CS578 - Speech Signal Processing

LECTURE: HARMONIC AND QUASI-HARMONIC MODELS OF SPEECH

George P. Kafentzis

University of Crete, Computer Science Dept., Speech Signal Processing Lab kafentz@csd.uoc.gr
(based on work from Prof. Stylianou and Dr. Pantazis)

Univ. of Crete

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 7 THANKS
- 8 References

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 REFERENCES

Mentioning just a few works for speech analysis...

• Multi-Band Excitation Vocoder (Griffin et al.1988 [1])

- $S(\omega) = H(\omega)E(\omega)$
- $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
- Parameters are estimated by comparing the original vs the synthetic speech spectrum
- Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

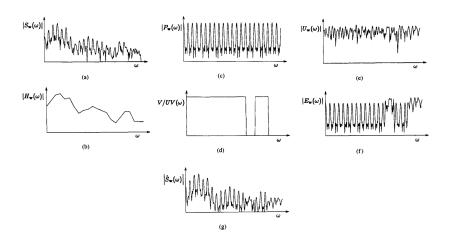
- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

Multi-band Excitation Vocoder (Griffin et al.1988 [1])



- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

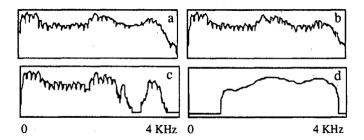
- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - ullet White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

Sinusoids + band-pass random signals (Abrantes et al.1991 [2])



- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

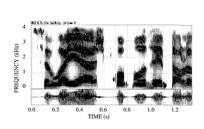
- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

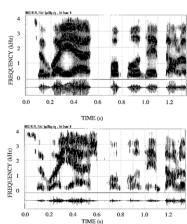
- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

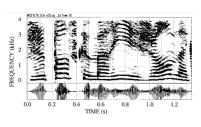
- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

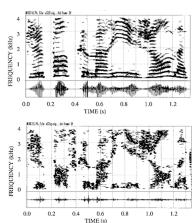
Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])





Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])





WHY DECOMPOSE?

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

WHY DECOMPOSE?

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

WHY DECOMPOSE?

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

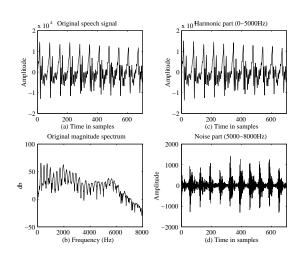
Why decompose?

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 REFERENCES

MOTIVATION FOR HNM



- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency
- The lower band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The upper band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency
- The lower band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency
- The lower band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The upper band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency
- The lower band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency
- The lower band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

HNM IN EQUATIONS

• Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

Noise part:

$$n(t) = e(t) [v(\tau, t) * g(t)]$$

where $e(t), v(\tau, t), g(t)$ are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively

• Speech:

$$s(t) = h(t) + n(t)$$

HNM IN EQUATIONS

Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

• Noise part:

$$n(t) = e(t) [v(\tau, t) \star g(t)]$$

where e(t), $v(\tau, t)$, g(t) are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively

Speech:

$$s(t) = h(t) + n(t)$$

HNM IN EQUATIONS

Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

• Noise part:

$$n(t) = e(t) [v(\tau, t) \star g(t)]$$

where e(t), $v(\tau, t)$, g(t) are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively

Speech:

$$s(t) = h(t) + n(t)$$

Models for Periodic Part

HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

HNM₂: Sum of exponential function with complex slope

$$h_2[n] = \Re \left\{ \sum_{k=1}^{L(n_a^i)} A_k(n) e^{j2\pi k f_0(n_a^i)(n-n_a^i)} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

with $a_k(n_a^i)$, $b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part.

Models for Periodic Part

HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

HNM₂: Sum of exponential function with complex slope

$$h_2[n] = \Re \left\{ \sum_{k=1}^{L(n_a^i)} A_k(n) e^{j2\pi k f_0(n_a^i)(n-n_a^i)} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

with $a_k(n_a^i)$, $b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part.

