data, e.g., due to motion in line-

scanned methods. In the Experimental Procedures and the Sup-

plemental Experimental Procedures, we present more details

about the iterative algorithms we use to compute the matrix

factorization solution (in which we first optimize with respect to

the temporal components with the spatial footprints held fixed,

then vice versa); the resulting solutions can be computed effi-

ciently and in many cases are readily parallelizable.

The problem of optimally decomposing a matrix into a product

of two other matrices is not convex, and alternating minimization

methods such as those developed here converge only to a local

optimum, which depends on the initial starting point. In some

cases, good initializations are available: for example, through

dual labeling of neurons so that the nucleus is labeled with a

non-fluctuating red signal, while calcium imaging in the soma

is performed in the green channel. Our core framework could

be initialized by segmenting the red channel, or more broadly

by any method that provides useful information about the loca-

tions of the observed neurons. When no initialization is already

available, we designed two initialization algorithms effective in

the case of somatic imaging. The first is an efficient greedy

method that searches for a user-specified number of compact

spatial regions that explain a significant percent of the variance

observed in the data. The second is a convex approach that

uses Gaussian spatial filtering to group correlated neighboring

pixels together and initialize the spatial locations, while at the

same time controlling for the number of formed groups via a

‘‘group lasso’’ (GL) penalty. We focus on applications of this pro-

cedure in the following and again defer to the Experimental Pro-

cedures and the Supplemental Experimental Procedures for a

detailed presentation.

Resolving Overlapping Locations through CNMF
Before applying our CNMF framework to large-scale datasets,

we illustrate through examples on artificial data its ability to

demix overlapping neurons. We first constructed two largely
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Figure 2. Resolving Overlapping Spatial Footprints in Simulated Data

Simulated fluorescence traces were generated from two significantly overlapping neuron spatial footprints in lowSNR conditions. (Both spatial and temporal units

in this example are arbitrary.)

(A) Correlation image generated from the raw data and superimposed contour plots (solid for neuron 1 and dashed for neuron 2) for the true spatial footprints

(white) and the inferred spatial footprints with our proposedCNMFmethod (blue), the plain NMFmethod ofMaruyama et al., (2014) (red), and the PCA/ICAmethod

of Mukamel et al., (2009) (yellow). The correlation image cannot distinguish between the two different neurons. The spatial footprints inferred by PCA/ICA are

significantly smaller than the true spatial footprints. NMF methods capture the full spatial extent of the spatial footprints.

(B and C) Inferred calcium traces with all the methods. PCA/ICA and plain NMF cannot satisfactorily demix the traces and attributes single neuron activity to both

neurons. On the contrary, our CNMF approach eliminates most of the ‘‘cross-talk’’ between the overlapping neurons. Correlation values are computed on the

estimated deconvolved neural activity.
overlapping neurons (contour plots shown in white in Figure 2A)

that fired spikes according to independent Poisson processes.

Due to the high degree of spatial overlap, time-aggregated mea-

sures of activity (e.g., the mean image) cannot display the

existence of more than one neuron. This is illustrated again in

Figure 2A, where the ‘‘correlation image’’ is shown. The correla-

tion image for each pixel is computed by averaging the correla-

tion coefficients (taken over time) of each pixel with its four

immediate neighbors.

We compare ourmethod against the popular PCA/ICAmethod

of Mukamel et al. (2009) and the plain NMF method proposed in

Maruyama et al. (2014). The PCA/ICAmethod searches for ama-

trix of linear spatial filters such that, when these filters are applied

to the video data, the output time series are as independent as

possible. However, in the case of significant spatial overlap,

there is no such linear demixing matrix that can lead to indepen-

dent outputs, and therefore in this example the PCA/ICAmethod

tends to infer non-overlapping spatial filters (yellow contour plots

in Figure 2A) by assigning pixels that should belong to both neu-

rons to only one of the neurons and simply neglecting many

pixels with strong contributions from both neurons. This solution

has two shortcomings. First, since some overlapping pixels are

uniquely assigned to one neuron, the inferred traces exhibit sig-

nificant amounts of ‘‘cross-talk’’ (yellow traces in Figures 2B and

2C) that is potentially misleading for understanding the spiking

activity of each neuron. (This cross-talk would corrupt any anal-

ysis that depends on the cross-correlation between these two

neurons, for example.) Second, by excluding many overlapping

high-SNR pixels, the temporal traces are computed over a

smaller spatial region, resulting in decreased total output SNR.

(See the companion paper, Yang et al. [2015], for further exam-
ples and analysis of this effect in real data.) The NMF method

proposed in Maruyama et al. (2014) is a nonlinear demixing

method and can therefore better handle spatially overlapping

signals, especially in high-SNR conditions. However, this

method (as well as PCA/ICA) does not model the temporal dy-

namics of the calcium indicator or impose any sparsity or locality

constraints and thus can produce very noisy output traces (Fig-

ures 2B–2C, red traces), reducing the effective SNR of the output

signals and again allowing for ‘‘cross-talk.’’

In contrast, the CNMF method infers the spatial footprints of

the two neurons very accurately (blue contour plots in Figure 2A)

and demixes their activity over time with almost zero ‘‘cross-

talk’’ between the two traces and minimal noise (blue traces in

Figures 2B and 2C). More technical information about this

example can be found in the Supplemental Experimental

Procedures.

