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Vocoders

 Definition: A vocoder (short for “voice encoder”) is an audio processor (e.g., device, program, etc.) 
that encodes, analyses and synthesizes human voice signals. 

 Application Examples: 
• Radio (e.g., Digital Mobile Radio)
• Telephone networks (e.g., Voice over Internet Protocol)
• Musical and other artistic effects (e.g., feeding 

synthesizer outputs to the vocoder filter bank)
• Audio codecs (e.g., FLAC, MPEG-4)
• Encryption systems (e.g., NSA)
• Medical applications (e.g., cochlear implants)
• Text-To-Speech synthesis (e.g., voice assistants)
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 Definition: A Text-To-Speech (TTS) synthesis system converts normal language text into audible speech output. 

 This problem is usually broken down into two separate tasks: 
1) Speech feature extraction (most commonly spectrograms) from the text
2) Synthesizing the corresponding artificial voice given these speech features (vocoder’s task – our topic)

 Example Vocoder Techniques: 
• Linear Predictive Coding (LPC)
• Griffin-Lin algorithm
• Waveform-interpolative
• Concatenative synthesis 
• Sinusoidal representations
• Neural-Based
• Combinations of the above et al.

our topic



The First Sinusoidal Vocoder

Speech Analysis/Synthesis Based on a Sinusoidal Representation ROBERT J. McAULAY, THOMAS F. QUATIERI, 
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 4, AUGUST 1986.

arctan(⋅)
PHASES

⋅
PEAK

PICKING

FREQUENCIES

AMPLITUDES

DFT

SPEECH
INPUT

WINDOW

Analysis:

Synthesis:

FRAME-TO-FRAME 
LINEAR 

INTERPOLATION

AMPLITUDES

SINE WAVE 
GENERATOR

FRAME-TO-FRAME 
PHASE 

UNWRAPPING & 
INTERPOLATION

PHASES

FREQUENCIES
SUM ALL 

SINE WAVES

SYNTHETIC 
SPEECH 
OUTPUT

𝐴(𝑡)

𝜃(𝑡)

 Estimating speech using sums of linear AM sinusoids within short frames:



Redefining the problem: Phase and Amplitude

 Any generic AM-FM sinusoidal discrete-time wave can be written as:

 Therefore, a speech wave 𝑠[𝑛] can be approximated with AM-FM sinusoids as: 

𝑓𝑠 = Sampling rate 
𝑠[𝑛] = Input speech wave
 𝑠 𝑛 = Predicted output speech wave
𝑀 = Total number of sinusoid pairs
𝑓𝑚 = Frequency of the 𝑚-th sinusoid pair
𝛼𝑚 𝑛 = Amplitudes of the 𝑚-th cosine wave
𝛽𝑚 𝑛 = Amplitudes of the 𝑚-th sine wave



Redefining the problem: Frequencies

 In fact, we can represent any arbitrary signal using sums of AM sinusoids:

 Hence, we can work with constant frequencies over longer frames.

Let ℎ 𝑛 be an arbitrary discrete-time signal. Choose frequencies 𝑓1, 𝑓2 s.t. LCM 𝑓1, 𝑓2 < 𝑓𝑠/2. We can write ℎ 𝑛 as:

Indicator function

 Not a actual scenario we want in practice, i.e., directly synthesize a speech wave using two AM signals
• Ideally, many sinusoids should cooperate this an easier task
• This shows the limitless representation capabilities from a theoretical point of view



Redefining the problem: Input

Spectrogram Mel-Spectrogram

An increasing and decreasing tone from 20Hz to 22kHz and back:

(Common conversion function from hertz to mel scale.)

(Common conversion function from mel to hertz scale.)

Plot of frequencies in Mel versus Hertz scale:

Speech Communications: Human and Machine by Douglas O'Shaughnessy Wiley-IEEE Press; 2nd edition (November 30, 1999) 

 Speech is non-stationary, therefore cannot be analyzed with a single DFT for long enough frames
Discrete Short-Time Fourier Transform (DSTFT)* → Spectrogram

 A linear spectrogram gives “equal importance” to all frequencies and requires a lot of space
Mel-Spectrogram scales the frequencies logarithmically and unites them into frequency bands

*The exact formulas are explained in detail within the thesis document.



