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MOTIVATION

Standard sinusoidal model (McAulay and Quatieri, 1986 [1])
treats all speech components equally

Voiced frames: sum of sinusoids

Unvoiced frames: sum of sinusoids (under the
Karhunen-Loeve expansion assumption)

Is it the best way to treat them?

Decomposition!
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BACKGROUND

e Multi-Band Excitation Vocoder (Griffin et al.1988 [2])
o S(w) = H(w)E(w)

o E(w) is represented by an f5, a V/UV decision for each
harmonic, and the phase of each voiced harmonic

o Parameters are estimated by comparing the original vs the
synthetic speech spectrum

e Voiced portion is synthesized in time domain while unvoiced
part is synthesized in frequency domain
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Multi-band Excitation Vocoder (Griffin et al.1988 [2])
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FIGURE: (a) Original Spectrum, (b) Spectral Envelope, (c) Periodic
Spectrum, (d) V/UV information, (e) Noise Spectrum, (f) Excitation
Spectrum, (g) Synthetic Spectrum
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@ Sinusoids + band-pass random signals (Abrantes et
al.1991 [3])

o Completely avoids V/UV decision
e Harmonically related sinusoids model the voiced parts

e Random band-pass signals model the unvoiced parts
o White noise filtered by a group of band-pass filters (filterbank)
With center frequencies kws
N,

Zak cos( g (t +Zbk Yek(t) cos(kwst + O)

=1



BACKGROUND

Sinusoids + band-pass random signals (Abrantes et al.1991 [3])
W WW
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FIGURE: (a) Original Spectrum, (b) Hybrid model output, (c) Periodic
and (d) random components.
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BACKGROUND

@ Periodic 4+ Aperiodic Decomposition (Yegnayarayana et
al.1995 [4])

The LP residual signal is used as an approximation to the
excitation of the vocal tract

V/UV analysis is used

Frequency regions of harmonic and noise components in the
spectral domain are recognized

An iterative algorithm is proposed which reconstructs the
aperiodic component in the harmonic regions

The periodic component is obtained by subtracting the
reconstructed aperiodic component signal from the residual
signal.



BACKGROUND

Periodic + Aperiodic Decomposition (Yegnayarayana et
al.1995 [4])
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BACKGROUND

Periodic + Aperiodic Decomposition (Yegnayarayana et

al. 1995 [4])
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WHY DECOMPOSE?

Decomposing speech into (quasi)periodic and non-periodic part
has many applications in:

@ Speech modification
@ Speech coding
e Pathologic voice detection (i.e., HNR ...)

@ Psychoacoustic research
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MOTIVATION FOR HNM
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BRIEF OVERVIEW OF HNM

e HNM (Stylianou 1995 [5]) is a pitch-synchronous harmonic
plus noise representation of the speech signal.

@ Speech spectrum is divided into a low and a high band
delimited by the so-called maximum voiced frequency

@ The lower band of the spectrum (below the maximum voiced
frequency) is represented solely by harmonically related sine
waves.

@ The upper band is modeled as a noise component modulated
by a time-domain amplitude envelope.

o HNM allows high-quality copy synthesis and prosodic
modifications.
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HNM IN EQUATIONS

@ Harmonic part:

L(t)
h(t)= D Ax(t)e?mkhl0)t
k=—L(t)

where A (t) and fy(t) are the instantaneous complex
amplitude and real frequency, respectively

@ Noise part:
n(t) = e(t) [v(r, t) » g(t)]
where e(t), v(7, t), g(t) are a time envelope, an estimation of
the PSD (filter), and white gaussian noise, respectively

@ Speech:
s(t) = h(t) + n(t)
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MODELS FOR PERIODIC PART

@ HNMj: Sum of exponential functions without slope

L(t}) o
hi(t)= Y ax(t])el ko)t
k=—L(t])

@ HNMos: Sum of exponential function with complex slope

L(t]) _ _
ha(t) = Z Ak(t)ej27rkfo(t;)(t—tfa)
k=—L(t3)

where
A(t) = ax(th) + (t — t5)bi(t})

with ax(t]), bk(t]) to be complex numbers (amplitude and
slope respectively).



