Section 2
Mutual Exclusion

The Mutual Exclusion Problem

- The problem concerns a group of processors which occasionally need access to some resource that cannot be used simultaneously by more than a single processor.

- Examples of what the resource may be:
 - The printer or any other output device
 - A record of a shared database or a shared data structure, etc.

- Each processor may need to execute a code segment called critical section, such that at any time:
 - at most one processor is in the critical section
 - If one or more processors try to enter the critical section, then one of them eventually succeeds as long as no processor stays in the critical section forever.
The Mutual Exclusion Problem

Entry (Trying) Section: the code executed in preparation for entering the critical section

Critical Section: the code to be protected from concurrent execution

Exit Section: the code executed upon leaving the critical section

Remainder Section: the rest of the code

Each process cycles through these sections in the order: remainder, entry, critical, exit.

The problem is to design the entry and exit code in a way that guarantees that the mutual exclusion and deadlock-freedom properties are satisfied.

Mutual Exclusion Algorithms

Admissible Executions

• An execution is admissible if for every process \(p_i \), \(p_i \) either takes an infinite number of steps or \(p_i \) ends in the remainder section.

• An algorithm solves the mutual exclusion problem if the following hold:
 - Mutual Exclusion
 In every configuration of every execution, at most one process is in the critical section.
 - No Deadlock
 In every execution, if some process is in the entry section in some configuration, then there is a later configuration in which some process is in the critical section.

• Stronger Progress Property
 - No lockout (starvation-free)
 In every execution, if some processor is in the entry section in a configuration, then there is a later configuration in which that same processor is in the critical section.
Mutual Exclusion Algorithms

Assumptions

- Any variable that is accessed in the entry or the exit section of the algorithm cannot be accessed in any of the other two sections.
- No process stays in the critical section forever.
- The exit section consists of a finite number of steps.

ME Algorithms that use RW Registers

Algorithms

- Algorithms for two processes
- An algorithm that guarantees mutual exclusion and no lockout but uses $O(n)$ registers of unbounded size.
- An algorithm that guarantees mutual exclusion and no lockout using $O(n)$ registers of bounded size.

Lower Bounds

- Any algorithm that provides mutual exclusion, even with the weak property of no deadlock, must use n distinct RW registers, regardless of the size of these registers.
Proposed solution I

Process p_0
while (true) {
 while (turn = 1) noop; //entry
 critical section
 turn = 1 // exit
 remainder section
}

Process p_1
while (true) {
 while (turn = 0) noop; //entry
 critical section
 turn = 0 // exit
 remainder section
}

Does it work?

Proposed Solution II

Process p_0
while (TRUE) {
 flag[0] = true
 while (flag[1]) {skip}
 critical section
 flag[0] = false
 remainder section
}

Process p_1
while (TRUE) {
 flag[1] = true
 while (flag[0]) {skip}
 critical section
 flag[1] = false
 remainder section
}

Does it work?
Proposed solution III

Process p_0

```plaintext
while (TRUE) {
    while (flag[1]) {skip}
    flag[0] = true
    critical section
    flag[0] = false
    remainder section
}
```

Process p_1

```plaintext
while (TRUE) {
    while (flag[0]) {skip}
    flag[1] = true
    critical section
    flag[1] = false
    remainder section
}
```

Does it work?

- flag
 - 0: false
 - 1: false

- Doesn't work
 - Mutual exclusion
 - Deadlock-freedom

Peterson's algorithm

Process p_0

```plaintext
While (TRUE) {
    flag[0] = true
    turn = 1
    while (flag[1] and turn == 1) {skip}
    critical section
    flag[0] = false
    remainder section
}
```

Process p_1

```plaintext
While (TRUE) {
    flag[1] = true
    turn = 0
    while (flag[0] and turn == 0) {skip}
    critical section
    flag[1] = false
    remainder section
}
```
ME Algorithm using Single-Writer binary RW registers

want[0]: SW register written by *p_0* and read by *p_1* with initial value 0; it is set to 1 to identify that process *p_0* wants to enter the critical section
want[1]: symmetric to *want[0]*

Process p_0
while (TRUE) {
3. want[0] = 1;
6. wait until (want[1] == 0);
8. want[0] = 0;
}

Process p_1
while (TRUE) {
1. want[1] = 0;
2. wait until (want[0] == 0);
3. want[1] = 1;
4. if (want[0] == 1) then
5. goto line 1
8. want[1] = 0;
}

Is this correct?
How can we prove it?