Redefining the problem: Input and Frequencies

Then, we filter the linear spectrogram with 𝑀
overlapping triangular filters whose centres are the 
𝑓 m𝑓 frequencies to obtain the Mel-Spectrogram: 

We create 𝑀 equally spaced frequencies m𝑓 = 𝑚(𝑓min , … ,𝑚 𝑓max ) and then convert them back in Hz scale 𝑓 m𝑓

Example

… …

These central band frequencies are the choice 
for our constant frequencies 𝑓𝑚 in the model

……

So, the number of AM sinusoid pairs in our 
model will be equal to the number of mel bands
𝑀 that we choose for our input spectrogram



Redefining the problem: Summary

1) Not constructing small frames with sums of sinusoids:
→ longer frames with sums of AM-FM sinusoids.

2) No alternating frequency estimation methods:
→ constant frequencies instead.

3) No separate phase or amplitude interpolation:
→𝜶[𝒏], 𝜷[𝒏] amplitude modulators compensate for them.

4) No DFT or linear spectrogram as input:
→ Mel-Spectrogram instead.

5) No analytical parameter estimation from the input:
→ optimization approach instead.

 Main assumption differences:

 Original Sinusoidal Representation:

 Proposed Sinusoidal Representation:



Redefining the problem: Solution

 Distance = loss function ℒ
• Numeric estimation of how close its inputs are
• E.g., Mean Squared Error (MSE):

 Goal = approximate 𝑠 𝑛 with  𝑠 𝑛 as closely as possible

Treat it as an optimization problem
• Minimize the distance between  𝑠 𝑛 and 𝑠 𝑛

 Parametric model 𝐹 with parameters 𝜃
• Input = Mel-Spectrogram 𝑆
• Output = 𝛼, 𝛽 that minimize ℒ



Optimization Approach: Artificial Neural Networks

• There exist many optimization methods depending on the problem’s complexity/hardness, for 
instance, Linear, Convex, Message Passing, Belief Propagation, et al.

• The hardness of this problem, i.e., speech synthesis, has shown the need for Artificial Neural Networks

 Our function 𝐹 will be an artificial neural network (or neural network, for short) 
• Neural networks are comprised of layers
• Each layer is made of weights, or neurons (i.e., the trainable parameters 𝜃)
• Each type of layer applies a different operation on its input to give its output

 The main layer of interest for us will be the 1D Convolutional Layer



Neural Networks: 1D Convolutional Layer

• Here, the kernel values 𝑤𝑘 and the bias term 𝑏 are trainable parameters (∈ 𝜃).

One input channel One output channel

One kernel

 Equation for discrete 1D convolution (actually cross-correlation)
• Input sequence 𝑥, Output sequence 𝑦, One kernel 𝑤:

• One can think of convolving as sliding a window over the input: 



Neural Networks: 1D Convolutional Layer

Many 
input 
channels

Many 
output 
channels

 Processing a 2D array, e.g., a Mel-Spectrogram with a 1D convolutional layer is possible
• We can treat each input row, e.g., frequency band, as an input channel

 Getting a 2D output from a 1D convolutional layer is possible
• We can have multiple kernels operating over one input, thus resulting in a different 

output sequence, i.e., output channel, per set of kernels 1 :

1 The entire set of all kernels is known as the filter of the convolution.

Sets of  
kernels



Neural Networks: Transposed 1D Convolutional Layer

Padded input channel
Kernel

Upsampled output channel

 Upsampling along the x-axis (time axis in our case) is also necessary
• Normally convolves the input sequence
• After introducing padding among the input’s consecutive values:



Neural Networks: Optimizer
 The algorithm for updating the trainable parameters (e.g., convolution kernels)

• Iteratively registering updates that minimize our defined loss function (finding critical points)

 Improved version of the above optimizer are actually used, but the core idea remains the same
• Examples: Mini-Batch SGD, RMSprop, AdaGrad, Adam, et al. 



