
Chapter 11

Circular Drawing of Graphs

11.1 Introduction

Graphs are used to represent many kinds of information structures: computer, telecom-
munication, social networks, entity-relationship diagrams, data flow charts, resource alloca-
tion maps, and much more. Graph Visualization is the study of techniques which produce
drawings of graphs. These visualizations provide a snapshot of each graph and allow experts
to be free from the work of organizing the nodes and edges and thereby allowing more time
to interpret the composition of these structures.

A circular graph drawing (see Figure 11.1 for an example) is a visualization of a graph
with the following characteristics:

• The graph is partitioned into clusters,

• The nodes of each cluster are placed onto the circumference of an embedding circle,
and

• Each edge is drawn as a straight line.

There are many applications which would be strengthened by an accompanying circular
graph drawing. For example, circular drawing techniques could be added to tools which

f

e

a

b

d

c

h

i

i

g

e

g

h

a

c

d

b

f

j

i

j

i

g

e

bc

a

d

f

h

Figure 11.1: A graph with arbitrary coordinates for the nodes and a circular drawing of the
same graph as produced by an implementation of our algorithm.

1

manipulate telecommunication, computer, and social networks to show clustered views of
those information structures. The partitioning of the graph into clusters can show structural
information such as biconnectivity, or the clusters can highlight semantic qualities of the
network such as sub-nets. Emphasizing natural group structures within the topology of the
network is vital to pin-point strengths and weaknesses within that design. It is essential
that the number of edge crossings within each cluster remain low in order to reduce the
visual complexity of the resulting drawings. The remainder of this chapter is organized as
follows: In section 2 we will discuss how to draw a graph on a single embedding circle with
a low number of crossings. In section 3 and 4 algorithms for drawing graphs on multiple
embedding circles will be discussed. In section 3 the circles will be determined by properties
of the graph, while in section 4 we will consider user-defined groups of graphs.

11.2 Circular Drawing on a single embedding circle

In this chapter we will present algorithms that compute a permutation of vertices such
that their placement on the periphery of a circle in this order will result in a low number of
crossings. In general, the problem of minimizing the number of crossings is NP-complete.
The algorithms we will describe guarantee that they produce a cross-free visualization if this
is possible. In any other case, experimental results have shown a low number of crossings.
We will divide the graphs into three categories each of which will be examined separately.
The first class is trees, the second is biconnected graphs, and the third all other kinds of
graphs.

11.2.1 Circular drawing of trees

When the graph G(V, E) to visualize is a tree, there is always a way to place the vertices
on the periphery of a circle in such a way that no two edges cross. The order of each vertex
can simply be the discovery time of the vertex during a depth-first search traversal of the
tree. The procedure takes O(|V |+|E|) = (|V |) time since for every tree we have |E| = |V |−1.
Figure 11.2 illustrates an example.

Figure 11.2: Circular drawing of a tree without crossings

11.2.2 Circular drawing of biconnected graphs

In this section, we are interested in biconnected graphs. The reason for this is that if
a biconnected graph admits a visualization with no crossings, there exists an algorithm for

2

finding this embedding. Slight modification of this algorithm leads in a general algorithm
which gives a small number of crossings in the general case.

First we shall introduce the aspect of an outerplanar graph

Definition 11.1 A graph is outerplanar iff it can be drawn on the plane such that all its
vertices lie on the boundary of a single phase and no two edges cross.

The requirement of placing all nodes on the periphery of some embedding circle is
equivalent to placing all nodes on a single face (the external face) of some embedding.
Thus, we would at least like to be able to recognize outerplanar graphs and draw them in a
way that no crossings appear. The reason for concentrating on biconnected graphs, is that
there is exactly one way to place the vertices of an outerplanar biconnected graph on the
periphery of a circle without creating crossings.

Theorem 11.1 There exists only one clockwise ordering of the nodes in a biconnected
outerplanar graph G such that the drawing of G with the nodes in that order around the
embedding circle is plane.

Proof . It is obvious that any Hamilton circle, can be drawn on the periphery of an
embedding circle in exactly one way. The ordering of the vertices has to be the same as
in the hamilton circuit. In figure 11.3 we can see an example of a non-planar drawing of a
hamilton circle.

Figure 11.3: A non-planar drawing of a simple cycle.

So in order to prove the theorem it suffices to show that every outerplanar biconnected
graph is hamiltonian. We will prove this by contradiction. So let us say that an outerplanar
biconnected graph is not hamiltonian. Let us consider the cross-free embedding E of the
graph on a circle. Then there exists at least one pair of vertices that are placed succes-
sively and are not neighbors,say u,v (figure 11.4). If we visit all vertices adjacent to u in
a clockwise order starting from u, let w be the vertex we visit last. If we repeat the same
procedure for vertex v but in counterclockwise order this time, the vertex we visit last has
to be a vertex z appearing not later than w. If we meet z after w, it would mean that
we would have at least one crossing, as the red line in figure ilustrates.But the drawing is
outerplanar so this is impossible. This means that either w=z, or z appears before w, in a
counterclockwise traverse of the periphery starting from v. Furthermore no edge with an
endpoint in arc û, v can have its other endpoint in ˇu, v otherwise we would have crossings.
This means that if z 6= w the graph is not connected, since no path connects u and v. On
the other hand, if z = w the removal of this vertex would result in a disconnected graph
for the same reason. This means the the graph is not biconnected. Both of these cases

3

contradict the fact that we have a biconnected outerplanar graph.
So every outerplanar biconnected graph is hamiltonian. We know that it admits an out-
erplanar drawing by definition of an outerplanar graph, and this is unique because of the
existence of a hamilton circuit. In addition, there is exactly one Hamilton circuit, other-
wise, one of the Hamilton circuits would not be on the periphery, which according to the
previous, would result in crossings. 2

Figure 11.4: Any biconnected outerplanar graph is hamiltonian.