Proving Correctness

Theorem
- The algorithm ensures the mutual exclusion property.

Sketch of Proof
- Assume, by contradiction, that at some configuration *C*, both processes are in the critical section
 \[\text{want}[0] = \text{want}[1] = 1. \]
- **Case 1:** Last write of *p_0* to *want[0]* follows the last write of *p_1* to *want[1]*.
 - *p_0* executes line 6 and does not enter the CS
 - Both processes in critical section
 - Contradiction!
- **Case 2:** Last write of *p_1* to *want[1]* follows the last write of *p_0* to *want[0]*.
 - *p_1* executes line 5 and does not enter the CS
 - Both processes in critical section
 - Contradiction!

☺ The algorithm ensures the no-lockout property.
😊 The algorithm does not guarantee lockout freedom.
ME Algorithm using Single-Writer binary RW registers – Symmetric Version

Code for process p_i, i = 0, 1

```plaintext
while (TRUE) {
    1: want[i] = 0;
    2: wait until ((want[1-i] == 0) OR (priority == i));
    3: want[i] = 1;
    4: if (priority == 1-i) then {
        5: if (want[1-i] == 1) then 
goto line 1; }
    6: else wait until (want[1-i] == 0); 
critical section;
    7: priority = 1-i;
    8: want[i] = 0; 
remainder section;
}
```

Proving the No-Deadlock Property

Theorem
- The algorithm ensures the no-deadlock property.

Sketch of Proof
- Suppose in contradiction that from some configuration on at least one process is forever in the entry section and no process enters the critical section.
- **Case 1:** Both processes are forever in the entry section.
 - The value of Priority does not change.
 - Assume, wlog, that Priority = 0 (the case where Priority = 1 is symmetric).
 - One of the two processes cannot be stuck forever in the critical section!
 A contradiction!!!
- **Case 2:** Just one process is forever in the critical section (wlog, assume this holds for p_0).
 - Critical and exit sections are bounded ⇒ after some point want[1] = 0 forever.
 - Process p_0 does not loop forever in the entry section! A contradiction!!!
Proving Lockout Freedom

Theorem

• The algorithm ensures lockout freedom.

Sketch of Proof

• Assume, by way of contradiction, that some process (e.g., \(p_0 \)) is starved \(\Rightarrow \) from some configuration on \(p_0 \) is forever in the entry section.

• Case 1: Suppose \(p_1 \) executes line 7 at some later point.
 - Priority = 0 forever after.
 - \(p_0 \) is stuck executing line 6
 - Thus, want[1] = 1 each time \(p_0 \) checks the condition of line 6.
 This is a contradiction!

• Case 2: \(p_1 \) never executes line 7 at any later point.
 - Since no-deadlock holds, \(p_1 \) is forever in the remainder section.
 - Thus, want[1] = 0 henceforth.
 - \(p_0 \) cannot be stuck in the entry section! A contradiction!!!

