
Neural-Based Sinusoidal Vocoder

Sinusoidal Model

Speech Analysis/Synthesis Based on a Sinusoidal Representation ROBERT J. McAULAY, THOMAS F. QUATIERI,
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 4, AUGUST 1986.

Frequencies:

Phases:

Amplitudes:

(linear interpolation)

(birth-death method)

(cubic interpolation)

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑙=1

𝐿(𝑘)

መ𝐴𝑙
𝑘 cos 𝑛 ෝ𝜔𝑙

𝑘 + መ𝜃𝑙
𝑘 .

Redefining the problem: Phase and Amplitude

ℎ 𝑛 = 𝐴[𝑛] 𝑐𝑜𝑠
2𝜋𝑓

𝑓𝑠
𝑛 + 𝜑

= 𝐴 𝑛 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠
2𝜋𝑓

𝑓𝑠
𝑛 − 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛

2𝜋𝑓

𝑓𝑠
𝑛

= 𝑨[𝒏] 𝒄𝒐𝒔 𝝋 𝑐𝑜𝑠
2𝜋𝑓

𝑓𝑠
𝑛 − 𝑨[𝒏] 𝒔𝒊𝒏 𝝋 𝑠𝑖𝑛

2𝜋𝑓

𝑓𝑠
𝑛

= 𝜶[𝒏] 𝑐𝑜𝑠
2𝜋𝑓

𝑓𝑠
𝑛 + 𝜷 𝒏 𝑠𝑖𝑛

2𝜋𝑓

𝑓𝑠
𝑛 .

Any generic AM sinusoidal discrete-time wave ℎ[𝑛] can be written as:

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

Therefore, a speech wave 𝑠[𝑛] can be approximated with AM sinusoidal waves as:

cos 𝑎 + 𝑏 = cos 𝑎 cos 𝑏 + sin 𝑎 sin(𝑏)

𝑓𝑠 = Sampling rate.
𝑠 = Input speech wave.
Ƹ𝑠 = Predicted output speech wave.
𝑀 = Total number of sinusoid pairs.
𝑓𝑚 = Frequency of the 𝑚𝑡ℎ sinusoid pair.
𝛼𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ cosine wave.
𝛽𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ sine wave.

Redefining the problem: Frequencies

In fact, we can represent any arbitrary signal using sums of AM sinusoids:

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

ℎ 𝑛 =
ℎ 𝑛 𝟙 𝑓2𝑛 = 𝑘𝑓𝑠/2

cos
2𝜋𝑓1
𝑓𝑠

𝑛
cos

2𝜋𝑓1
𝑓𝑠

𝑛 +
ℎ 𝑛 𝟙 𝑓2𝑛 ≠ 𝑘𝑓𝑠/2

sin
2𝜋𝑓2
𝑓𝑠

𝑛
sin

2𝜋𝑓2
𝑓𝑠

𝑛 ⇔

ℎ 𝑛 = 𝜶𝟏[𝒏] cos
2𝜋𝑓1
𝑓𝑠

𝑛 + 𝜷𝟐[𝒏] sin
2𝜋𝑓2
𝑓𝑠

𝑛 .

So we can work with constant frequencies over a longer frame.

Let ℎ 𝑛 be an arbitrary discrete-time signal. Choose frequencies 𝑓1, 𝑓2 s.t. LCM 𝑓1, 𝑓2 < 𝑓𝑠/2. Then, we can write ℎ 𝑛 as:

ℎ 𝑛 = ℎ 𝑛 𝟙 𝑓2𝑛 = 𝑘𝑓𝑠/2 + ℎ 𝑛 𝟙 𝑓2𝑛 ≠ 𝑘𝑓𝑠/2 , 𝑘 ∈ ℕ ⇔

Of course, we do not want such scenario to actually happen, i.e., to basically directly synthesize a speech wave s 𝑛 using
two AM signals. Ideally, many sinusoids should cooperate to make this seemingly hard task, an easier one. This just goes
to show the “limitless” representation capabilities of this approach from a mathematical/theoretical point of view.

Redefining the problem: Input

We can take advantage of that, by having as input a mel-spectrogram, which logarithmically scales the frequencies:

A classic/linear spectrogram gives “equal importance” to all frequencies, e.g., the space between 1-2kHz is half of 2-4kHz.
However, we know that human hearing is more sensitive/precise at distinguishing lower frequencies than higher ones. For
example, a difference between 400-800Hz will be obvious, but between 7600-8000Hz much harder noticeable.

