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Chapter 3 
 
Depth First Search (DFS) And Edge 
Classification 
 
 
3.1 Depth – First Search 
 
3.1.1 Definition 

DFS is a systematic method of visiting the vertices of a graph. Its general step requires 
that if we are currently visiting vertex u, then we next visit a vertex adjacent to u which has not 
yet been visited. If no such vertex exists then we return to the vertex visited just before u and the 
search is repeated until every vertex in that component of the graph has been visited. 

 

3.1.2 Differences from BFS 

1. DFS uses a strategy that searches “deeper” in the graph whenever possible, unlikeBFS 
which discovers all vertices at distance k from the source before discovering any vertices at 
distance k+1. 

2. The predecessor subgraph produced by DFS may be composed of several trees, 
because the search may be repeated from several sources. This predecessor subgraph forms a 
depth-first forest E� composed of several depth-first trees and the edges in E� are called tree 
edges. On the other hand the predecessor subgraph of BFS forms a tree. 
 

3.1.3 DFS Algorithm 

The DFS procedure takes as input a graph G, and outputs its predecessor subgraph in the 
form of a depth-first forest. In addition, it assigns two timestamps to each vertex: discovery and 
finishing time. The algorithm initializes each vertex to “white” to indicate that they are not 
discovered yet. It also sets each vertex’s parent to null. The procedure begins by selecting one 
vertex u from the graph, setting its color to “grey” to indicate that the vertex is now discovered 
(but not finished) and assigning to it discovery time 0. For each vertex v that belongs to the set 
Adj[u], and is still marked as “white”, DFS-Visit is called recursively, assigning to each vertex 
the appropriate discovery time d[v] (the time variable is incremented at each step). If no white 
descendant of v exists, then v becomes black and is assigned the appropriate finishing time, and 
the algorithm returns to the exploration of v’s ancestor �(v).  

If all of u’s descendants are black, u becomes black and if there are no other white 
vertices in the graph, the algorithm reaches a finishing state, otherwise a new “source” vertex is 
selected, from the remaining white vertices, and the procedure continues as before. 

 
The initialization part of DFS has time complexity �(n), as every vertex must be visited 

once so as to mark it as “white”. The main (recursive) part of the algorithm has time complexity 
�(m), as every edge must be crossed (twice) during the examination of the adjacent vertices of 
every vertex. In total, the algorithm’s time complexity is �(m + n). 
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3.1.4 Properties 
1. The structure of the resulting depth-first trees, maps directly the structure of the recursive 

calls of DFS-Visit, as u = �(v) if and only if DFS-Visit was called during a search of u’s 
adjacency list. As a result, the predecessor subgraph constructed with DFS forms a forest of trees. 

 
2. Parenthesis structure: if the discovery time of a vertex v is represented with a left 

parenthesis “(v”, and finishing time is represented with a right parenthesis “v)”, then the history 
of discoveries and finishes forms an expression in which the parentheses are properly nested. 

  
Theorem 3.1 (Parenthesis Theorem) 

In any Depth-First search of a (directed or undirected) graph G = (V,E), for any two 
vertices u and v, exactly one of the following three conditions holds : 

� The intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint 
� The interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]], and u is a 
descendant of v in the depth-first tree, or 
� The interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]], and v is a 
descendant of u in the depth-first tree 
 

Proof. We begin with the case in which d[u] < d[v]. There two subcases to consider, according to 
whether d[v] < f[u] or not. In the first subcase, d[v] < f[u], so v was discovered while u was still 

Algorithm 3.1 DFS(G) 
Input : Graph G(V,E) 
Output : Predecessor subgraph (depth-first forest) of G 
 
DFS(G) 

 
 // initialization 
 for each vertex u �V[G] do 

color[u] �  WHITE 
  �[u] �  null 
 time �   0 
 
 for each vertex u �  V[G] do 

if color[u] = WHITE 
   then DFS-Visit(u) 
 