Neural Networks: Backpropagation

 Backpropagation is the algorithm for computing the gradient: 
• The outputs are given during the forward pass
• Creates the function’s computational graph
• Backward pass calculates the gradient
• This is done using the chain rule:

 It always works for any neural network because in its core: 
• It is a combination of matrix multiplications,
• and differentiable 1 function compositions :

1 Non-differentiable models, e.g., Boltzmann Machines are beyond our scope.



Backpropagation: Toy Example

• Derive 𝑓 analytically for sanity check: 
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⋮
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𝑠 = Input speech wave 
𝑁 = Total number of samples
𝑺 = Mel-Spectrogram of 𝑠
𝑀 = Total number of mel bins or sinusoids pairs
𝛼𝑚 𝑛 = Amplitudes of the 𝑚-th AM-FM cosine
𝛽𝑚 𝑛 = Amplitudes of the 𝑚-th AM-FM sine
𝑓𝑚 = Central frequency of the 𝑚-th mel band
𝑓𝑠 = sampling rate
 𝑠 = Predicted output speech wave
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Adversarial Training Scheme
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MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

Neural Network Architecture: 
Extending MelGAN’s Generator
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MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.
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1D Conv. Layer

1D Transposed 
Conv. Layer (x5)

Residual Stack

1D Transposed 
Conv. Layer (x2)

Residual Stack

𝑺

× 2

× 2

Example Through the Network 

𝑀 = 100 × 𝐿 = 80

𝑺

1D Conv. Layer 
(x420)

𝟒𝟐𝟎 × 80

𝑺1

1D Transposed Conv. 
Layer (x5, x220)

𝟐𝟐𝟎 × 400

𝑺2

Residual Stack
(x220)

220 × 400

𝑺3

1D Transposed Conv. 
Layer (x5, x160)

𝟏𝟔𝟎 × 2k

𝑺4

…

1D Conv. Layer 1D Conv. Layer

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛] 𝑀 ×𝑁 𝑀 × 𝑁

filters

420

220

160

140

𝑀 = 100

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛]

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

𝑀 = 100 × 𝑁 = 8192

𝑀 = 100 × 𝑁 = 8192



Neural Network Architecture: 
MelGAN’s Discriminator
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Output MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

 Multi-scale discriminator: 
• Various scales with different downsampling ratios
• Each scale focuses in different frequency ranges
• Output = real number (score)
• Feature Map = layer output (the “why”)

 Discriminator’s Goal: Learn to differentiate between 
real (ground-truth) and fake (generated) samples

 Disadvantages:
 Space efficiency (~16.9 MM trainable parameters)
 Training time overhead (× 2)

 Advantages:
 Qualitative signals for training the generator
 Discarded after the generator’s training

× 4



Adversarial Loss Functions: Discriminator’s Perspective

 Discriminator’s output score: 
• Positive score 𝐷𝑘 𝑦 > 0 ⇒ 𝑦 is real 
• Negative score 𝐷𝑘 𝑦 < 0 ⇒ 𝑦 is fake 
• Higher score in magnitude ⇒ stronger belief about 𝑦 (and vice versa) 

 Discriminator’s objective: 
• Maximize 𝐷𝑘 𝑦 (or minimize −𝐷𝑘 𝑦 ) for all 𝑘 when 𝑦 is indeed real
• Minimize 𝐷𝑘 𝑦 for all 𝑘 when 𝑦 is indeed fake

Hinge loss with Δ = 1:

𝑦 = A speech wave
𝑠 = A ground truth speech wave 
𝑺 = A ground truth Mel-Spectrogram 
𝐺 = Generator neural network
𝐷𝑘 = 𝑘-th discriminator block



Base Generator Loss: Feature Map Generator Loss 1 :

Total Generator Loss:

Adversarial Loss Functions: Generator’s Perspective

 Discriminator’s output score: 
• Positive score 𝐷𝑘 𝑦 > 0 ⇒ 𝑦 is real 
• Negative score 𝐷𝑘 𝑦 < 0 ⇒ 𝑦 is fake 
• Higher score in magnitude ⇒ stronger belief about 𝑦 (and vice versa) 

 Generator’s objective: 
• Maximize 𝐷𝑘 𝑦 (or minimize −𝐷𝑘 𝑦 ) for all 𝑘 when 𝑦 is indeed generated
• Minimize the distance between real and generated audio feature maps

𝑦 = A speech wave
𝑠 = A ground truth speech wave 
𝑺 = The Mel-Spectrogram of 𝑠
𝐺 = Generator neural network
𝐷𝑘 = 𝑘-th discriminator block
𝑁𝑖 = Number of units of the 𝑖-th layer
𝑇 = Number of feature maps 
𝜆 = 10, Regularization strength 