MODELS FOR PERIODIC PART

@ HNMs3: Sum of sinusoids with time-varying real amplitudes

L(t})
ha(t) = > ak(t) cos(iok(t))
k=0
where
a(t) = ootk (t—th)+ -+ ckp (t — th)P)

or(t) = ex+2mk((t—th)

where a,(t), ¢k (t) are real functions of discrete time and p(t) is
the order of the amplitude polynomial, which is, in general, a
time-varying parameter.



RESIDUAL (NOISE) PART

The non-periodic part is just the residual signal obtained by
subtracting the periodic-part (harmonic part) from the original
speech signal in the time-domain

r(t) = s(t) — h(t)

where h(t) is either hy(t), ha(t), or h3(t) (harmonic part of HNMy,
HNM,, and HNM3, respectively).



OUTLINE

O ANALYSIS
@ Frequency
@ Maximum Voiced Frequency
@ Amplitudes and Phases

@ Residual
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INITIAL FUNDAMENTAL FREQUENCY

@ Get an initial estimation of fundamental frequency f, [6]

@ Determine the voicing of the frame using normalized error
over first four harmonics:

4.3f 3
/ (IS(F)] — 13(F)))2

0.71;
E= " ash )
| st
0.7

where 5(f) is a synthetic DF T-based spectrum using the
initial fp estimation

o If E < T, where T an appropriate threshold (e.g. —15 dB),
then frame is voiced, else it is labeled as unvoiced




MAXiMUM VOICED FREQUENCY - MVF

@ The MVF Fy, is determined frame-wise from the speech
spectrum



MAXiMUM VOICED FREQUENCY - MVF

@ The MVF Fy, is determined frame-wise from the speech
spectrum

@ Starting from the frequency f. of the maximum spectral peak,
A(f.), in [fo/2,3fy/2], spectral peak values are collected
around that maximum peak, along with their frequencies



MAXiMUM VOICED FREQUENCY - MVF

@ The MVF Fy, is determined frame-wise from the speech
spectrum

@ Starting from the frequency f. of the maximum spectral peak,
A(f.), in [fo/2,3fy/2], spectral peak values are collected
around that maximum peak, along with their frequencies

@ The range of collection is Rsearch = [fe — fo/2, fc + /2]



MAXiMUM VOICED FREQUENCY - MVF

@ The MVF Fy, is determined frame-wise from the speech
spectrum

@ Starting from the frequency f. of the maximum spectral peak,
A(f.), in [fo/2,3fy/2], spectral peak values are collected
around that maximum peak, along with their frequencies

@ The range of collection is Rsearch = [fe — fo/2, fc + /2]

@ Determine peak frequencies f; in Rsearch, and the

corresponding amplitudes, A(f;) and cumulative amplitudes
Ac(f)



MAXiMUM VOICED FREQUENCY - MVF

@ The MVF Fy, is determined frame-wise from the speech
spectrum

@ Starting from the frequency f. of the maximum spectral peak,
A(f.), in [fo/2,3fy/2], spectral peak values are collected
around that maximum peak, along with their frequencies

@ The range of collection is Rsearch = [fe — fo/2, fc + /2]

@ Determine peak frequencies f; in Rsearch, and the
corresponding amplitudes, A(f;) and cumulative amplitudes
Ac(f)

e Cumulative amplitude A.(f) is the sum of all spectral peak
values from previous valley to following valley



MAXiMUM VOICED FREQUENCY - MVF

Fig. 1. Cumulative amplitude definition
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@ Pass f. through the Voicing Test:

o If Af
_C( c) > 2
Ac(f)
or
|A(f:) — max {A(f;)}| > 13 dB
then

o if f. is really close to the closest harmonic /fy, then



MAXiMUM VOICED FREQUENCY - MVF

@ Compute the average cumulative amplitude for all f;: Ac(f,-)
@ Pass f. through the Voicing Test:

o If Af
_C( c) > 2
Ac(f)
or
|A(f:) — max {A(f;)}| > 13 dB
then

o if f. is really close to the closest harmonic /fy, then

o declare f. as voiced frequency. Otherwise, declare f. as
unvoiced frequency.



