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Background

Mentioning just a few works for speech analysis...
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Multi-Band Excitation Vocoder (Griffin et al.1988 [1])

S(ω) = H(ω)E (ω)

E (ω) is represented by an f0, a V/UV decision for each
harmonic, and the phase of each voiced harmonic

Parameters are estimated by comparing the original vs the
synthetic speech spectrum

Voiced portion is synthesized in time domain while unvoiced
part is synthesized in frequency domain
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Sinusoids + band-pass random signals (Abrantes et
al.1991 [2])

Completely avoids V/UV decision

Harmonically related sinusoids model the voiced parts

Random band-pass signals model the unvoiced parts

White noise filtered by a group of band-pass filters (filterbank)
with center frequencies kωs
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Periodic + Aperiodic Decomposition (Yegnayarayana et
al.1995 [3])

The LP residual signal is used as an approximation to the
excitation

V/UV analysis is used

Frequency regions of harmonic and noise components in the
spectral domain

An iterative algorithm is proposed which reconstructs the
aperiodic component in the harmonic regions

The periodic component is obtained by subtracting the
reconstructed aperiodic component signal from the residual
signal.
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Why decompose?

Decomposing speech into (quasi)periodic and non-periodic part
has many applications in:

Speech modification

Speech coding

Pathologic voice detection (i.e., HNR ...)

Psychoacoustic research
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Motivation for HNM
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Brief overview of HNM

HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic
plus noise representation of the speech signal.

Speech spectrum is divided into a low and a high band
delimited by the so-called maximum voiced frequency

The lower band of the spectrum (below the maximum voiced
frequency) is represented solely by harmonically related sine
waves.

The upper band is modeled as a noise component modulated
by a time-domain amplitude envelope.

HNM allows high-quality copy synthesis and prosodic
modifications.
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HNM in equations

Harmonic part:

h(t) =

L(t)∑
k=−L(t)

Ak(t)e
j2πkf0(t)t

where Ak(t) and f0(t) are the instantaneous complex
amplitude and real frequency, respectively

Noise part:
n(t) = e(t) [v(τ, t) ⋆ g(t)]

where e(t), v(τ, t), g(t) are a time envelope, an estimation of
the PSD (filter), and white gaussian noise, respectively

Speech:
s(t) = h(t) + n(t)
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Models for periodic part

HNM1: Sum of exponential functions without slope

h1[n] =

L(nia)∑
k=−L(nia)

ak(n
i
a)e

j2πkf0(nia)(n−nia)

HNM2: Sum of exponential function with complex slope

h2[n] = ℜ


L(nia)∑
k=1

Ak(n)e
j2πkf0(nia)(n−nia)


where

Ak(n) = ak(n
i
a) + (n − nia)bk(n

i
a)

with ak(n
i
a), bk(n

i
a) to be complex numbers (amplitude and

slope respectively). ℜ denotes taking the real part.
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Models for periodic part

HNM3: Sum of sinusoids with time-varying real amplitudes

h3[n] =

L(nia)∑
k=0

ak(n) cos(φk(n))

where

ak(n) = ck0 + ck1 (n − nia)
1 + · · ·+ ckp (n − nia)

p(n)

φk(n) = ϵk + 2π kζ (n − nia)

where ak(n), ϕk(n) are real functions of discrete time and p(n) is
the order of the amplitude polynomial, which is, in general, a
time-varying parameter.



Residual (Noise) part

The non-periodic part is just the residual signal obtained by
subtracting the periodic-part (harmonic part) from the original
speech signal in the time-domain

r [n] = s[n]− h[n]

where h[n] is either h1[n], h2[n], or h3[n] (harmonic part of HNM1,
HNM2, and HNM3, respectively).
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Initial fundamental frequency

Get an initial estimation of fundamental frequency f0 [5]

Determine the voicing of the frame using normalized error
over first four harmonics:

E =

∫ 4.3f0

0.7f0

(|S(f )| − |S̃(f )|)2∫ 4.3f0

0.7f0

|S(f )|2

where S̃(f ) is a synthetic DFT-based spectrum using the
initial f0 estimation

If E < T , where T an appropriate threshold (e.g. −15 dB),
then frame is voiced, else it is labeled as unvoiced
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Maximum Voiced Frequency - MVF

