
Project 0:

Part 2

A second hands-on lab on Speech Processing

Frequency-domain processing

George P. Kafentzis

February 18, 2022

During this lab, you will have a first contact with the frequency domain analysis of speech signals.
You will explore the frequency domain structure of the most basic speech elements, such as vowels
and consonants, using the Fast Fourier Transform (FFT). You will learn about time-frequency repre-
sentation of speech signals, with the help of Short-Time Fourier Analysis (spectrogram), and you will
calculate basic components on speech, such as the pitch.

The final goal of this lab is to implement a simple system for speaker gender (male, female) and
age (adult or children) detection.

1 Theoretical Background

You will first familiarize yourself with the time-frequency representation of speech, the so-called
spectrogram. The spectrogram can be produced using wideband or narrowband analysis. Wideband
analysis includes the use of short analysis windows in time, whereas narrowband analysis is performed
using long analysis windows in time.

1.1 Short Time Fourier Analysis - Spectrogram

In the previous lab, you have seen that speech consists of a sequence of different events. These
events are so radically different both in time and in frequency that a single Fourier transform over the
whole speech signal cannot capture the time-varying frequency content of the waveform. In contrast,
the short-time Fourier Transform - STFT consists of separate Fourier Transforms on pieces of the
waveform under a sliding window - pretty much like we did in the previous lab, but now we view our
results in the frequency domain this time. ,

The Fourier transform of the windowed speech waveform (STFT) is given by

X(ω, τ) =

∞∑
n=−∞

x[n, τ ]e−jωn (1)

where
x[n, τ ] = w[n, τ ]x[n] (2)
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Figure 1: Narrowband analysis of speech.

represents the windowed speech segment as a function of the center of the window, at time τ . The spec-
trogram is a graphical 2D display of the squared magnitude of the time-varying spectral characteristics
and it can be described mathematically as

S(ω, τ) = |X(ω, τ)|2 (3)

For voiced speech, we can approximate the speech waveform as the output of a linear time-invariant
system with impulse response h[n] and with a glottal flow input given by the convolution of a series
of periodically placed impulses, p[n] =

∑∞
k=−∞ δ[n− kP ], with P being the pitch period, and a glottal

flow over one cycle, g[n]:
x[n, τ ] = w[n, τ ](p[n] ∗ g[n] ∗ h[n]) (4)

Thus, the spectrogram can be expressed as

S(ω, τ) =
1

P 2

∣∣∣ ∞∑
k=−∞

H(ω)G(ω)W (ω − ωk, τ)
∣∣∣2 (5)

Now based on that expression, there are two different types of STFT analysis, according to the window
length that is used. A long window (i.e. up to 3 or 4 pitch periods) results in narrowband analysis,
whereas a short window (i.e. a pitch period or even less) results in wideband analysis. You should
already know that the length of the window affects its spectral characteristics, and mainly the size of
the mainlobe (and thus, its bandwidth). Also, you should know that multiplying a window with a
speech segment in time results in a frequency convolution between the corresponding spectra. Hence,
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simply speaking, the spectrum of the analysis window is ”placed” around and on the harmonics of
the underlying speech spectrum. Keeping this in mind, let us discuss the wideband and narrowband
analysis.

Figure 2: Wideband analysis of speech.

1.1.1 Narrowband analysis

As we said, the narrowband spectrogram, a “long” - in time - analysis window is used, typically
of duration of at least two pitch periods (usually more than 20 ms). Under the condition that the
main lobes of the shifted window Fourier transforms are non-overlapping, and that the sidelobes of the
window transform are negligible, we can approximately state that

S(ω, τ) ≈
∞∑

k=−∞
|G(ωk)H(ωk)|2|W (ω − ωk, τ)|2 (6)

A typical narrowband spectrogram is given in Figure 11. The code that generated it is given:

[s, fs] = wavread(’H.22.16k.wav’);

t = 0:1/fs:length(s)/fs - 1/fs;

% Window length of 30 msec and step of 10 msec

figure; subplot(211); plot(t, s); xlabel(’Time (s)’); subplot(212);

spectrogram(s, 30*10^(-3)*fs, 20*10^(-3)*fs, 1024, fs, ’yaxis’)

