
Project 0:

Part 1

A first hands-on lab on Speech Processing

Time-domain processing

George P. Kafentzis

February 18, 2022

During this lab, you will have a first contact with speech signals and their short-time processing.
You will explore the time domain structure of the most basic speech elements, such as vowels and
consonants. You will learn about time domain properties of speech signals and you will apply basic
metrics on speech, such as energy and zero-crossings.

The final goal of this lab is to implement a simple, fully-automated voiced/unvoiced/silence (VUS)
discriminator. An algorithm of this kind is very practical in real-time systems such as mobile commu-
nications systems. A typical Voice Activity Detector (VAD), which is a subset of a VUS discriminator,
is used in the Global System for Mobile Communications (GSM), the European system for cellular
communications. Of course, such an application should be fast and efficient in real-time. Thus, the
algorithm you will implement is based on energy and zero-crossings measures of the speech signal. For
this Lab, we will consider a non-real time approach. This means that we have the whole signal available
from the first place.

1 Theoretical Background

The algorithm is based on energy and zero-crossings measures on the speech waveform. Let’s take
a short introduction on these two.

1.1 Short-Time Energy

We have observed that the amplitude of speech signals varies appreciably with time. In particular,
the amplitude of unvoiced segments is generally much lower than the one of voiced segments. The
short-time energy of the speech signal provides a convenient representation that reflects these amplitude
variations. In general, we can define the short-time energy as

En =

∞∑
k=−∞

x2[k]w2[n− k] (1)

This expression can be written as

En =

∞∑
k=−∞

x2[k]h[n− k] (2)

where h[n] = w2[n] is the squared analysis window applied on a speech segment. We can safely as-
sume that the analysis window has support in [−N,N]. The choice of the impulse response, h[n], or

1

equivalently the analysis window, determines the nature of the short-time energy representation. To
see how the choice of window affects the short-time energy, let us observe that if h[n] in the equa-
tion above was very long, and of constant amplitude, En would change very little with time. Such a
window would be the equivalent of a very narrowband lowpass filter. Clearly what is desired is some
lowpass filtering but not so much that the output is constant; i.e., we want the short-time energy to
reflect the amplitude variations of the speech signal. Thus, we encounter for the first time a conflict
that will repeatedly arise in the study of short-time representations of speech signals. That is, we
wish to have a short duration window (impulse response) to be responsive to rapid amplitude changes,
but a window that is too short will not provide sufficient averaging to produce a smooth energy function.

The effect of the window on the time-dependent energy representation can be illustrated by dis-
cussing the properties of two representative windows, i.e., the rectangular window

h[n] =

{
1, for 0 ≤ n ≤ N − 1
0, otherwise

(3)

and the Hamming window

h[n] =

{
0.54− 0.46 cos

(
2πn
N−1

)
, for 0 ≤ n ≤ N − 1

0, otherwise
(4)

where N is the window length in samples. The rectangular window corresponds to applying equal
weight to all the samples in the interval (n − N + 1) to n, whereas the Hamming window gives more
weight to the center of the window, which is preferable in many applications. If the window size, N . is
too small, i.e., on the order of a pitch period or less, En will fluctuate very rapidly depending on exact
details of the waveform. If N is too large, i.e., on the order of several pitch periods (3 − 4), En will
change very slowly and thus will not adequately reflect the time-varying properties of the speech signal.
Unfortunately, this implies that no single value of N is entirely satisfactory. With these shortcomings
in mind, a suitable practical choice for N is on the order of 300 − 500 samples for a 16 kHz sampling
rate (i.e., 20− 30 ms duration).

1.2 Short-Time Zero Crossings

In the context of discrete-time signals, a zero-crossing is said to occur if a sample has different
algebraic sign from the previous (or the following) one. The rate at which zero crossings occur is a
simple measure of the frequent content of a signal. This is particularly true for narrowband signals. For
example, a sinusoidal signal of frequency f0 Hz, sampled at a rate of Fs, has Fs/f0 samples per cycle of
the sine wave. Each cycle has two zero crossings so that the long-time average rate of zero-crossings is

Z =
2f0
Fs

crossings per sample (5)

Thus, the average zero-crossings rate gives a reasonable and simple way to estimate the frequency of a
sine wave.