Spectrogram Mel-spectrogram

An increasing and decreasing tone from 20Hz to 22kHz and back:

𝑚(𝑓) = 2595 log10 1 +
𝑓

700
= 1127 ln 1 +

𝑓

700
.

𝑓(𝑚) = 700 10𝑚/2595 − 1 = 700(𝑒𝑚/1127 − 1).

(Common conversion function from hertz to mel scale.)

(Common conversion function from mel to hertz scale.)

Plot of frequencies in Mel versus Hertz scale:

Speech Communications: Human and Machine by Douglas O'Shaughnessy Wiley-IEEE Press; 2nd edition (November 30, 1999)

Redefining the problem: Input and Frequencies

𝑀 Overlapping triangular filters of (exponentially) increasing size:

We create 𝑀 equally spaced frequencies m𝑓 = 𝑚(𝑓𝑚𝑖𝑛 , … ,𝑚 𝑓𝑚𝑎𝑥) and then convert them back in Hz scale 𝑓 m𝑓 .

Example

… …

These central band frequencies are the choice
for our constant frequencies 𝑓𝑚 in the model !

……

We can now know the center frequency of each band

Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

So the number of AM sinusoid pairs in our
model will be equal to the number of mel bands
𝑀 that we choose for our input spectrogram !

Redefining the problem: Summary

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

1) Not constructing small frames with sums of sinusoids:
→longer frames with sums of AM sinusoids.

2) No alternating frequency estimation methods:
→ constant frequencies instead.

3) No separate phase or amplitude interpolation:
→𝜶,𝜷 coefficients compensate for them.

4) No linear spectrogram as input:
→ mel-spectrogram instead.

5) No analytical parameter estimation from the input:
→ ??? approach instead.

Main assumption differences:

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑙=1

𝐿(𝑘)

መ𝐴𝑙
𝑘 cos 𝑛 ෝ𝜔𝑙

𝑘 + መ𝜃𝑙
𝑘 . (Original Sinusoidal Model)

(Proposed Model)

Redefining the problem: Solution

min
𝜃

ℒ 𝑠, Ƹ𝑠

𝛼, 𝛽 = 𝐹 𝑆, 𝜃 .

𝑠 𝑛 ≈ Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

Input = Mel-Spectrogram 𝑆 generated from a speech signal 𝑠 𝑛 .
Output = 𝛼𝑚 𝑛 , 𝛽𝑚[𝑛] coefficients → prediction speech signal Ƹ𝑠[𝑛].

Since we want to emulate real human speech, we can think of it as an optimization problem, in which we want to
minimize the “distance” of our synthetic speech wave Ƹ𝑠[𝑛] from the corresponding ground truth speech wave 𝑠[𝑛].

So we want to create a parametric model 𝐹 that takes 𝑆 as input, such that its
parameters 𝜃 that calculate the output 𝛼, 𝛽 minimize our defined loss function ℒ:

Goal = approximate 𝑠 𝑛 with Ƹ𝑠[𝑛] as closely as possible.

This “distance” is measured by a function of our choosing, i.e., the loss function ℒ, which gives a numeric
estimation of how “close” or “far” its inputs are. E.g., it can be the Mean Squared Error between the two:

ℒ 𝑠, Ƹ𝑠 =
1

𝑁
෍

𝑛=1

𝑁

𝑠 𝑛 − Ƹ𝑠 𝑛 2.

Solution: Optimization Approach

min
𝜃

ℒ 𝑠, Ƹ𝑠

𝛼, 𝛽 = 𝐹 𝑆, 𝜃 .

There exist many optimization methods depending on the problem’s complexity/hardness, e.g., Linear, Convex, Message
Passing, Belief Propagation, etc., but the hardness of this problem (vocoder creation) has shown the need for Neural Networks.

Our function 𝐹 in this case will be a Neural Network.

It will receive 𝑆 as its input and has to tune its (large) set of parameters 𝜃 s.t. its 𝛼, 𝛽 outputs minimize ℒ.

Neural Networks are comprised of layers, and each layer is made of weights, or neurons (the trainable parameters).

Each type of layer applies a different operation on its input to give its output.

The main layer of interest for us will be the Convolutional Layer.

Neural Networks: 1D Convolutional Layer

One can think of convolving as sliding a window over the input.

