CS578 - SPEECH SIGNAL PROCESSING
LECTURE : QUASI-HARMONIC MODELS OF SPEECH

Yannis Pantazis
pantazis@iacm.forth.gr
(based on material from Prof. Stylianou)

Speech Signal Processing Lab
Computer Science Department - University of Crete

16 March 2022



@ HarmONIC+NOISE MODELS

© Quasi-HarMONIC MODEL - QHM
© ITERATIVE QHM

O ApapTivE QHM

@ EXTENSION OF AQHM

@ THANKS

@ REFERENCES



© HarMONIC+NOISE MODELS

© Quasi-HArMONIC MODEL - QHM
© ITtErRATIVE QHM

O ApaprTivE QHM

@ EXTENSION OF AQHM

@ THANKS

@ REFERENCES

«O>» «Fr «Z» «E>»

nae



MOTIVATION FOR HNM
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BRIEF OVERVIEW OF HNM

e HNM (Stylianou 1995 [1]) is a pitch-synchronous harmonic
plus noise representation of the speech signal.

@ Speech spectrum is divided into a low and a high band
delimited by the so-called maximum voiced frequency
@ The lower band of the spectrum (below the maximum voiced

frequency) is represented solely by harmonically related sine
waves.

@ The upper band is modeled as a noise component modulated
by a time-domain amplitude envelope.

o HNM allows high-quality copy synthesis and prosodic
modifications.
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HNM IN EQUATIONS

@ Harmonic part:

Z A ej27rkfo(t)
k=—L(t)
where Ak(t) and fy(t) are the instantaneous complex
amplitude and real frequency, respectively
@ Noise part:

n(t) = e(t) [v(r, t) » g(t)]
where e(t), v(, t), g(t) are a time envelope, an estimation of
the PSD (filter), and white gaussian noise, respectively

@ Speech:

s(t) = h(t) + n(t)
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ESTIMATING SINUSOIDAL PARAMETERS

e Sinusoidal representation for a speech/signal frame:
K .
x(t) = < > akahfkf) w(t)
k=—K
o Methods:

o FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [2] [3]])
o Least Squares (LS) method

e Frequency mismatch (eg, # := kfy in HNM):

fe = fi + 1k



QuAsi-HARMONIC MODEL, QHM [5]

o Frequency mismatch:



QuAsi-HARMONIC MODEL, QHM [5]

o Frequency mismatch:

K ~
x(t) = < > akejz”fkt> w(t)

k=—K

e QHM (de Prony 1795, Laroche [4] (1989), Stylianou 1993,
Pantazis [5] (2008, 2011) ):

K ~
x(t) = ( Z (ak + tbk)ej27rfkt) w(t)

k=—K



QuAsi-HARMONIC MODEL, QHM [5]

@ HM versus QHM in frequency estimation - pure tone @ 100 Hz
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QuAsi-HARMONIC MODEL, QHM [5]

@ HM versus QHM in frequency estimation - pure tone @ 100 Hz
o Given frequency for both models: 90 Hz
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QuAsi-HARMONIC MODEL, QHM [5]

Time domain properties:
@ Inst. amplitude:
Mi(t) = |ai + thi] = /(af + tb)2 + (al, + tb])?
1 al + tbl
af + tbf

1 1 aRpl — 3l pR
o Inst. frequency: Fi(t) = —d/(t) = f + %W

o Inst. phase: ®,(t) = 27wft + tan~

2T

o where x®, x! denote the real and imaginary part of x



QuAsi-HARMONIC MODEL, QHM [5]

o HM vs QHM inside analysis window - pure tone @ 100 Hz:
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o HM vs QHM inside analysis window - pure tone @ 100 Hz:
o Given frequency for both models: 90 Hz
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e Highlight: frequency correction mechanism
o Let's discuss a bit on that...
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A FEW DETAILS OF QHM

@ QHM in the frequency domain:
by
X (f) = a W(f — f) iy W’(’r — fi)

e Decomposition of by: by = p1 kak + p2,kjak
@ Then
P2,k 2 PLk g1 2
= — W' (f — f, —W'(f —
Xi(F) = ar |W(F — F) — o WE = i) + 5= W — i)
@ and taking into account:
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A FEW DETAILS OF QHM

@ QHM in the frequency domain:

X(F) = aW(F — Fo) 4] W/ (F — o)

Decomposition of by: by = p1 xak + p2 kjak
Then

_ _ P2,k 7 PLk e 7
X (f) = ax |W(f — ) — . W/ (f — f) +J o W(f — 1)

(]

(]

and taking into account:
2 P2k 2 P2k 11 2
W(f —f— =)= W(f—-Ff)——=—=—W|(f -
(F =t =) (F = fic) = 5= WHF = fi)+
O(p5 W' (f — 1))
Approximation of the k-th component of QHM

Xi(F) ~ o [ W(F = f = 22) + 25 w(F — )]
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APPROXIMATIONS IN QHM

e we found previously:
Xi(F) m o [ W(F = f = 25) + 25 w(F — )]

@ Back to the time-domain:
xil(£) = ay ORI 4 py e (1)
o Initially, we assumed:
xi(t) = ax [ef(27r(fk+m))t} w(t)
@ in other words, it is suggested:

ik = p2,k/2m
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KEY

@ In other words, QI—AH\/I suggests a frequency correction to the
input frequencies f, (or a frequency estimator).