1The signal has been lowpass-filtered at 6 kHz - that is the reason you see nothing above 6 kHz in the spectrogram.
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We can see that using a long window in time on a voiced segment gives a STFT that consists of a
set of narrow ”harmonic” lines - whose width is determined by the Fourier transform of the window
- which are shaped by the magnitude of the product of the Fourier transform of the glottal flow and
the vocal tract transfer function. The narrowband spectrogram gives good frequency resolution because
the harmonics are effectively resolved (horizontal striations on the spectrogram). However, it also gives
poor time resolution, because the long analysis window covers several pitch periods and thus is unable to
reveal fine periodicity changes over time. It should be noted that colors in spectrogram have a meaning:
intense red or black color corresponds to high magnitude values (high energy), whereas yellow or blue
color is for low magnitude areas (and thus, low energy regions).

1.1.2 Wideband analysis

For the wideband spectrogram, a ”short” window is chosen with a duration of less than a single
pitch period. By shortening the window length, its Fourier transform ”widens”. This ”wide” Fourier
transform of the window, when ”placed” on the harmonics, will overlap and add with its neighbouring
window transform and smear out the harmonic line structure, roughly revealing the spectral envelope
|H(ω)G(ω)| due to the vocal tract and glottal flow contributions. Thus, poor frequency resolution is
provided by wideband analysis, but good time resolution is provided. For a steady-state voiced segment,
the wideband spectrogram can be very roughly approximated as

S(ω, τ) ≈ |H(ω)G(ω)|2E[τ ] (7)

where E[τ ] is the energy of the waveform under the sliding window. Thus, the spectrogram shows the
formants of the vocal tract in frequency, but also gives vertical striations over time. These vertical
striations arise because the short window is sliding through fluctuating energy regions of the speech
waveform. A wideband spectrogram is depicted in Figure 22. The code is given below:

% Window length of 5 msec and step of 3 msec

figure; subplot(211); plot(t, s); xlabel(’Time (s)’); subplot(212);

spectrogram(s, 5*10^(-3)*fs, 2*10^(-3)*fs, 1024, fs, ’yaxis’);

Colours have the same meaning as in narrowband spectrogram.

1.2 Fourier Transform and Spectral Content of Speech

So, it is obvious that the STFTs are generated by ”concatenated slices” of Fourier spectra. Accord-
ing to the type of analysis, we get either the harmonic structure or an approximation of the vocal tract
formants. However, a question should be: how is the spectral content of different speech elements?
Let us find out! ,For our purpose, a wideband analysis is not convenient, since it does not reveal the
spectral content of the source, but rather the the envelope of speech. Thus, a narrowband analysis will
be used.

If we select a voiced speech portion, long enough to resolve the harmonics in the spectrum, and
apply a FFT on it, what we have is in Figure 3. The necessary MATLAB code is given:

% Loading the waveform

[s,fs] = wavread(’H.22.16k.wav’);

% Extracting a frame

frame1 = s(3600:4400);

L1 = length(frame1);

2Again, the signal has been lowpass-filtered at 6 kHz - no information above 6 kHz in the spectrogram.
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Figure 3: Upper panel: voiced speech, lower panel: magnitude spectrum of voiced speech.

% Windowing it

frame_v = hamming(L1).*frame1;

% Apply FFT and then take the absolute value in 1024 points

NFFT = 1024;

X1 = abs(fft(frame_v, NFFT));

% Make frequency bins into frequencies

freq = [0:fs/NFFT:fs/2-1/fs];

% Plot

subplot(211); plot(frame1); xlabel(’Time (samples)’); grid;

subplot(212); plot(freq, 20*log10(X1(1:NFFT/2)));

ylabel(’FFT Magnitude’); xlabel(’Frequency (Hz)’); grid;

It is clear that the horizontal striations that are seen in Figure 1 come from the harmonic peaks
of the FFT spectra. It is also clear that the speech harmonics are up to 4 kHz, and the rest of the
spectrum is mostly covered by noise3. The spectrum and its peaks are a means to build our gender
and age detection system.