From the above we can see that in case of a biconnected outerplanar graph, the hamilton
path has to appear on the periphery of the circle. The edges that are on the outer face are
called External/Internal since one of the faces they belong to is the external face and the
other internal. All other edges are Internal/Internal. This means that in order to find an
outerplanar drawing it suffices to find all the External/Internal edges, since they build the
hamilton circuit. Equivalently, we can find all Internal/Internal edges.

Biconnected outerplanar graphs have a series of properties that can help towards this
direction.

Theorem 11.2 [12] A graph G with n nodes is outerplanar if and only if either G is a
triangle or

1. G has at most 2n− 3 edges,

2. G has at least two degree two nodes,

3. No edge of G lies on more than two triangles, and

4. For any degree two node u which is adjacent to nodes v and w, the graph G minus
node u plus the edge (v,w) (if not already in G) is also outerplanar.

Proof
We will only prove one direction of the theorem, that for every outerplanar graph the pre-
vious criteria hold.
1. For every outerplanar graph G, |E| 5 2|V | − 3

Consider a n-polygon. This is a hamilton circle of n vertices so it has n edges. If we
select an arbitrary vertex u and draw edges towards all other vertices we will add n-3 more
edges, edges towards all vertices except u and its two adjacent vertices in the hamilton
circuit (figure 11.5). So we have an obviously outerplanar graph with 2|V | − 3 edges. Now

4

it suffices to show that no outerplanar graph can have more than 2|V | − 3 edges. So let
such a graph G(V,E) , |E| > 2|V | − 3 exist. If we add a vertex on the outer face and draw
edges towards all other vertices we obtain a planar graph G’. This appears in figure 11.6
Then for the new graph G′ we have:
|V ′| = |V |+ 1
|E′| = E|+ |V | > 3|V | − 3 = 3|V ′| − 6
But G’ is planar, so Euler formula holds. Then |V ′| + |F ′| = |E′| + 2. We know that
|F ′| < 2|E′|/3, so |E′|−|V ′|+2 < 2|E′|/3−2 ⇒ |E′| < 3|V ′|−6. But this is a contradiction,
so there exists no outerplanar graph with more than 2|V | − 3 edges.

Figure 11.5: An outerplanar graph with 2n-3 edges.

Figure 11.6: No outerplanar graph has more than 2n-3 edges.

2. There are at least two vertices with degree at most two.

Consider the weak dual of an outerplanar graph. This is the dual of the graph without
the vertex that corresponds to the external face. The weak dual of an outerplanar graph is
a tree. If it was not it would contain at least one circle. In the case of a circle appearing
in the weak dual graph, the original graph can not be outerplanar. Figure 11.7 shows the
case for a minimum circle (triangle). The fact that the weak dual is a tree means that it
has at least two leaves. These leaves correspond to faces in the original graph with only
one internal edge. So there are at least two faces which have only one internal edge each,
consequently at least two external edges. This appears in figure 11.8. At least one ver-
tex exists between ui and uj which has degree 2. Since we have at least two leaves in the
weak dual graph, we have at least two such cases, so at least two vertices of degree at most 2.

5

Figure 11.7: The weak dual of an outerplanar graph can not contain a circle

ui

uk

uj

Figure 11.8: At least one vertex with degree 2

3. No edge belongs to more than two triangles.

We will try to create an outerplanar embedding of a graph with an edge adjacent to
three triangles and find out that this is impossible. Consider a triangle T and one edge of
it, namely e. We can not add a triangle with its third point in arc (u,v) or (v,w) without
creating one crossing (figure 11.9). So we can only add a vertex z in (u,w) (figure 11.10).
But then for the same reason as earlier, we can not add a vertex in arc(u,z) or (z,w). This
means that we can add no more vertex on the periphery of the circle in order to build a
triangle with e as an edge in such a way that the graph remains outerplanar.

e

w

v

u

Figure 11.9: An edge belonging to one triangle

4. For any degree two node u which is adjacent to nodes v and w, the graph G minus
node u plus the edge (v,w) (if not already in G) is also outerplanar

Since the graph is outerplanar, there can be no edges going from a vertex in arc(v, w)
to some other vertex outside it, since it would create a crossing. Thus the addition of (v, w)
can not create a crossing as seen in figure 11.11. Furthermore, the removal of u can not
create a crossing. 2

