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Abstract

The world-wide web forms a large directed graph, whose vertices are documents and edges
are links pointing from one document to another. Here we demonstrate that despite its apparent
random character, the topology of this graph has a number of universal scale-free characteristics.
We introduce a model that leads to a scale-free network, capturing in a minimal fashion the
self-organization processes governing the world-wide web. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The emergence of order in natural systems is a constant source of fascination and
inspiration for both physical and biological sciences. While the spatial order character-
izing for example the crystals has been at the basis of many advances in contemporary
physics, most complex systems in nature do not o�er such high degree of order. In fact,
many systems around us display rather complex topologies, that often seem random
and unpredictable [1,2]. In particular, many of these systems form complex networks,
whose vertices are the elements of the system and edges represent the interactions be-
tween them. For example, living systems form a huge genetic network, whose vertices
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are proteins, the edges representing the chemical interactions between them [3]. Simi-
larly, a large network is formed by the nervous system, whose vertices are the nerve
cells, connected by axons [4]. But equally complex networks occur in social science,
where vertices are individuals or organizations, and the edges characterize the social in-
teractions between them [5], in the business world, where vertices are companies and
edges represent diverse trade relationships, or describe the world-wide web (www)
whose vertices are HTML documents connected by links pointing from one page to
another [6,7]. Due to their large size and the complexity of the interactions, the topol-
ogy of these networks is largely unknown or unexplored.
A major step in the direction of understanding the generic features of network devel-

opment was the recent discovery of a surprising degree of self-organization character-
izing the large scale properties of complex networks. Exploring several large databases
describing the topology of large networks, that span as diverse �elds as the www
or the citation patterns in science, recently we demonstrated [8] that independently
of the nature of the system and the identity of its constituents, the probability P(k)
that a vertex in the network is connected to k other vertices decays as a power-law,
following P(k) ∼ k−. These results o�ered the �rst evidence that large networks
self-organize into a scale-free state, a feature unexpected by all existing random net-
work models.
In this paper we illustrate the emergence of self-organization and scaling in random

networks through one important example, that of the world-wide web. We show that
the incoming and outgoing link distribution of the www documents follows a power
law, an indication of the scale-free nature of the network. This understanding of the
network topology allows us to determine the average distance between two randomly
chosen documents, or the diameter of the www. Finally, we present a model that
naturally leads to a power-law distribution, explaining the mechanism responsible for
the development of the scale-free state.

2. The topology of the world-wide web

Despite its increasing role in communication, the world-wide web remains the least
controlled medium: any individual or institution can create websites with unrestricted
number of documents and links. This unregulated growth leads to a huge and com-
plex web, which is a large directed graph, whose vertices are documents and edges
are the links (URLs) pointing from one document to another. The topology of this
graph determines the web’s connectivity and, consequently, our e�ectiveness in locat-
ing information on the www. However, due to its large size (estimated to be at least
8 × 108 documents [9,10]), and the continuously changing documents and links, it is
impossible to catalogue all vertices and edges. While great e�orts are made to map and
characterize the Internet’s infrastructure [11], little is known about what truly matters
in searching for information, i.e., about the topology of the www.
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Fig. 1. The distribution of (a) outgoing links (URLs found on an HTML document) and (b) incoming
links (URLs pointing to a certain HTML document). The data were obtained from the complete map of
the nd.edu domain, that contains 325; 729 documents and 1; 469; 680 links. The dotted lines in (a) and (b)
represent the analytical �ts we used as input distributions in constructing the topological model of the www,
the tail of the distributions following P(k) ∼ k−, with out =2:45 and in =2:1. (c) Average of the shortest
path between two documents as a function of the system size, as predicted by the model. As a check of
the validity of our predictions, we have determined ‘ for documents in the domain nd.edu. The measured
〈‘nd:edu〉 = 11:2 agrees well with the prediction 〈‘3×105 〉 = 11:6 obtained from our model. To show that
the power-law tail of P(k) is a universal feature of the www, in the inset we show Pout(k) obtained by
starting from whitehouse.gov (squares), yahoo.com (upward triangles) and snu.ac.kr (downward triangles).
The slope of the dashed line is out = 2:45, as obtained from nd.edu in (a).