Models for Periodic Part

• HNM₃: Sum of sinusoids with time-varying real amplitudes

$$h_3[n] = \sum_{k=0}^{L(n_a^i)} a_k(n) \cos(\varphi_k(n))$$

where

$$a_{k}(n) = c_{k0} + c_{k1} (n - n_{a}^{i})^{1} + \dots + c_{kp} (n - n_{a}^{i})^{p(n)}$$

$$\varphi_{k}(n) = \epsilon_{k} + 2\pi k \zeta (n - n_{a}^{i})$$

where $a_k(n)$, $\phi_k(n)$ are real functions of discrete time and p(n) is the order of the amplitude polynomial, which is, in general, a time-varying parameter.

RESIDUAL (NOISE) PART

The non-periodic part is just the *residual* signal obtained by subtracting the periodic-part (harmonic part) from the original speech signal in the time-domain

$$r[n] = s[n] - h[n]$$

where h[n] is either $h_1[n]$, $h_2[n]$, or $h_3[n]$ (harmonic part of HNM₁, HNM₂, and HNM₃, respectively).

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 ANALYSIS
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 REFERENCES

Initial fundamental frequency

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$\Xi = \frac{\int_{0.7f_0}^{4.3f_0} (|S(f)| - |\tilde{S}(f)|)^2}{\int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\tilde{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

• If E < T, where T an appropriate threshold (e.g. $-15~\mathrm{dB}$), then frame is voiced, else it is labeled as unvoiced

Initial fundamental frequency

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$E = \frac{\int_{0.7f_0}^{4.3f_0} (|S(f)| - |\tilde{S}(f)|)^2}{\int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\tilde{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

• If E < T, where T an appropriate threshold (e.g. $-15~{\rm dB}$), then frame is voiced, else it is labeled as unvoiced

INITIAL FUNDAMENTAL FREQUENCY

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$E = \frac{\int_{0.7f_0}^{4.3f_0} (|S(f)| - |\tilde{S}(f)|)^2}{\int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\tilde{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

• If E < T, where T an appropriate threshold (e.g. $-15~{\rm dB}$), then frame is voiced, else it is labeled as unvoiced

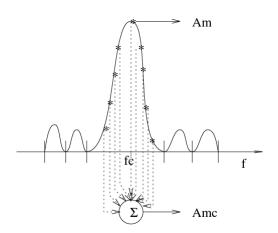
- ullet The MVF F_M is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- ullet The MVF F_M is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- ullet The MVF F_M is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- ullet The MVF F_M is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- ullet The MVF F_M is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley



 ${f Fig.\,1.}$ Cumulative amplitude definition

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the *voicing test* (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

- ullet Compute the average cumulative amplitude for all $f_i \colon \bar{A}_c(f_i)$
- Pass f_c through the *voicing test* (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

- ullet Compute the average cumulative amplitude for all f_i : $ar{\mathcal{A}}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

- ullet Compute the average cumulative amplitude for all $f_i \colon \bar{A}_c(f_i)$
- Pass f_c through the *voicing test* (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the *voicing test* (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

VOICING TEST

Voicing Test:

If

$$\frac{A_c}{\bar{A}_c(f_i)} > 2$$

or

$$|A - \max{\{A(f_i)\}}| > 13 \text{ dB}$$

then

- if f_c is really close to the closest harmonic lf_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

Voicing Test

Voicing Test:

If

$$\frac{A_c}{\bar{A}_c(f_i)} > 2$$

or

$$|A - \max\{A(f_i)\}| > 13 \text{ dB}$$

then

- if f_c is really close to the closest harmonic If_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

Voicing Test

Voicing Test:

If

$$\frac{A_c}{\bar{A}_c(f_i)} > 2$$

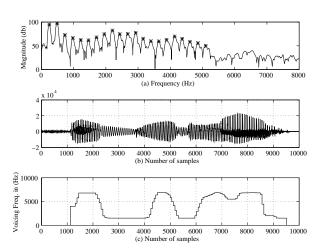
or

$$|A - \max{\{A(f_i)\}}| > 13 \text{ dB}$$

then

- if f_c is really close to the closest harmonic If_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