MAXIMUM VOICED FREQUENCY

Then:

@ Search for the maximum spectral peak in
[fc + fo/2, fo+ 3fy/2], and find new £,
@ Repeat the steps until . < £;/2.
@ Determine voiced and unvoiced spectral areas

@ Maximum voiced frequency Mg is the maximum frequency of
the last voiced spectral area.



MAXIMUM VOICED FREQUENCY EXAMPLE
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FIGURE: (a) Maximum voiced frequency estimation for a voiced frame,

(b) a voied speech segment, (c) maximum voiced frequency estimation
for the voiced speech segment in (b).
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FUNDAMENTAL FREQUENCY REFINEMENT

@ Using the initial fy value and the L detected voiced
frequencies f;, then the refined fundamental frequency, f; is
defined as the value that minimizes the error:

L
E(f) =D _Ifi—ifl?
i=1

@ Having the stream of pitch values, we set the analysis time
instants, t}, as functions of the local pitch period P(t}):
o voiced frames: tit1 = ti + P(t!)
e unvoiced frames: fixed, 10 ms



REFINEMENT FREQUENCY EXAMPLE
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FIGURE: (a) Original and synthetic spectrum for the initial pitch
estimation, (b) Original and synthetic spectrum for the refined pitch
value.



PiTcH DETECTION ALGORITHM

speech
signal

Initial Pitch Estimation

(Time Domain Approach)

Voiced/Unvoiced detection
(Frequency Domain Approach)

unvoiced voiced

Max. Voicing Frequency
(Frequency Domain Approach)

l

Refine Initial Pitch
(Frequency Domain Approach)

pitch and
max. voicing freq.

=0

pitch max. voicing freq.

FI1GURE: The pitch analysis algorithm.



AMPLITUDES AND PHASES ESTIMATION

Having fy estimated for voiced frames, amplitudes and phases are
estimated by minimizing the criterion:

ti+T A ) t+T A
e= > (wlt)s(e) = () = D0 wA()(s(t) — h(r))?
n=ti—T n=ti—T

where t/ = ti=1 + P(ti=1), and P(t[71) denotes the pitch period
at time instant t/1.



AMPLITUDES AND PHASES ESTIMATION

Having fy estimated for voiced frames, amplitudes and phases are
estimated by minimizing the criterion:

ti+T A ) t+T A
e= > (wlt)s(e) = () = D0 wA()(s(t) — h(r))?
n=ti—T n=ti—T

where t/ = ti=1 + P(ti=1), and P(t[71) denotes the pitch period
at time instant t/1.
o for HNM; and HNM,, this criterion has a quadratic form and
is solved by inverting an over-determined system of linear
equations.

@ For HNMj3, however,a non-linear system of equations has to
be solved.



REFORMULATE THE ERROR FUNCTION - FOR HNM;

Cost function (in discrete time):

N

ela_y,...,a, f) = % > (eln])* = %e”e

n=—N

where
e[n] = wlnl(s{n] — hln)
e=[el-N, el-N+1 . eN]"



REFORMULATE THE ERROR FUNCTION - FOR HNM;

In matrix form

1
e(a) = E(S — Ea)""W?(s — Ea)
where
T
a:[a_L, e dAQy e aL]
and
Q2r(-Dh(-N)/f gerLh(-N)/% T
Qi2r(~L)h(=N+1)/  gjewLiy(—N+1)/f
E= ’
ef2W(—L)%N/fs ej27rL.foN/fs

(2L+1x2N+1)



LEAST SQUARES - FOR HNM;