Here, the filter values 𝑤𝑖 and the bias term 𝑏 are the trainable parameters.

The equation describing convolution in 1D discrete space between an input
sequence 𝑥 and an output sequence 𝑦 using one filter, or kernel 𝑤 is:

One input channel One output channel

One kernel

Neural Networks: 1D Convolutional Layer
How to process a 2D array, e.g., a spectrogram, with a 1D convolutional layer?

We can treat each input row (frequency band) as an input channel.

How do we also get a 2D output from a 1D convolutional layer?

We can have multiple filters operate over one input, thus resulting in
a different output sequence per set of filters, i.e., output channel:

Many
input
channels.

Many
output
channels.

Neural Networks: Transposed 1D Convolutional Layer

The transposed convolutional layer is essentially a trainable upsampling layer.

How can we upsample along the time axis within an neural network in a “smart way” ?

It firstly pads between the input’s consecutive values:

And then acts as a normal convolutional layer:

Neural Networks: Optimizer

The optimizer of the Neural Network is the algorithm responsible for updating these parameters:

But how are the trainable parameters, e.g., convolution filters being updated ?

This is not the actual optimizer used; there are many improved versions of
SGD, e.g., Adam, but we do not have the time to dive deeper into optimizers.

The optimizer is based on the gradient for updating the weights, but how is this gradient computed?

This gradient is computed efficiently by the backpropagation algorithm.

Firstly, a graph representing the entire corresponding output function of a neural network is formed, called computational graph.

With an automated procedure called backward pass the gradient of the loss function is essentially computed using the chain rule:

Neural Networks: Backpropagation

Toy Example:

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛]

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

cos(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

cos(2𝜋𝑓𝑀𝑛/𝑓𝑠)

×

+

sin(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

sin(2𝜋𝑓𝑀𝑛/𝑓𝑠)

×

Ƹ𝑠

Neural
Network

Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

Synthesis:

𝑀 × 𝐿

𝑆

Model Setup

𝑠

1 × 𝑁

𝑀 × 𝑁

𝑀 × 𝑁

𝑀 × 𝑁

𝑀 × 𝑁

𝑀 × 𝑁

1 × 𝑁

𝑓𝑠 = 22050 𝐻𝑧.
𝑠 = Input speech wave.
𝑆 = Mel-spectrogram of 𝑠.
Ƹ𝑠 = Predicted output speech wave.
𝑁 = Total number of samples.
𝑀 = Total number of mel bins or sinusoids pairs.
𝑓𝑚 = Central frequency of the 𝑚𝑡ℎmel band.
𝛼𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ AM cosine wave.
𝛽𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ AM sine wave.

෍

𝑚=1

𝑀

1D Conv. Layer

1D Transposed
Conv. Layer

Residual Stack

1D Transposed
Conv. Layer

Residual Stack

𝑆

× 2

× 2

× 3

1D Conv. Layer

+

1D Dilated Conv. Layer

1D Conv. Layer 1D Conv. Layer

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛]

Neural
Network

𝛼

𝛽

𝑀 ×𝑁 𝑀 ×𝑁

MelGAN: Generative Adversarial Networks for Conditional
Waveform Synthesis, Kundan Kumar, Rithesh Kumar, Thibault
de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo,
Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

Neural Network Architecture

2D Transposed
Convolution (x3)

𝑀 × 𝐿

𝑆

𝑠
1 × 𝑁

~4.1 mil. train. parameters

1D Conv. Layer

1D Transposed
Conv. Layer (x5)

Residual Stack

1D Transposed
Conv. Layer (x2)

Residual Stack

𝑥

× 2

× 2

Upsampling Example

𝑀 = 100 × 𝐿 = 80

𝑆

1D Conv. Layer
(x420)

𝟒𝟐𝟎 × 80

𝑆1

1D Transposed
Conv. Layer (x5)

420 × 400

𝑆2

Residual Stack
(x220)

𝟐𝟐𝟎 × 400

𝑆3

1D Transposed
Conv. Layer (x5)

220 × 2k

𝑆4

…

1D Conv. Layer 1D Conv. Layer

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛] 𝑀 ×𝑁 𝑀 × 𝑁

filters

420

220

160

140

𝑀 = 100

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛]