Speech signals are broadband signals and the interpretation of average zero-crossing rate is there-
fore much less precise. However, rough estimates of spectral properties can be obtained using a rep-
resentation based on the short-time average zero-crossing rate. Before discussing the interpretation of
zero-crossing rate for speech, let us first define and discuss the theory behind. An appropriate definition
is

Zn =

∞∑
m=−∞

|sgn(x[m])− sgn(x[m− 1])|w[n−m] (6)

2

where

sgn(x[n]) =

{
1, for x[n] ≥ 0
−1, otherwise

(7)

and

w[n] =

{
1
2N , for 0 ≤ n ≤ N − 1
0, otherwise

(8)

This representation shows that the short-time average zero-crossing rate has the same general proper-
ties as the short-time energy. However, the definition of zero crossings equation make the computation
of Zn appear more complex than it really is. All that is required is to check samples in pairs to de-
termine where the zero-crossings occur and then the average is computed over N consecutive samples
(the division by N is obviously unnecessary as well).

Now let us see how the short-time average zero-crossing rate applies to speech signals. The model
for speech production suggests that the energy of voiced speech is concentrated below 4 kHz, whereas
for unvoiced speech, most of the energy is found at higher frequencies. Since high frequencies imply
high zero-crossing rates, and low frequencies imply low zero-crossing rate, there is a strong correlation
between zero-crossing rate and energy distribution over frequency. A reasonable generalization is that
if the zero-crossing rate is high, the speech signal is unvoiced, while if the zero-crossing rate is low, the
speech signal is voiced. This, however, is a very imprecise statement because we have not said what is
high and what is low, and, of course, it really is not possible to be precise. Despite this imprecision,
zero-crossing rate is definitely a simple and convenient measure for speech discrimination.

2 MATLAB point of view

2.1 Short-Time Energy

As you know, in discrete time the energy of a N -length signal is the sum of all squared values,
divided by the number of samples. For example, let’s extract a frame from the signal. The extracted
frame is shown in Figure 1a.

% Let’s load the speech signal first.

[s,fs] = wavread(’H.22.16k.wav’);

frame1 = s(3600:4400);

N1 = length(frame1);

figure; plot(0:1/fs:N1/fs-1/fs, frame1); grid;

title(’A voiced frame’); xlabel(’time’);

% Listen if you want

% soundsc(frame1, fs);

You can see that the signal has a periodicity of some form. It’s not periodic, it’s quasi-periodic. It
has been observed that voiced speech can be represented using periodic or quasi-periodic waveforms.
So, speech signals like this one, which have a strong periodicity of some kind, can be thought of as
voiced speech signals, like /a/, /e/, /o/, etc. You can also see that it is a low frequency signal. It
doesn’t change very quickly over time. Let’s see what happens with the energy of a signal like that
one.

E1 = (1/N1)*sum(frame1.^2);

We’ll hold this result, we’ll need it later. Let’s now cut another piece of speech from our waveform.
Let’s try this one.

3

0 0.01 0.02 0.03 0.04 0.05 0.06
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

A voiced frame

time

(a) A voiced part of speech.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

An unvoiced frame

time

(b) An unvoiced part of speech.

0 0.5 1 1.5 2 2.5 3
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Energy comparison

Index

E
n

e
rg

y
 V

a
lu

e

Energy of Voiced frame

Energy of Unvoiced Frame

(c) Energy comparison between different parts of speech
waveform.

Figure 1: Voiced and Unvoiced speech sounds, along with their energies.

frame2 = s(4800:5500);

N2 = length(frame2);

figure; plot(0:1/fs:N2/fs-1/fs, frame2); grid;

title(’An unvoiced frame’); xlabel(’time’);

% Listen if you want

%soundsc(frame2, fs);

You can see in Figure 1b that this one is very peaky! It has no periodicity at all, and it changes
very quickly in time. The last one means that it is a high-frequency signal. Speech signals like that
can be thought as unvoiced speech signals, like /s/, /f/, /sh/, etc. Let’s take a look at the energy of
this kind of speech signal, and compare it with the first one.