1 Similar to the perceptual loss in image processing.



Spectral Loss Function

Spectral Convergence: Logarithmic DSTFT Magnitude:

 Assumption: 𝑠 𝑛 ≈  𝑠 𝑛 ⇔ 𝑿 𝑘,𝑚 ≈  𝑿[𝑘,𝑚]

𝑠 = The ground truth speech wave 
 𝑠 = The estimated speech wave 
𝑿 𝑘,𝑚 = The DSTFT of 𝑠
 𝑿 𝑘,𝑚 = The DSTFT of  𝑠
𝑋 𝑘 = The DFT of 𝑥 𝑛
𝐾 = Number of DSTFT frequencies
𝑁 = Length of 𝑠 or  𝑠 in samples
𝜖 = 2, 𝜆 = 9, Regularization strength

• Accounts for the more significant differences
• More important in the early stages of the training
• Frobenius/Hilbert-Schmidt norm:

• Focuses more on details
• More important in the later stages of the training
• 𝐿1 norm:

Sercan O Arık, Heewoo Jun, and Gregory Diamos. Fast spectrogram inversion using multi-head 
convolutional neural networks. IEEE Signal Processing Letters, 26(1):94–98, 2018



Spectral Loss Function

Entire Spectral Loss Function:

DFT 
Size 
(𝑲𝒊)

Window 
Size 
(𝑳𝒊)

Hop
Size 
(𝑼𝒊)

2048 1200 240

1024 1024 256

512 240 50

Summing over different DSTFT parameters:

Difference in time acts like a high pass filter:

𝑠 = The ground truth speech wave 
 𝑠 = The estimated speech wave 
𝑿 𝑘,𝑚 = The DSTFT of 𝑠
 𝑿 𝑘,𝑚 = The DSTFT of  𝑠
𝑋 𝑘 = The DFT of 𝑥 𝑛
𝐾 = Number of DSTFT frequencies
𝑁 = Length of 𝑠 or  𝑠 in samples
𝜖 = 2, 𝜆 = 9, Regularization strength

 Speech reveals different information when analyzed on different resolutions
• Wideband (small analysis window) gives more information about the formants, bursts, excitation pulses, et al.
• Narrowband (long analysis window) gives more information about the 𝑭𝟎, harmonics, pitch, et al. 
• We want our spectral loss function to capture all these characteristics



Four Trained Vocoder Models

 Training Hyperparameters: 
• 3000 epochs on the LJ speech dataset
• 1 Epoch = all files have been sampled once 
• 1 sample = window taken from a file uniformly at random
• 22.8 hours of speech for training, 1.2 hours for testing, 8 files excluded for validation purposes
• More training details and hyperparameters on the thesis document

Generative adversarial network approach

MelGAN

~21.16 MM total trainable 
parameters

Generator
~4.26 MM 
trainable 

parameters

Discriminator
~16.9 MM 
trainable 

parameters

SinGAN

~21.04 MM total trainable 
parameters

Generator
~4.14 MM 
trainable 

parameters

Discriminator
~16.9 MM 
trainable 

parameters

Spectral loss function and no discriminator

MelNoGAN

~4.26 MM total 
trainable parameters

SinNoGAN

~4.14 MM total 
trainable parameters



Quality & Speed Assessment 

Average MOS Score MelGAN Sinusoidal Ground Truth

GAN 3.53 (±0.83) 3.27 (±0.83) 4.90 (±0.29)

No GAN 1.76 ±0.80 2.01 (±0.83) 4.90 (±0.29)

Average Training Speed MelGAN Sinusoidal

GAN 236.67 ms/batch 515.10 ms/batch

No GAN 105.45 ms/batch 258.78 ms/batch

Average Inference Speed 2.34 min of speech/sec 1.52 min of speech/sec

 Mean Opinion Score (MOS) Experiment: 
• 15 random samples inferred from all models* + ground truth
• 5-second long each + ground truth as the ideal reference sample
• 1-5 integer evaluation score
• 43 candidates in total

 MOS Results: 
• Sinusoidal slightly worse on 

the GAN experiment
• Sinusoidal slightly better on 

the non-GAN experiment

 Speed Results: 
• Discriminator adds a × 2

computational overhead
• Sinusoidal extension adds 

an additional × 2 overhead



Audio Samples
Ground Truth MelGAN SinGAN MelNoGAN SinNoGAN Text

“…dissimilarity of its protective functions to most 
activities of the department of the treasure…” 

“…the vice presidential vehicle, although not specially 
designed for that…”

“…the service has experimented with the use of agents 
borrowed for short periods from…”

“…which provides, quote, liquor, use of…”

Once can notice the 
GAN approaches 
producing very 

similar audio with 
few similar artifacts 

present.

