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Communication barriers

Detecting and understanding speech in noise plays a
significant role in our communication with others

Speech produced under background noise is not always
intelligible ⇒ increase vocal effort when speaking to enhance
the audibility of voice (Lombard effect)

Conversational/casual speech is much less intelligible than
clear speech for both normal-hearing (linguistically
inexperienced listeners) and hearing-impaired listeners ⇒ try
to speak more clear
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Motivation

• SSN at -9 dB SNR, N = 139 listeners
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LISTA, 2010-2013

Current speech output technologies lack an essential element
of human interaction, namely the ability to listen while talking

Investigate how talkers react to changes in the listening
environment,

Apply this information to develop novel techniques for spoken
output generation of artificial and natural speech.

http://listening-talker.org/

Hurricane Challenge

http://listening-talker.org/


Speech material

Phonetically-balanced sentences more representative of
everyday speech

Harvard sentence: “The key you designed will fit the lock”

Male native English talker: 72 lists ×10 sentences, very good
recording conditions

Post-processing: Downsampling to 16kHz, removing
low-frequency artefacts, adding low amplitude (inaudible)
random noise to the beginning and end of each sentence

Hurricane Challenge: Only sets 1-18 (180 sentences) were
used
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Maskers

Fluctuating Masker: Female (’Nina’) competing speaker (CS);
Read news speech, Harvard-like sentences

Steady-State Masker: Speech-Shaped Noise (SSN); long-term
average speech spectrum estimated by ’Nina’
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Speech-Noise Mixtures

Reduce probability listeners hearing the same background
more than once

Each masker fragment was 1 second longer than the sentence:
500 ms leading and lagging noise.

Speech levels were scaled to produce a given SNR in the
region where the speech was present.

Intelligibility was evaluated at 3 SNRs for each masker type,
expected to produce keyword scores of approximately 25, 50
and 75%.
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Baselines results
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Equivalent Intensity Change (EIC)

Inverse of logistic approximation to SNR-intelligibility function
for speech style m and masker n:

snrm,n = an − bn log (
1

pm,n
− 1)

Equivalent Intensity Change (EIC):

EICm,n = snrm,n − snrNORM



Results

• SSN at -9 dB SNR, N = 139 listeners
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Approaches to improve speech intelligibility

High-pass filtering and amplitude compression (Niederjohn et
al. 1976 [1])

Optimizing objective intelligibility criteria (e.g., SII, GP,
STOI) (B. Sauert et al. 2006-2011 [2][3][4], Y. Tang et al.
2012 [5], C.H. Taal et al. 2012 [6])

Selective enhancement (V. Hazan et al. 1996 [7], S.D.Yoo et
al., 2007 [8])
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Observations

Lombard effect: higher energy in the mid-frequency region of
the spectrum, reduced spectral tilt ...

Clear speech: higher energy in the high-frequency region of
the spectrum, expanded vowel space, slower speaking rate ...

Nasals, onsets, offsets have low energy (speech production
constraints)
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SSDRC

I Spectral Shaping and Dynamic Range Compression



Spectral Shaping

Probability of voicing: Pv (t)

Adaptive spectral shaping:
Enhancement of spectral maxima:

Hs(ω, t) =

(
E (ω, t)

T (ω, t)

)β Pv (t)

Pre-emphasis:

Hp(ω, t) =

{
1 ω ≤ ω0

1 +
ω − ω0

π − ω0
g Pv (t) ω > ω0

Fixed spectral shaping: Hr (ω) (boosting high frequencies)

Spectral Shaping:

Ê (ω, t) = E (ω, t) Hs(ω, t)Hp(ω, t)Hr (ω)
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Ê (ω, t) = E (ω, t) Hs(ω, t)Hp(ω, t)Hr (ω)



Dynamic Range Compression (DRC)

Speech envelope: analytic signal and moving average filtering

Dynamic stage:

ê(n) =

{
ar ê(n − 1) + (1− ar )e(n), if e(n) < ê(n − 1)
aaê(n − 1) + (1− aa)e(n), if e(n) ≥ ê(n − 1)

Static stage:
g(n) = 10(eout(n)−ein(n))/20

where ein(n) = 20 log10 (ê(n)/e0), with e0 being the reference
level

DRC: sg (n) = g(n)s(n)
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aaê(n − 1) + (1− aa)e(n), if e(n) ≥ ê(n − 1)
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SSDRC: Example of application
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Objective Evaluation
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Formal Listening Test - Hurricane Challenge

139 listeners whose native language was English

Listeners received an audiological screening

6 conditions: 2 masker types × 3 SNR levels.

18 Harvard sets was mixed with noise for each of the 6
conditions

We made sure that: each listener heard one block in each of
the 18 noise conditions, no listener heard the same sentence
twice, and each condition was heard by the same number of
listeners.

Each listener heard 180 sentences (apart from practice
sentences)



Formal Listening Test

We compare:

Normal speech

Lombard speech [LOM]

Spectral Modification optimizing GP (Y. Tang et al. 2012)
[GP][5]

Spectral Modification optimizing SII (B. Sauert et al. 2011)
[SII][9]

Suggested approach (Zorila et al. 2012) [SSDRC] [10]



Formal Listening Test (near-field): SSN &CS

SNRH: 1dB SNRM:−4dB SNRL:−9dB
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Formal Listening Test: synthetic speech

88 listeners whose native language was English

Noise: 2 masker types × 3 SNR levels.