We next examined the robustness of thesemethods as a func-

tion of the measurement noise level. We constructed a popula-

tion of ten partially overlapping neurons placed randomly in a

field of view (an example is shown in Figures 3A–3C), against a

uniformly time-varying background. These neurons again fired

spikes according to independent Poisson processes. We then

simulated Gaussian white noise for each pixel, with SD propor-

tional to the mean activity at this pixel, resulting in an approxi-

mately uniform SNR across the whole field of view. A range of

different noise levels was considered, spanning over an order

of magnitude of SNR. We repeated each simulation five times

and considered two different neuron shapes that are encoun-

tered in practice: (1) ‘‘donut’’- (as seen in panels A–C, corre-

sponding to expression at the cytosolic regions of the cells and

excluding the nucleus) and (2) ‘‘Gaussian’’-shaped neurons
Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc. 289
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Figure 3. Performance of Proposed Spatiotemporal Method in Simulated Data

Simulated fluorescence traces were generated from a population of ten neurons placed randomly in the field of view, allowing significant spatial overlap. Two

different neuronal shapes were considered across thirty different noise levels.

(A–C) Inferred spatial components with the proposed CNMF method (A), plain NMF as proposed in Maruyama et al. (2014) (B), and the PCA/ICA method of

Mukamel et al. (2009) (C). Contour plots of the inferred spatial components are super-imposed on the image of mean activity. In this example, the noise level for

every pixel was 1.53 the mean activity. The numbers in white are placed on the center of mass of each component. The proposed method identifies spatial

components very accurately, compared to plain NMF that can group different components together. PCA/ICA tends to infer smaller non-overlapping compo-

nents and can also split components into multiple parts in low SNR conditions.

(D) Inferred temporal traces for component 9 (as indicated in A). The proposedmethod infers a trace (blue) that matches the true trace (dashed black) much better

than the plain NMF method (red) and PCA/ICA (yellow).

(E) Median spike correlation of the three methods over 30 different noise levels, with five iterations for each level, for donut-shaped neurons.

(F) Same, but for ‘‘Gaussian’’ shaped neurons. The proposed method is significantly more robust compared to other popular methods, especially for low-SNR

conditions.
(more similar to the simulated neurons shown in Figure 2). Full

simulation details can be found in the Supplemental Experi-

mental Procedures.

A specific instance of this simulation is shown in Figures 3A–

3D, where the noise level was chosen to be 1.53 the mean activ-

ity over time. Results are similar to those shown in the previous

figure; the PCA/ICA method tends to infer non-overlapping
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spatial filters (e.g., components 11 and 5 in Figure 3C). More-

over, in low-SNR conditions, as the example shown in Figure 3,

individual neurons are sometimes mistakenly split into two com-

ponents, e.g., components 2 and 12 in Figure 3C.

The plain NMF method infers the spatial components better

than PCA/ICA but does not penalize for the sparsity of the spatial

footprints and therefore can infer components that are not



Table 1. Qualitative Differences between the Proposed CNMF

Method, PCA/ICA, and Plain NMF

Method PCA/ICAa Plain NMFb
Constrained

NMFc

Features

Handles spatial overlap well No Yes Yes

Eliminates ‘‘cross-talk’’ No Medium Yes

Robustness in low SNR Medium Medium Yes

Produces localized

estimates

Yes No Yes

Unsupervised (after initial

parameter setting)

Yes No Yes

Deconvolves neural activity No No Yes

Models background activity No Yes Yes

Enables merging No Manual Automated
aMukamel et al. (2009).
bMaruyama et al. (2014).
cThis paper.
localized or combine multiple neurons that do not necessarily

overlap (Figure 3B). Moreover, this method is prone to local op-

tima in low-SNR data and requires significant manual interven-

tion (for component selection and merging) when applied to

fields of view containing many neurons. Finally, as also shown

in Figure 3D, the absence of a model for the temporal dynamics

of the underlying calcium signal results in noisy traces that hinder

activity deconvolution.

In contrast, by (1) penalizing the size of the spatial footprints,

(2) estimating the noise level of the data for each pixel, (3)

modeling the indicator dynamics, and (4) using appropriate

initialization methods, the CNMF method infers the spatial foot-

prints of all the neurons very accurately (contour plots in Fig-

ure 3A) and demixes their activity over time with almost zero

‘‘cross-talk’’ between neighboring traces and minimal noise

(blue trace in Figure 3D), with no manual intervention. Our

approach remains robust even in very low-SNR conditions,

where the other two methods break down (Figures 3E and 3F).

These qualitative differences between the three compared

methods are summarized in Table 1.

Analysis of Large-Scale Imaging Data
We now turn to the analysis of large-scale spatiotemporal data-

sets. We begin by applying our methods to in vivo mouse V1

GCaMP6s spontaneous activity data (Figure 4). The algorithm

was initialized with the greedy method (see Experimental Proce-

dures) with 300 components. During the factorization iterations,

31 components were eliminated due to merging operations or

negligible total contribution. The remaining components were

ranked in decreasing order based on their size and maximum

temporal value (see Experimental Procedures). The contours of

the first 200 inferred spatial footprints are depicted in Figure 4A,

superimposed on the correlation image of the raw data. Local-

ized regions in the correlation image with high intensity corre-

spond to strongly active cells, whereas localized regions with

lower intensity correspond to neurons with lower intensity/SNR

or other non-stationary processes. The algorithm efficiently iden-
tifies neurons with very few visually apparent false positives and

denoises the calcium activity of each cell (Figure 4B). The in-

ferred temporal traces match the time course and dynamics of

the raw data. This is shown in Figure 4C, which zooms in to a

point of local maximum activation for each trace (point marked

in Figure 4B) and plots the traces in higher resolution superim-

posed with the spatial component weighted average of the raw

data, after the removal of all the other components. The spatial

footprints of the first 36 inferred components are shown in Fig-

ure 4D; in many cases detailed morphological structure is auto-

matically extracted by the algorithm. The results are viewed best

in Movie S1. Figure 4E displays an example of the merging pro-

cedure. The neuron depicted in the fourth panel is initially split

across three components. Since the temporal activity of these

components is highly correlated, they are merged into a single

cell. Full implementation details are given in the Supplemental

Experimental Procedures.