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

𝑀 = 100 × 𝑁 = 8192

𝑀 = 100 × 𝑁 = 8192

Loss Function

𝐿𝑠 𝑠, Ƹ𝑠 =෍

𝑖=1

3

𝐿𝑠𝑐
𝑖
𝑠, Ƹ𝑠 + 𝐿𝑚𝑎𝑔

𝑖
(𝑠, Ƹ𝑠)

𝐿𝑠𝑐 𝑠, Ƹ𝑠 =
𝑆𝑇𝐹𝑇 𝑠 − 𝑆𝑇𝐹𝑇 Ƹ𝑠 𝐹

|𝑆𝑇𝐹𝑇 𝑠 | 𝐹
𝐿𝑚𝑎𝑔 𝑠, Ƹ𝑠 =

1

𝑁
log 𝑆𝑇𝐹𝑇 𝑠 + 𝜖 − log 𝑆𝑇𝐹𝑇 Ƹ𝑠 + 𝜖 L1

Spectral Convergence: Logarithmic Magnitude:

Our loss function focuses on the similarity, (or the differences) s and Ƹ𝑠 have on the spectral domain. Meaning that our
assumption is that the better our prediction Ƹ𝑠 gets, the closer its spectrogram will also get to the ground truth s (so the loss

will have a smaller value). Hence, the network will try to minimize this difference between the two signals.

Final Loss Function:

Objective:

min
Ƹ𝑠
(ℒ𝑠 𝑠, Ƹ𝑠)

𝑵 win_len hop_len

1024 1024 256

512 240 50

2048 1200 240

ℒ𝑠 𝑠, Ƹ𝑠 = 𝐿𝑠 𝑠, Ƹ𝑠 + 𝐿𝑠 𝑠′, Ƹ𝑠′

Summing over different parameters:

𝛼1[𝑛]
⋮

𝛼𝑀[𝑛]

𝛽1[𝑛]
⋮

𝛽𝑀[𝑛]

cos(2𝜋𝑓1𝑛)
⋮

cos(2𝜋𝑓𝑀𝑛)

×

+

sin(2𝜋𝑓1𝑛)
⋮

sin(2𝜋𝑓𝑀𝑛)

×

෍

𝑚=1

𝑀

𝑀 ×𝑁

Ƹ𝑠

𝑠

𝑀 × 𝐿

𝑆
Conv. Layer

Conv. Layer

Conv. Layer
Transposed
Conv. Layer

Residual Stack

× 4

𝑀 ×𝑁

𝑀 ×𝑁

𝑀 ×𝑁

𝑀 × 𝑁

Model Architecture

Synthesis

𝑓𝑠 = 22050 𝐻𝑧
𝑠 = Input speech wave.
𝑆 = Mel-spectrogram of 𝑠.
Ƹ𝑠 = Predicted output speech wave.
𝑁 = Total number of samples = 8192.
𝑀 = Total number of mel bins or sinusoid pairs = 100.
𝑓𝑚 = Central frequency of the 𝑚𝑡ℎmel band.
𝛼𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ AM cosine wave.
𝛽𝑚 𝑛 = Amplitudes of the 𝑚𝑡ℎ AM sine wave.

Ƹ𝑠[𝑛] = ෍

𝑚=1

𝑀

𝛼𝑚[𝑛] cos
2𝜋𝑓𝑚
𝑓𝑠

𝑛 + 𝛽𝑚[𝑛] s𝑖𝑛
2𝜋𝑓𝑚
𝑓𝑠

𝑛 .

Loss Function

1 × 𝑁

1 × 𝑁

ℒ𝑠 𝑠, Ƹ𝑠 = ෍

𝑖=1

3

𝐿𝑠𝑐
𝑖
𝑠, Ƹ𝑠 + 𝐿𝑚𝑎𝑔

𝑖
𝑠, Ƹ𝑠 + 𝐿𝑠𝑐

𝑖
𝑠′, Ƹ𝑠′ + 𝐿𝑚𝑎𝑔

𝑖
(𝑠′, Ƹ𝑠′)

𝑮𝒓𝒐𝒖𝒏𝒅 𝑻𝒓𝒖𝒕𝒉 𝑰𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑻𝒆𝒙𝒕

“…thorough description of the
responsibilities of the advance agent...”

Results

“…by mid June nineteen sixty four...”

“…it will support any reasonable
request for funds...”

“…it has received assistance also...”

“…from data processing experts at
the CIA...”

Thank You !