ME Algorithms for many processes

- Processes compete pairwise, using a two-process algorithm.
- The pairwise competitions are arranged in a complete binary tree.
- The tree is called the tournament tree.
- Each process begins at a specific leaf of the tree.
- At each level, the winner moves up to the next higher level, and competes with the winner of the competition on the other side.
- The process on the left side plays the role of \(p_0 \), while the process on the right side plays the role of \(p_1 \).
- The process that wins at the root enters the critical section.
ME Algorithms for many processes

```plaintext
procedure Node(v: integer, side: 0..1) {
1: want^v[side] = 0;
2: wait until ((want^v[1-side] == 0)
   OR (priority^v == side));
3: want^v[side] = 1;
4: if (priority^v == 1-side) then {
5: if  (want^v[1-side] == 1) then
goto line 1; }
6: else wait until (want^v[1-side] == 0);
7: if (v == 1) then
9: critical section;
10: else Node(v\[2\], v\%2)
11: priority^v = 1-side;
12: want^v[side] = 0;
}
```

- Tree nodes are numbered. The number of the root is 1. The number of the left child node of a node v is 2v, and the number of the right child of v is 2v+1.
- `want^v[0], want^v[1], priority^v`: variables associated to node v for the instance of 2-ME that is executed at this node.
- Process p_i begins by calling Node(2^k\[i/2\], i \% 2), where k = ⌈log n⌉ - 1.

Tournament ME Algorithm: Correctness Proof

- **Projection** of an execution of the tree algorithm onto some node v
 - We only consider steps that are taken while executing the code in Node(v,0) and Node(v,1)

- **We will show the following:**
 - For each node v_i, the projection of any execution of the tree algorithm onto v is an admissible execution of the symmetric mutual exclusion algorithm for 2 processes, if we view every process that executes Node(v,0) as p_0 and every process that executes Node(v,1) as p_1.
Tournament ME Algorithm: Correctness Proof

More formally:

- Fix an execution \(a = C_0 \varphi_1 C_1 \varphi_2 C_2 \ldots \) of the tournament tree algorithm.
- Let \(a' \) be the subsequence of alternating configurations and events

\[
D_0 \pi_1 D_1 \pi_2 D_2 \ldots
\]

defined inductively as follows:

Base Case: \(D_0 \) is the initial configuration of the 2-processor algorithm.

Induction Hypothesis: Assume that \(a' \) has been defined up to configuration \(D_i \).

Induction Step: Let \(\varphi_i = k \) be the \(i \)-th event of \(a \) that is a step in Node(v,0) or Node(v,1) (suppose, wlog, that \(\varphi_i \) is a step in Node(v,0)).

- Let \(\pi_i = 0 \) (i.e., \(p_0 \) takes this step) and let \(D_i \) be a configuration such that:
 - The variables’ states are those of the variables of node \(v \) in \(C \).
 - The state of \(p_1 \) is the same as in \(D_i \).
 - The state of \(p_0 \) is the same as the state of \(p_k \) in \(C \) except for the id being replaced with 0.