@ Setting:

Oe(a)
Oa
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where /' denotes Hermitian operator
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LEAST SQUARES - FOR HNM;

@ Setting:

Oe(a)
Oa

=0 =— E"W?Ea - E"W3s =0

where /' denotes Hermitian operator
@ Solution:
a;s = (E"W2E)EHW?s
@ Properties:

o Rather fast, O(L(N + L)).
o Assumes no errors in E matrix.
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AVOIDING ILL-CONDITIONING

@ For HNMj there is no problem if window length is twice the
local pitch period

@ Same thing for HNM>
@ For HNM3 stands the same in case the maximum voiced

frequency is less than 3/4 of the sampling frequency and order
of amplitude polynomial is 2



RESIDUAL SIGNAL

The residual signal r[n] is estimated by

?[n] = s[n] — A[n]



TIME DOMAIN CHARACTERISTICS OF F[n]

FIGURE:

s x 10° Original speech signal
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Error signal using HNM3
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(a) A fricative voiced of an original recording and the residual
error signals from (b) HNM1, (c) HNM2, (d) HNMS3.



SPECTRAL DOMAIN CHARACTERISTICS OF F[n]

Residual from HNM2
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FIGURE: (a) FFT-magnitude of the residual signal (solid) from (a)
HNM2 and (b) HNM3. The FFT-magnitude of the original signal has
been also included (dashed).



... AND AFTER ADDING NOISE

(a) Residual from HNM2
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FIGURE: Same as before, but with additive white noise.



MODELING ERROR
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F1GURE: Modelling error in dB using the three models.



MODELING THE RESIDUAL SIGNAL

e Full bandwidth representation using a low-order (10th) AR
filter

@ Time-domain characteristics of the residual signal are modeled
using deterministic functions



© MOTIVATION

e FIRST WORKS ON SPEECH DECOMPOSITION...
© InTRODUCTION TO HNMS
@ ANALYSIS

o Frequency

@ Maximum Voiced Frequency

@ Amplitudes and Phases
@ Error Function - for HNM;
@ Least Squares - for HNM;

@ Residual
© SYNTHESIS
@ ENERGY MODULATION FUNCTION
@ TowaRrRDS QUASI-HARMONICITY
© THANKS
© REFERENCES

«Or «Fr o«

it
v
N
it
v
[y

nae



o tie—tl

@ For the periodic part: Overlap-and-Add

e For the stochastic (noise) part:

«Or «Fr o«

nae



For ALL HNMs

o ti¢+—tl

@ For the periodic part: Overlap-and-Add



For ALL HNMs

o ti¢+—tl
@ For the periodic part: Overlap-and-Add

@ For the stochastic (noise) part:



For ALL HNMs

o ti¢+—tl
@ For the periodic part: Overlap-and-Add

@ For the stochastic (noise) part:

o Instead of AR coefficients we use reflection coefficients



For ALL HNMs

o ti¢+—tl
@ For the periodic part: Overlap-and-Add
@ For the stochastic (noise) part:

o Instead of AR coefficients we use reflection coefficients

e Sample-by-sample filtering of Gaussian noise using normalized
lattice filtering



For ALL HNMs

o ti¢+—tl
@ For the periodic part: Overlap-and-Add
@ For the stochastic (noise) part:

o Instead of AR coefficients we use reflection coefficients

e Sample-by-sample filtering of Gaussian noise using normalized
lattice filtering

o Modulation in time with a deterministic function (i.e.,
triangular)



For HNM; SPECIFICALLY

For Periodic part (as an alternative to OLA)
@ Direct frequency matching
@ Linear amplitude interpolation

@ Linear phase interpolation using average pitch value



For HNM; SPECIFICALLY

For periodic part (as an alternative to OLA)

ax(t}) . a
A : inear | @l
Amplitude Linear
vel interpol.
envelope ax(17+1) Sum
of
Harm.
() pa(t) ,
Phase = Prediction & 2 Linear pe(t)
envelope ) unwrapping ’H_]' interpol.
er(it) welt)
falty)
JoltiF)

FIGURE: Block diagram of the synthesis of the harmonic part for
t € [th i)



For HNM; SPECIFICALLY

For the noise part
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AGAIN ON THE ENERGY MODULATION
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FIGURE: Upper plot: 12 pitch periods of voiced fricative phoneme /z/.
Lower plot: The same speech signal filtered by a highpass filter at 4 kHz.