Segmentation of Whole-Brain Light Sheet Imaging Data
Next, we test our method on a larger scale. Specifically, we

examine 3D imaging data from a whole zebrafish brain (Freeman

et al., 2014). The imaging was done using light-sheet micro-

scopy, with a GCaMP6s indicator, localized to the nucleus. In

this dataset, the neurons are closely packed together and some-

times exhibit highly synchronous activity. We use the group lasso

(GL) approach to initialize the estimates, followed by fine-tuning

using CNMF. The length of the imaging timebin (�475 ms) is

comparable to the decay time constant of the calcium indicator,

and the temporal details of the spiking activity cannot be esti-

mated at a fine temporal resolution here. However, we can still

utilize a similar matrix factorization framework by dropping the

temporal constraints due to the calcium dynamics and then

inferring the spatial and temporal components.

The resulting spatial and temporal components are shown in

Figures 5A and 5B. These generally match the neuronal shapes

and the sparse nature of the activity visible in the Movies S2, S3,

and S4. Specifically, high-ranking spatial components usually

have smoother, more consistent spheroid shapes (consistent

with the nuclear-localized calcium indicator) and the corre-

sponding temporal components tend to be sparser. Low-ranking

shapes seem to correspond to faint or partially obstructed neu-

rons. In total, the algorithm detects a realistic distribution of com-

ponents throughout the brain (Movie S8). Most visible neurons

are detected, as can be seen in Figures 6A, 6C, and 6E, and

more clearly in the Movies S2, S3, and S4.

In contrast, while the PCA/ICA method (Mukamel et al., 2009)

usually performs well in locating ‘‘strong’’ neurons (i.e., high-

SNR, well-separated neurons), this method misses many rela-

tively ‘‘weak’’ neurons, as can be seen in Figures 6B, 6D, and

6F (see also Figure S2, andMovies S5, S6, and S7). PCA/ICA de-

tects several thousand fewer high-quality components then the

CNMF method with GL initialization in this dataset. Moreover,

the components detected by CNMF usually have better quality

than those detected by PCA/ICA. For example, the maximum

DF/F traces of low-ranked components found by PCA/ICA are

typically more noisy, attain smaller maximum values, and some-

times exhibit relatively strong negative values (Figure S2). In

contrast, the CNMF method is able to denoise the activity and
Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc. 291
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Figure 4. Application to Mouse In Vivo GCaMP6s Data

(A) Contour plots of inferred spatial components superimposed on the correlation image of the rawdata. The components are sorted in decreasing order based on

the maximum temporal value and their size. Contour plots of the first 200 identified components are shown, and the first 36 components are numbered.

(B) Extracted DF/F fluorescence traces for the first 36 components.

(C) Zoomed-in depiction of the fluorescence traces around a point of local maximum activity indicated by the star marker in (B), (black) super-imposed with the

raw spatial component filtered data after removal of all the other components (red dashed).

(D) Spatial footprints of the first 36 components. The algorithm can in many cases pull out morphological details of the imaged processes.

(E) Depiction of the merging procedure: the first three panels in the left show three overlapping components with highly correlated temporal activity. These

components are merged into a single component that is further refined in the algorithm. The temporal traces of the three initial components and the merged

component are shown in the right panel (see also Movie S1).
also obtain a non-negative signal (Figure 5). These results are

consistent with those obtained in simulated data, as illustrated

in Figures 2 and 3. Note that the method used here is closer to

the plain NMF of Maruyama et al. (2014), with three key differ-

ences: (1) the NMF iterations here are spatially constrained to

keep inferred components localized; (2) the GL initialization

method allows us to process large patches of data at once

and bypass the high level of manual intervention required by

plain NMF; and (3) this new initialization method helps the

CNMF iterations converge to a better solution.

Application to Dendritic Imaging Data
A key advantage of the proposed CNMF framework is that we

can apply similar methods to imaging data focusing on the den-

drites of multiple neurons and not on the cell bodies. In this case,

each spatial component corresponds to a set of dendritic

branches from a given neuron, and the temporal component cor-
292 Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc.
responds to the synchronous activity of these branches. These

data exhibit certain qualitative differences compared to somatic

imaging. Each spatial component is again sparse but is no longer

spatially localized, since dendritic branches can stretch signifi-

cantly along the observed imaging plane. As a result, the degree

of overlap between the different branches is significantly higher,

making even rough interpretation by eye a challenging task; the

correlation and mean images in this setting provide very little

useful segmentation information (Figures 7A and 7C). Moreover,

the bound calcium dynamics no longer follow somatic calcium

indicator dynamics. Dropping the temporal dynamics and spatial

localization constraints from our problem, we obtain a simpler

sparse CNMF problem that can still be solved efficiently using

the methods described above.