<table>
<thead>
<tr>
<th>Process p4</th>
<th>Process p7</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure Node(6, 0) {</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>1: want[0] = 0; q1</td>
<td>a = C0, q1, C1, q2, C2, q3, C3, q4, C4, q5, C5, q6, C6, q7, C7, q8, C8, q9, C9, q10, C10, q11, C11, q12, C12, q13, C13, q14, C14, q15, C15, q16, C16, q17, C17, q18, C18, q19, C19, q20, C20, q21, C21, q22, C22, q23, C23, q24, C24, q25, C25, q26, C26, q27, C27, q28, C28, q29, C29, q30, C30, q31, C31, q32, C32, q33, C33 ...</td>
</tr>
<tr>
<td>2: wait until ((want[1] == 0) && (priority[1] == 0)); q2</td>
<td>Orange events are steps of Node(3,0) or Node(3,1).</td>
</tr>
<tr>
<td>3: want[1] = 1; q3</td>
<td>(1:) want[1] = 0; q1</td>
</tr>
<tr>
<td>4: if (priority[1] == 1) then { q4</td>
<td></td>
</tr>
<tr>
<td>5: () if (want[1] == 1) then goto line 1; } q6</td>
<td>(2:) wait until ((want[0] == 0) && (priority[0] == 1)); q1</td>
</tr>
<tr>
<td>6: else wait until (want[1] == 0); q7</td>
<td>() else Node(3, 0)</td>
</tr>
<tr>
<td>8: if (3 == 1) then critical section; } q10</td>
<td>(3:) want[1] = 1; q18</td>
</tr>
<tr>
<td>else Node(3, 0)</td>
<td>(4:) if (priority[0] == 0) then { q19</td>
</tr>
<tr>
<td>want[0] = 0; q8</td>
<td>(5:) if (want[0] == 1) then goto line 1; } q20</td>
</tr>
<tr>
<td>wait until ((want[1] == 0) && (priority[1] == 0)); q9</td>
<td>(6:) else wait until (want[0] == 0); q21</td>
</tr>
<tr>
<td>() else Node(3, 1)</td>
<td>(8:) if (7 == 1) then critical section; } q32</td>
</tr>
<tr>
<td>() else Node(3, 1)</td>
<td>() else Node(3, 1)</td>
</tr>
<tr>
<td>() else Node(3, 1)</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>() else Node(3, 1)</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>want[1] = 0; q25</td>
<td>a = C0, q1, C1, q2, C2, q3, C3, q4, C4, q5, C5, q6, C6, q7, C7, q8, C8, q9, C9, q10, C10, q11, C11, q12, C12, q13, C13, q14, C14, q15, C15, q16, C16, q17, C17, q18, C18, q19, C19, q20, C20, q21, C21, q22, C22, q23, C23, q24, C24, q25, C25, q26, C26, q27, C27, q28, C28, q29, C29, q30, C30, q31, C31, q32, C32, q33, C33 ...</td>
</tr>
<tr>
<td>wait until ((want[0] == 0) && (priority[0] == 0)); q26</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>() else Node(3, 1)</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>want[1] = 0; q27</td>
<td>a = C0, q1, C1, q2, C2, q3, C3, q4, C4, q5, C5, q6, C6, q7, C7, q8, C8, q9, C9, q10, C10, q11, C11, q12, C12, q13, C13, q14, C14, q15, C15, q16, C16, q17, C17, q18, C18, q19, C19, q20, C20, q21, C21, q22, C22, q23, C23, q24, C24, q25, C25, q26, C26, q27, C27, q28, C28, q29, C29, q30, C30, q31, C31, q32, C32, q33, C33 ...</td>
</tr>
<tr>
<td>want[1] = 0; q27</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>wait until ((want[0] == 0) && (priority[0] == 0)); q26</td>
<td>a = C0, q1, C1, q2, C2, q3, C3, q4, C4, q5, C5, q6, C6, q7, C7, q8, C8, q9, C9, q10, C10, q11, C11, q12, C12, q13, C13, q14, C14, q15, C15, q16, C16, q17, C17, q18, C18, q19, C19, q20, C20, q21, C21, q22, C22, q23, C23, q24, C24, q25, C25, q26, C26, q27, C27, q28, C28, q29, C29, q30, C30, q31, C31, q32, C32, q33, C33 ...</td>
</tr>
<tr>
<td>want[1] = 1; q28</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>if (priority[1] == 1) then { q29</td>
<td>a = C0, q1, C1, q2, C2, q3, C3, q4, C4, q5, C5, q6, C6, q7, C7, q8, C8, q9, C9, q10, C10, q11, C11, q12, C12, q13, C13, q14, C14, q15, C15, q16, C16, q17, C17, q18, C18, q19, C19, q20, C20, q21, C21, q22, C22, q23, C23, q24, C24, q25, C25, q26, C26, q27, C27, q28, C28, q29, C29, q30, C30, q31, C31, q32, C32, q33, C33 ...</td>
</tr>
<tr>
<td>() else wait until (want[1] == 0); q30</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>() else wait until (want[1] == 0); q31</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>() else wait until (want[1] == 0); q32</td>
<td>procedure Node(7, 1) {</td>
</tr>
<tr>
<td>() else wait until (want[1] == 0); q33</td>
<td>procedure Node(7, 1) {</td>
</tr>
</tbody>
</table>
Tournament ME: Example Execution