SO FAR, MAINLY

So far we mainly use the Triangular Envelope:

A1

A0
TO T1



SIGNAL ENVELOPE

There are many ways to obtain the “envelope” of a signal, as:

e Hilbert Transform (analytic signal)



SIGNAL ENVELOPE

There are many ways to obtain the “envelope” of a signal, as:
e Hilbert Transform (analytic signal)

@ Low-pass local energy (energy envelope):

1 N
el = 37 2 o= 4l

where r[n] denotes the residual signal.



HILBERT ENVELOPE

We may also use the Hilbert envelope, computed as:

L

&nln] = Z ae?mkh/f)n
k=L—M+1



EXAMPLE OF ENERGY ENVELOPE
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FI1GURE: Example of Energy Envelope, with N = 7.



ENERGY ENVELOPE

The energy envelope can be efficiently parameterized with a few
Fourier coefficients:

Le
é[n] = Z A e/2mk(fo/fe)n
k=—Le

where L, is set to be 3 to 4



LOOKING AT TIME DOMAIN PROPERTIES
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FIGURE: A few periods of the noise part of phoneme /z/. First: the
original noise part. Second: synthesized noise using triangular envelope.
Third: synthesized noise using Hilbert envelope. Fourth: synthesized
noise using energy envelope.



RESULTS FROM LISTENING TEST 1

‘ H Triangular‘ No pref. ‘ Hilbert ‘

Male | 8(8.3%) | 43 (44.8%) | 45 (46.9%)
Female || 40 (41.7%) | 47 (48.9%) | 9 (9.4%)

‘ H Hilbert ‘ No pref. ‘ Energy ‘

Male |[ 22 (22.9%) | 47 (49.0%) | 27 (28.1%)
Female || 22 (22.9%) | 54 (56.3%) | 20 (20.8%)

’ H Energy ‘ No pref. ‘ Triangular ‘
Male || 43 (44.8%) | 50 (52.0%) | 3 (3.2%)
Female || 16 (16.7%) | 67 (69.8%) | 13 (13.5%)

TABLE: Results from the listening test for the English sentences.



RESULTS FROM LISTENING TEST II

‘ H Triangular‘ No pref. ‘ Hilbert ‘

Male || 10 (10.4%) | 47 (49.0%) | 39 (40.6%)
Female | 8 (8.3%) | 71 (74.0%) | 17 (17.7%)

‘ H Hilbert ‘ No pref. ‘ Energy ‘

Male [[ 11 (11.5%) | 58 (60.4%) | 27 (28.1%)
Female || 13 (13.5%) | 58 (60.4%) | 25 (26.1%)

’ H Energy ‘ No pref. ‘Triangular‘

Male || 42 (43.7%) | 48 (50.0%) | 6 (6.3%)
Female || 16 (16.7%) | 68 (70.8%) | 12 (12.5%)

TABLE: Results from the listening test for the French sentences.
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K
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ESTIMATING SINUSOIDAL PARAMETERS

@ Sinusoidal representation for a speech/signal frame:

K
x(t) = < > akemfkf) w(t)

k=—K
@ Methods:

o FFT-based methods (i.e., QIFFT (Abe et al., 2004-05 [7, 8]))
e Subspace methods
o Least Squares (LS) method

e Frequency mismatch:
fe = fi + 1k

@ How to deal with that?

@ You will discuss more advanced sinusoidal models in the
following lecture! ®
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THANK YOU

for your attention
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