We applied this approach to in vivo dendritic imaging data

taken from the apical dendrites of layer 5 pyramidal neurons in

the rodent barrel cortex (Lacefield and Bruno, 2013, SfN,
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Figure 5. Components Detected in a Whole Zebrafish Brain

A sample of detected components (A, inferred neuronal shapes; B, inferred DF/F activity traces), ordered according to their rank. High-ranking components

match expected nuclear-localized neuronal shapes and activity visible in the raw video data; low-ranking components tend to be more ‘‘noisy’’ in both shapes

and activity. In all, the first 26,000 components largely correspond to reasonable neuronal signals (as determined by visual inspection of the video data;

Movies S2, S3, and S4).
abstract) and show the results in Figure 7. The raw data is typi-

cally dense when averaged over either time or space, as can

be seen from the low intensity of the raw data correlation and

mean image (Figures 7A–7C).We initialize randomly using a large

number of components (in this case 50) and then order the in-

ferred components as before. The top 23 of these components

together with the background and the corresponding temporal

traces in DF/F units are shown in Figures 7D–7F. These compo-

nents are sparse in both space and time, with the temporal com-

ponents extracting temporally localized bursts visible in the raw

video data, and the spatial components extracting segments of

the apparent dendritic structures visible in the video data (see

also Movie S9). The results show the effectiveness of the sparse

CNMFprocedure in obtaining separated spatiotemporal compo-

nents given dendritic imaging data in which the degree of overlap

is very high and the spatial components are not localized.

DISCUSSION

A Flexible and Efficient Model for Calcium
Deconvolution
The major contribution of this work is to introduce a framework

for analysis of calcium imaging data that is (1) applicable to a

large variety of data, (2) computationally efficient and paralleliz-

able, and (3) user friendly, in the sense that the required human

intervention is limited to the setting of a few intuitive parameters

(e.g., rough estimates of number and size of neurons). This

framework is enabled by a number of novel tools (CD, CNMF,
efficient initialization, robust parameter estimation, and compo-

nent sorting/merging) that can be combined in amodular fashion

depending on the details of the imaging data (e.g., the spatio-

temporal resolution). As a result, we were able to successfully

apply our framework to many different imaging datasets without

extensive specialized pre-processing.

Our CD approach builds upon and extends the fast nonnega-

tive deconvolution (FOOPSI) method of Vogelstein et al., (2010)

in several ways. Compared to FOOPSI, which permits only

first-order autoregressive models with pre-specified time con-

stant, our method allows for general AR ðpÞ models and comes

with a method for estimating the coefficients. More importantly,

in the FOOPSI method, the loss function appears in the objective

function, and a regularizer needs to be introduced and fine-tuned

to control between the faithfulness to the observed data and the

(unknown) sparsity of the underlying spiking signal. In our

method, the tradeoff between sparsity and fidelity to observed

data is set automatically by estimating the noise level a priori

and using it as a hard constraint on the overall acceptable level

of residual error, while retaining the same linear time computa-

tional complexity as FOOPSI.

Modeling the fluorescence trace with an AR process allows for

a flexible and interpretable modeling framework that still retains

computational tractability. When solving the CD problem, the

complexity of the algorithm scales only with the order of the AR

process and not with the length of the transient impulse response

of the AR model, making this approach computationally more

tractable than arbitrary template matching algorithms or blind
Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc. 293



Figure 6. The CNMF Method Outperforms the PCA/ICA Method in

Detecting Weak Neurons, on Patches of Zebrafish Data.

The patches are covered with the shape centers detected in that patch (blue

circles around red ‘‘x’’ markers, with larger symbols indicating higher-ranked

components), superimposed on the mean image for each patch.

(A, C, and E) Centers detected for the CNMF method, on patches containing

the 1st, 1,000th, and 26,000th ranked neurons, respectively.

(B, D, and F) Centers detected for the PCA/ICA method on the same patches.

Calcium video and detected components in these patches can be viewed in

Movies S2, S3, S4, S5, S6, and S7. The detected components for the PCA/ICA

method are shown in Figure S2. Movie S8 shows the components detected

throughout the brain, using CNMF.
deconvolution approaches (Diego-Andilla andHamprecht, 2014).

Moreover, the AR coefficients can be directly estimated from the

rawdata in a completely unsupervisedway, do not require the ex-

istence of isolated spikes for fine-tuning the various parameters,

and can be further fine-tunedduring the deconvolution algorithm.

Although this AR framework makes certain simplifying assump-

tions about the linearity and dynamics of the calcium indicator,

nonetheless it results in a highly computationally efficient esti-

mator that achieves state of the art performance amongunsuper-

vised methods, as shown recently in Theis et al. (2015).

CNMF Provides a Flexible Framework for Analysis of
Large-Scale Calcium Imaging Data
We applied our framework to a diverse set of in vitro and in vivo

imaging data to illustrate the wide applicability of the matrix
294 Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc.
factorization framework to large-scale imaging data. Matrix

factorization inherently models the possible overlap between

the different components as opposed to manual ROI selection

or image segmentation-based techniques (Smith and Häusser,

2010; Kaifosh et al., 2014). Indeed, the matrix factorization

approach often obtains highly overlapping spatial components

in cases in which such components optimize the amount of

variance explained in the data (up to the noise constraints).

This contrasts with the PCA/ICA approach, which tends to reject

overlapping areas in an attempt to seek maximally independent

spatial components, at a risk of increased cross-talk and

reduced SNR (Figures 2 and 3). As a result, our demixingmethod

can be used in cases in which the spatial overlap is significant

either naturally, because of the dense neural packing or deep im-

aging in scattering tissue, or artificially, due to the simultaneous

observation of the projection of multiple z planes through spatial

light modulation (Yang et al., 2015, companion paper), or more

general projection patterns as suggested and studied in Pnev-

matikakis and Paninski (2013); such approaches may lead to

computational imaging schemes that allow us to simultaneously

image larger neural populations than would be otherwise

possible and are an important direction for future research.