@ However, this suggestion is conditional on the magnitude of
p2.x and the value of term W’ (f) at f.

@ Also, the correction term depends on the window main lobe's
width



SINGLE SINUSOID
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e lteratively, the bias can be removed when |n| < B/3, where B is
the bandwidth of the squared analysis window.
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ITERATIVE QHM, 1IQHM [6]

@ This frequency updating mechanism provides frequencies
which can be used in the model iteratively and result in better
parameter estimation (ag, by)



ITERATIVE QHM, 1IQHM [6]

@ This frequency updating mechanism provides frequencies
which can be used in the model iteratively and result in better
parameter estimation (ag, by)

@ This iterative parameter estimation is referred to as the
iterative QHM



ITERATIVE QHM, 1IQHM [6]

HM versus iQHM in frequency estimation - speech signal:
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ROBUSTNESS AGAINST ADDITIVE NOISE

@ Signal contaminated by noise:

4
y(t) =D e 4 v(t)

k=1

e Mean Squared Error (MSE):
1 M
MSE{#} = > i) = £l

M
. 1 .
MSE{a} = — > |ak(i) — al

o Comparison with Cramer-Rao Bounds (CRB) and QIFFT
(Abe et al. 2004)

@ 10000 Monte Carlo simulations
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MSE OF AMPLITUDES AS A
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NoOTES oN QHM

o QHM has been shown to be closely related to:
o Gauss-Newton frequency estimation method
o Reassigned Spectrogram

o AM-FM decomposition
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HicH RESOLUTION AM-FM DECOMPOSITION

o AM-FM signal

K(t)

y(t) = a(t)cos(¢x (1)),

k=1

o Taylor series expansion of the instantaneous phase of kth
component:

Gr(t) = 2mCut + Y | ¢k,i%
i=0 '

o Instantaneous frequency of the kth component at t = 0:

k1

vk(0) = Ck + o

@ ... and previously we had:
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FroM QHM TO ApAPTIVE QHM, AQHM [7]

e QHM (stationarity assumption):
K
x(t) = ( Z (ak + tbk)e%jfkt) w(t)
k=—K
e Adaptive QHM (aQHM):
K ~
x(t) = < > (a+ tbk)eJ¢k<f>> w(t)
k=—K
where .
Gu(t) =27 [ f(s)ds o £ (0.T]
0

is the estimated instantaneous phase.



FroM QHM 1O AQHM; GRAPHICALLY
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AQHM, IN PRACTICE

@ One sample: no interpolation between estimations

o Higher rates (i.e., 5ms, 10ms): Interpolation between
estimates is required:
o Amplitudes are linearly interpolated
e Frequencies are interpolated with splines

o Phases are interpolated by integration of instantaneous
frequency



EXAMPLE OF ESTIMATION IN AQHM: NO ITERATION

(QHM)

1100 instantaneous frequency

estimated

1080

1060 [

1040

1020

1000

980 |-

Frequency (Hz)

960 |-

940

920

900 . . . . . . . . . .
200 300 400 500 600 700 800 900 1000 1100
Time (sample)



EXAMPLE OF ESTIMATION IN AQHM: ONE ITERATION
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EXAMPLE OF ESTIMATION IN AQHM: TWO
ITERATIONS
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RECONSTRUCTION ERRORS WITH QHM, AQHM, SM
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EXTENDED AQHM

o Recall aQHM:

K
x(t) = Z (ax + thy)e/ ()

k=—K
o Extended aQHM:

K
x(t) = Y (ak + thi)a(t)ef

k=—K



AM-FM MODELING: AQHM

True
3 — — — Estimated
2571 <
- <
S 2 -
N s
15 w
1
0 0.05 0.1
Time (s)
(@)
3 True
= = = Estimated
25 A S
o z
s 2 \ o~
< =
15 w
1
0 0.05 0.1
Time (s)

(c)

800

750

700

650

600
0

1100
1050
1000

950

900
0

True

| = = — Estimated

i

0.05 1
Time (s)
(b)
True
= = = Estimated

0.05 0.1
Time (s)
(d)



AM-FM MODELING: EXTENDED AQHM
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COMPARING ADAPTIVE MODELS
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THANK YOU

for your attention
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