DFS-Visit(u) 
 
 color[u] �  GREY // white vertex u has just been discovered 
 d[u] �  time 

time �  time + 1 
for each v �  Adj[u] do // explore edge (u,v) 
 if color[v] = WHITE 
  then �[v] �  u 
   DFS-Visit(v) 
color[u] �  BLACK // u is finished 
f[u] �  time 
time �  time + 1 
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grey. This implies that v is a descendant of u. Moreover, since v was discovered more recently 
than u, all of its outgoing edges are explored, and v is finished, before the search returns to and 
finishes u. In this case, therefore, the interval [d[v],  f[v]] is entirely contained within the interval 
[d[u],  f[u]]. In the other subcase, f[u] < d[v], and d[u] < f[u], implies that the intervals [d[u],  f[u]] 
and [d[v],  f[v]] are disjoint. 

The case in which d[u] < d[u] is similar, with the roles of u and v reverse in the above 
argument. 

 
Corollary 3.2 (Nesting of descendants’ intervals) 
  Vertex v is a proper descendant of vertex u in the depth first forest for a graph G if and 
only if d[u] < d[v] < f[v] < f[u] 
 
Proof. Immediate from Theorem 3.1. 

 
Theorem 3.3 (White-Path Theorem) 

In a depth-firs forest of a graph G(V,E), vertex v is a descendant of vertex u if and only if 
at the time d[u] that the search discovers u, v can be reached from u along a path consisting only 
of white vertices. This theorem expresses a characterization of when a vertex is descendant of 
another in the depth-first forest. 
 
Proof. Direct: Assume that v is a descendant of u. Let w be any vertex on the path between u and 
v in the depth-first tree, so that w is a descendant of u. By Corollary 3.2, d[u] < d[w], and so w is 
white at time d[u].  
Reverse: Suppose that vertex v is reachable from u along at path of white vertices at time d[u], but 
v does not become a descendant of u in the depth-first tree. Without loss of generality, assume 
that every other vertex along the path becomes a descendant of u. (Otherwise, let v be the closest 
vertex to u along the path that doesn’t become a descendant of u.) Let w be the predecessor of v in 
the path, so that w is a descendant of u (w and u may in fact be the same vertex) and, by Corollary 
3.2, f[w] �  f[u]. Note that v must be discovered after u is discovered, but before w is finished. 
Therefore, d[u] < d[v] < f[w] �  f[u]. Theorem 3.1 then implies that the interval [d[v], f[v]] is 
contained entirely within the interval [d[u], f[u]]. By Corollary 3.2, v must after all be a 
descendant of u. 

 

Example 
An example of the DFS algorithm is shown in Figure 3.1. 
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Figure 3.1 : (b) shows the progress of the DSF algorithm for the graph of (a). Starting from node 
U we can either discover node V or Y. Suppose that we discover node V, which has a single 
outgoing edge to node W. W has no outgoing edges, so this node is finished, and we return to V. 
From V there is no other choice, so this node is also finished and we return to U. From node U we 
can continue to discover Y and its descendants, and the procedure continues similarly. At stage (l) 
we have discovered and finished nodes U, V, W, X, Y. Selecting node Q as a new starting node, 
we can discover the remaining nodes (in this case Z). 

(a) 

  U   V   W 

  X    Y   Z 

  Q 

 1/      

          

   

1/ 2/    

          

   

1/ 2/ 3/ 

          

   

1/ 2/ 3/4 

          

   

1/ 2/5 3/4 

          

   

1/ 2/5   3/4 

   6/    

   

1/ 2/5 3/4 

7/ 6/    

   

1/ 2/5   3/4 

7/8 6/    

   

1/ 2/5 3/4 

7/8 6/    

   

1/ 2/5 3/4 

7/8 6/9    

   

1/10 2/5 3/4 

7/8 6/9    

 

1/10 2/5 3/4 

7/8 6/9   
6/9 

   