6

e

w

v

u

z

Figure 11.10: An edge belonging to two triangles

e

w

u

w

Figure 11.11: (u, v) cannot create crossings

In order to produce an outerplanar drawing of a biconnected outerlanar graph, we have
to find its Hamilton circuit. Placing this on the periphery of a circle will give the required
drawing. We know that both of the edges of a degree-2 vertex belong in any Hamilton
circuit of the graph (if any exists). Based on this idea and the fact that any biconnected
outerplanar graph has at least two degree-2 vertices, according to the previous theorem, we
can start decomposing the graph removing such vertices sequentially. As stated earlier, the
removal of a degree-2 vertex u followed by the addition of an edge between its neighbors
(if it does not already exist), leads to a biconnected graph and the procedure can go on. If
we add such an edge, we call it triangulation edge, otherwise it is called a pair edge. The
edge between the neighbors of a removed vertex (added or already existing) now appears
on the periphery of the circle, without being initially external. Since it is either an internal,
or a triangulation (added) edge, we mark it. We repeat this procedure, until the graph is
decomposed into a triangle. At this point all the internal edges have been stored and all
external edges have been removed when deleting some vertex, without having been stored.
The only exception can be the edges in the triangle left. If any edge (u, v) in the triangle left
is internal at some point during the decomposition there was one vertex between u and v. Its
removal implies that the edge between its neighbors, namely (u, v) has been marked. So all
internal edges have been stored. Additionally, we have stored any triangulation edges that
have been added. If we take the original graph and remove all stored edges, we obtain the
Hamilton circuit. Applying a depth first search traversal will give us the required ordering
of the vertices on the periphery of the embedding circle. In addition, in every iteration we
prefer the degree-2 vertex we choose to be a neighbor of a previously removed vertex, if
possible of the vertex removed last. We call all vertices adjacent to the last removed vertex
wavefront nodes, and all vertices adjacent to some previously removed vertex wavecenter
nodes. The names are inspired by the wave-like fashion a graph is decomposed using this
procedure.

In the general case of a biconnected graph, not necessarily outerplanar, we face some
problems.

7

1. It is not always possible to have a degree-2 vertex. In this case we choose a lowest
degree node with the following priority. A wavefront node, a wavecenter node, any
lowest degree node. Furthermore, we do not have only two neighbors. Then, in order
to add and mark triangulation edges, or mark pair edges, we check the neighbors of
the node to remove consecutively, rather than checking all possible combinations. In
other words, the neighbors are ordered e.g. in increasing degree order, and we only
check the first with the second, the second with the third and so on. Note that we do
not check first with the last.

2. It is not always the case that after the decomposition and edge removal steps are
completed we will the Hamilton circuit. We do not even know if one exists. But
this decomposition and edge removal has given a sparser graph. We can apply some
longest path heuristic, such as finding the longest path of a depth first tree, and place
it on the embedding circle. Any vertices that have not been placed yet, are placed next
to as many neighbors as possible (2,1,0), so as to guarantee that at least a number of
edges will not produce crossings.

Algorithm Circular
Input: A biconnected graph, G = (V, E).
Output: A circular drawing Γ of G such that each node in V lies on the periphery of a
single embedding circle.

1. Bucket sort the nodes by ascending degree into a table T .
2. Set counter to 1.
3. While counter ≤ n− 3
4. If a wave front node u has lowest degree then currentNode = u.
5. Else If a wave center node v has lowest degree then

currentNode = v.
6. Else set currentNode to be some node with lowest degree.
7. Visit the adjacent nodes consecutively. For each two nodes,
8. If a pair edge exists place the edge into removalList.
9. Else place a triangulation edge between the current pair of

neighbors and also into removalList.
10. Update the location of currentNode’s neighbors in T .
11. Remove currentNode and incident edges from G.
12. Increment counter by 1.
13. Restore G to its original topology.
14. Remove the edges in removalList from G.
15. Perform a DFS (or a longest path heuristic) on G.
16. Place the resulting longest path onto the embedding circle.
17. If there are any nodes which have not been placed then place the remaining nodes

into the embedding order with the following priority:
(i) between two neighbors, (ii) next to one neighbor, (iii) next to
zero neighbors.

In the following figures appears an example of the execution of the algorithm.

8

1

9

2

7

3

65

10

4

8

1

9

2

7

3

65

10

4

8

1

9

2

7

3

65

10

4

8

1

9

2

7

3

65

10

4

8

First we choose vertex 1. We check for edge(2,10), which exists. We store it and remove
vertex 1. Next, we choose a lowest-degree neighbor of the removed vertex 1, which is 2.
Then we check for edge (3,10) which exists. We store it and remove vertex 2.

Next we select a lowest degree neighbor of vertex 2. This is vertex 3. We check for edge
(4,10). It exists so we store it and remove vertex 3. Similarly we can select vertex 10 and
check for edge (4,9). It does not exist. So we add edge (4,9) which is a triangulation edge,
store it and remove vertex 10

1

9

2

7

3

65

4

8

1

9

2

7

3

65

4

8

We continue choosing vertex 9, and check for edge (4,8). It exists so we store it and
remove vertex 9. Next, for vertex 8 we check for edge(4,7) which does not exist. We add it
to the graph and store it. After this, we remove vertex 8.