E2 = (1/N2)*sum(frame2.^2);

Let’s compare them.

figure; stem(1, E1, ’+’, ’LineWidth’, 3); grid; hold on;

stem(2, E2, ’rx’, ’LineWidth’, 3); hold off;

axis([0 3 0 max(E1,E2)]); title(’Energy comparison’);

xlabel(’Index’); ylabel(’Energy Value’);

legend(’Energy of Voiced frame’, ’Energy of Unvoiced Frame’);

4

You can see in Figure 1c that the energy of the voiced speech signal is really higher than the unvoiced
one. If you do this in several other voiced/unvoiced examples, you will see that our observation holds
in general. If we do the same for a full speech waveform, what we will get is depicted in Figure 2.

0 0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

’The fish twisted and turned on the bent hook’

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

Time (s)

S
h

o
rt

−
T

im
e

 E
n

e
rg

y

Figure 2: Energy distribution for full speech.

You can clearly see that voiced parts of speech have higher energy than unvoiced or silent ones. So,
the energy of a speech frame is a good indicator of whether a frame is a voiced or unvoiced one.

2.2 Zero crossings

Again, what is a zero crossing? A zero-crossing is a point where the sign of a function changes (e.g.
from positive to negative), represented by a crossing of the axis (zero value) in the graph of the function.

How can we exploit the number of zero crossings in a speech frame to make the discrimination
between voiced and unvoiced? Let’s take a look again into our two extracted speech frames:

figure; subplot(2,1,1); plot(frame1); grid; title(’Voiced frame’);

subplot(2,1,2); plot(frame2); grid; title(’Unvoiced frame’);

Take a look at Figure 3a. Can you guess what is going on with the zero-crossings? , You can
see that the number of zero-crossings are really high in the unvoiced speech frame, much higher than
the voiced speech frame! So, this can be our second indicator of whether a speech frame is voiced or
unvoiced. There is a straightforward way to find out how many zero crossing are there in a speech
frame. Let’s see it:

ZCr1 = 0.5*sum(abs(sign(frame1(2:end))-sign(frame1(1:end-1))));

ZCr2 = 0.5*sum(abs(sign(frame2(2:end))-sign(frame2(1:end-1))));

5

0 100 200 300 400 500 600 700 800 900
−0.4

−0.2

0

0.2

0.4

Voiced frame

0 100 200 300 400 500 600 700 800
−0.02

−0.01

0

0.01

0.02

Unvoiced frame

(a) Our two parts of speech.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

Zero−Crossings comparison

Index

Z
e

ro
−

C
ro

s
s
in

g
s
 V

a
lu

e

Zero Crossings of Voiced frame

Zero Crossings of Unvoiced Frame

(b) Zero crossings comparison.

Figure 3: Voiced and Unvoiced speech sounds, along with their zero-crossings.

The above equation counts the number of zero-crossings in a speech frame. The first term returns
the sign of each sample value, starting from sample 2, and the second term returns the sign of each
sample value, starting from sample 1 and ending a sample from the last one. The subtraction of these
two gives us a value different than zero (+1 or -1) when we have a change of the function’s sign. So,
the addition of all these non-zero values will give us the number of zero-crosssings, but doubled. So,
we need to keep half of them. That’s why we multiply the number by 0.5. Try this in paper to see why
it is valid. A for loop and an if statement would do the same thing, but we prefer not using loops in
MATLAB, especially when the loops are too many, because all this procedure is not so time-efficient.