The MVF FM is determined frame-wise from the speech
spectrum

Starting from the frequency fc of the maximum spectral peak,
Am, in [f0/2, 3f0/2], spectral peak values are collected around
that maximum peak, along with their frequencies

The range of collection is Rsearch = [fc − f0/2, fc + f0/2]

Determine peak frequencies fi in Rsearch, and the
corresponding amplitudes, A(fi ) and cumulative amplitudes
Ac(fi )

Cumulative amplitude Ac(f ) is the sum of all spectral peak
values from previous valley to following valley
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Maximum Voiced Frequency - MVF

Compute the average cumulative amplitude for all fi : Āc(fi )

Pass fc through the voicing test (see next slide)

Search for the maximum spectral peak in
[fc + f0/2, fc + 3f0/2], and find new fc

Repeat the steps until fc ≤ fs/2.

Determine voiced and unvoiced spectral areas

Maximum voiced frequency MF is the maximum frequency of
the last voiced spectral area.
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Pass fc through the voicing test (see next slide)

Search for the maximum spectral peak in
[fc + f0/2, fc + 3f0/2], and find new fc

Repeat the steps until fc ≤ fs/2.

Determine voiced and unvoiced spectral areas

Maximum voiced frequency MF is the maximum frequency of
the last voiced spectral area.



Maximum Voiced Frequency - MVF

Compute the average cumulative amplitude for all fi : Āc(fi )
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Voicing Test

Voicing Test:

If
Ac

Āc(fi )
> 2

or
|A−max {A(fi )}| > 13 dB

then

if fc is really close to the closest harmonic lf0, then

declare fc as voiced frequency. Otherwise, declare fc as
unvoiced frequency.
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Āc(fi )
> 2

or
|A−max {A(fi )}| > 13 dB

then

if fc is really close to the closest harmonic lf0, then

declare fc as voiced frequency. Otherwise, declare fc as
unvoiced frequency.



Voicing Test

Voicing Test:

If
Ac
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Maximum voiced frequency example
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Fundamental frequency refinement

Using the initial f0 value and the L detected voiced frequencies fi ,
then the refined fundamental frequency, f̂0 is defined as the value
that minimizes the error:

E (f̂0) =
L∑

i=1

|fi − i · f̂0|2



Refinement frequency example
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Amplitudes and phases estimation

Having f0 estimated for voiced frames, amplitudes and phases are
estimated by minimizing the criterion:

ϵ =

nia+N∑
n=nia−N

w2[n](s[n]− ĥ[n])2

where nia = ni−1
a + P(ni−1

a ), and P(ni−1
a ) denotes the pitch period

at ni−1
a .

for HNM1 and HNM2, this criterion has a quadratic form and
is solved by inverting an over-determined system of linear
equations.

For HNM3, however,a non-linear system of equations has to
be solved.
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Reformulate the error function - for HNM1

Cost function:

ϵ(a−L, ..., aL, f0) =
1

2

N∑
n=−N

(e[n])2 =
1

2
ehe

where
e[n] = w [n](s[n]− h[n])

or
e =

[
e[−N], e[−N + 1], ... e[N]

]T



Reformulate the error function - for HNM1

ϵ(a) =
1

2
(s− Ea)hW2(s− Ea)

where
a =

[
a−L, ... a0, ... aL

]T
and

E =


e j2π(−L)f̂0(−N)/fs , ... e j2πLf̂0(−N)/fs

e j2π(−L)f̂0(−N+1)/fs , ... e j2πLf̂0(−N+1)/fs

...
...

...

e j2π(−L)f̂0N/fs , ... e j2πLf̂0N/fs


T

(2L+1×2N+1)



Least Squares - for HNM1

Setting:

∂ϵ(a)

∂a
= 0 =⇒ EhW2Ea− EhW2s = 0

Solution:
aLS = (EhW2E)−1EhW2s

Properties:

Asymptotically efficient even when the noise is colored.
Rather fast, O(L(N + L)).
Assumes no errors in E matrix.
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Avoiding ill-conditioning

For HNM1 there is no problem if window length is twice the
local pitch period

Same thing for HNM2

For HNM3 stands the same in case the maximum voiced
frequency is less than 3/4 of the sampling frequency and order
of amplitude polynomial is 2
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Residual Signal