The iterative factorization procedure is largely agnostic

regarding the shape of the spatial components, inferring these

shapes directly from the data with few prior constraints. Other

approaches, especially for analysis of somatic imaging data (Pa-

chitariu et al., 2013; Diego-Andilla and Hamprecht, 2014), use

dictionary learning approaches to learn a compact basis for

the representation of the spatial footprints. These methods can

help reduce the dimensionality of the problem and can be helpful

in more macroscopic images in which detailed structure is not

available. In future work, it may be useful to combine these

methods with the techniques developed here. However, these

dictionary-learning methods do not appear to generalize to

more microscopic imaging (e.g., dendritic imaging; Figure 7),

where the structure of the spatial components can be rich and

unpredictable.

Sparse and structured NMFs have been proposed in the

recent literature (Pnevmatikakis and Paninski, 2013; Diego-

Andilla and Hamprecht, 2013; Haeffele et al., 2014) in an attempt

to constrain the factorization procedure and produce compact

spatial footprints and denoised temporal traces. The structure

there is promoted by the inclusion of regularizers that promote

certain desired characteristics. For example, Pnevmatikakis

and Paninski (2013) propose a nuclear norm penalty to identify

the number and initialize the spatial components. Haeffele

et al. (2014) propose the inclusion of a spatial total variation

norm penalty to promote localized and compact spatial foot-

prints. Diego-Andilla and Hamprecht (2014) propose a sparse

space-time deconvolution for learning the neuron locations

and extracting spike activity through dictionary learning and

blind deconvolution. A typical drawback of these approaches

is the need to tune regularization weights. Moreover, a single

regularizer over the observed field of view implicitly assumes

that the statistics are uniform across the whole observed field

of view: i.e., the density and size of neurons is uniform, all the

neurons fire at similar average rates, and the noise power across

the observed field of view is similar. These assumptions can
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Figure 7. Application to In Vivo Dendritic Imaging Data from Rodent Barrel Cortex

(A) Correlation image of the raw data. Due to the high degree of overlap, the correlation image cannot be used to segment the video.

(B) Spatially averaged activity over time of the raw data.

(C) Mean activity over time.

(D) DF/F temporal traces of the top 23 components extracted from our algorithm.

(E) Close up and centering around the point of maximum activation for each trace (indicated by the star marker in D).

(F) Sorted spatial footprints and background (lower right corner). The proposed method can segment the dense dendritic imaging data and reveal a rich un-

derlying sparse structure (see also Movie S9).
often lead to the omission of weaker components and require the

processing of small patches at a time as noted by Maruyama

et al. (2014). A distinctive feature of the CNMF framework pre-

sented here is that this regularization approach is replaced by

a larger set of constraints on the noise power at each pixel.

These noise levels are automatically estimated a priori and

implicitly impose non-uniform statistics on the observed field

of view.

A Modular Approach toward Automated Calcium
Imaging Data Analysis
Our approach is highly modular and provides a flexible analysis

framework. For example, depending on the imaging frame rate,

the deconvolution step can be turned on or off, or the proposed

CD framework can be replaced by other methods (e.g., particle

filtering [Vogelstein et al., 2010], greedy optimization [Grewe

et al., 2010], or MCMC [Pnevmatikakis et al., 2013]). Different

neurons can have the same or different time constants that

can also be re-estimated using the proposed AR approach.

Our initialization algorithms target cell bodies whose images

can be crudely modeled as Gaussians with specific sizes,

although different shapes can be easily incorporated.

A specific objective in this work was to create a framework

that requires minimal human intervention. In our models, the

parameters that are user defined are specified during the initial-

ization procedures and pertain to the number of components

that are sought initially (greedy initialization, and sparse NMF

in the case of dendritic imaging), and/or the size/scale of the

spatial components that are sought (greedy, GL initialization).
The rest of the parameters (noise levels, calcium indicator

dynamics, time-varying baseline concentration) are tuned

automatically, though again, any prior knowledge about these

quantities can be readily incorporated. While this level of hu-

man intervention is low, it remains an important open problem

to automatically estimate the number or the size of the imaged

components. To that end, we also introduced a measure that

ranks the inferred components in terms of their significance,

and correction moves that merge overlapping and correlated

components, or remove insignificant components, and found

that such moves can be very helpful in practice (Figures 4, 5,

6, and 7).

Calcium imaging as a neural recording method can provide

rich and diverse datasets depending on many factors (imaging

technique, experimental conditions, calcium indicators, etc.),

and multineuronal data with spiking and/or spatial anatomical

ground truth remains scarce and typically hard to obtain. More-

over, assessing the performance of different approaches re-

mains an open issue, with no universally accepted performance

measure. For example, the spike correlation metric used in this

study to quantify the performance of activity deconvolution

methods is empirically very sensitive to spike jitter. The situation

is evenmore complicated in automatically quantifying the perfor-

mance of spatial footprint identification methods. Simple corre-

lation-based metrics, for example, can be insensitive to the

detailed morphological structure, and even the comparison

against ground truth data (e.g., through dual channel labeling)

can be challenging due to potential spatial overlap, poor expres-

sion, or unmodeled background activity. As such, the goal of a
Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc. 295



globally operating algorithm that requires no human intervention

and has performance guarantees remains elusive. Nevertheless,

we hope that the family of methods discussed here, under the

unifying umbrella of CNMF, will provide a useful framework for

future research.

EXPERIMENTAL PROCEDURES

Experimental Data

Full details on the experimental data are provided in the Supplemental Exper-

imental Procedures.

Data Analysis

All analysis was performed with custom-written MATLAB (RRID: nlx_153890)

code. MATLAB and Python implementations of the CD and CNMF algorithms

can be found in https://github.com/epnev/ca_source_extraction and linked re-

positories therein.