Let’s take a look at the zero-crossings results:

figure; stem(1, ZCr1, ’+’, ’LineWidth’, 3); grid; hold on;

stem(2, ZCr2, ’rx’, ’LineWidth’, 3); hold off;

axis([0 3 0 max(ZCr1, ZCr2)]); title(’Zero-Crossings comparison’);

xlabel(’Index’); ylabel(’Zero-Crossings Value’);

legend(’Zero Crossings of Voiced frame’, ’Zero Crossings of Unvoiced Frame’);

You can see the result in Figure 3b. We can generalize for a full waveform, and what we get is
shown in Figure 4. You can see that the number of zero-crossings is quite high in unvoiced parts of
speech, whereas is low in voiced parts. So, zero-crossings is a quite convenient way to discriminate
voiced from unvoiced speech.

2.3 Limitations

A combination of the methods we have described seems reasonable and powerful enough for our
purpose. And indeed, it is, up to a certain level. , However, there are some problems in our simple
approach. Some frames are transient frames (something between voiced and unvoiced), which cannot
be easily detected and categorized. Some others are neither purely voiced, nor purely unvoiced, such
as fricatives, plosives, or nasals (/p/, /g/, /d/, /b/, /m/, /n/, etc). Also, and more importantly, there
might be some voiced frames with low energy and some unvoiced with high energy. This depends on
the speaker and the speaking style. Even the zero crossing rate may differ among different speakers or

6

0 0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

’The fish twisted and turned on the bent hook’

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

Time (s)

S
h

o
rt

−
ti
m

e
 Z

e
ro

 C
ro

s
s
in

g
s
 R

a
te

Figure 4: Zero-crossings distribution in full speech.

speaking style. So, there are limitations to our apporach, as you may have guessed. However, it is not
quite far from the one used in real systems, like the GSM standard of the European Union Cellular
Communications Systems, and the purpose of this lab is not to build a robust VUS discriminator, but
to use simple tools and familiarize yourselves with time-domain properties of speech.

3 VUS discriminator implementation issues

Now that you are familiar to the basic analysis tools, you can start building your VUS discrimina-
tor. Most of the code is given to you at the end of this PDF. Please consider the following for your
implementation:

1. What about silence? We haven’t mentioned anything about it in our analysis. Well, ideally, a
silence frame would be a frame with all samples equal to zero, right? This means energy equal
to zero and no zero-crossings at all. But in practice, because of microphone noise or noise from
the environment (breath, room reflections etc.), silence frames have some kind of small sample
variation. This variation is so small that the energy should be less than both voiced and unvoiced
frames, and the zero-crossings should be also less than the other two cases. Usually, this is what
happens in the real world. ,

2. As we have mentioned at the beginning, our algorithm has an adaptivity of some form, which
means that its results depend on some statistics of the input waveform. This adaptivity is pre-
sented in the thresholds we introduce, in order to make our discrimination into voiced/unvoiced/silence

7

frames. You will see that there are two thresholds, one for the energy and one for zero-crossings.
These thresholds depend on the input waveform, so they are not fixed numbers.

3. Your algorithm should work on a frame-by-frame basis. That means you have to estimate your
energy and zero-crossings in a set of analysis time instants of your choice, and with a step size of
your choice. However, you should pay attention that your analysis window should be long enough
for your statistics to be meaningful, but also short enough to have good time localization. ,
It is suggested that your analysis window and your frame rate should be 20 − 30 ms and 5− 10
ms, respectively. Your energy and zero-crossings estimates are considered to be localized in the
center of the analysis window.

4. So, for each frame, you will have to calculate the above measures (energy and zero-crossings) and
find out if the frame is voiced/unvoiced/silence.

5. Because of its simplicity, this VUS discriminator should perform adequately but not perfectly
(actually, a very accurate VUS is still a subject of research in speech community, although several
robust and highly accurate VUSs have been proposed over the years). However, it should at least
correctly detect the voiced parts of speech.

6. Also, since your VUS results in estimates every 5 − 10 ms, you will have to interpolate your
results over the whole speech waveform, in order to have a continuous estimate (that means, for
every time sample). To do this, you can use the interp1 function that is already available for
you in MATLAB. Try different interpolation methods, like splines, cubic, and linear interpolation
schemes. You can visually inspect the results and check which method performs better. Justify
your results and make a short comment.

7. Moreover, you can try different analysis window sizes, different analysis window types, or different
frame rates to see how the results change.