To determine the local connectivity of the www, we constructed a robot, that adds to
its database all URLs found on a document and recursively follows these to retrieve the
related documents and URLs. From the collected data we determined the probability
Pout(k) (Pin(k)) that a document has k outgoing (incoming) links. As Figs. 1a and b
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illustrate, we �nd that both Pout(k) and Pin(k) follow a power law over many orders
of magnitude 1

Pout(k) ∼ k−out (1)

and

Pin(k) ∼ k−in : (2)

This distribution is remarkably di�erent not only from the Poisson distribution predicted
by the classical theory of random graphs by Erdős and R�enyi [12,13], but also from the
bounded distribution found in recent models of random networks [14]. The power-law
tail indicates that the probability of �nding documents with a large number of links is
rather signi�cant, the network connectivity being dominated by highly connected web
pages. The same is true for the incoming links: the probability of �nding very popular
addresses, to which a large number of other documents point, is non-negligible, an
indication of the ocking sociology of the www. Furthermore, while the owner of each
web page has complete freedom in choosing the number of links on a document and
the addresses to which they point, the overall system obeys scaling laws characteristic
only of highly interactive self-organized systems and critical phenomena [15].
To investigate the connectivity and the large-scale topological properties of the www,

we construct a directed random graph consisting of N vertices, assigning to each vertex
k outgoing links, such that k is drawn from the power-law distribution shown in
Fig. 1a. These links are randomly connected to the other vertices, with the constraint
that the number of incoming links per document follows the distribution shown in
Fig. 1b. A particularly important quantity in a search process is the shortest path
between two documents, ‘, de�ned as the smallest number of URL links one needs to
follow to navigate from one document to the other. As Fig. 1c shows, we �nd that the
average of ‘ over all pairs of vertices follows

〈‘〉= 0:35 + 2:06 log(N ) ; (3)

indicating that the web forms a small-world network [14,16–18], known to characterize
social or biological systems. Using N = 8 × 108 [9,10], we �nd 〈‘www〉 = 18:59, i.e.,
two randomly chosen documents on the web are on average 19 clicks away from each
other. Since for a given N , ‘ follows a Gaussian distribution, 〈‘〉 can be interpreted
as the diameter of the web, a measure of the shortest distance between any two points
in the system. Despite its huge size, our results indicate that the www is a highly
connected graph of average diameter of only 19 links. The logarithmic dependence of
〈‘〉 on N is important to the future potential of the www: we �nd that the expected
1000% increase in the size of the web over the next few years will change 〈‘〉 from 19
to only 21. The relatively small value of ‘ suggests that an intelligent agent, i.e., who
can interpret the links and follow only the relevant one, can �nd in a short time the
desired information by navigating the www. However, this is not the case for a robot,

1 Note that after the completion of this work a number of other groups [19–21] have arrived independently
to the same conclusion, observing power-law scaling in the connectivity distribution.
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that locates the information based on matching strings: we �nd that such a robot,
aiming to identify a document at distance 〈‘〉, needs to search M (〈‘〉) ' 0:53N 0:92

documents which, using N = 8× 108 [9,10], leads to M = 8× 107, i.e., to 10% of the
full www. This indicates that robots cannot bene�t from the highly connected nature of
the web, their only successful strategy being indexing as large a fraction of the www
as possible.

3. The scale-free model

While the model we used to estimate the diameter of the web has the same scale-free
nature as the www, it does not answer an important question: what is the mechanism
that leads to these power-law distributions in the �rst place? To answer this question
we need to design a model that does not have as an input the power-law scaling,
but through some dynamical processes leads to a network that has the same scale-free
properties as the www.
A common feature of the earlier network models, such as the Erdős–R�enyi (ER)