9

1

9

2

7

3

65

4

8

1

9

2

7

3

65

4

8

In the same way, we select vertex 4 and check for edge (5,7), which exists. So we mark.
Now we have only three vertices left, so this phase of the algorithm is completed.

1

9

2

7

3

65

10

4

8

1

9

2

7

3

4

8

1

9

2

7

3

6

5

10

4

8

Now we restore the graph and remove all stored edges. Since the graph is outerplanar,
we have the Hamilton circle left. A depth first search gives a hamilton path and placing
the longest path (which is the path itself) gives the final result.

10

11.2.3 Computational Complexity

The number of triangulation edges added to G over the course of the algorithm is at
most

∑n−3
i=1 minDegi − 1, where minDegi is the minimum degree found in G at the ith

iteration of the While loop. We postulate that minDegi ≤ avgDeg before the ith iteration,
∀i ≥ 1 and where avgDeg is the average degree of the nodes in the original graph G.

Lemma 11.1 minDegi ≤ avgDeg before the ith iteration, ∀i ≥ 1.

Proof (by induction)
Base (for i = 1): Clearly true.

Inductive hypothesis: Assume that minDegi ≤ avgDeg before the ith iteration,
∀i ≤ k.

Inductive step: Prove minDegk+1 ≤ avgDeg before the k + 1st iteration.
Let vk+1 be the vertex that has minDegi+1 (and will be chosen at the k+1st iteration).

Let vertex vk be the vertex chosen during the kth iteration (i.e., had minDegi). There are
two cases:

1. vk+1 is not a neighbor of vk. In this case its degree has not increased during the
kth iteration. Hence the Inductive hypothesis guarantees that the degree of vk+1 ≤
avgDeg.

2. vk+1 is a neighbor of vk. In this case its degree may have increased during the kth
iteration. However, there are two nodes (the first and last nodes in the chosen order)
whose degree has not increased since we removed one edge and added to it at most
one edge during the removal of vk. We can choose vk+1 to be one of those two nodes
or another neighbor if it has lower degree. Hence the Inductive hypothesis guarantees
that the degree of vk+1 ≤ avgDeg.

2

It is important to note that the visit of the neighbors starts from the lowest degree
neighbor and proceeds cyclically around the adjacency list. Since we know that minDegi ≤
avgDeg before the ith iteration, ∀i ≥ 1, we also know that

n−3∑

i=1

minDegi − 1 <

n∑

i=1

minDegi ≤
n∑

i=1

avgDeg = 2m. (11.1)

Therefore, the number of triangulation edges added is O(m).
This observation means that steps 3 - 13 require O(E) time, since this is where all

possible pair and triangulation edges are manipulated. The bucket sorting takes O(n)time,
while steps 13-16 obviously require O(E) time. Finally, Step 17 also requires O(E) time
since at most

∑n
i=1 deg(vi) = O(m) possible placements are reviewed. Thus, the whole

algorithm requires O(E) time. Additionally, if we consider that in any outerplanar graph
we have |E| < 2|V | − 3 and the fact that the algorithm draws biconnected outerplanar
graphs so that no two edges cross, we conclude with the following theorem

Theorem 11.3 Algorithm Circular produces a plane circular drawing of any outerplanar
graph in O(V) time.

11

We can slightly modify the algorithm so that it runs faster for all non-outerplanar
biconnected graphs. If a biconnected graph is not outerplanar, we can not find a cross-
free embedding. We can determine at run time that a graph is not outerplanar with no
additional cost if the lowest degree is greater than 2 at some time. If this is the case, we
can stop adding triangulation edges, since their purpose was to find the hamilton circuit,
which is of no help now. This means that during steps 3-13 we will be adding at most one
edge per iteration and stop adding edges after the lowest degree becomes greater than 3.
So at most |V | − 3 edges will be added rather than O(|E|).
A similar approach is the following: We add triangulation edges whenever the vertex we
choose has degree 2. The difference with the previous proposal is that if at some point the
lowest degree is greater than 2, it is not sure that we will add no more edges. If at some
later point due to the decomposition the lowest degree becomes 2 we will start again adding
edges. Notice that in both cases pair edges are stored always, regardless of the lowest degree.
Furthermore, it is important to say that in both cases outerplanar biconnected graphs are
drawn in a cross-free manner since we in such graphs we always have a degree-2 vertex.
Experiments have shown that the time required decreases dramatically compared to the
basic algorithm, while the number of crossings is similar.

11.2.4 Circular Drawing of non-tree non-biconnected graphs on a single
embedding circle

We have discussed algorithms for embedding trees and biconnected graphs on the pe-
riphery of a circle. What is left is to present an algorithm for the rest types of graphs,
namely, non-tree, non-biconnected graphs. In any such case we decompose the graph into
biconnected-components. From now on, we consider the graph to be at least connected.
If the graph is not connected, the procedures described are repeated for each connected
component and all the components are placed successively on the embedding circle.