11/ 

1/10 2/5 3/4 

7/8 6/9 12/ 

11/ 

1/10 2/5 3/4 

7/8 6/9 12/ 

11/ 

1/10 2/5 3/4 

7/8 6/9 12/13 

11/ 

1/10 2/5 3/4 

7/8 6/9 12/13 

11/14 

(q) 

(b) (c) (d) 

(e) (f) (g) 

(h) (i) (j) 

(k) (l) (m) 

(n) (o) (p) 



 5 

3.2 Edge Classification 
 
During a depth-first search, a vertex can be classified as one of the following types: 
1. Tree edges are edges in the depth-first forest G�. Edge (u,v) is a tree edge if v was first 

discovered by exploring edge (u,v). A tree edge always describes a relation between a node 
and one of its direct descendants. This indicates that d[u] < d[v], (u’s discovery time is less 
than v’s discovery time), so a tree edge points from a “low” to a “high” node. 

2. Back edges are those edges (u,v) connecting a vertex u to an ancestor u in a depth-first tree. 
Self-loops are considered to be back edges. Back edges describe descendant-to-ancestor 
relations, as they lead from “high” to “low” nodes. 

3. Forward edges are those non-tree edges (u,v) connecting a vertex u to a descendant v in a 
depth-first tree. Forward edges describe ancestor-to-descendant relations, as they lead from 
“low” to “high” nodes. 

4. Cross edges are all other edges. They can go between vertices in the same depth-first tree as 
long as one vertex is not an ancestor of the other, or they can go between vertices in different 
depth-first trees. Cross edges link nodes with no ancestor-descendant relation and point from 
“high” to “low” nodes. 

 
The DFS algorithm can be used to classify graph edges by assigning colors to them in a 

manner similar to vertex coloring. Each edge (u,v) can be classified by the color of the vertex v 
that is reached when the edge is first explored: 
���� white indicates a tree edge 
���� gray indicates a back edge 
���� black indicates a forward or cross edge 

 

3.2.1 Distinguishing between back and cross edges 
For every edge (u,v) , that is not a tree edge, that leads from “high” to ”low” we must 

determine if v is an ancestor of u: starting from u me must traverse the depth-first tree to visit u’s 
ancestors. If v is found then (u,v) is a back edge, else -if we reach the root without having found 
v- (u,v) is a cross edge. 
 
Lemma 3.4 A directed graph G is acyclic (DAG1) if and only if a depth-first search of G yields 
no back edges. 
 
Proof. Direct: Suppose that there is a back edge (u, v). Then vertex v is an ancestor of vertex u in 
the depth-first forest. There is thus a path from v to u in G, and the back edge (u,v) completes a 
cycle. 
Reverse: Suppose that G contains a cycle c. We show that a depth-first search of G yields a back 
edge. Let v be the first vertex to be discovered in c, and let (u,v)  be the preceding edge in c. At 
time d[v], there is a path of white vertices from v to u. By the white-path theorem, vertex u 
becomes a descendant of v in the depth-first forest. Therefore (u,v) is a back edge. 
 
 
 
 
 

                                                 
1 See page 7 for definition. 
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Example 
Figure 3.2 shows 3 possible scenarios of edge classification with DFS. 
 

 Figure 3.2 :  Edge classification with DFS. In the case of scenario (a),  the discovery sequence is 
a, b, d, e, f, c, g, h.  When we reach node d from a, we characterize edge (a.d) as a forward edge 
because d is already discovered (from node b). The same applies for node f. When examining the 
outgoing edges of e we characterize edge (e,a) as a back edge, since a is already discovered and is 
an ancestor of e. Edges (c,d), (c,e) are cross edges because d and e are already discovered and 
have no ancestor-descendant relation with c. The same applies for edges (g,b) and (h,d) 
 

Tree edge 
Cross edge 
Forward edge 
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Chapter 4 
 
Directed Acyclic Graphs 
 
4.1 Directed Acyclic Graphs (DAG) 
 
4.1.1 Definition 

DAG is a directed graph where no path starts and ends at the same vertex (i.e. it has no 
cycles). It is also called an oriented acyclic graph. 