[12,13] or the Watts–Strogatz (WS) [14] model is that they both predict that the
probability distribution of the vertex connectivity, P(k), has an exponential cuto�, and
has a characteristic size 〈k〉, that depends on p. In contrast, as we demonstrated in the
previous section, for the www P(k) is free of scale, following a power-law distribution
over many orders of magnitude. To understand the origin of this discrepancy, we have
recently suggested that there are two generic aspects of real networks that are not
incorporated in these models [8]. First, the current network models assume that we start
with a �xed number (N ) of vertices, that are then randomly connected or reconnected,
without modifying N . In contrast, most real world networks are open, i.e., they form
by the continuous addition of new vertices to the system, thus the number of vertices,
N , increases throughout the lifetime of the network. For example, the www grows
exponentially in time by the addition of new web pages. Consequently, the network
continuously expands by the addition of new vertices that are connected to the vertices
already present in the system.
Second, the random network models assume that the probability that two vertices are

connected is random and uniform. In contrast, most real networks exhibit preferential
connectivity. For example, a newly created webpage will more likely include links to
well known, popular documents with already high connectivity. This example indicates
that the probability with which a new vertex connects to the existing vertices is not
uniform, but there is a higher probability to be linked to a vertex that already has a
large number of connections.
A simple model incorporating only these two ingredients naturally leads to the ob-

served scale invariant distribution. The model is de�ned in two steps:
(1) Growth: Starting with a small number (m0) of vertices, at every timestep we

add a new vertex with m(6m0) edges (that will be connected to the vertices already
present in the system).



74 A.-L. Barab�asi et al. / Physica A 281 (2000) 69–77

Fig. 2. (a) Connectivity distribution of the model, with N = m0 + t = 300 000 and m0 = m = 1 (circles),
m0 = m = 3 (squares), m0 = m = 5 (diamonds) and m0 = m = 7 (triangles). The slope of the dashed line
is  = 2:9. The inset shows the rescaled distribution (see text) P(k)=2m2 for the same values of m, the
slope of the dashed line being  = 3. (b) P(k) for m0 = m = 5 and system sizes N = 100 000 (circles),
N =150 000 (squares) and N =200 000 (diamonds). The inset shows the time-evolution for the connectivity
of two vertices, added to the system at t1 = 5 and t2 = 95. Here m0 =m= 5, and the dashed line has slope
0:5, as predicted by Eq. (5).

(2) Preferential attachment: When choosing the vertices to which the new vertex
connects, we assume that the probability � that a new vertex will be connected to
vertex i depends on the connectivity ki of that vertex, such that

�(ki) = ki=
∑
j

kj : (4)

After t timesteps the model leads to a random network with N = t + m0 vertices
and mt edges. As Fig. 2a shows, this network evolves into a scale-invariant state,
the probability that a vertex has k edges following a power law with an exponent
model = 2:9 ± 0:1. The scaling exponent is independent of m, the only parameter in
the model. Since the power law observed for real networks describes systems of rather
di�erent sizes at di�erent stages of their development, one expects that a correct model
should provide a distribution whose main features are independent of time. Indeed, as
Fig. 2b demonstrates, P(k) is independent of time (and, subsequently, independent of
the system size N = m0 + t), indicating that despite its continuous growth, the system
organizes itself into a scale-free stationary state.
We have recently developed a continuum theory to calculate analytically the proba-

bility P(k), allowing us to determine exactly the scaling exponent  [22]. The theory
predicted two major results:
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(1) First, the connectivity ki of a vertex i depends on time as

ki(t) = m
(
t
ti

)0:5
; (5)

where the vertex i was added to the system at time ti with connectivity ki(ti)=m (see
Fig. 2b).
(2) Second, the probability density for P(k) follows

P(k) =
@P(ki(t)¡k)

@k
=
2m2t
m0 + t

1
k3
; (6)

predicting

= 3 ; (7)

independent of m. Furthermore, Eq. (6) also predicts that the coe�cient A of the
power-law distribution, P(k) ∼ Ak−, is proportional to the square of the average
connectivity of the network, i.e., A ∼ m2. All these results have been veri�ed using
numerical simulations.