Approaches without a 
discriminator are lower 
in quality due to similar 
artifacts plus a buzzing 

effect that is being 
generated throughout 

the waveform.



Amplitude
Modulators

 SinGAN’s 𝛼𝑚 𝑛 on 
random speech inputs: 
• Very few (~3-4) sinusoids 

used predominantly
• Many sinusoids (~15-20) 

with very small amplitude



 SinGAN’s 𝛽𝑚 𝑛 on 
random speech inputs: 
• Very few (~3-4) sinusoids 

used predominantly
• Many sinusoids (~15-20) 

with very small amplitude
• Phase is indeed 

compensated using the 
sinusoid pairs

Amplitude
Modulators



Amplitude
Modulators

 SinNoGAN’s 𝛼𝑚 𝑛 on 
random speech inputs: 
• Many more (~20) 

sinusoids used 
predominantly

• Almost all frequencies are 
used to an extent, with 
lower ones used more as 
expected



Amplitude
Modulators

 SinNoGAN’s 𝛽𝑚 𝑛 on 
random speech inputs: 
• Same frequencies used as 

in the previous figure
• Slightly lower in amplitude 

than 𝛼𝑚 𝑛
• Betas modulators are 

omitted for the following 
figures



Amplitude
Modulators

 SinGAN’s 𝛼𝑚 𝑛 on a plain 
/a/ vowel signal: 
• Only two frequencies used
• Lower one being higher in 

amplitude because of /a/ 



Amplitude
Modulators

 SinNoGAN’s 𝛼𝑚 𝑛 on a 
plain /a/ vowel signal: 
• Less frequencies used 

(~10) as well
• Lower ones are higher in 

amplitude as well
• Still way more than SinGAN



Amplitude
Modulators

 SinGAN’s 𝛼𝑚 𝑛 on a plain 
/s/ consonant signal: 
• The same two-three 

frequencies mostly used
• Higher ones are higher in 

amplitude due to /s/



Amplitude
Modulators

 SinNoGAN’s 𝛼𝑚 𝑛 on a 
plain /s/ consonant signal: 
• Less sinusoids needed 

compared to more 
complicated signals

• Still a lot more than SinGAN
• Higher frequencies are also 

higher in amplitude due to 
/s/



Future Work

Number of sinusoids utilized:
 SinGAN does not take advantage of the sinusoidal approach to a satisfactory degree
 Non-GAN approach utilizes a lot more sinusoids in general
• Spectral-based loss rewards the use of more frequencies more easily

Add spectral loss components in the GAN approach

 Small-amplitude sinusoids:
• Especially in the non-GAN model, many sinusoids were observed to have very little 

amplitude
? Those may contribute to noisy artifacts in the output

Discard small-amplitude sinusoids and compare the resulting quality
Improvement ⇒ automatically better model
Improvement/Same ⇒ retrain with the noise-inducing sinusoids excluded (parameters--
, speed++, quality++)
Deterioration ⇒ models indeed use more sinusoids that we previously thought of



Future Work

 Loss function in non-GAN approach:
 Cannot match the discriminator in terms of quality – misses some speech features for 

better quality
Scale by a hyperparameter which subsequent loss components are more important
Add features extracted from the discrete-time domain
Approach analytically what features the discriminator learns (future work in neural network 
research in general)

 Spectrogram Input:
• Neural networks learn the phase information “from scratch” since spectrograms do not 

contain phase information
Including some information about the phase in the input or the loss function might yield 
improvements



Conclusion
Neural-based sinusoidal representations of speech are feasible:

 New solution proposed for the problem of speech synthesis

 Theoretically unlimited representation capabilities 

 Produced speech quality is on par with state-of-the-art models

 Easily attachable extension to almost any architecture

 Monitoring amplitude modulators offers very useful information about the model

 More qualitative results with spectral-based loss functions

 New idea of including the signal derivative in spectral losses improves quality further

 Plenty of ideas for further quality and speed improvements
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