MAXIMUM VOICED FREQUENCY EXAMPLE

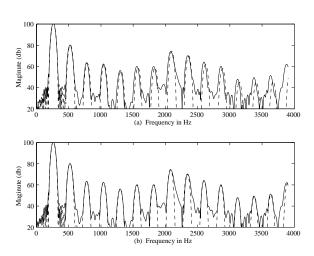


FUNDAMENTAL FREQUENCY REFINEMENT

Using the initial f_0 value and the L detected voiced frequencies f_i , then the refined fundamental frequency, $\hat{f_0}$ is defined as the value that minimizes the error:

$$E(\hat{f}_0) = \sum_{i=1}^{L} |f_i - i \cdot \hat{f}_0|^2$$

REFINEMENT FREQUENCY EXAMPLE



Amplitudes and phases estimation

Having f_0 estimated for voiced frames, amplitudes and phases are estimated by minimizing the criterion:

$$\epsilon = \sum_{n=n_a^i-N}^{n_a^i+N} w^2[n](s[n] - \hat{h}[n])^2$$

where $n_a^i = n_a^{i-1} + P(n_a^{i-1})$, and $P(n_a^{i-1})$ denotes the pitch period at n_a^{i-1} .

- for HNM₁ and HNM₂, this criterion has a quadratic form and is solved by inverting an over-determined system of linear equations.
- For HNM₃, however,a non-linear system of equations has to be solved.

AMPLITUDES AND PHASES ESTIMATION

Having f_0 estimated for voiced frames, amplitudes and phases are estimated by minimizing the criterion:

$$\epsilon = \sum_{n=n_a^i-N}^{n_a^i+N} w^2[n](s[n] - \hat{h}[n])^2$$

where $n_a^i = n_a^{i-1} + P(n_a^{i-1})$, and $P(n_a^{i-1})$ denotes the pitch period at n_a^{i-1} .

- for HNM₁ and HNM₂, this criterion has a quadratic form and is solved by inverting an over-determined system of linear equations.
- For HNM₃, however,a non-linear system of equations has to be solved.

Reformulate the error function - for ${\rm HNM_1}$

Cost function:

$$\epsilon(a_{-L},...,a_{L},f_{0}) = \frac{1}{2} \sum_{n=-N}^{N} (e[n])^{2} = \frac{1}{2} e^{h} e^{h}$$

where

$$e[n] = w[n](s[n] - h[n])$$

or

$$\mathbf{e} = \begin{bmatrix} e[-N], & e[-N+1], & \dots & e[N] \end{bmatrix}^T$$

Reformulate the error function - for HNM₁

$$\epsilon(\mathbf{a}) = \frac{1}{2}(\mathbf{s} - \mathbf{E}\mathbf{a})^h \mathbf{W}^2(\mathbf{s} - \mathbf{E}\mathbf{a})$$

where

$$\mathbf{a} = \begin{bmatrix} a_{-L}, & ... & a_0, & ... & a_L \end{bmatrix}^T$$

and

$$\mathbf{E} = \begin{bmatrix} e^{j2\pi(-L)\hat{f}_0(-N)/f_s}, & \dots & e^{j2\pi L\hat{f}_0(-N)/f_s} \\ e^{j2\pi(-L)\hat{f}_0(-N+1)/f_s}, & \dots & e^{j2\pi L\hat{f}_0(-N+1)/f_s} \\ \vdots & \vdots & \vdots & \vdots \\ e^{j2\pi(-L)\hat{f}_0N/f_s}, & \dots & e^{j2\pi L\hat{f}_0N/f_s} \end{bmatrix}^T \\ (2L+1\times 2N+1)$$

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N+L))
 - Assumes no errors in E matrix.

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored
 - Rather fast, O(L(N+L))
 - Assumes no errors in E matrix.

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in E matrix.

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N+L)).
 - Assumes no errors in E matrix.

Least Squares - for HNM_1

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N+L)).
 - Assumes no errors in E matrix.

