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@ Detecting and understanding speech in noise plays a
significant role in our communication with others

@ Speech produced under background noise is not always
intelligible = increase vocal effort when speaking to enhance
the audibility of voice (Lombard effect)

e Conversational/casual speech is much less intelligible than
clear speech for both normal-hearing (linguistically
inexperienced listeners) and hearing-impaired listeners = try
to speak more clear



MOTIVATION

e SSN at -9 dB SNR, N = 1309 listeners
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LISTA, 2010-2013

@ Current speech output technologies lack an essential element
of human interaction, namely the ability to listen while talking

@ Investigate how talkers react to changes in the listening
environment,

@ Apply this information to develop novel techniques for spoken
output generation of artificial and natural speech.

@ http://listening-talker.org/

@ Hurricane Challenge


http://listening-talker.org/
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SPEECH MATERIAL

@ Phonetically-balanced sentences more representative of
everyday speech

@ Harvard sentence: “The key you designed will fit the lock”

@ Male native English talker: 72 lists x 10 sentences, very good
recording conditions

@ Post-processing: Downsampling to 16kHz, removing
low-frequency artefacts, adding low amplitude (inaudible)
random noise to the beginning and end of each sentence

@ Hurricane Challenge: Only sets 1-18 (180 sentences) were
used
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MASKERS

o Fluctuating Masker: Female ('Nina") competing speaker (CS);
Read news speech, Harvard-like sentences

o Steady-State Masker: Speech-Shaped Noise (SSN); long-term
average speech spectrum estimated by 'Nina’
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SPEECH-NOISE MIXTURES

@ Reduce probability listeners hearing the same background
more than once

@ Each masker fragment was 1 second longer than the sentence:
500 ms leading and lagging noise.

@ Speech levels were scaled to produce a given SNR in the
region where the speech was present.

@ Intelligibility was evaluated at 3 SNRs for each masker type,
expected to produce keyword scores of approximately 25, 50
and 75%.



BASELINES RESULTS
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EQUIVALENT INTENSITY CHANGE (EIC)

@ Inverse of logistic approximation to SNR-intelligibility function
for speech style m and masker n:

SNfmp = an — by log ( -1)

Pm,n

e Equivalent Intensity Change (EIC):

EICm,n = snrm n — Snryorm



RESULTS

e SSN at -9 dB SNR, N = 1309 listeners

snrLo (Fisher LSD: 0.74 dB, 3.3 percentage points)
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APPROACHES TO IMPROVE SPEECH INTELLIGIBILITY

e High-pass filtering and amplitude compression (Niederjohn et
al. 1976 [1])

e Optimizing objective intelligibility criteria (e.g., Sll, GP,
STOI) (B. Sauert et al. 2006-2011 [2][3][4], Y. Tang et al.
2012 [5], C.H. Taal et al. 2012 [6])

o Selective enhancement (V. Hazan et al. 1996 [7], S.D.Yoo et
al., 2007 [8])
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OBSERVATIONS

@ Lombard effect: higher energy in the mid-frequency region of
the spectrum, reduced spectral tilt ...

@ Clear speech: higher energy in the high-frequency region of
the spectrum, expanded vowel space, slower speaking rate ...

e Nasals, onsets, offsets have low energy (speech production
constraints)



SSDRC

» Spectral Shaping and Dynamic Range Compression
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o Adaptive spectral shaping:
e Enhancement of spectral maxima:
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SPECTRAL SHAPING

e Probability of voicing: P,(t)
o Adaptive spectral shaping:
e Enhancement of spectral maxima:

E B Py(t)
Hs(w, t) — (W, t)
T(w, 1)
e Pre-emphasis:

1 w§w0
Aol =1 14 220 p(e) w>wo
0

™ — W

e Fixed spectral shaping: H,(w) (boosting high frequencies)
@ Spectral Shaping:

A

E(w,t) = E(w, t) Hs(w, t)Hp(w, t)Hr(w)
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Dynamic RANGE COMPRESSION (DRC)