 
Source: A source is a node that has no incoming edges. 
Sink: A sink is a node that has no outgoing edges. 

4.1.2 Properties 

A DAG has at least one source and one sink. If it has more that one source, we can create 
a DAG with a single source, by adding a new vertex, which only has outgoing edges to the 
sources, thus becoming the new single (super-) source. The same method can be applied in order 
to create a single (super-) sink, which only has incoming edges from the initials sinks.      
 
4.2 Topological Sorting 
 
 Suppose we have a set of tasks to do, but certain tasks have to be performed before other 
tasks. Only one task can be performed at a time and each task must be completed before the next 
task begins. Such a relationship can be represented as a directed graph and topological sorting can 
be used to schedule tasks under precedence constraints.We are going to determine if an order 
exists such that this set of tasks can be completed under the given constraints. Such an order is 
called a topological sort of graph G, where G is the graph containing all tasks, the vertices are 
tasks and the edges are constraints. This kind of ordering exists if and only if the graph does not 
contain any cycle (that is, no self-contradict constraints). These precedence constraints form a 
directed acyclic graph, and any topological sort (also known as a linear extension) defines an 
order to do these tasks such that each is performed only after all of its constraints are satisfied. 
 

4.2.1 Definition 

The topological sort of a DAG G(V,E) is a linear ordering of all its vertices such that if G 
contains an edge (u,v) then u appears before v in the ordering. Mathematically, this ordering is 
described by a function t that maps each vertex to a number 

t : V �  {1,2,…,n} : t(v) = i such that t(u) < t(v) < t(w) for the vertices u, v, w of the following 
diagram 

 
 

 

u v w 
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4.2.2 Algorithm 
The following algorithms perform topological sorting of a DAG: 

 
Topological sorting using DFS 

1. perform DFS to compute finishing times f[v] for each vertex v 
2. as each vertex is finished, insert it to the front of a linked list 
3. return the linked list of vertices 

 
Topological sorting using bucket sorting 

This algorithm computes a topological sorting of a DAG beginning from a source and 
using bucket sorting to arrange the nodes of G by their in-degree (#incoming edges).  

The bucket structure is formed by an array of lists of nodes. Each node also maintains 
links to the vertices (nodes) to which its outgoing edges lead (the red arrows in Figure 4.1). The 
lists are sorted so that all vertices with n incoming edges lay on the list at the n-th position of the 
table, as shown in Figure 4.1: 

 

 
Figure 4.1  Bucket Structure Example 

 
The main idea is that at each step we exclude a node which does not depend on any other. 

That maps to removing an entry v1 from the 0th index of the bucket structure (which contains the 
sources of G) and so reducing by one the in-degree of the entry’s adjacent nodes (which are easily 
found by following the “red arrows” from v1) and re-allocating them in the bucket. This means 
that node v2 is moved to the list at the 0th index, and thus becoming a source. v3 is moved to the 
list at the 1st index, and v4 is moved to the list at the 2nd index. After we subtract the source from 
the graph, new sources may appear, because the edges of the source are excluded from the graph, 
or there is more than one source in the graph. Thus the algorithm subtracts a source at every step 
and inserts it to a list, until no sources (and consequently no nodes) exist. The resulting list 
represents the topological sorting of the graph.  

Figure 4.2 displays an example of the algorithm execution sequence.   
  

4.2.3 Time Complexity 
DFS takes �(m + n) time and the insertion of each of the vertices to the linked list takes 

�(1) time. Thus topological sorting using DFS takes time �(m + n). 
 

4.2.4 Discussion 

Three important facts about topological sorting are: 
1. Only directed acyclic graphs can have linear extensions, since any directed cycle is an inherent 
contradiction to a linear order of tasks. This means that it is impossible to determine a proper 
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1 

2 

3 

 

v1 

 v2 

v3 

 v4 
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schedule for a set of tasks if all of the tasks depend on some “previous” task of the same set in a 
cyclic manner. 
 

 
Figure 4.2 : Execution sequence of the topological sorting algorithm. 