8. Finally, in the speech examples that we provide, there are two speech files ending in -sin.wav and
-swn.wav. These are two utterances that have the same content (the speakers utter the same
words) but in different speaking styles. In the -sin.wav file, the speaking style is more ”stressed”
in a way. This is called Lombard speech, because the speaker changes his/her speaking style in
order to produce speech that is more intelligible in a noisy environment. It is like speaking in
a very quiet place (-swn.wav file) and in a cafeteria, an airport, or in any other crowded place
(-sin.wav). Can you see any significant energy or zero-crossing rate changes between these two
waveforms? If yes, comment on your results.

A sample code is given below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SAMPLE CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reading the speech signal

[s, fs] = wavread(’sample.wav’);

% Remove mean value (DC component)

s = s - mean(s);

% Signal length

D = length(s);

8

% Frame length (30 ms, how many samples?)

L = %INSERT CODE HERE

% Frame shift (10 ms, how many samples?)

U = %INSERT CODE HERE

% Window type (Hamming)

win = hamming(L);

% Number of frames

Nfr = %INSERT CODE HERE

% Memory allocation (for speed)

energy = zeros(1, Nfr+1);

ZCr = zeros(1, Nfr+1);

% Loop which calculates the speech features

for i = 1:1:(Nfr+1)

frame = %INSERT CODE HERE % a frame of speech windowed by the Hamming window

energy(i) = %INSERT CODE HERE % calculate energy

ZCr(i) = %INSERT CODE HERE % calculate zero crossings

T(i) = L/2 + (i-1)*U; % Next analysis time instant

end

% THRESHOLDS (you can play with it!)

Ethres = mean(energy)/2;

ZCRthres = (3/2)*mean(ZCr) - 0.3*std(ZCr);

% Clssification

for i = 1:1:Nfr

if % INSERT CONDITION HERE

% VOICED

VUS(i) = 1.0;

elseif % INSERT CONDITION HERE

% SILENCE

VUS(i) = 0.0;

elseif % INSERT CONDITION HERE

% UNVOICED

VUS(i) = 0.5;

end

end

% Interpolation with interp1

VUSi = INSERT CODE HERE

% Visualize

figure;

t = 0:1/fs:length(s)/fs-1/fs;

plot(t, VUSi);

9

hold on; plot(t, s/max(s), ’r’); hold off;

xlabel(’Time (s)’);

title(’Energy & Zero-Crossings Rate-based VUS discrimination’);

grid;

If everything went well, you should see something like Figure 5 below. :-) You can see that it is not
perfect but it works. ,

You can try your own .wav file or you can use the ones provided by us.

0 0.5 1 1.5 2 2.5 3

SILENCE

UNVOICED

VOICED

Time (s)

Energy & Zero−Crossings Rate−based VUS discrimination

Figure 5: A VUS discrimination using linear interpolation.

4 Minimum deliverables in your report

� Complete where necessary (indicated by CAPITAL letters) and deliver the MATLAB code pro-
vided above. Standard parameters are 30 msec of Hamming analysis window, and 10 msec frame
rate. For the interpolation of your results, select the linear interpolation as a parameter to in-
terp1.m MATLAB function. Include the figure that is generated by the code, along with your
code in your report.

� Comment on the results of your VUSD, in all provided speech waveforms. Does it work well? If
not, where does it have problems? Comment and include figures for all waveforms in your report.

� What happens if you increase the frame rate to 20 or 30 ms? What happens if you decrease the
frame rate down to 2.5 or 5 ms? What happens if you change the window size (make it shorter
or larger)? Comment (figures are NOT necessary).

10

� Record your voice with a microphone and save it into a .wav file. Use a sampling frequency
of Fs = 16 kHz for your recording. Load it into MATLAB and apply your algorithm on the
waveform. Provide a figure of your voice and the corresponding result of the algorithm.

Delivery deadline: 1 March 2022, 23:59
Way of delivery: mail your .zip file to kafentz@csd.uoc.gr

If you have ANY questions on this lab, please send an e-mail to : hy578-list@csd.uoc.gr

11