If we select an unvoiced speech portion, long enough to resolve any structure (surely not harmonic)
in the spectrum, and apply a FFT on it, what we have is in Figure 34. The code that produces this
figure is given below:

% Loading the waveform

[s,fs] = wavread(’H.22.16k.wav’);

% Extracting a frame

frame2 = s(4800:5500);

3Recent studies, however, have shown that speech is (quasi-)harmonic up to 16 kHz!!
4You can now clearly see the lowpass effect on the spectrum.
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L2 = length(frame2);

% Windowing it

frame_unv = hamming(L2).*frame2;

% Apply FFT and then take the absolute value in 1024 points

NFFT = 1024;

X2 = abs(fft(frame_unv, NFFT));

% Make frequency bins into frequencies

freq = [0:fs/NFFT:fs/2-1/fs];

% Plot

subplot(211); plot(frame2); xlabel(’Time (samples)’); grid;

subplot(212); plot(freq, 20*log10(X2(1:NFFT/2)));

ylabel(’FFT Magnitude’); xlabel(’Frequency (Hz)’); grid;

We can see that the spectrum of unvoiced speech is almost flat and covers the whole spectrum.
There is no harmonic structure. This representation is consistent with the approximation of unvoiced
speech as white noise, and the spectrogram information that we get in unvoiced regions (see unvoiced
parts in Figure 1).
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Figure 4: Upper panel: unvoiced speech, lower panel: magnitude spectrum of unvoiced speech.

1.3 Pitch

The periodic opening and closing of the vocal folds results in the harmonic structure in voiced
speech signals. The inverse of the period is the fundamental frequency of speech. Pitch is the perceived
sensation of the fundamental frequency of the pulses of airflow from the glottal folds. The terms pitch
and fundamental frequency of speech are used interchangeably in literature.

The pitch of speech is determined by four main factors. These include the length, tension, and
mass of the vocal cords and the pressure of the forced expiration also called the sub-glottal pressure.
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The pitch variations carry most of the intonation signals associated with prosody (rhythms of speech),
speaking manner, emotion, and accent. Figure 1 illustrates an example of the variations of the trajec-
tory of pitch (and other harmonics) over time.

Among others, the following information is contained in the pitch signal:
(a) Gender is conveyed in part by the vocal tract characteristics and in part by the pitch value. The
average pitch for females is about 200 Hz whereas the average pitch for males is bout 110 Hz. Hence,
pitch is the main indicator of gender.
(b) Age and state of health. Pitch can also signal age, weight and state of health. For example, children
have a high-pitched speech signal of 300− 400 Hz.

Hence, we can detect the gender and the age of a speaker by tracking his/her pitch , . Thus, we
should implement some simple techniques for pitch tracking. For this, we will describe and implement
a simple time-domain and a simple frequency-domain method for estimating the pitch of voiced speech,
and therefore a simple gender+age detection system can be implemented.

2 Pitch Tracking Techniques

Pitch tracking is still a very hot topic of research in speech signal engineering. Although there are
several algorithms in literature, the robust estimation of pitch is still a relatively open subject.

For our purpose, we will implement and compare a pair of rather simple (and for that, not very
efficient ,) methods for pitch estimation. Our pitch estimates can then give us an idea about the
gender and the age of the speaker.

2.1 Short-time autocorrelation method

The autocorrelation function is (or should be ,) known to you from Digital Signal Processing
courses. We will remind you here the most basic notions of the autocorrelation theory.

The autocorrelation function of a discrete-time deterministic signal is defined as

ϕ(k) =
∞∑

m=−∞
x[m]x[m+ k] (8)

The autocorrelation is a measure of similarity between signals. For example, if the signal is periodic
with period P samples, then it can be shown that

ϕ(k) = ϕ(k + P ) (9)

i.e. the autocorrelation function of a periodic signal is also periodic with the same period. It can also
be easily shown that for periodic signals, the autocorrelation function attains a maximum at samples
0,±P,±2P, ... That is, the pitch period can be estimated by finding the location of the first maximum
in the autocorrelation function.