The residual signal r [n] is estimated by

r̂ [n] = s[n]− ĥ[n]



Time domain characteristics of r̂ [n]
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Spectral domain characteristics of r̂ [n]
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... and after adding noise
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Modeling error
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Variance of the residual signal

The variance of the residual signal is given as:

E (rrh) = I−WP(PhWhWP)−1PhWh
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Modeling the residual signal

Full bandwidth representation using a low-order (10th) AR
filter

Time-domain characteristics of the residual signal are modeled
using deterministic functions
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For all HNMs

nis ←→ nia

For the periodic part: Overlap-and-Add

For the stochastic (noise) part):

Instead of AR coefficients we use reflection coefficients

Sample-by-sample filtering of Gaussian noise using normalized
lattice filtering

Modulation in time with a deterministic function (i.e.,
triangular)
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For HNM1 specifically

for Periodic part (as an alternative to OLA)

Direct frequency matching

Linear amplitude interpolation

Linear phase interpolation using average pitch value
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Again on the energy modulation
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So far, mainly

So far we mainly use the Triangular Envelope:



Signal envelope

There are many ways to obtain the “envelope” of a signal, as:

Hilbert Transform (analytic signal)

Low-pass local energy (energy envelope):

e[n] =
1

2N + 1

N∑
k=−N

|r [n − k]|

where r [n] denotes the residual signal.
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Hilbert envelope

We may also use the Hilbert envelope, computed as:

ẽH [n] =
L∑

k=L−M+1

ake
2πk(f0/fs)n



Example of energy envelope

Example of Energy Envelope, with N = 7
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Energy envelope

The energy envelope can be efficiently parameterized with a few
Fourier coefficients:

ê[n] =
Le∑

k=−Le

Ake
j2πk(f0/fs)n

where Le is set to be 3 to 4



Looking at time domain properties
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Results from Listening test I

Triangular No pref. Hilbert

Male 8 (8.3%) 43 (44.8%) 45 (46.9%)

Female 40 (41.7%) 47 (48.9%) 9 (9.4%)

Hilbert No pref. Energy

Male 22 (22.9%) 47 (49.0%) 27 (28.1%)

Female 22 (22.9%) 54 (56.3%) 20 (20.8%)

Energy No pref. Triangular

Male 43 (44.8%) 50 (52.0%) 3 (3.2%)

Female 16 (16.7%) 67 (69.8%) 13 (13.5%)

Table: Results from the listening test for the English sentences.



Results from Listening test II

Triangular No pref. Hilbert

Male 10 (10.4%) 47 (49.0%) 39 (40.6%)

Female 8 (8.3%) 71 (74.0%) 17 (17.7%)

Hilbert No pref. Energy

Male 11 (11.5%) 58 (60.4%) 27 (28.1%)

Female 13 (13.5%) 58 (60.4%) 25 (26.1%)

Energy No pref. Triangular

Male 42 (43.7%) 48 (50.0%) 6 (6.3%)

Female 16 (16.7%) 68 (70.8%) 12 (12.5%)

Table: Results from the listening test for the French sentences.
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Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(
K∑

k=−K

ake
j2πfk t

)
w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])

Subspace methods

Least Squares (LS) method

Frequency mismatch:

f̂k = fk + ηk



Outline

1 First works on speech decomposition...

2 Introduction to HNMs

3 Analysis
Frequency
Maximum Voiced Frequency
Amplitudes and Phases

Error Function - for HNM1

Least Squares - for HNM1

Residual

4 Synthesis

5 Energy modulation function

6 Towards Quasi-Harmonicity

7 Quasi-Harmonic Model - QHM

8 Iterative QHM

9 Thanks

10 References



Quasi-Harmonic Model, QHM [9]

Frequency mismatch:

x(t) =

(
K∑

k=−K

ake
j2πf̂k t

)
w(t)

QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993,
Pantazis [9] (2008, 2011) ):

x(t) =

(
K∑

k=−K

(ak + tbk)e
j2πf̂k t

)
w(t)

ak , bk are complex numbers
usually f̂k = kf0, where f0 is considered as known
w(t) is the analysis window
Again: Least Squares method for finding complex amplitudes
Window length ≈ 3 pitch periods
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Quasi-Harmonic Model, QHM [9]

