Neural-Based Sinusoidal Vocoder
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Sinusoidal Model

s[n] = §[n] = z A¥ cos(naf + 9f).
I=1
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Fig. 7. Block diagram of the sinusoidal analysis/synthesis system.
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Redefining the problem: Phase and Amplitude

Any generic AM sinusoidal discrete-time wave h[n] can be written as:

2nf
fs

= A[n] (cos(go) cos <2;Tf n) — sin(¢) sin (2;Tf n))

= A[n] cos(@) cos <2nf ) — A[n] sin(g) sin (an n)

h[n] = A [n] CcoS ( n + go) cos(a + b) = cos(a) cos(b) + sin(a) sin(b)

i fi

= a[n] cos (2}:f n> + BIn] sin (2}Zf n) :

Therefore, a speech wave s[n] can be approximated with AM sinusoidal waves as:

M

s[n] = §[n] = @y, [n] cos <2nfm n) + Bm[n] sin (anm n) :

fs fs

fs = Sampling rate.

s = Input speech wave.
§ = Predicted output speech wave.

M = Total number of sinusoid pairs.

f., = Frequency of the mt" sinusoid pair.

&, [n] = Amplitudes of the mt" cosine wave.
Bm[n] = Amplitudes of the mt" sine wave.




Redefining the problem: Frequencies

M
~ §[n] = zl am[n cos( ) + B [n] sin <27Zm n) :

In fact, we can represent any arbitrary signal using sums of AM sinusoids:

Let h[n] be an arbitrary discrete-time signal. Choose frequencies f3, f, s.t. LCM(f3, f>) < f;/2. Then, we can write h|n] as

hin] = hn] 1{fon = kf,/2} + hin] 1{fon + kf,/2}, keN o

h[n] =

hln] 1fon = kfy/2) <2nf1n>+ hln] 1fon # kf3/2) <2nf2 )@
@) )

S S

@ h|n] = a4[n] cos (27;f1 n> + B,[n] sin (27;f2 n) :

So we can work with constant frequencies over a longer frame.

Of course, we do not want such scenario to actually happen, i.e., to basically directly synthesize a speech wave s[n] using
two AM signals. Ideally, many sinusoids should cooperate to make this seemingly hard task, an easier one. This just goes
to show the “limitless” representation capabilities of this approach from a mathematical/theoretical point of view.



Redefining the problem: Input

A classic/linear spectrogram gives “equal importance” to all frequencies, e.g., the space between 1-2kHz is half of 2-4kHz.
However, we know that human hearing is more sensitive/precise at distinguishing lower frequencies than higher ones. For
example, a difference between 400-800Hz will be obvious, but between 7600-8000Hz much harder noticeable.

We can take advantage of that, by having as input a mel-spectrogram, which logarithmically scales the frequencies:

m(f) = 25951og (1 + %) = 1127 In (1 + %) (Common conversion function from hertz to mel scale.)

f(m) = 700(107”/2595 — 1) = 700(em/1127 — 1).  (Common conversion function from mel to hertz scale.)

Plot of frequencies in Mel versus Hertz scale: An increasing and decreasing tone from 20Hz to 22kHz and back:
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Redefining the problem: Input and Frequencies

We create M equally spaced frequencies mg = (M (fmin), - » M(fmax)) and then convert them back in Hz scale f(mf).
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S[n] = Z ., [n] cos <27Zm n> + B [n] sin (szm n) :

m=1

So the number of AM sinusoid pairs in our
model will be equal to the number of mel bands

M that we choose for our input spectrogram |

@ M Overlapping triangular filters of (exponentially) increasing size:

Mel filter bank

N Example
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@ We can now know the center frequency of each band

Mel bins

301 603 910 1244 1696 2320 3165 4323 5911 8070

These central band frequencies are the choice
for our constant frequencies f,,, in the model !




Redefining the problem: Summary

L(k)
- ik Ak
s[n] = s[n Z Aj cos(na)l + 0, ) (Original Sinusoidal Model)

M
zl a,[n] cos < ffm n> + B [n]sin <27Zm n) _ (Proposed Model)

Main assumption differences:

1) Not constructing small frames with sums of sinusoids:
—longer frames with sums of AM sinusoids.

2) No alternating frequency estimation methods:
— constant frequencies instead.

3) No separate phase or amplitude interpolation:
— a, f coefficients compensate for them.

4) No linear spectrogram as input:
— mel-spectrogram instead.

5) No analytical parameter estimation from the input:
— ??? approach instead.




Redefining the problem: Solution

M
s[n] = §[n] = Z &y [n] cos (27;fm n> + Bm[n] sin <27;fm n>.

m=1

Input = Mel-Spectrogram S generated from a speech signal s[n].
Output = a,,[n], B, [n] coefficients — prediction speech signal §[n].

Goal = approximate s[n] with $[n] as closely as possible.

Since we want to emulate real human speech, we can think of it as an optimization problem, in which we want to
minimize the “distance” of our synthetic speech wave §[n] from the corresponding ground truth speech wave s[n].

This “distance” is measured by a function of our choosing, i.e., the loss function £, which gives a numeric
estimation of how “close” or “far” its inputs are. E.g., it can be the Mean Squared Error between the two:

N
s, 4 = %Z(s[n] _ Gl

So we want to create a parametric model F that takes S as input, such that its
parameters 8 that calculate the output a, f minimize our defined loss function L:

m@in L(s,$)
a, =F(S,0).