@ Speech envelope: analytic signal and moving average filtering

@ Dynamic stage:

&(n) = { a,é(n—1)+ (1 —a,)e(n), if e(n)

<é(n—1
a,é(n—1)+ (1 —az)e(n), if e(n)>

(n—1

D> >

~— —

o Static stage:
g(n) — lo(eout(n)fein(n))/zo

where ej,(n) = 20logyq (é(n)/ep), with ey being the reference
level

e DRC: sg(n) = g(n)s(n)



SSDRC: EXAMPLE OF APPLICATION
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OBJECTIVE EVALUATION
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FORMAL LISTENING TEST - HURRICANE CHALLENGE

139 listeners whose native language was English
Listeners received an audiological screening
6 conditions: 2 masker types x 3 SNR levels.

18 Harvard sets was mixed with noise for each of the 6
conditions

We made sure that: each listener heard one block in each of
the 18 noise conditions, no listener heard the same sentence
twice, and each condition was heard by the same number of
listeners.

Each listener heard 180 sentences (apart from practice
sentences)



FOrRMAL LISTENING TEST

We compare:

@ Normal speech

e Lombard speech [LOM]

@ Spectral Modification optimizing GP (Y. Tang et al. 2012)
[GP][5]

@ Spectral Modification optimizing Sl (B. Sauert et al. 2011)
[SH][9]

@ Suggested approach (Zorila et al. 2012) [SSDRC] [10]



FORMAL LISTENING TEST (NEAR-FIELD): SSN &CS

Speech Shaped Noise (SSN) Competing Speaker (CS)

Equivalent Intensity Change (dB)
Equivalent Intensity Change (dB)
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FORMAL LISTENING TEST: SYNTHETIC SPEECH

88 listeners whose native language was English

Noise: 2 masker types x 3 SNR levels.

180 sentences were mixed with noise for each of the 6
conditions

Each listener heard 180 sentences.

No listener heard the same sentence twice.



RESULTS (NEAR-FIELD): SYNTHETIC SPEECH

Speech Shaped Noise (SSN)

Word Accuracy Rate (per cent)
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e C. Valentini-Botinhao et al. /152013[11]



FIELD TRIAL - FAR FIELD
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FIRST CONCLUSIONS

@ SSDRC: Signal-processing based approach combining previous
knowledge from speech-in-noise and clear/casual speaking
styles literature

@ Objectively and subjectively, SSDRC outperforms previous
approaches

@ 5 dB improvement in terms of Equivalent Intensity Change
(EIC)

@ Frame-based approach, no noise measurement = real time
processing

@ Gains for near and far-field, various noise conditions
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ON CONSTRAINTS

noise

Equal RMS

noise

Equal Loudness

= We need to repeat some experiments



ON CONSTRAINTS

e T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore:
Effectiveness of a loudness model for time-varying sounds in
equating the loudness of sentences subjected to different
forms of signal processing The Journal of the Acoustical Society
of America, vol.140(1), July 2016, pp1057-1061

e T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore:
Evaluation of Near-End Speech Enhancement under
Equal-Loudness Constraint for Listeners with Normal-Hearing
and Mild-to-Moderate Hearing Loss The Journal of the
Acoustical Society of America, vol.141(1), Jan 2017
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UAL LOUDNESS: NORMAL HEARING
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EqQuAL LOUDNESS: HEARING IMPAIRED
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® tSER: time domain Spectral Energy Reallocation, Takou et al(1S2013)[12] based on Turiccia et al work (IEEE
Trans 2005)[13]

o fSER+DRC: frequency domain Spectral Energy Reallocation and Dynamic Range Compression, Zorila et al.