(a) Select source 0. 
(b) Source 0 excluded. Resulting sources 1 and 2. Select source 1. 
(c) Source 1 excluded. No new sources. Select source 2. 
(d) Source 2 excluded. Resulting sources 3 and 4. Select source 3. 
(e) Source 3 excluded. No new sources. Select source 4. 
(f) Topological Sorting of the graph. 

 
 

2. Every DAG can be topologically sorted, so there must always be at least one schedule for any 
reasonable precedence constraints among jobs. 
3. DAGs typically allow many such schedules, especially when there are few constraints. 
Consider n jobs without any constraints. Any of the n! permutations of the jobs constitutes a valid 
linear extension. That is if there are no dependencies among tasks so that we can perform them in 
any order, then any selection is “legal”. 
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Example 
Figure 4.3 shows the possible topological sorting results for three different DAGs. 

 

 
Figure 4.3 : Possible topological sorting results for three DAGS. 

 
4.3 Single-Source Shortest Path 
 
 In the shortest-path problem, we are given a weighted, directed graph G = (V,E), with 
weight function w: E�  R mapping edges to real valued weights. The weight of path p = (v0, v1, 
…, vk) is the sum of the weights of each constituent edges 
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We define the shortest-path weight from u to v by 
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A shortest path from vertex u to vertex v is then defined as any path p with weight  
w(p) = �(u,v). 
There are variants of the single-source shortest-paths problem: 
3 Single-destination shortest-paths problem 
4 Single-pair shortest-path problem 
5 All-pairs shortest-paths problem 

 
 We can compute a single-source shortest path in a DAG, using the main idea of the 
topological sorting using bucket sorting algorithm. Starting from a given node u, we set the 
minimum path �(u,v) from u to every node )(uadjv� as the weight w(e), e being the edge (u,v), 
and we remove u. Then we select one of these nodes as the new source u' and we repeat the same 
procedure and for each node z we encounter, we check if �(u,u') + w((u',z)) < �(u,z) and if it holds 
we set �(u,z) = �(u,u') + w((u',z)).  

0 
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4 3 
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4 5 
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1 
5 2 
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0, 1, 2, 3, 4 
0, 1, 2, 4, 3 
0, 2, 1, 3, 4 
0, 2, 1, 4, 3 

0, 1, 3, 2, 4, 5 
0, 1, 3, 2, 5, 4 
0, 1, 2, 3, 4, 5 
0, 1, 2, 3, 5, 4 
0, 1, 2, 4, 3, 5 
0, 1, 2, 4, 5, 3 
0, 1, 2, 5, 3, 4 
0, 1, 2, 5, 4, 3 

0, 1, 2, 4, 5, 3, 6 
0, 1, 2, 5, 3, 4, 6 
0, 1, 2, 5, 4, 3, 6 
0, 1, 5, 2, 3, 4, 6 
0, 1, 5, 2, 4, 3, 6 
 

if there is a path from u to v 
otherwise 
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We must point out that graph G cannot contain any cycles (thus it is a DAG), as this 

would make it impossible to compute a topological sorting, which is the algorithm’s first step. 
Also, the initial node u is converted to a DAG source by omitting all its incoming edges.  
  
 The algorithm examines every node and every edge once at most (if there is a forest of 
trees, some nodes and some edges will not be visited), thus its complexity is O(m+n). 
 

4.3.1 Relaxation 
This algorithm uses the technique of relaxation. For each vertex v �  V, we maintain an 

attribute D[v], which is an upper bound on the weight of a shortest path from source s to v. We 
call D[v] a shortest-path estimate and we initialize the shortest-path estimates and predecessors 
during the initialization phase. 

The process of relaxing an edge (u,v) consists of testing whether we can improve the 
shortest path to v found so far by going through u. If the shortest path can be improved then D[v] 
and �[u] are updated. A relaxation step may decrease the value of the shortest-path estimate D[u] 
and update v’s predecessor field �[u]. The relaxation step for edge (vi,u) is performed at the inner 
loop of the algorithm body. 
 