Least Squares - for HNM_1

Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N+L)).
 - Assumes no errors in E matrix.

AVOIDING ILL-CONDITIONING

- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- For HNM₃ stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

AVOIDING ILL-CONDITIONING

- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- For HNM₃ stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

AVOIDING ILL-CONDITIONING

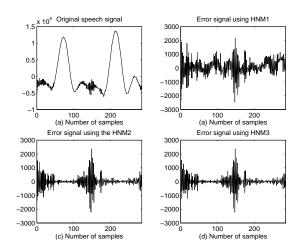
- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- \bullet For HNM $_3$ stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

RESIDUAL SIGNAL

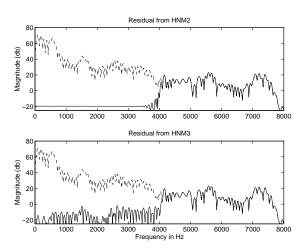
The residual signal r[n] is estimated by

$$\hat{r}[n] = s[n] - \hat{h}[n]$$

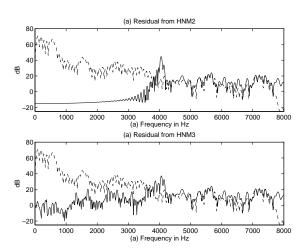
Time domain characteristics of $\hat{r}[n]$



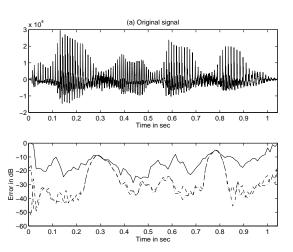
Spectral domain characteristics of $\hat{r}[n]$



... AND AFTER ADDING NOISE



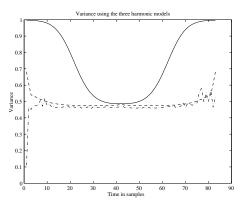
Modeling error



Variance of the residual signal

The variance of the residual signal is given as:

$$E(\mathbf{rr}^h) = \mathbf{I} - \mathbf{WP}(\mathbf{P}^h \mathbf{W}^h \mathbf{WP})^{-1} \mathbf{P}^h \mathbf{W}^h$$



Modeling the residual signal

- Full bandwidth representation using a low-order (10th) AR filter
- Time-domain characteristics of the residual signal are modeled using deterministic functions

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 REFERENCES

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

- \bullet $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

- \bullet $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

- $\bullet \ n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

FOR HNM₁ SPECIFICALLY

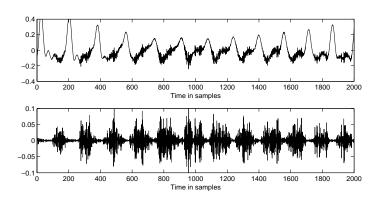
for Periodic part (as an alternative to OLA)

- Direct frequency matching
- Linear amplitude interpolation
- Linear phase interpolation using average pitch value

OUTLINE

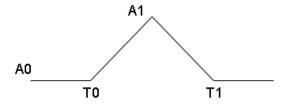
- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 References

AGAIN ON THE ENERGY MODULATION



SO FAR, MAINLY

So far we mainly use the Triangular Envelope:



SIGNAL ENVELOPE

There are many ways to obtain the "envelope" of a signal, as:

- Hilbert Transform (analytic signal)
- Low-pass local energy (energy envelope):

$$e[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} |r[n-k]|$$

where r[n] denotes the residual signal.

SIGNAL ENVELOPE

There are many ways to obtain the "envelope" of a signal, as:

- Hilbert Transform (analytic signal)
- Low-pass local energy (energy envelope):

$$e[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} |r[n-k]|$$

where r[n] denotes the residual signal.