\[a = c_0, \phi_1, c_1, \phi_2, c_2, \phi_3, c_3, \phi_4, c_4, \phi_5, c_5, \phi_6, c_6, \phi_7, c_7, \phi_8, c_8, \phi_9, c_9, \phi_{10}, c_{10}, \phi_{11}, c_{11}, \phi_{12}, c_{12}, \phi_{13}, c_{13}, \phi_{14}, c_{14}, \phi_{15}, c_{15}, \phi_{16}, c_{16}, \phi_{17}, c_{17}, \phi_{18}, c_{18}, \phi_{19}, c_{19}, \phi_{20}, c_{20}, \phi_{21}, c_{21}, \phi_{22}, c_{22}, \phi_{23}, c_{23}, \phi_{24}, c_{24}, \phi_{25}, c_{25}, \phi_{26}, c_{26}, \phi_{27}, c_{27}, \phi_{28}, c_{28}, \phi_{29}, c_{29}, \phi_{30}, c_{30}, \phi_{31}, c_{31}, \phi_{32}, c_{32}, \phi_{33}, c_{33} \]

\[a^3 = d_0, \pi_1, d_1, \pi_2, d_2, \pi_3, d_3, \pi_4, d_4, \pi_5, d_5, \pi_6, d_6, \pi_7, d_7, \pi_8, d_8, \pi_9, d_9, \pi_{10}, d_{10}, \pi_{11}, d_{11}, \pi_{12}, d_{12} \]

Tournament ME Algorithm: Correctness Proof

Lemma

For every \(v \), \(a^v \) is an execution of the 2-process algorithm.

Proof

- The code of \(\text{Node}(v,i) \) and the code of the 2-process algorithm for \(p_i, i = 0,1 \), are the same.
- The only thing to check is that only one process performs instructions of \(\text{Node}(v,i) \) at a time. We prove this by induction on the level of \(v \), starting at the leaves.

 Base Case: It holds by construction.

 Induction Hypothesis: Let \(v \) be any internal node of the tournament tree.

 Induction Step: We prove the claim for \(v \).
 - If a process executes instructions of, e.g., \(\text{Node}(v,0) \), then it is in the critical section for \(v \)'s left child.
 - By induction hypothesis and the fact that the 2-process algorithm guarantees mutual exclusion, only one process at a time is in the critical section for \(v \)'s left child. \(\rightarrow \) The claim follows.
 - Similarly, only one process at a time executes instructions of \(\text{Node}(v,1) \).
Tournament ME Algorithm: Correctness Proof

Lemma
- For all v, if a is an admissible execution of the tournament algorithm, then a^v is an admissible execution of the 2-process algorithm.

Proof
- We prove that in a^v no process stays in the critical section forever.
- The proof is performed by induction on the level of v, starting from the root.

Theorem
- The Tournament Algorithm provides mutual exclusion.

Proof
- The restriction of any execution to the root of the tree is an admissible execution of the 2-process algorithm.
- Since this algorithm provides mutual exclusion, the Tournament algorithm also provides mutual exclusion.

The Bakery Algorithm

for each i, $0 ≤ i ≤ n-1$:
- Choosing[i]: it has the value TRUE as long as p_i is choosing a number
- Number[i]: the number chosen by p_i

Code for process p_i, $0 ≤ i ≤ n-1$

Initially, Number[i] = 0, και Choosing[i] = FALSE, for each i, $0 ≤ i ≤ n-1$

Choosing[i] = TRUE;
Number[i] = max{Number[0], …, Number[n-1]}+1;
Choosing[i] = FALSE;
for j = 0 to $n-1$, $j ≠ i$, do
 wait until Choosing[j] == FALSE;
 wait until ((Number[j] == 0) OR ((Number[j], j) > (Number[i], i)));
critical section;
Number[i] = 0;
remainder section;
The Bakery Algorithm

Lemma
- In every configuration C of any execution a, if p_i is in the critical section, and for some $k \neq i$, $\text{Number}[k] \neq 0$, then $(\text{Number}[k], k) > (\text{Number}[i], i)$.