180 sentences were mixed with noise for each of the 6
conditions

Each listener heard 180 sentences.

No listener heard the same sentence twice.



Results (near-field): Synthetic Speech

SNRH: 1dB SNRM:−4dB SNRL:−9dB
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• C. Valentini-Botinhao et al. IS2013 [11]



Field Trial - far field
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• T.C. Zorila, Y. Stylianou, T. Ishihara and M. Akamine: Near and far field speech-in-noise intelligibility

improvements based on a time-frequency energy reallocation approach IEEE, Trans. On Audio, Speech and

Language Processing, vol.24(10), Oct 2016, pp1808-1818



First conclusions

SSDRC: Signal-processing based approach combining previous
knowledge from speech-in-noise and clear/casual speaking
styles literature

Objectively and subjectively, SSDRC outperforms previous
approaches

5 dB improvement in terms of Equivalent Intensity Change
(EIC)

Frame-based approach, no noise measurement ⇒ real time
processing

Gains for near and far-field, various noise conditions
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On Constraints

SSDRC

noise

Equal RMS

SSDRC

noise

Equal Loudness

⇒ We need to repeat some experiments



On Constraints

• T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore:
Effectiveness of a loudness model for time-varying sounds in
equating the loudness of sentences subjected to different
forms of signal processing The Journal of the Acoustical Society
of America, vol.140(1), July 2016, pp1057-1061
• T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore:
Evaluation of Near-End Speech Enhancement under
Equal-Loudness Constraint for Listeners with Normal-Hearing
and Mild-to-Moderate Hearing Loss The Journal of the
Acoustical Society of America, vol.141(1), Jan 2017



Equal Loudness: Normal hearing
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• tSER: time domain Spectral Energy Reallocation, Takou et al(IS2013)[12] based on Turiccia et al work (IEEE
Trans 2005)[13]
• fSER+DRC: frequency domain Spectral Energy Reallocation and Dynamic Range Compression, Zorila et al.
(IS2015)[14]

• SDR: Spectral Dynamic Recovery, Petko et al. (IEEE Trans 2015)[15]



Equal Loudness: Hearing impaired
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Further developments

Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])

Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])

Special groups of listeners (S. Flanagan et al. Trends in
Hearing 2018 [18])

Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])

Special Session at IS2013 & Special Issue in Computer Speech
and Language

Real-time SSDRC (Show and Tell: IEEE ICASSP 2014
Florence, [20])
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The issue for TTS



SSDRC like post-processing[17]

⇒ plus some modifications on duration and pitch



Hurricane II: Low SNRs

⇒ look for PSSDRC-syn



Hurricane II: Mid SNRs

⇒ look for PSSDRC-syn
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Wavenet based SSDRC: wSSDRC, (S. Muhammed et al. 2018)

• Similar to Rethage et al.: A Wavenet for speech denoising, ICASSP2018



Sound Examples

1 2 3

Plain

SSDRC

wSSDRC



Objective evaluations

• Left: with stationary white noise (SWN); • Right: with stationary shaped noise (SSN)
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Physiological measures (fMRI, EEG, skin conductance, heart
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Pupillometry

• Pupil Dilation:

- Widely used as a measure of mental effort

- More challenging listening conditions → Larger pupil size

- Sensitive to differences in speech intelligibility, masker type,
sentence complexity, location uncertainty, motivation

• Pupil Data:

Mean dilation

Peak dilation

Peak latency



Task experiment

• Question: Does listening effort differ among different speech
types? Plain, Lombard, Modified speech (SSDRC), Synthetic
speech (TTS)
• Listeners and Design:

- 26 young adults (age range 18-24), normal hearing, native
British English (3 participants excluded)

- Harvard sentences - male English talker

- Speech Shaped Noise at -1, -3 and -5 dB SNR

- 12 blocks, 20 sentences (first 5 used for familiarisation)

- Audiological screening (hearing test)

- Whole procedure with 5-min break took approximately 1h



Experiment setup

speech	

noise	

Ini$al		
(1	s)	

Baseline		
(1	s)	

Sentence	presenta$on		
(~2.5	s)	

Pupil	restora$on		
(3	s)	

Verbal	
response	

Task: Try to recall as many words as you can

Data Collected
Pupil size (EyeLink 1000)
Intelligibility scores (% correct words)
Subjective rating: “How much effort did it take to listen
and understand the sentences in this block?”. Continuous
scale from 0 to 10



Experiment setup



Pupil Data

• Preprocessing:

5 first traces of each block were excluded

Downsampling to 50 Hz

Pupil size measured in units of area was converted to diameter

Blink detection and computation of the percentage of blinks
(traces were excluded when blinks were more than 15%)

Linear interpolation from the start to the end of the blink

5-point moving average smoothing filter

Pupil data calibration (proportional increase in pupil dilation
relative to the baseline)

Average of the traces of each block



Example of pre-processing



some Results



Subjective effort & intelligibility
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S. Flanagan, T. Zorilă, Y. Stylianou, and B. Moore, “Speech processing to improve the perception of speech

in background noise for children with auditory processing disorder and typically developing peers,” Trends in
Hearing, vol. 22, pp. 1–8, 2018.
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