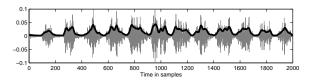
HILBERT ENVELOPE

We may also use the Hilbert envelope, computed as:

$$\tilde{e}_{H}[n] = \sum_{k=L-M+1}^{L} a_k e^{2\pi k (f_0/f_s)n}$$

EXAMPLE OF ENERGY ENVELOPE

Example of Energy Envelope, with N=7



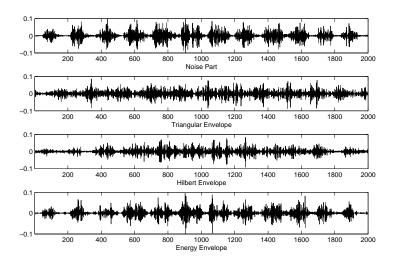
Energy envelope

The energy envelope can be efficiently parameterized with a few Fourier coefficients:

$$\hat{e}[n] = \sum_{k=-L_e}^{L_e} A_k e^{j2\pi k (f_0/f_s)n}$$

where L_e is set to be 3 to 4

LOOKING AT TIME DOMAIN PROPERTIES



RESULTS FROM LISTENING TEST I

	Triangular	No pref.	Hilbert
Male	8 (8.3%)	43 (44.8%)	45 (46.9%)
Female	40 (41.7%)	47 (48.9%)	9 (9.4%)

	Hilbert	No pref.	Energy
Male	22 (22.9%)	47 (49.0%)	27 (28.1%)
Female	22 (22.9%)	54 (56.3%)	20 (20.8%)

	Energy	No pref.	Triangular
Male	43 (44.8%)	50 (52.0%)	3 (3.2%)
Female	16 (16.7%)	67 (69.8%)	13 (13.5%)

TABLE: Results from the listening test for the English sentences.

RESULTS FROM LISTENING TEST II

	Triangular	No pref.	Hilbert
Male	10 (10.4%)	47 (49.0%)	39 (40.6%)
Female	8 (8.3%)	71 (74.0%)	17 (17.7%)

	Hilbert	No pref.	Energy
Male	11 (11.5%)	58 (60.4%)	27 (28.1%)
Female	13 (13.5%)	58 (60.4%)	25 (26.1%)

	Energy	No pref.	Triangular
Male	42 (43.7%)	48 (50.0%)	6 (6.3%)
Female	16 (16.7%)	68 (70.8%)	12 (12.5%)

TABLE: Results from the listening test for the French sentences.

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 References

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

- Methods:
 - FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
 - Subspace methods
 - Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

- How to deal with that?
- You will discuss more advanced sinusoidal models in the following lecture! :)

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- **THANKS**
- 8 References

THANK YOU for your attention

OUTLINE

- 1 First works on speech decomposition...
- 2 Introduction to HNMs
- 3 Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - Error Function for HNM₁
 - Least Squares for HNM₁
 - Residual
- 4 Synthesis
- 5 Energy modulation function
- 6 Towards Quasi-Harmonicity
- THANKS
- 8 References

References I

- D. Griffin and J. Lim, "Multiband-excitation vocoder," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-36, pp. 236–243, Fev 1988.
- A. Abrantes, J. Marques, and I. Transcoso, "Hybrid sinusoidal modeling of speech without voicing decision," *Eurospeech-91*, pp. 231–234, 1991.
- B.Yegnanarayana, C. d'Alessandro, and V. Darsinos, "An iterative algorithm for decomposition of speech signals into periodic and aperiodic components," *IEEE Trans. Speech and Audio Processing*, vol. 6, no. 1, 1998.
- Y. Stylianou, Harmonic plus Noise Models for Speech, combined with Statistical Methods, for Speech and Speaker Modification.

 PhD thesis, Ecole Nationale Supèrieure des Télécommunications, Jan 1996.

References II

W. Hess, Pitch determination of Speech Signals: Algorithmes and Devices.

Berlin: Springer, 1983.

M. Abe and J. S. III, "CQIFFT: Correcting Bias in a Sinusoidal Parameter Estimator based on Quadratic Interpolation of FFT Magnitude Peaks," Tech. Rep. STAN-M-117, Stanford University, California, Oct 2004.

M. Abe and J. S. III, "AM/FM Estimation for Time-varying Sinusoidal Modeling," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing*, (Philadelphia), pp. III 201–204, 2005.