In case of a connected graph, we can find the vertices that are responsible for non-
biconnectivity using a modification of the depth first search algorithm. These vertices
are called articulation or cut points. Additionally, a similar procedure can give us the
biconnected components of a connected graph. If we represent each biconnected component
using a pseudo-vertex, and link this vertex with the articulation point(s) that belong in the
component, we will obtain a blockcutpoint tree. This structure is indeed a tree since the
graph is connected, and cannot contain circles because this would imply the existence of
two distinct paths between articulation points. Then the whole circle is a biconnected
component which is against the construction procedure followed. The block cut point
tree can be placed on the periphery of the circle using the algorithm described earlier.
Next we replace the pseudo -vertices by the biconnected components they represent. For
determining the order of the vertices of each component, we apply algorithm Circular in
each of the components. Notice that the placement of the articulation points has already
been accomplished, so we do not draw them again. Additionally since every biconnected
component appears next to at least one of its articulation points in the block cut point tree,
we start by placing the vertex whose order is determined by Circular to be immediately
after the articulation point.

12

11.2.5 Computational Complexity

The algorithms for the discovery of the biconnected components and the articulation
points are based on the depth first search algorithm and require O(|E|) time. The cost for
performing a depth first search on the block-cut point tree requires O(|E|) time and the
cost for applying circular on all biconnected components is O(E1) + O(E2) + ... + O(Ek),
where Ei is the number of edges of biconnected component i. Clearly

∑
(Ei) = E, thus the

total time required by the algorithm is O(E)

11.3 Circular Drawings of Nonbiconnected Graphs on Mul-
tiple Embedding Circles

Up to now, we have seen algorithms for drawing graphs on a single circle. In this section,
we will present some techniques for producing circular drawings of graphs on multiple
embedding circles. Given a nonbiconnected graph G we can decompose the structure into
biconnected components in O(m) time. Taking advantage of this inherent structure, the
biconnected components and articulation points of the block-cutpoint tree can be layout
with some radial drawing technique. Then, each biconnected component of the network can
be drawn with a variant of Algorithm Circular. See Figure 11.12.

B1

B2 B3 B4

B5 B6 B7 B8

B1

B4

B2 B3

B7B8

B6

B5

Figure 11.12: The illustration on the left shows the block-cutpoint tree of a non-biconnected
graph. The small black tree nodes represent articulation points and the small white tree
nodes represent bridges. The right illustration is a drawing of the same graph where the
block-cutpoint tree is laid out with a radial tree layout technique.

There are several issues that need to be addressed in order to produce good quality
circular drawings:

1. which biconnected component is considered to be the root of the block-cutpoint tree

2. articulation points can appear in multiple biconnected components of the block-
cutpoint tree and need to be assigned to a unique biconnected component

3. the nodes of the block-cutpoint tree can represent biconnected components of differing
size and

13

4. the nodes of each biconnected component should be visualized such that the articula-
tion points appear in good positions and also there is a low number of edge crossings

Now, we will discuss each of these issues in turn.
In order to address the first issue, we can choose the root with a recursive leaf-pruning

algorithm to find the “center” of the tree. Alternatively, we can pick the root dependent
on some important metric: e.g. size of the biconnected component. Next we address
the second issue. Define a strict articulation point as an articulation point which is not
adjacent to a bridge. Strict articulation points are duplicated in more than one biconnected
component of the block-cutpoint tree, but of course each node should appear only once
in a drawing of that graph. Therefore, many approaches can be follwed in which each
articulation point will appear only once in the drawing. The first approach assigns each strict
articulation point, u, to the biconnected component which contains u and is also closest to
the root in the block-cutpoint tree. This biconnected component is the parent of the other
biconnected components which contain u. See Figure 11.13(a). The second approach assigns
the articulation point to the biconnected component which contains the most neighbors of
that articulation point, see Figure 11.13(b). The third approach assigns the articulation
point to a position between its biconnected components, see Figure 11.13(c). Placing a
node in this manner will highlight the fact that this node is an important articulation point.
Following the assignment step, the duplicates of a strict articulation point are removed from
the blocks in the block-cutpoint tree. We refer to the nodes adjacent to a removed strict
articulation point in a biconnected component as inter-block nodes. In order to maintain
biconnectivity for the method which will layout this component, a thread of edges is run
through the inter-block nodes. These edges will be removed from the graph after the layout
of the cluster is determined.

(a) (b) (c)

Figure 11.13: Examples of three approaches for the assignment of strict articulation points
to biconnected components. The black nodes are strict articulation points.

The third issue to be addressed is that while performing the layout of the block-cutpoint
tree we must consider that the biconnected components may be of differing sizes. The node
sizes are proportional to the number of nodes contained in the current block. The radial
layout algorithms presented in [1, 7, 8] place the root at (0, 0) and the subtrees on concentric
circles around the origin. These algorithms require linear time and produce plane drawings.
However, unlike our block-cutpoint trees, the nodes of the trees laid out with [1, 7, 8] are
all the same size. The technique in [19] handles graphs with different node sizes, however
node overlap is allowed. In order to produce radial drawings of trees with differing node
sizes, a modification of the classical radial layout technique [1, 7, 8] is required:

RADIAL - with Different Node Sizes: For each node, we must assign a ρ coordinate,
which is the distance from point (0, 0) to the placement of that node and a θ coordinate which
is the angle between the line from (0, 0) to (∞, 0) and the line from (0, 0) to the placement of

14

that node. The ρ coordinate of node v, ρ(v), is defined to be ρ(u)+ δ + du
2 + max(d1,d2,...,dk)

2 ,
where ρ(u) is the ρ coordinate of the parent u of v, δ is the minimum distance allowed
between two nodes, du is the diameter of u, and max(d1, d2, ..., dk) is the maximum of the
diameters of all the children of u. It is important to note that while all descendants of
a node i are placed on the same concentric circle, not all nodes in the same level of the
block-cutpoint tree are placed on the same concentric circle.