(152015)[14]
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FURTHER DEVELOPMENTS

@ Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])

e Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])

@ Special groups of listeners (S. Flanagan et al. Trends in
Hearing 2018 [18])

@ Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])

@ Special Session at 152013 & Special Issue in Computer Speech
and Language

@ Real-time SSDRC (Show and Tell: IEEE ICASSP 2014
Florence, [20])
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SSDRC LIKE POST-PROCESSING[17]
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HurRrICANE II: MID SNRs
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@ ENRICH: Enriched communication across the lifespan.
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MSCE, European Training Network
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@ Cognitive studies, modelling, engineering and real-world field
evaluation with a range of listener groups

@ Implementation of 14 projects, in three themes: 1) Reducing
listening effort; 2) Enrichment and modalities; 3) Benefits for
individuals and groups

@ http://www.enrich-etn.eu/
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FOCUSING ON TWO RECENT WORKS

e Wavenet-based SSDRC: wSSDRC:
Muhammed Shifas PV, Vassilis Tsiaras and Yannis Stylianou,
Speech intelligibility enhancement based on a non-causal
Wavenet-like model, Interpseech 2018, Hyderabad, India

@ Speaking style and listening effort:
Olympia Simantiraki, Martin Cooke, and Simon King, Impact
of different speech types on listening effort, Interspeech 2018,
Hyderabad, India



WAVENET BASED SSDRC WSSDRC, (S. MUHAMMED ET AL. 2018)

Dilations: /~ D']ale,d Convolutmln Layers Skip connections
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o Similar to Rethage et al.: A Wavenet for speech denoising, ICASSP2018



SOUND EXAMPLES
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OBJECTIVE EVALUATIONS
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® Left: with stationary white noise (SWN); e Right: with stationary shaped noise (SSN)
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LISTENING EFFORT (O. SIMANTIRAKI ET AL. 2018)

Listening Effort: “The mental exertion required to attend to
and understand, an auditory message.” McGarrigle et al

Self-reports

Behavioural measures (single/dual-task — reaction time)

Physiological measures (fMRI, EEG, skin conductance, heart
rate, muscle tension, pupil size, hormone levels)



PUPILLOMETRY

e Pupil Dilation:
- Widely used as a measure of mental effort
- More challenging listening conditions — Larger pupil size

- Sensitive to differences in speech intelligibility, masker type,
sentence complexity, location uncertainty, motivation

e Pupil Data:
@ Mean dilation
@ Peak dilation
@ Peak latency



TASK EXPERIMENT

e Question: Does listening effort differ among different speech
types? Plain, Lombard, Modified speech (SSDRC), Synthetic
speech (TTS)

e Listeners and Design:

26 young adults (age range 18-24), normal hearing, native
British English (3 participants excluded)

Harvard sentences - male English talker
Speech Shaped Noise at -1, -3 and -5 dB SNR

12 blocks, 20 sentences (first 5 used for familiarisation)

Audiological screening (hearing test)

Whole procedure with 5-min break took approximately 1h



EXPERIMENT SETUP

noise

Verbal

! Initial | Baseline | Sentence presentation Pupil restoration :
i response

po(1s) 1 (1s) (~2.55) (3s)

I T 3 S RIS

o Task: Try to recall as many words as you can

o Data Collected
o Pupil size (EyeLink 1000)
o Intelligibility scores (% correct words)
o Subjective rating: “How much effort did it take to listen
and understand the sentences in this block?”. Continuous
scale from 0 to 10



EXPERIMENT SETUP




PuriL DATA

e Preprocessing:
@ 5 first traces of each block were excluded
@ Downsampling to 50 Hz
@ Pupil size measured in units of area was converted to diameter
o

Blink detection and computation of the percentage of blinks
(traces were excluded when blinks were more than 15%)

Linear interpolation from the start to the end of the blink
@ 5-point moving average smoothing filter

@ Pupil data calibration (proportional increase in pupil dilation
relative to the baseline)

@ Average of the traces of each block



EXAMPLE OF PRE-PROCESSING
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some RESULTS
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SUBJECTIVE EFFORT & INTELLIGIBILITY
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