Sketch of Proof
- Number[i] > 0
- p_i has finished the execution of the for loop (in particular, the 2nd wait statement for $j = k$).
- **Case 1**: p_i read that $\text{Number}[k] == 0$
- **Case 2**: p_i read $(\text{Number}[k], k) > (\text{Number}[i], i)$

Theorem
- The Bakery algorithm ensures the mutual exclusion property.

The Bakery Algorithm

Theorem
- The Bakery algorithm provides no lockout.

Sketch of proof
- Assume, by the way of contradiction, that there is a starved process.
- All processes wishing to enter the critical section eventually finish choosing a number.
- Let p_j be the process with the smallest $(\text{Number}[j], j)$ that is starved.
- All processes entering the critical section after p_j has chosen its number will choose greater numbers, and therefore will not enter the critical section before p_j.
- Each process p_k with $\text{Number}[k] < \text{Number}[j]$ will enter the critical section and exit it.
- Then, p_j will pass all tests in the for loop and enter the critical section.

Space Complexity
- The Bakery Algorithm uses $2n$ single-writer RW registers. The n Choosing[j] variables are binary, while the n Number[j] variables are unbounded, $0 \leq j \leq n-1$.
Bakery Algorithm versus

Properties of the Bakery Algorithm

- The Bakery Algorithm satisfies mutual exclusion & FIFO.
- The size of number[i] is unbounded.

- Bakery (FIFO, unbounded)
- The Black-White Bakery Algorithm
 - FIFO
 - Bounded space
 - + one bit

Black-White Bakery Algorithm

choosing[i] = true;
mycolor[i] = color;
number[i] = 1 + max{number[j] | (1 ≤ j ≤ n) ∧ (mycolor[j] = mycolor[i])};
choosing[i] = false;
for j = 0 to n {
 await (choosing[j] == false);
 if (mycolor[j] == mycolor[i])
 then await (number[j] == 0) ∨ (number[j],j) ≥ (number[i],i) ∨
 (mycolor[j] ≠ mycolor[i]);
 else await (number[j] == 0) ∨ (mycolor[i] ≠ color) ∨
 (mycolor[j] == mycolor[i]);
}
critical section;
if (mycolor[i] == black) then color = white;
else color = black;
number[i] = 0;
Tight space bounds for mutual exclusion using atomic registers

• All mutual exclusion algorithms presented so far use at least \(n \) shared r/w registers. This is not an accident!

Any mutual exclusion algorithm using only shared read-write registers must use at least \(n \) such registers.

• This is so:
 - even if we require the basic conditions - mutual exclusion and progress, and
 - regardless of the size of the registers.

Tight space bounds for mutual exclusion using r/w registers - Useful Definitions

• A configuration \(C \) is called idle (or inactive) if no process is in the entry, critical or exit section at \(C \). All processes are in the remainder section

• A process \(p \) covers some register \(R \) at some configuration \(C \), if at its next step, \(p \) will perform a write into \(R \), overwriting whatever was written in \(R \) before.

• For any \(k, 1 \leq k \leq n \), we say that a configuration \(C \) is \(k \)-reachable from another configuration \(C' \) if there is an execution fragment starting from \(C \) and ending at \(C' \) which contains steps only of processes \(p_0, \ldots, p_k \).

An execution fragment \(a \) is called \(p \)-only if \(p \) is the only process taking steps in \(a \). We say that \(a \) is \(S \)-only (where \(S \) is a set of processes) if only processes belonging to \(S \) take steps in \(a \).

only \(p \) takes steps in \(a' \)
\(k \)-reachable from

only execution fragment
Lower Bound - Useful Definitions

- **The schedule** of an execution a is the sequence of process indices that take steps in a (in the same order as in a).
- **Example**
 - $a = C_0, i_1, C_1, i_2, C_2, i_3, ...$
 - $\sigma(a) = i_1, i_2, i_3, ...$
- A configuration C and a schedule σ uniquely determine an execution fragment which we denote by $\text{exec}(C, \sigma)$.
- For each configuration C, let $\text{mem}(C) = (r_0, ..., r_{m-1})$ be the vector of register values in C.
- A configuration C is similar with or indistinguishable from some other configuration C' to some process set S, if each process of S is in the same state at C and C' and $\text{mem}(C) = \text{mem}(C')$.