If we apply the autocorrelation function in the voiced speech segment that is presented in the exam-
ples above, we get the result of Figure 5. As you can see, the first peak of the autocorrelation function
is at time t0 = 0.005875 sec, which corresponds to f0 = 1/t0 = 170.2128 Hz. If we measure the distance
of the highest peaks in the waveform, we can see that it is D = 0.2434− 0.2376 = 0.0058, which is the
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Figure 5: Upper panel: Voiced speech waveform. Lower panel: Autocorrelation function of voiced speech

same result, and thus the pitch is f0 = 1/0.0058 = 170.2128 Hz.

For your convenience, MATLAB has its own function for correlation measurements. It is xcorr and
it was this function that generated the result in Figure 5.

2.2 Peak picking

As it is shown in the previous sections, voiced speech has a certain structure in frequency domain:
it is dominated by sharp peaks at frequency locations that are nearly harmonically related to the
fundamental frequency. Since the first significant peak of the spectrum is related to the fundamental
frequency (and thus, the pitch), we can develop an algorithm that can perform peak-picking on an FFT
spectrum and reveal not only the pitch but the whole harmonic structure a voiced speech segment! ,

For example, let us take a look at the magnitude spectrum of the usual voiced speech spectrum, and
select the first significant peak, we will see the result of Figure 6. The first peak is located at frequency
f0 = 171.9 Hz, which is very close to 170.2 Hz. However, the mismatch can be due to the fact that the
signal is not strictly periodic, or due to the resolution of the FFT (1024 points). Of course, the actual
pitch is unknown, so we cannot validate our result, unless we create a synthetic signal that has known
parameters. ,

3 Age+Gender Detection System Implementation

You will use the pitch trackers described above in order to design your age+gender detection system.
For your convenience, follow the next steps:

1. Load one of the provided waveforms that end in -pout.wav. These signals are purely voiced,
synthetic speech, with known f0 and sampling frequency Fs = 8 kHz. Perform pitch estimation
using an approach similar to the one used in VUS discriminator:
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Figure 6: Upper panel: Voiced speech waveform. Lower panel: Magnitude Spectrum and first peak

� Do a frame-by-frame analysis, with an analysis window of 30 msec and a frame rate of 10
msec.

� Estimate the pitch for each frame using both algorithms - FFT peak-picking and ACF. Use
MATLAB’s built-in functions fft and xcorr. Do not forget to apply a Hamming window
on your speech segment! You also have to write your own peak picking algorithm (not so
difficult - a simple first derivative criterion is enough). A MATLAB function can be written
like this:

function [out1, out2] = function_that_does_something(in1, in2, in3)

% Comments

% FUNCTION_THAT_DOES_THAT takes in1, in2, in3 arguments and returns out1, out2

%CODE

%CODE

%CODE

out1 = %CODE

out2 = %CODE

% End of function

Then you can save it as function\_that\_does\_something.m file and call it whenever you
like.

� Use an FFT resolution of 2048 points.

� Interpolate your pitch estimates using splines in order to obtain a pitch contour. The interp1
function of MATLAB will become useful.

� Optional: perform peak picking in ALL peaks of the spectrum and construct an estimate
of the frequency grid of the voiced speech waveform.
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2. Which contour is closer to the true frequency given in the name of the -pout.wav files?

3. Which method performs better? Why?

4. For gender+age detection, you are given that an adult has a pitch ranging from 70 to 250 Hz,
whereas a child has a pitch range from 300 to 500 Hz. A male adult ranges from 70 to 150 Hz,
and the pitch of a female adult lies in the range 160− 250 Hz.

5. According to the previous note, the output of your system should be a plot of the speech waveform,
a plot of the pitch contour, and a text string, ’adult male’, ’adult female’, ’child’.

6. Optional: Use the VUS discriminator of the previous lab and the pitch tracker of your choice,
and build the pitch contour for a full speech waveform! (Care should be taken for the non-voiced
parts: since the ACF and the peaks do not correspond to any pitch, you can pre-detect non-voiced
parts with your VUS discriminator and set the pitch to zero in these time intervals).

Delivery deadline: 1 March 2022
Way of delivery: mail your .zip file to kafentz@csd.uoc.gr

If you have ANY questions on this lab, please send an e-mail to : hy578-list@csd.uoc.gr
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