 
4.3.2 Modifying DAGS_Shortest_Paths to compute single-source longest-paths 

The previous algorithm can be used to compute single-source longest-paths in DAGs 
with some minor changes: 

1. We set D[u] �  0 instead of D[u] � ��  during the initialization phase 
2. We change the relaxation phase to increase the value of the estimate D[u] by converting 

line  
 

Algorithm 4.1 DAGS_Shortest_Paths(G,s) 
Input : Graph G(V,E), source-node s 
Output : Shortest-paths tree for graph G and node s, distance matrix D for distances from s. 
 
DAGS_Shortest_Paths(G,s) 
 

compute a topological sorting {v0,v1, …,vn}  // v0 = s 
// initialization 
D[s] �  0    // s is the initial node (source) 
for each vertex u� s do 
 D[u] � ��  
 �[u] �  null 
 
// algorithm body 
for i = 0 to n do 
 for each edge (vi,u) outgoing from vi do 
  if D[vi] + w(vi,u) < D[u] then  \  
   D[u] �  D[vi] + w[vi,u] - relaxation 

    �[u] �  vi    /  
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‘if D[vi] + w(vi,u) < D[u]’ to 
‘if D[vi] + w(vi,u) > D[u]’ 

 
These changes are necessary because in the case of longest-path we check if the path 

being examined is longer than the one previously discovered. In order for every comparison to 
work properly, we must initialize the distance to all vertices at 0.  

The time complexity of algorithm 4.2 (DAGS_Longest_Paths) is obviously the same as 
the one of shortest-path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 4.2 DAGS_Longest_Paths(G,s) 
Input : Graph G(V,E), source-node s 
Output : Longest-paths tree for graph G and node s, distance matrix D for distances from s. 
 
DAGS_Longest_Paths(G,s) 
 

compute a topological sorting {v0,v1, …,vn}  // v0 = s 
// initialization 
D[s] �  0   // s is the initial node (source) 
for each vertex u� s do 
 D[u] �  0 
 �[u] �  null 
 
// algorithm body 
for i = 0 to n do 
 for each edge (vi,u) outgoing from vi do 
  if D[vi] + w(vi,u) > D[u] then  \  
   D[u] �  D[vi] + w[vi,u] - relaxation 

    �[u] �  vi    /  
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Example 
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D C 
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2 1 
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3 D :  
 

A B C D 
0 4 2 3  

 

(a) 

(b) 

(c) 

(d) 

(e) Figure 4.4 : Execution sequence of the shortest-path algorithm  
(a) Initial graph – All shortest paths are initialized to �  
(b) Starting from node A, we set shortest paths to B and C, 6 and 2 respectively 
(c) From node C, we can follow the edges to B and D. The new shortest path to B is 5 
because w(AC) + w(CB) < w(AB). The shortest path to D is A�C�D and its 
weight is the sum w(AC) + w(CD) = 3 
(d) From node D, we follow the edge to B. The new shortest path to B is 4 because 
w(ACD) + w(DB) < w(ACB). 
(e) From node B there is no edge we can follow. The algorithm is finished and the 
resulting shortest paths are: A �C, A�C�D and A�C�D�B with weights 
4, 2, 3 respectively. 
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Using the single-source longest-path algorithm, the distance matrix D would initialize to 
0, and in every step of the algorithm we would compare the weight of every new path we 
discover to the content of the matrix and record the higher value. The resulting longest paths 
would be A�B, A�C and A�C�D with weights 6, 2 and 3 respectively. 

 
4.4 Program Evaluation and Review Technique: PERT (a.k.a. critical 
path method) 

 
A PERT network is a weighted, acyclic digraph (directed graph) in which each edge 

represents an activity (task), and the edge weight represents the time needed to perform that 
activity. An acyclic graph must have (at least) one vertex with no predecessors, and (at least) one 
with no successors, and we will call those vertices the start and stop vertices for a project. All the 
activities which have arrows into node x must be completed before any activity "out of node x" 
can commence. At node x, we will want to compute two job times: the earliest time et(x) at which 
all activities terminating at x can be completed, and lt(x), the latest time at which activities 
terminating at x can be completed so as not to delay the overall completion time of the project 
(the completion time of the stop node, or - if there is more than one sink - the largest of their 
completion times). 