HM versus QHM in frequency estimation - pure tone @ 100 Hz

Given frequency for both models: 90 Hz
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Quasi-Harmonic Model, QHM [9]

Time domain properties:

Inst. amplitude:

Mk(t) = |ak + tbk | =
√
(aRk + tbRk )

2 + (aIk + tbIk)
2

Inst. phase: Φk(t) = 2πf̂kt + tan−1 aIk + tbIk
aRk + tbRk

Inst. frequency: Fk(t) =
1

2π
Φ′(t) = f̂k +

1

2π

aRk b
I
k − aIkb

R
k

M2
k (t)

where xR , x I denote the real and imaginary part of x
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Quasi-Harmonic Model, QHM [9]

HM vs QHM inside analysis window - pure tone @ 100 Hz:

Given frequency for both models: 90 Hz
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A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − f̂k) + j
bk
2π

W ′(f − f̂k)

Decomposition of bk : bk = ρ1,kak + ρ2,k jak
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A few details of QHM

Then replacing bk with the decomposition

Xk(f ) = ak

[
W (f − f̂k)−

ρ2,k
2π

W ′(f − f̂k) + j
ρ1,k
2π

W ′(f − f̂k)
]

and taking into account the Taylor series expansion of
W (f − f̂k −

ρ2,k
2π ):

W (f − f̂k −
ρ2,k
2π

) = W (f − f̂k)−
ρ2,k
2π

W ′(f − f̂k)+

O(ρ22,kW
′′(f − f̂k))

If the value of term W ′′(f ) at fk is small, then for small values
of ρ2,k , then an approximation of the kth component of
QHM is:

Xk(f ) ≈ ak

[
W (f − f̂k −

ρ2,k
2π

) + j
ρ1,k
2π

W ′(f − f̂k)
]
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W ′(f − f̂k)+

O(ρ22,kW
′′(f − f̂k))

If the value of term W ′′(f ) at fk is small, then for small values
of ρ2,k , then an approximation of the kth component of
QHM is:

Xk(f ) ≈ ak

[
W (f − f̂k −

ρ2,k
2π

) + j
ρ1,k
2π

W ′(f − f̂k)
]
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Key

In other words, QHM suggests a frequency correction to the
input frequencies f̂k (or a frequency estimator). This
suggestion is however conditional on the magnitude of ρ2,k
and the value of term W ′′(f ) at fk

Also, the correction term depends on the window mainlobe
width



Key

In other words, QHM suggests a frequency correction to the
input frequencies f̂k (or a frequency estimator). This
suggestion is however conditional on the magnitude of ρ2,k
and the value of term W ′′(f ) at fk

Also, the correction term depends on the window mainlobe
width



Single Sinusoid

−400 −300 −200 −100 0 100 200 300 400
−400

−200

0

200

400

η
1
  (Hz)

    (b)

er
(η

1) 
  (

H
z)

 

 

−400 −300 −200 −100 0 100 200 300 400
−400

−200

0

200

400

η
1
 (Hz)

    (a)

er
(η

1) 
  (

H
z)

 

 
RectWin
Hamming

no iter
2 iter

• Iteratively, the bias can be removed when |η| < B/3, where B is
the bandwidth of the squared analysis window.
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iterative QHM, iQHM [10]

This frequency updating mechanism provides frequencies
which can be used in the model iteratively and result in better
parameter estimation (ak , bk)

This iterative parameter estimation is referred to as the
iterative QHM
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iterative QHM, iQHM [10]

HM versus iQHM in frequency estimation - speech signal:
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Robustness against additive noise

Signal contaminated by noise:

y(t) =
4∑

k=1

ake
j2πfk + v(t)

Mean Squared Error (MSE):

MSE{f̂k} =
1

M

M∑
i=1

|f̂k(i)− fk |2

MSE{âk} =
1

M

M∑
i=1

|âk(i)− ak |2

Comparison with Cramer-Rao Bounds (CRB) and QIFFT
(Abe et al. 2004)

10000 Monte Carlo simulations



MSE of frequencies as a function of SNR.
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MSE of amplitudes as a function of SNR.
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QHM has been shown to be closely related to:

Gauss-Newton frequency estimation method

Reassigned Spectrogram

AM-FM decomposition

You will discuss these in the next lecture!
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THANK YOU

for your attention
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