Autoregressive Model for Calcium Dynamics

We assume we observe the fluorescence signal for T timesteps and denote by

s(t) the number of spikes that the neuron fired at the t-th timestep, t = 1;.;T.

We approximate the calcium concentration dynamics c using a stable autore-

gressive process of order pðARðpÞÞ where p is a small positive integer,

cðtÞ=
Xp

j = 1
gjcðt � jÞ+ sðtÞ: (Equation 1)

If p=1 then the calcium transient in response to a spike is modeled by an

instantaneous-increase slowly decaying exponential function. This is recom-

mended when the rise time constant is small compared to the length of the

timebin. In case we want to explicitly model the rise time, we choose p= 2.

More structured responses (e.g., multiple decay time constants) can also be

modeled with higher values for the order p. The observed fluorescence is

related to the calcium concentration as:

yðtÞ=aðcðtÞ+bÞ+ εðtÞ; εðtÞ � N �
0; s2

�
; (Equation 2)

where a is a nonnegative scalar, b is the baseline concentration and the noise

is assumed to be i.i.d. zero mean Gaussian with variance s2. The goal of cal-

cium deconvolution is to extract an estimate of the neural activity s from the

vector of observations y.

Estimation of Model Parameters

For a given order p and under the assumption that the spiking signal s comes

from a homogeneous Poisson process, the autocovariance function of y, Cy

satisfies the recursion:

CyðtÞ=
8<
:

Xp

j = 1
gjCyðt � jÞ � s2gt ; 1% t%pXp

j =1
gjCyðt � jÞ; t > p:

(Equation 3)

By plugging the sample autocovariance values into Equation 3, we can first

estimate the AR coefficients g1;.;gp. While Equation 3 can also be used to

estimate the noise variance s2, a more robust estimate can be obtained by

observing the power spectral density (PSD) of y. The uncorrelated additive

noise has flat PSD, whereas the PSD due to the calcium signal decays with

the frequency as � ð1=f2Þ. At high frequencies, and under sparse spiking,

the PSD will be dominated by the noise, and therefore an estimate bs2 can

be obtained by averaging the PSD over a range of high frequencies. We

discuss these issues in more detail in the Supplemental Information

(Figure S1).

Sparse, Nonnegative, Noise-Constrained Deconvolution

Solving for the spiking vector s in the domain of nonnegative integers is a

computationally hard problem and also requires knowledge of the spike ampli-

tude scaling constant a, which is in general unavailable. Instead, by following

the approach in Vogelstein et al. (2010), we can absorb a into s, relax s to take

arbitrary nonnegative values, and penalize the sum of the spike signal over
296 Neuron 89, 285–299, January 20, 2016 ª2016 Elsevier Inc.
time (which can be seen as the l1-norm of a nonnegative signal), to promote

spike sparsity and avoid overfitting. First note that Equation 1 can be ex-

pressed in matrix form as Gc = s, with

G=

2
66664

1 0 0 . 0
�g1 1 0 . 0
�g2 �g1 1 . 0
« 1 1 1 «
0 . �g2 �g1 1

3
77775: (Equation 4)

(Note that we have ignored initial conditions for notational simplicity.)

Now based on the estimate of the noise variance, we can introduce a hard

constraint on the residual energy; from Equation 2, we have that for each time

EðyðtÞ � aðcðtÞ+bÞÞ2 = s2. Summing over all timesteps, we find that the resid-

ual vector satisfies Eky � aðc+b1T Þ k 2 = s2T (with 1T a column vector of ones

with length T); moreover, by the law of large numbers ky � aðc+b1T Þ k 2zs2T

with high probability. We can use this estimate to derive the following convex

program for estimating the calcium concentration up to a scaling constant:

minbc; bb; bs 1T
T
bs

subject to : bsR0; bs =G bc; ky � bc � bb1T k%bs ffiffiffiffi
T

p
:

ðP­CDÞ

Program (P-CD) also estimates the baseline concentration b, which for now

is assumed to be constant; we relax this assumption in the spatiotemporal

case. However, in many cases the baseline can be estimated a priori, e.g.,

by averaging the fluorescence over a large interval with no observed spikes.

Program (P-CD) is convex and a global optimum exists and is achievable

with standard optimization methods that computationally scale only linearly

with the number of observed timesteps; this enables the analysis of long

time series or videos. A variety of methods can be used to solve (P-CD) in linear

time, as detailed in the Supplemental Experimental Procedures.

Note that the CD approach can estimate the bs (or bc), only up to a multiplica-

tive constant, since the amplitude of a single spike in terms of fluorescence

response (a in Equation 2) is in general unknown and in general cannot be

readily estimated. If needed, estimates of the spike amplitude can be derived

using the MCMC algorithm of Pnevmatikakis et al. (2013).

Updating the Time Constants

The time constants are updated in the continuous time domain, by using a

simple MCMC scheme. Details are given in the Supplemental Experimental

Procedures.

Spatiotemporal Deconvolution and Component Demixing

Nowwe turn to the full spatiotemporal case. At every timestep, a field of view is

observed for a total number of T timesteps. This field (either two- or three-

dimensional) has a total number of d pixels/voxels and the observations at

any point in time can be vectorized in a single column vector of length d.

Thus, all the observations can be described by a d3T matrix Y. Now assume

that the field contains a total number of (possibly overlapping) K neurons,

where K is assumed known for now. For each neuron i the neural activity si
and ‘‘calcium activity’’ ci can be described again with the AR(p) dynamics of

Equation 1. Now if ai˛Rd
+ denotes the (nonnegative) ‘‘spatial footprint’’ for

neuron i (written in vector form), then we model the spatial calcium concentra-

tion profile at time t as

FðtÞ=
XK
i = 1

aiciðtÞ+BðtÞ; (Equation 5)

where BðtÞ˛Rd
+ denotes the (time-varying) baseline vector all the pixels.