The main interest in time scheduling problems is to compute the minimum time required 
to complete the project based on the time constraints between tasks. This problem is analogous to 
finding the longest path of a PERT network (which is a DAG). This is because in order for a task 
X to commence, every other task Yi on which the former may depend must be completed. To 
make sure this happens, X must wait for the slowest of Yi to complete. For example in Figure 4.5, 
task � must wait for Y1 to complete because if it starts immediately after Y2, Y1, which is required 
for X, will not have enough time to finish its execution. 
 

 
Figure 4.5 : X must wait for Y1 to complete before it starts 

 
The longest path is also called the critical path, and this method of time scheduling is also 

called critical path method. 
A simple example of a PERT diagram for an electronic device manufacturing is shown in 

Figure 4.6. 
 

4.5 Single-destination shortest-paths problem 
 

This problem is solved by reversing the direction of the edges of the graph and applying 
the single-source shortest-path algorithm using the destination as a source. 
 

Y1 

Y2 
X 

5 

2 
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Figure 4.6 : PERT diagram for the production of an electronic device. 
 

4.6 Single-pair shortest-paths problem 
 

Find a shortest path from u to v for given vertices u and v. If we solve the single-source 
problem with source vertex u, we solve this problem also, as no algorithms are known to solve 
this problem faster than the single-source algorithm. 

 
4.7 All-pairs shortest-paths (APSP) 
 

This problem asks us to compute the shortest-path for each possible pair of nodes of a 
graph G = (V, E). To solve it we use the Floyd-Warshall algorithm, for each pair of nodes i, j and 
for every node Vk� , it checks if the shortest path between i and j, p(i,j), it has been found so 
far, is larger than the sum p(i,k) + p(k,j). If it is, then it sets the shortest path from i to j as the path 
from i to k and from k to j. 

The time complexity of this algorithm is O(n3), since we have three loops from 1 to n, 
each one inside the previous. 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

1. IC Design 

ma 12.1.1998 
ke 14.1.1998 

8. Package Design 

su 25.2.1998 
ke 28.2.1998 

5. Field Tests 

su 25.1.1998 
ma 26.1.1998 

2. IC Programming 

la 17.1.1998 
su 18.1.1998 

4. User - Interface 

ti 13.1.1998 
su 18.1.1998 

6. Manufacturing 

to 29.1.1998 
ma 2.2.1998 

9. User’s Manual 

su 8.2.1998 
ma 9.2.1998 

3. Prototyping 

ke 21.1.1998 
to 22.1.1998 

7. QA Lab Tests 

to 5.2.1998 
ma 9.2.1998 

Algorithm 4.3 APSP(G) 
Input : Graph G(V,E) 
Output : Distance matrix D and predecessor matrix � 
 
APSP(G) 
 //Initialization 

for i = 1 to n 
  for j = 1 to n 
   D[i,j] �  ��  
   �[i,j] �  null 
 for k = 1 to n 
  for i = 1 to n 
   for j = 1 to n 
    if D[i,j] > D[i,k] + D[k,j]  
     D[i,j] �  D[i,k] + D[k,j] 
     �[i,j] �  k   
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Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8 Connectivity (Reachability) 
 
 Using a slightly modified variation of the Floyd – Warshall algorithm, we can answer the 
question whether there is a path that leads from node u to node v, or if node v is reachable from u. 
This can be done by running a DFS from node u, and see if v becomes a descendant of u in the 
DFS tree. This procedure though takes �(m + n) time which may be too long if we want to repeat 
this check very often. Another method is by computing the transitive closure of the graph which 
can answer the reachability question in O(1) time.  
 