If C is similar with C' to S, we write $C \sim^S C'$.

Lower Bound - Simple Facts

- **Lemma 1**
 Suppose that C is a reachable idle configuration and let p_i be any process. Then, there is an execution fragment starting from C and involving steps of process p_i only, in which p_i enters the critical section.

- **Lemma 2**
 Suppose that C and C' are reachable configurations that are indistinguishable to some process p_i and suppose that C' is an idle configuration. Then, there is an execution fragment starting from C and involving steps of process p_i only, in which p_i enters the critical section.
Lower Bound - Simple Facts

- **Lemma 3**
 Suppose that \(C \) is a reachable configuration where some process \(p_i \) is in the remainder section. Consider an execution fragment \(\alpha_1 \) starting from \(C \) such that (1) \(\alpha_1 \) involves steps of \(p_i \) only and (2) \(p_i \) is in the critical section in the final configuration of \(\alpha_1 \). Then, \(\alpha_1 \) contains a write by \(p_i \) to some shared register.

- **Proof**
 \[C = <q_{i0}, \ldots, q_{in}, \text{mem}(C)> \]
 \[C' = <q_{i0}, \ldots, q_{in}, \text{mem}(C)> \]
 \[\alpha_2: \text{execution fragment not containing steps by } p_i \]
 \[p_i \text{ and } p_i \text{ are in the critical section.} \]
 \[\forall j \neq i, \text{exec}(C, \sigma(a_2)) \]
 \[A \text{ contradiction!} \]

Lower Bound

Definition
- A register is called **single-writer** if it can be written by only one process.

Theorem 1 (Lower Bound for Single-Writer Multi-Reader R/W Registers)
- If algorithm \(A \) solves the mutual exclusion problem for \(n > 1 \) processes, using only single-writer r/w shared registers, then \(A \) must use at least \(n \) shared registers.

Proof
- Immediate from Lemma 3

Theorem 2 (Lower Bound for Multi-Writer R/W Registers)
- If algorithm \(A \) solves the mutual exclusion problem for \(n > 1 \) processes, using only r/w shared registers, then \(A \) must use at least \(n \) shared registers.
Lower Bound

Lemma 4 (Generalized Version of Lemma 3)

- Let \(C \) be a reachable configuration in which process \(p_i \) is in the remainder section. Consider an execution fragment \(a_1 \) starting from \(C \) such that (1) \(a_1 \) involves steps of \(p_i \) only and (2) \(p_i \) is in the critical section in the final configuration of \(a_1 \).

Then, \(a_1 \) contains a write by \(p_i \) to some shared register that is not covered by any other process in \(C \).

Proof

Left as an exercise! (for Wednesday, 10/10/12)

Lower Bound - Two processes

Theorem 2.1 (Special Case: just two processes)

- There is no algorithm that solves the mutual exclusion problem for two processes using only one R/W shared register.

Proof

Assume, by contradiction, that \(A \) is such an algorithm.

Let \(x \) be the unique shared r/w register that it uses.

Denote by \(C_0 \) the initial state of the algorithm.

We construct an execution \(a \) that violates mutual exclusion!
Lower Bound - Two processes

Theorem 2.2
- There is no algorithm that solves the mutual exclusion problem for three processes using only two R/W shared registers.

Proof
- Assume, by contradiction, that A is such an algorithm.
- Let x, y be the shared r/w registers that it uses.
- We construct an execution α that violates mutual exclusion.