In order to prevent edge crossings, each subtree must be placed inside an annulus wedge,
and the width of each wedge must be restricted such that it does not overlap a wedge of
any other subtree. The θ coordinate of node v depends on the widths of the descendants
of v, not just the number of leaves as in [1, 7, 8]. This assignment of coordinates leads to a
layout of the form shown in Figure 11.14.

Figure 11.14: A radial layout of a tree with differing size nodes.

The fourth issue to be addressed by our circular drawing technique is the visualization
of each component. After performing RADIAL - with Different Node Sizes we have a layout
of the block-cutpoint tree, and need to visualize the nodes and edges of each biconnected
component. The radial layout of the block-cutpoint tree should be considered while drawing
each biconnected component. See Figure 11.15. Define ancestor nodes to be adjacent to
nodes in the parent biconnected component in the block-cutpoint tree. Likewise, define
descendant nodes to be adjacent to nodes in child biconnected components. In order to
reduce the number of crossings caused by inter-biconnected component edges, we can try
to place ancestor nodes in the arc between the points α and β. The size of the arc from
α to β is dependent on the distance between the placement of a biconnected component
to the placement of its parent in the radial layout of the block-cutpoint tree. Descendant
nodes are placed uniformly in the bottom half of the biconnected component layout. For
example, if there are three descendant nodes, they would be placed at points γ, δ, and ε in
Figure 11.15. These special positions for the ancestor and descendant nodes are called ideal
positions. Due to a high number of ancestor and descendant nodes, it may not be possible to
place all ancestor and descendant nodes in an ideal position, however the algorithm places
as many as possible in ideal positions.

Placing the ancestor and descendant nodes in this manner reduces the number of cross-
ings caused by inter-biconnected component edges going through a biconnected component.
In fact, the only times that these edges do cause crossings are when the number of ancestor
(descendant) nodes in the biconnected component Bi is more than about ni

2 , where ni is the
number of nodes in Bi. In those cases, the set of ideal positions includes all the positions in

15

α β

γ
δ ε

Figure 11.15: The relation between the layout of the block-cutpoint tree and the layout of
an individual biconnected component.

the upper (respectively lower) half of the embedding circle and also positions in the lower
(upper) half which are as close as possible to the upper (lower) half.

Here, we will present two algorithms for the layout of each biconnected component such
that ancestor and descendant nodes are placed near their ideal positions. The first step of
each technique is to perform Algorithm Circular on the current biconnected component,
Bi. This requires O(mi) time, where mi is the number of edges in biconnected component
Bi. Then this drawing can be updated so that the ancestor and descendant nodes appear
near their ideal positions.

The first technique rotates the layout of the biconnected component as found by Al-
gorithm Circular such that many ancestor and descendant nodes are placed close to their
ideal positions. Then, the remaining ancestor and descendant nodes are moved to their
closest ideal position. This algorithm requires O(mi) time. See Figure 11.16(b) for an
example.

LayoutCluster1
Input: A biconnected component, Bi.
Output: An circular layout of Bi such that the positions of the articulation points are
placed well with respect to the ideal positions.

1. Perform Algorithm Circular on Bi and save the results in Γ1.

2. If the number of ancestor nodes in Bi is less than the number of descendant nodes set
the block type to be descendant, otherwise set the block type to be ancestor.

3. Loop through the nodes of Bi as they appear around the embedding circle in Γ1 and
for each node which is the same type as the block type, record the clockwise distance
to the last node of that type.

4. Find the nodes which have the smallest value of the distances recorded in Step 3 and
determine the median node, u, of this set.

5. If the block type is descendant rotate the layout of Bi found in Step 1 such that u is
in the middle of the lower half of the embedding circle.

16

6. Else rotate the layout of Bi found in Step 1 such that u is in the middle of the upper
half of the embedding circle.

7. Place the remaining ancestor and descendant nodes in their closest ideal position.

The second technique LayoutCluster2 has a higher time complexity, but may lead to
layouts with fewer edge crossings. The first eight steps are the same as that of Algorithm
LayoutCluster1. During the placement of ancestor and descendant nodes which are not
in ideal positions, each such node v is placed in an ideal position and if the number of
edge crossings added exceeds a threshold T1 or the movement of v exceeds a threshold
T2, then the size of the embedding circle is increased such that node v can be placed in
an ideal position without changing the relative order between v and its neighbors on the
embedding circle. See Figure 11.16(c) for an example. The thresholds are determined
on a per application basis. If increasing component edge crossings or node movement is
undesirable for an application, the thresholds are adjusted accordingly. The time required
for Algorithm LayoutCluster2 is O(mi) if the threshold T2 (based on node movement) is
used or O(mi ∗ k), where k is the number of ancestor and descendant nodes in the cluster,
if the threshold T1 (based on the number of crossings) is used.

u

(b)(a)

v

v

u

v

arc
empty

(c)

Figure 11.16: This figure demonstrates Algorithms LayoutCluster1 and LayoutCluster2.
The black nodes are descendant nodes and the white nodes are ancestor nodes. (a) draw-
ing produced by Algorithm CIRCULAR; (b) the rotated drawing of part (a) produced by
Algorithm LayoutCluster1. (c) the resulting drawing of part (a) produced by Algorithm
LayoutCluster2.