Finally, at each timestep we observe F(t) corrupted by additive Gaussian noise:

YðtÞ=FðtÞ+ εðtÞ; εðtÞ � N ð0;SÞ; (Equation 6)

where S is a diagonal matrix (indicating that the noise is spatially and tempo-

rally uncorrelated). These equations can be written in matrix form as

S = CGT

F = AC+B
Y = F +E;

https://github.com/epnev/ca_source_extraction


with S= ½s1;.; sK �T , C= ½c1;.;cK �T , A= ½a1;.;aK �, F = ½Fð1Þ;Fð2Þ;.;FðTÞ�,
E = ½εð1Þ; εð2Þ;.; εðTÞ�, Y = ½Yð1Þ;Yð2Þ;.;YðTÞ�, B= ½Bð1Þ;Bð2Þ;.;BðTÞ�,
andG is defined in Equation 4. In practice, we have found that the background

activity matrix B can often be modeled as a rank 1 matrix, B=bfT, where

b˛Rd
+ , f˛R

T
+ are nonnegative vectors encoding the background spatial struc-

ture (typically consisting of a sum of baseline activity from the neurons of inter-

est and densely mixed neuropil structure below the observed spatial field) and

global (time varying) intensity, respectively.

CNMF Framework

We approach this problem by employing a CNMF framework to infer the

key parameters of interest (the spatial components A and temporal compo-

nentsC) along with b,f, and S. The factorization procedure itself is constrained

in a number of ways. (1) The residual between the observed data and the re-

constructed video is bound by similar noise power constraints as in the time

series deconvolution case, where now we estimate a different noise level for

each observed pixel/voxel, again from the temporal PSD. (2) Both the spatial

and the temporal components are endowed with non-negativity constraints.

(3) The spatial components are also constrained to be sparse, promoting

more compact, regularized spatial footprints. Finally, (4) when the observed

imaging rate is much higher than the decay rate of the indicator, we constrain

the temporal traces to obey the indicator dynamics, similarly to the one-dimen-

sional case. With this set of constraints, we can optimize the spatial and tem-

poral components in an iterative alternating way, where a new estimate for A

and b is obtained given the last estimate of C and f and vice versa, within

the space defined by the constraints. At the end of each iteration, additional

steps are introduced, where overlapping components that exhibit significant

temporal correlations are merged into a single component, and existing com-

ponents that do not contribute significant activity are removed and absorbed

into the background. We also present two different methods for initializing the

spatial components.

Our framework can be summarized into the following steps:

(1) Determine the AR dynamics and noise power for each voxel.

(2) Initialize A, b, C, f through one of the initialization procedures.

(3) Update components A, b, C, f using constrained alternating matrix

factorization.

(4) Merge and/or remove existing components.

(5) Repeat steps 3 and 4.
Iterative Matrix Updates

Assuming the number of neurons K and initial estimates of A, C and b, f as

known, we can apply alternating matrix factorization methods to estimate

the spatial components A, b given the temporal C, f and vice versa, from the

fluorescence observations Y.

Estimating A, b

Since each column ofA expresses the location and shape of a neuron, wewant

A to be sparse to promote localized spatial footprints. Again, this is done by

minimizing the l1 norm of A, which equals the sum of all its entries, since A is

constrained to be non-negative. Given estimates of C(k–1) and f(k–1) from the

previous iteration, the spatial matrix A(k) and background b(k) can be updated

by solving the following convex program

minA;bkA k 1;

subject to : A; bR0; kYði; :Þ � Aði; :ÞCðk�1Þ � bðiÞfðk�1ÞT k%si

ffiffiffiffi
T

p
;

i = 1;.d; ðP­SÞ
where Aði; :Þ;Yði; :Þ denote the i-th rows of A and Y, respectively. Although the

matrixA is of very large size, d3T, the problem (P-S) can be readily parallelized

into d programs for each pixel separately. Similarly to the CD problem (P-CD),

each of these problems can be solved with a variety of methods (see the Sup-

plemental Experimental Procedures).

When the fluorescence from each neuron is highly localized near the soma,

the process of estimating A at the k-th iteration can be further sped up and

regularized by restricting the candidate spatial support of cell j at the iteration

k, to be a mildly dilated version of the support as is determined by the column j

of Aðk�1Þ. When estimating the i-th row of AðkÞ, we can restrict our search to the
neurons (columns of A) whose candidate support sets include the pixel i. This

makes the dimensionality of each subproblem much smaller, leading to a

highly efficient and parallelizable update.

Note that we have not yet incorporated any prior information about the

detailed shape of the spatial components Að:; iÞ, which enabled the highly par-

allel approach described above. However, in many cases it is natural to as-

sume that Að:; iÞ is connected, or smooth in a suitable sense. Empirically, we

have found it helpful to include a mild post-processing step at each iteration,

using standard non-linear image filtering techniques, such as median filtering

or morphological opening, which are effective in removing isolated pixels that

appear as active. The removed pixels can then be absorbed by the back-

ground component.