Solution: Optimization Approach

mgin L(s,$)

a,f =

F(S,0).

There exist many optimization methods depending on the problem’s complexity/hardness, e.g., Linear, Convex, Message
Passing, Belief Propagation, etc., but the hardness of this problem (vocoder creation) has shown the need for Neural Networks.
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Our function F in this case will be a Neural Network.

It will receive S as its input and has to tune its (large) set of parameters 8 s.t. its a, f outputs minimize L.

Neural Networks are comprised of layers, and each layer is made of weights, or neurons (the trainable parameters).

Each type of layer applies a different operation on its input to give its output.

The main layer of interest for us will be the Convolutional Layer.




Neural Networks: 1D Convolutional Layer

The equation describing convolution in 1D discrete space between an input
sequence x and an output sequence y using one filter, or kernel w is:

One can think of convolving as sliding a window over the input.

Here, the filter values w; and the bias term b are the trainable parameters.







Neural Networks: Transposed 1D Convolutional Layer

How can we upsample along the time axis within an neural network in a “smart way” ?

@ The transposed convolutional layer is essentially a trainable upsampling layer.

It firstly pads between the input’s consecutive values:

0, otherwise.

/ {xi.j’v ifj=5-('-1)+1
€ —

And then acts as a normal convolutional layer:




Neural Networks: Optimizer

But how are the trainable parameters, e.g., convolution filters being updated ?

The optimizer of the Neural Network is the algorithm responsible for updating these parameters:

Algorithm 1 Stochastic Gradient Descent

Require: Number of Iterations: T € N, Parametric Model: f, with Trainable Weights: w and Biases: b, Input
Training Dataset: x, Corresponding Ground Truth: y, Loss Function: £, Learning Rate: n € RT, Weight
Initialization: wg, Bias Initialization: bg

Iz W+ Wy
2: b b()

3: foriell,...,T] do

11: end for

4:  x; < Random(x)
5: g <« f(x:)

6: L; < L(§i,9:)

i Aw<+ |-V, L;

8:  Ab + —V,L;

O:

w — w+n-Aw
100 b <« b+n-Ab

# Initialize the weights w with the given weight initialization wy.

# Initialize the biases b with the given bias initialization by.

# For all number of iterations 7' given:

# Fetch a sample x; from the input training data z uniformly at random.
# Get the model’s prediction ¢; for the input z;.

# Compute the loss between the prediction g;, and the ground truth y;.
# Compute the negative gradient —V of the loss L; w.r.t. the weights w.
# Compute the negative gradient —V of the loss L; w.r.t. the biases b.

# Scale Aw by the learning rate n, and update the weights w.

# Scale Ab by the learning rate 7, and update the biases b.

This is not the actual optimizer used; there are many improved versions of
SGD, e.g., Adam, but we do not have the time to dive deeper into optimizers.

The optimizer is based on the gradient for updating the weights, but how is this gradient computed?




Forward
Pass

v1 = sin(waz)

f(wy,wa, w3) = wy sin(wsg) + ws cos(ws).

vo = cos(wsz)
U3 = U1 - W1 w1
V4 = V2 * W3

f=1v3+ v

Backward Pass
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1xXN M XL

fs = 22050 Hz.

s = Input speech wave.

S = Mel-spectrogram of s.

$ = Predicted output speech wave.

N = Total number of samples.

M = Total number of mel bins or sinusoids pairs.
fm = Central frequency of the mt"mel band.
a,,[n] = Amplitudes of the m"* AM cosine wave.
B [n] = Amplitudes of the mt"* AM sine wave.

Model Setup

Neural
Network
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§[n] = Z o ] cos <2nfm n) ol sin <2nfm n>. o
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Upsampling Example jx
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Loss Function

Our loss function focuses on the similarity, (or the differences) s and § have on the spectral domain. Meaning that our
assumption is that the better our prediction § gets, the closer its spectrogram will also get to the ground truth s (so the loss
will have a smaller value). Hence, the network will try to minimize this difference between the two signals.

Spectral Convergence:

Logarithmic Magnitude:

L (s,

§) =

IISTFT(s)| —

ISTFT (3)|ll

IISTFT ($)llF

1
Limag(s,8) = N I1og|STFT (s) + €

— log|STFT(8) + €llly,

Summing over different parameters:

3

L(s,3) = z 19(s,8) + LD, (s, 9)

=1

Final Loss Function:

L(s,8) =Ls(s,8) + L,(s',8")

Objective:
min(L(s, $))
S

1024 1024
512 240 50
2048 1200 240



fy = A Model Architecture e =

s = Input speech wave.

S = Mel-spectrogram of s. COS(ZT[fln)
$ = Predicted output speech wave. :
N = Total number of samples = 8192. COS(ZT[an) M x N

M = Total number of mel bins or sinusoid pairs = 100.
fm = Central frequency of the mtmel band.

a,,[n] = Amplitudes of the m™ AM cosine wave.
BmIn] = Amplitudes of the mt"* AM sine wave.
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Results

Ground Truth Inference

“...thorough description of the
S NS responsibilities of the advance agent..”

“...by mid June nineteen sixty four...”

NN NN
“...it will support any reasonable
S NS request for funds...”
; “...it has received assistance also...”
e - S

“...from data processing experts at
NS ) the CIA..”



Thank You !
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