Another technique for drawing a biconnected component would rotate the embedding
circle through many positions to find a good solution.

Now that we have addressed the subproblems, we present a comprehensive technique
for obtaining circular layouts of nonbiconnected graphs.

CIRCULAR - with Radial
Input: Any graph G.
Output: A circular drawing Γ of G.

1. Decompose G into a block-cutpoint tree T .

2. If G has only one biconnected component perform Algorithm Circular on G.

3. Else

4. Assign the strict articulation points to a biconnected component.

17

5. Layout the root cluster of T with Algorithm Circular.

6. For each subtree S of the root cluster

7. Perform the ρ coordinate assignment phase of RADIAL -
with Different Node Sizes on S.

8. For each biconnected component, Bi, of S

9. Layout Bi with Algorithm LayoutCluster1,
or LayoutCluster2 taking into account
the radii defined for the superstructure tree
in Step 7.

10. Considering the order of the subtrees defined during the
layout of biconnected components in Step 9,
perform the θ coordinate assignment phase of
RADIAL - with Different Node Sizes on S.

11. Translate and rotate the clusters of S according to the
radial layout of S.

The time complexity of Algorithm CIRCULAR−withRadial is O(m) if the biconnected
components are laid out with Algorithm LayoutCluster1 or O(m ∗ k), where k is the total
number of ancestor and descendant nodes in the graph if Algorithm LayoutCluster2 is
used. See Figure 11.17 for an example.

Figure 11.17: A sample drawing as produced by Algorithm CIRCULAR− withRadial.

11.4 Circular Drawing of user defined groups on multiple
embedding circles

Regardless of the structure of a graph, there may exist interesting sets of vertices that
have some important properties. Thus, it would be useful to draw graphs taking into

18

consideration a partition of the vertices in some user-defined groups. In this case there is a
number of issues that need to be addressed:

1. Each group should be clearly distinguishable and highly visible

2. A low number of edge crossings is wanted in order to have a comprehensive visualiza-
tion

3. An overall aesthetic result is required

4. the overall layout technique should be fast

11.4.1 Description of the algorithm

Using one embedding circle for each group, guarantees that recognizing a group will be
easy. The circular drawing techniques described in section 11.2 promise a low number of
intra-group crossings and a low running time. What remains is to place each circle- group
on the plane in some nice way and try to minimize the inter-group crossings in an effective
way.

If we use a super-node to represent each group and add one edge between two such
super-nodes whenever there exists one edge between a vertex u in the first group and
another vertex v in the second group, we can obtain a super-graph Sg = (Vg, Eg). This
super-graph has the user-defined groups as vertices and the inter-group edges of the original
graph as its set of edges. The goal now is to draw this graph in such a way that it satisfies
the criteria set. It is important to notice here that each super-node must have its own size,
which differs according to the number of vertices the group it represents has. So each super-
node is assigned a size (radius) proportional to the number of vertices it has. Since we have
no idea about the structure of the super-graph a force-directed technique can be adopted in
order to place each super-vertex (group) on the plane. A simple yet effective force directed
method is the simulation of a spring system. In this case, each vertex is assigned an electric
load q and each edge is considered as a spring, with some strength constant k, and natural
length l. The next step is to assign random coordinates to the vertices, and move them to
the direction the physical forces denote until the system becomes stable.

After the termination of the algorithm, we have the coordinates of the center of each
super-vertex, which is the center of each of the groups. Next we determine the radius of each
group, to be proportional to the number of its vertices, and apply the suitable algorithm
from those presented in 11.2. At this point, we have an aesthetic placement of the groups
due to the force-directed technique. If we apply the appropriate circular drawing algorithm
for each group, we will also have a drawing with a low number of intra-group crossings.
What is left is some further processing that tries to minimize the number of inter-group
crossings.

The problem of minimizing the inter-group crossings remains NP-complete. Thus, some
heuristic approach has to be adopted. Trying to bring adjacent vertices close is the main
idea behind the algorithm we will discuss. This way most of the inter-group edges will not
pass through circles, and their length will become small decreasing the probability of other
crossings. We can start rotating the groups one by one, since we do not want the ordering
to alter, and keep the positioning that gives the lowest sum of edge lengths. Since this is
only a heuristic approach with no guarantees we want it to be fast so the rotation of the
groups is done sequentially rather than checking all possible combinations. If we reverse
the ordering in a group (one can imagine this as putting a group in the mirror), there is

19

no change in the group, considering edge crossings and symmetry. This means that we can
follow the above described procedure for this ordering and rotate the groups once again.
The sum of edge lengths is compared to the minimum found and if it is lower we can keep
the ordering just produced. A request for some distance between different vertices can also
be integrated. Then some force directed technique can be again used. In this case, for each
different positioning produced by rotating, we measure the energy of the system and keep
the positioning that gives the lowest energy. Notice that the result is different only in the
case of assigning different electric loads on the vertices. Otherwise, we will always have the
same amount of electric load in the same coordinates, thus the electric energy will never
alter.