Estimating C, f

For the temporal components, we want to introduce a sparsity penalty to the

activity of each neuron to prevent overfitting. We can again use our estimates

of the noise variance as hard constraints and derive a parameter-free convex

program:

minc1 ;c2 ;.;ck; f

XK

j =1
1TGcj

subject to : GcjR0; j = 1;.;K; kYði; :Þ � Aði; :ÞCðk�1Þ � bðiÞfðk�1ÞT k%si

ffiffiffiffi
T

p
;

i = 1;.;d ðP­TÞ

Since the constraintsGciR0 couple the entries within each row ofC, and the

residual constraints act within each column, the program (P-T) cannot be

readily parallelized. Moreover, the large number of constraints and the

potentially large number of neurons Kmake the direct solution of (P-T) compu-

tationally expensive. To overcome this, we employ a partially parallelizable

block-coordinate descent approach, where we sequentially update the tem-

poral component cj of one neuron at a time; nonoverlapping components

can be updated in parallel.

Incorporating Different Deconvolution Methods

The method for updating the temporal components C, f is a simple spatiotem-

poral extension of the CDmethod presented earlier. However, in principle, any

time series deconvolution method can be used as part of our CNMF frame-

work. To do so, we can construct for each component, a trace that represents

the raw data, averaged over the corresponding spatial footprint, after the ac-

tivity of all the other components has been removed. More specifically, if we

want to compute the j-th temporal component at the k-th iteration c
ðkÞ
j , pro-

vided we have computed c
ðkÞ
j ;.;c

ðkÞ
j�1;c

ðk�1Þ
j + 1 ;.;c

ðk�1Þ
K we can form the

quantity

�
yðkÞj

�T

=

�
a
ðkÞ
j

�T

kaðkÞ
j k 2

�
Y�

h
aðkÞ
1 ;.;aðkÞ

j�1;a
ðkÞ
j +1;.;aðkÞ

K

ih
cðkÞ
1 ;.;cðkÞ

j�1;c
ðk�1Þ
j + 1 ;.;cðk�1Þ

K

iT

� bðkÞ�fðk�1Þ�T�;
(Equation 7)

and then apply our deconvolution method of choice to y
ðkÞ
j to obtain c

ðkÞ
j . This

scheme adds flexibility and enables the different treatment of different compo-

nents, in terms of time constants/dynamics, noise levels, etc.

Merging Existing Components

At the end of each iteration, we seek spatially overlapping components with

temporal correlations above a certain threshold. These components are then

merged into a single component. Details are given in the Supplemental Exper-

imental Procedures.

Ranking and Removing Components

Identifying the number of components a priori is a challenging problem. While

the GL initialization approach (see below) offers an adaptive method to esti-

mate this number, and the merge operations aim to correct for false estimates,

it is usually difficult to automatically identify all the correct components without

any false positives. As a strategy we have found that it ismore effective to over-

estimate the number of components and then remove those that do not corre-

spond to neural activity. To do this, we sort the components according to the

product of the maximum values of the temporal and spatial components.

Empirically, we find that the first components in the list have compact foot-

prints and strong temporal activity, making it easy for the user to set a cutoffbK above which the obtained activity is retained, and below which the
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components are discarded. The discarded components can then be absorbed

into the background.

Greedy Initialization for Somatic Imaging Data

At every iteration, the residual of the spatiotemporal data matrix (or, in the first

iteration, the data matrix itself) is spatially filtered with a Gaussian kernel of

width similar to the size of a cell body. The algorithm finds the location where

this filtering procedure explains themaximum variance and selects a square of

size roughly twice the size of an average neuron. Within this square, a rank-1

NMF is performed to initialize the spatial and temporal components, and the

product of these components is then subtracted from the observed data to

form the new spatiotemporal residual. This procedure is repeated until a

user-specified number of components is located; note that the different com-

ponents obtained across all iterations are allowed to overlap. Then, the result-

ing residual signal is used to initialize the background component B = bfT,

again using rank-1 NMF (see Supplemental Experimental Procedures for

implementation details).

Group Lasso Initialization for Somatic Imaging Data

The greedy initialization method can be problematic if neurons are packed too

densely, especially if their activities are highly correlated. In this case, we use a

different approach, where we initially assume that a potential neuron with a

Gaussian shape of fixed size is centered at every observed voxel, and denote

by X the d3T activity matrix of all these potential neurons. We then seek to

minimize the number of active neurons that can explain the observed spatio-

temporal data. We adopt a GL (Yuan and Lin 2006) approach, and form the

following convex optimization problem

minX˛Rd3T
+ ; b˛Rd kY � DX � b1T

T k
2

F + l
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

X2
it ;

r
(Equation 8)

where again the data is given by Y˛Rd3T ; l, l is a regularization constant, and

D˛Rd3d is a matrix which performs convolution with a Gaussian kernel in the

original spatial coordinates. We infer the underlying neuronal activity X and the

background component b1TT . We use each column ofD (which corresponds to

aGaussian kernel at each location) as a hypothetical neuron and select the sig-

nificant locations by solving a GL problem Equation 8, where each group cor-

responds to the temporal activity of a hypothetical neuron. The GL penalty

l
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiP
tX

2
it

q
forces locations with sufficiently low activity to have precisely

zero activity (
P

tX
2
it = 0 for these locations i). The resulting ‘‘significant’’ loca-

tions i, in which Xit > 0, give an estimate of a neuron’s spatial footprint.

However, the neuron centers cannot be identified simply by using all the

nonzero locations, since one real neuron usuallymakes all the nearby locations

have significant activity. Therefore, we identify regional maxima of
P

tX
2
it as the

neuron centers. Note that by moderately sacrificing convexity, the procedure

can be extended to include a time-varying baseline component f. The initiali-

zation to the matrix factorization approach is then given by the detected bK
components, each with a Gaussian shape ak centered around the identified

neuron centers and activity ck given by the averaging Xði; :Þ over all non-zero
locations i, which are closest to the center. Implementation details are given

in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and nine movies and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2015.11.037.
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