In order to compute the transitive closure of graph G, we can use the Floyd – Warshal 
algorithm with the following modifications: 

� instead of the Distance matrix D we use a Transitive closure matrix T which is initialized 
to the values of the Adjacency matrix A of G. 
� the relaxation part 

“if D[i,j] > D[i,k] + D[k,j] 
D[i,j] �  D[i,k] + D[k,j] 

�[i,j] �  k” 
is changed to 

“T[i,j] �  T[i,j] OR (T[i,k] AND T[k,j])” 
 

 

The sequence of steps of APSP for the graph in Figure 4.7 is shown in Figure 4.8. The Distance 
(D) and Predecessor (�) matrices are initialized to the following values  
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D is the graph’s adjacency matrix with the additional information of the weight of the edges, 
while � shows the starting node of each edge in respect to D.  
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Figure 4.7 : Sample Graph. 
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Figure 4.8 : D and � matrices during the execution of APSP for the graph of Figure 4.7. 
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4.9 Bellman – Ford 
 

The Bellman – Ford algorithm is a single-source shortest-paths algorithm that works for 
directed graphs with edges that can have negative weights, but with the restriction that the graph 
cannot have any negative-cycles (cycles with negative total weight). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.9.1 Differences from the Dijkstra algorithm 
� The Dijkstra algorithm works only with positive weighted graphs with no cycles, while 

the Bellman – Ford algorithm works with graphs with positive and negative-weighted 
edges and non-negative cycles.  

Algorithm 4.4 Transitive_Closure(G) 
Input : Graph G(V,E) 
Output : Transitive closure matrix T 
 
Transitive_Closure(G) 
 // initialization 

for i = 1 to n do 
  for j = 1 to n do 
    T[i,j] �  A[i,j]  // A is the adjacency matrix of G 
 
 for k = 1 to n do 
  for i = 1 to n do 
   for j = 1 to n do 
    T[i,j] �  T[i,j] OR (T[i,k] AND T[k,j])  

Algorithm 4.5 BellmanFordShortestPath(G,v) 
Input : Graph G(V,E) 
Output : A distance matrix D or an indication that the graph has a negative cycle 
 
BellmanFordShortestPath(G,v) 
 
 // initialization 
 D[v] �  0 
 for each vertex u �  v of G do 
  D[u] �  +�  
 
 for i = 1 to n – 1 do 
  for each directed edge (u,z) outgoing from u do 
   // relaxation 
   if D[u] + w(u,z) < D[z] then 

D[z] �  D[u] + w(u,z) 
 if there are no edges left with potential relaxation operations then 
  return the label D[u] of each vertex u 
 else 
  return “G contains a negative weight cycle” 
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� The Dijkstra algorithm at every step discovers the shortest path to a new node and inserts 
this node to its special set. On the other hand, the Bellman – Ford algorithm uses no 
special set, as at every step updates the shortest paths for the nodes that are adjacent to 
the node being processed at the current step. Thus, the shortest path to a node is not 
determined at an intermediate step, because a new shortest path to this node can be 
discovered at a later step. 

 
Example 
  
 The sequence of steps for the Bellman – Ford  algorithm for the graph in Figure 4.9 is 
shown in Figure 4.10.  
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D C E 
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3 
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-4 

2 2 

-1 

A B C D E D = 
0 +�  +�  +�  +�  

 

Figure 4.9 : A directed graph with source A 
containing a cycle B�C�D�B (with 
positive weight w = 1) and its initialized 
distance matrix D. 
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Figure 4.10 : The sequence of steps of the Bellman – Form algorithm for the graph of Figure 4.9. 
(a) D[B] becomes 5 and D[C] becomes 3. 

(b) D[E] becomes 4 and D[C] becomes 1, since D[B] + w(B,C) < D[C].  
(c) D[D] becomes 3 and D[E] becomes 3, since D[C] + w(C,E) < D[E]. 

(d) Nothing changes, since no shortest path can be improved. 
At this point there are no more relaxation operations to be performed and the algorithm 
returns the distance matrix D.  
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