11.4.2 Computational Complexity

The force directed method applied on the supergraph,has no guarantee about the time
limit. It depends on the number of iterations required. Each iteration takes O(|Vg|2 + |Eg|)
time. Since the size of the supergraph is small, we can expect only a small number of
iterations to be required until converge. Setting a limit MAX to the number of iterations
provides a close - to - the - final result since only local refinement takes place after the first
few iterations. The time required is O(MAX ∗ (|Vg|2|+ |Ee|)). Notice that the number of
vertices |Vg| refers to the vertices of the super-graph, the user-defined groups of the original
graph, which is expected to be much smaller than the number of actual vertices. Also |Eg|
refers only to the inter-group edges, which is again smaller than the total number of edges.

Applying Circular on all groups takes O(E) time, as discussed in 11.2. And we rotate
each group twice the number of its vertices (using the ordering found and its reverse).
If we only try to minimize the edge lengths the cost is O|V | ∗ |Einter−group|. Otherwise,
if the approach that minimizes the total energy is followed, the total time required is
O(|V | ∗ (|Vg|+ |Eg|))

20

Bibliography

[1] M. A. Bernard, On the Automated Drawing of Graphs, Proc. 3rd Caribbean Conf. on
Combinatorics and Computing, pp. 43-55, 1994.

[2] F. Brandenburg, Graph Clustering 1: Cycles of Cliques, Proc. GD ’97, LNCS 1353,
Springer-Verlag, pp. 158-168, 1997.

[3] G. Di Battista, P. Eades, R. Tamassia and I. Tollis, Algorithms for Drawing Graphs:
An Annotated Bibliography, Computational Geometry: Theory and Applications, 4(5),
pp. 235-282, 1994.

[4] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing: Algorithms for
the Visualization of Graphs, Prentice-Hall, 1999.

[5] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, F. Vargiu and L. Vis-
mara, An Experimental Comparison of Four Graph Drawing Algorithms, Computa-
tional Geometry: Theory and Applications, 7(5-6), pp.303-26, 1997.

[6] U. Doğrusöz, B. Madden and P. Madden, Circular Layout in the Graph Layout Toolkit,
Proc. GD ’96, LNCS 1190, Springer-Verlag, pp. 92-100, 1997.

[7] P. Eades, Drawing Free Trees, Bulletin of Inst. for Combinatorics and its Applications,
5, 10-36, 1992.

[8] C. Esposito, Graph Graphics: Theory and Practice, Comput. Math. Appl., 15(4), pp.
247-53, 1988.

[9] G. Kar, B. Madden and R. Gilbert, Heuristic Layout Algorithms for Network Presen-
tation Services, IEEE Network, 11, pp. 29-36, 1988.

[10] V. Krebs, Visualizing Human Networks, Release 1.0: Esther Dyson’s Monthly Report,
pp. 1-25, February 12, 1996.

[11] S. Masuda, T. Kashiwabara, K. Nakajima and T. Fujisawa, On the NP-Completeness
of a Computer Network Layout Problem, Proc. IEEE 1987 International Symposium
on Circuits and Systems, Philadelphia, PA, pp.292-295, 1987.

[12] S. Mitchell, Linear Algorithms to Recognize Outerplanar and Maximal Outerplanar
Graphs, Information Processing Letters, 9(5), pp. 229-232, 1979.

[13] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985.

21

[14] J. M. Six (Urquhart), Vistool: A Tool For Visualizing Graphs, Ph.D. Thesis, The
University of Texas at Dallas, 2000.

[15] J. M. Six and I. G. Tollis, Circular Drawings of Biconnected Graphs, Proc. of ALENEX
’99, LNCS 1619, Springer-Verlag, pp. 57-73, 1999.

[16] J. M. Six and I. G. Tollis, Circular Drawings of Telecommunication Networks, Advances
in Informatics, Selected Papers from HCI ’99, D. I. Fotiadis and S. D. Nikolopoulos,
Eds., World Scientific, May 2000, pp. 313-323.

[17] J. M. Six and I. G. Tollis, A Framework for Circular Drawings of Networks, Proc. of
GD ’99, LNCS 1731, Springer-Verlag, pp. 107-116, 1999.

[18] I. G. Tollis and C. Xia, Drawing Telecommunication Networks, Proc. GD ’94, LNCS
894, Springer-Verlag, pp. 206-217, 1994.

[19] K. Yee, D. Fisher, R. Dhamija, and M. Hearst, Animated Exploration of Dynamic
Graphs with Radial Layout, Proc. of InfoVis 2001, IEEE, pp. 43-50, 2001.

22