4. Relationship between the scale-free model and the www

It is far from us to suggest that the scale-free model introduced above describes
faithfully the topology of the www. Naturally, the www has a much richer structure,
that cannot be captured by such simple ingredients. For example, the links are not
invariant in time, they constantly change, being either eliminated or rewired to other
documents. Similarly, the www documents are not stable, they are often removed,
and change address. Furthermore, the web pages are structured in domains, that by
themselves have a rather complex hierarchical structure. In order to obtain a faithful
model of the www we need to incorporate these ingredients. Nevertheless, we believe
that our model captures in a minimalist way the main ingredients that are responsible
for the development of the scale free state observed for the www.
Our model predicts =3, while for the www we obtained the out=2:45 and in=2:1,

signi�cantly di�erent values. We do not have a clear answer to this discrepancy yet.
The solution to this problem is expected to come once we gain a better understanding
of the possible universality classes characterizing random networks. For example, we
have recently found that if the vertices are added not sequentially (as we do in the
scale free model) but in a parallel fashion, the scaling exponent changes from =3 to
ln 3=ln 2. This indicates that our model is not unique, but there are other universality
classes describing the development of random networks. Once the factors determining
these universality classes will be understood, we can proceed in understanding the
particular exponents describing the www.
A major assumption in the model was the use of a linear relationship between �(ki)

and ki, given by (4). However, at this point there is nothing to guarantee that �(k) is
linear, i.e., in general we could assume that �(k) ∼ k�, where � 6= 1. The precise form
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of �(k) could be determined numerically by comparing the topology of real networks
at not too distant times. In the absence of such data, the linear relationship seems to
be the most e�cient way to go. In principle, if nonlinearities are present (i.e., � 6= 1),
that could a�ect the nature of the power-law scaling. This problem will be addressed
in future work [23].
In the model we assumed that new links appear only when new vertices are added

to the system. In many systems, including the www, links are added continuously. Our
model can be easily extended to incorporate the addition of new edges. Naturally, if we
add too many edges, the system becomes fully connected. However, in most systems
the addition of new vertices (and the growth of the system) competes with the addition
of new internal links. As long as the growth rate is large enough, we believe that the
system will remain in the universality class of our model, and will continue to display
scale-free features.
Naturally, we need to include the reconnection or rewiring of the existing links. Thus

some links, that were added when a new vertex was added to the system, will break
and reconnect with other vertices, probably still obeying preferential attachment 2 If
reattachment dominates over growth (i.e., addition of new links by new vertices), the
system will undergo a process similar to ripening: the very connected sites will acquire
all links. This will destroy the power-law scaling in the system. However, as long as
the growth process dominates the dynamics of the system, we expect that the scale-free
state will prevail.
The above discussion indicates that there are a number of “end-states” or absorbing

states for random networks, that include the scale-free state, when power-law scaling
prevails at all times, the fully connected state, which will be the absorbing state of the
ER model for large connection probability p, and the ripened state. The precise nature
of the transition between these states is still an open question, and will be the subject
of future studies [23].
Finally, the concept of universality classes has not been properly explored yet in the

context of random network models. For this we have to de�ne scaling exponents that
can be measured for all random networks, whether they are generated by a model or a
natural process. The clustering of these exponents for di�erent systems might indicate
that there are a few generic universality classes characterizing complex networks. Such
studies have the potential to lead to a better understanding of the nature and growth
of random networks in general.
Growth and preferential attachment are mechanisms common to a number of com-

plex systems, including business networks [24], social networks (describing individuals
or organizations), transportation networks [25], etc. Consequently, we expect that the
scale-invariant state, observed in all systems for which detailed data has been available
to us, is a generic property of many complex networks, its applicability reaching far
beyond the www. A better description of these systems would help in understanding

2 Note that a model with such ingredients has been proposed by L.A.N. Amaral and M. Barth�el�emy, Private
communication.
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other complex systems as well, for which so far less topological information is avail-
able, including such important examples as genetic or signaling networks in biologi-
cal systems. Similar mechanisms could explain the origin of the social and economic
disparities governing competitive systems, since the scale-free inhomogeneities are the
inevitable consequence of self-organization due to the local decisions made by the in-
dividual vertices, based on information that is biased towards the more visible (richer)
vertices, irrespective of the nature and the origin of this visibility.
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