Strategy
1. Starting from C₀, we will maneuver processes p₀ and p₁ to a point where each covers one of the two variables x and y. Moreover, the resulting configuration C will be indistinguishable to process p₂ from some reachable idle state.
2. We run process p₂ on its own from C until it reaches the critical section.
3. We let each of processes p₀ and p₁ take a step. Since each covers one of the two variables, they can eliminate all traces of process p₂'s execution.
4. Then, we let p₀ and p₁ continue taking steps until one of them enters the critical section.
5. At this point we have two processes in the critical section, which is a contradiction!

Lower Bound - Three processes

Theorem 2.2 (Special Case: three processes)
- There is no algorithm that solves the mutual exclusion problem for three processes using only two R/W shared registers.

Proof
- Assume, by contradiction, that A is such an algorithm.
- Let x, y be the shared r/w registers that it uses.
- We construct an execution α that violates mutual exclusion.

Strategy
1. Starting from C₀, we will maneuver processes p₀ and p₁ to a point where each covers one of the two variables x and y. Moreover, the resulting configuration C will be indistinguishable to process p₂ from some reachable idle state.
2. We run process p₂ on its own from C until it reaches the critical section.
3. We let each of processes p₀ and p₁ take a step. Since each covers one of the two variables, they can eliminate all traces of process p₂'s execution.
4. Then, we let p₀ and p₁ continue taking steps until one of them enters the critical section.
5. At this point we have two processes in the critical section, which is a contradiction!
Lower Bound - Three processes

How can we construct an execution such that at its final configuration C', processes p_0 and p_1 cover both registers x and y, yet C is indistinguishable to an idle configuration to p_2?

In two out of the three configurations S_1, S_2, S_3, process p_0 covers the same register. Wlog, assume that in S_1 and S_3, p_0 covers register x. Let $S'_1 = C_0$.

If we run p_1 alone starting from S_1, p_1 will enter its critical section since $S_1 \sim S'_0$. By Lemma 4, in this execution, p_1 writes to y.

We now apply steps 2, 3, 4 and 5 of our strategy to derive a contradiction!
Lower Bound - The General Case

Lemma 5
Suppose A solves the mutual exclusion problem for n > 1 processes using exactly n-1 r/w shared registers. Let C be any reachable idle configuration. Suppose 1 ≤ k ≤ n-1. Then, there are two configurations C' and C'', each k-reachable from C, satisfying the following properties:
1. k distinct registers are covered by processes p_o, ..., p_k in C'.
2. C' is an idle configuration.
3. C' ~ C'', for all i, k ≤ i ≤ n-1.

Proof: By induction on k.
Base Case: We run process p_o alone until it first covers a shared register. Let C' be the resulting configuration and C'' = C_o. Then, all properties hold.
Induction Step: Natural generalization of the proof of Theorem 2.2, where similar arguments as those for proving the first step of the employed strategy are used.

Proof of Theorem 2:
• By Lemma 5, there are two configurations C' and C'', each (n-1)-reachable from C_o, such that:
 - all n-1 shared r/w registers are covered by processors p_0, ..., p_{n-2} in C'
 - C' is an idle configuration.
 - C ~ C''.
• There exists an (n-1)-only execution fragment α from C' in which p_{n-1} ends up in the critical section.
• In α, p_{n-1} must write into some register which is not covered in C'.
• However, all n-1 are covered in C'. This is a contradiction!

A Tight Upper Bound - The One-Bit Algorithm

Code of process p_i, i ∈ {1, ..., n}

```
repeat {
    b[i] = true; j = 1;
    while (b[i] == true) and (j < i) {
        if (b[j] == true) {
            b[i] = false; await (b[j] == false);
        }
        j = j+1
    }
}
```
until (b[i] == true);
for (j = i+1 to n)
 await (b[j] == false);
critical section
b[i] = false;

Properties of the One-Bit Algorithm
• Satisfies mutual exclusion and deadlock-freedom
• Starvation is possible
• It is not symmetric
• It uses only n shared bits and hence it is space optimal