CS578 - Speech Signal Processing Lecture : Harmonic and Quasi-Harmonic Models of Speech

George P. Kafentzis

University of Crete, Computer Science Dept., Speech Signal Processing Lab kafentz@csd.uoc.gr (based on work from Prof. Stylianou and Dr. Pantazis)

Univ. of Crete

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **1** First works on speech decomposition...
- **2** INTRODUCTION TO HNMS
- **3** Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - \bullet Error Function for HNM_1
 - \bullet Least Squares for HNM_1
 - Residual
- **4** Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

- 8 ITERATIVE QHM
- 9 THANKS
- **D** References

OUTLINE

- **1** First works on speech decomposition...
- 2 Introduction to HNMs
- **3** ANALYSIS
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - ${\ensuremath{\bullet}}$ Error Function for ${\ensuremath{\mathsf{HNM}}}_1$
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
 - Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

- 8 ITERATIVE QHM
- 9 THANKS
- **D** REFERENCES

Mentioning just a few works for speech analysis...

• Multi-Band Excitation Vocoder (Griffin et al.1988 [1])

- $S(\omega) = H(\omega)E(\omega)$
- $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
- Parameters are estimated by comparing the original vs the synthetic speech spectrum
- Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

• Multi-Band Excitation Vocoder (Griffin et al.1988 [1])

• $S(\omega) = H(\omega)E(\omega)$

- $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
- Parameters are estimated by comparing the original vs the synthetic speech spectrum
- Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

- Multi-Band Excitation Vocoder (Griffin et al.1988 [1])
 - $S(\omega) = H(\omega)E(\omega)$
 - $E(\omega)$ is represented by an f_0 , a V/UV decision for each harmonic, and the phase of each voiced harmonic
 - Parameters are estimated by comparing the original vs the synthetic speech spectrum
 - Voiced portion is synthesized in time domain while unvoiced part is synthesized in frequency domain

Multi-band Excitation Vocoder (Griffin et al.1988 [1])

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Sinusoids + band-pass random signals (Abrantes et al.1991 [2])

- Completely avoids V/UV decision
- Harmonically related sinusoids model the voiced parts
- Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies kω_s

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - $\bullet\,$ Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies kω_s

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - $\bullet\,$ Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies kω_s

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - $\bullet\,$ Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sinusoids + band-pass random signals (Abrantes et al.1991 [2])
 - $\bullet\,$ Completely avoids V/UV decision
 - Harmonically related sinusoids model the voiced parts
 - Random band-pass signals model the unvoiced parts
 - White noise filtered by a group of band-pass filters (filterbank) with center frequencies $k\omega_s$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sinusoids + band-pass random signals (Abrantes et al.1991 [2])

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])

- The LP residual signal is used as an approximation to the excitation
- V/UV analysis is used
- Frequency regions of harmonic and noise components in the spectral domain
- An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
- The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

- Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])
 - The LP residual signal is used as an approximation to the excitation
 - V/UV analysis is used
 - Frequency regions of harmonic and noise components in the spectral domain
 - An iterative algorithm is proposed which reconstructs the aperiodic component in the harmonic regions
 - The periodic component is obtained by subtracting the reconstructed aperiodic component signal from the residual signal.

Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])

life: hallfacie , id for

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Periodic + Aperiodic Decomposition (Yegnayarayana et al.1995 [3])

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

OUTLINE

- **1** First works on speech decomposition...
- **2** INTRODUCTION TO HNMS
- **3** Analysis
 - Frequency
 - Maximum Voiced Frequency
 - Amplitudes and Phases
 - ${\ensuremath{\bullet}}$ Error Function for ${\ensuremath{\mathsf{HNM}}}_1$
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
 - Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 7 Quasi-Harmonic Model QHM

- 8 ITERATIVE QHM
- 9 THANKS
- **D** REFERENCES

MOTIVATION FOR HNM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called *maximum voiced frequency*
- The *lower* band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called *maximum voiced frequency*
- The *lower* band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called *maximum voiced frequency*
- The *lower* band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called *maximum voiced frequency*
- The *lower* band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- HNM (Stylianou 1995 [4]) is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called *maximum voiced frequency*
- The *lower* band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The *upper* band is modeled as a noise component modulated by a time-domain amplitude envelope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HNM IN EQUATIONS

• Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

• Noise part:

$$n(t) = e(t) \left[v(\tau, t) \star g(t) \right]$$

where $e(t), v(\tau, t), g(t)$ are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively

• Speech:

$$s(t) = h(t) + n(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
HNM IN EQUATIONS

• Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

Noise part:

$$n(t) = e(t) \left[v(\tau, t) \star g(t) \right]$$

where e(t), v(τ, t), g(t) are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively
Speech:

$$s(t) = h(t) + n(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HNM IN EQUATIONS

• Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j2\pi k f_0(t)t}$$

where $A_k(t)$ and $f_0(t)$ are the instantaneous complex amplitude and real frequency, respectively

Noise part:

$$n(t) = e(t) \left[v(\tau, t) \star g(t) \right]$$

where e(t), v(τ, t), g(t) are a time envelope, an estimation of the PSD (filter), and white gaussian noise, respectively
Speech:

$$s(t) = h(t) + n(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MODELS FOR PERIODIC PART

• HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

• HNM₂: Sum of exponential function with complex slope

$$h_{2}[n] = \Re \left\{ \sum_{k=1}^{L(n_{a}^{i})} A_{k}(n) e^{j2\pi k f_{0}(n_{a}^{i})(n-n_{a}^{i})} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $a_k(n_a^i), b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part.

Models for periodic part

• HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

• HNM₂: Sum of exponential function with complex slope

$$h_{2}[n] = \Re \left\{ \sum_{k=1}^{L(n_{a}^{i})} A_{k}(n) e^{j2\pi k f_{0}(n_{a}^{i})(n-n_{a}^{i})} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

with $a_k(n_a^i)$, $b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part.

Models for periodic part

• HNM₃: Sum of sinusoids with time-varying real amplitudes

$$h_3[n] = \sum_{k=0}^{L(n_a^i)} a_k(n) \cos(\varphi_k(n))$$

where

$$\begin{aligned} a_k(n) &= c_{k0} + c_{k1} (n - n_a^i)^1 + \dots + c_{kp} (n - n_a^i)^{p(n)} \\ \varphi_k(n) &= \epsilon_k + 2\pi \, k \zeta (n - n_a^i) \end{aligned}$$

where $a_k(n)$, $\phi_k(n)$ are real functions of discrete time and p(n) is the order of the amplitude polynomial, which is, in general, a time-varying parameter.

The non-periodic part is just the *residual* signal obtained by subtracting the periodic-part (harmonic part) from the original speech signal in the time-domain

$$r[n] = s[n] - h[n]$$

where h[n] is either $h_1[n]$, $h_2[n]$, or $h_3[n]$ (harmonic part of HNM₁, HNM₂, and HNM₃, respectively).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OUTLINE

- **1** First works on speech decomposition...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - Error Function for HNM_1
 - Least Squares for HNM_1
- Residual
- **4** Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
- **D** REFERENCES

INITIAL FUNDAMENTAL FREQUENCY

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$E = \frac{\int_{0.7f_0}^{4.3f_0} (|S(f)| - |\tilde{S}(f)|)^2}{\int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\hat{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

• If E < T, where T an appropriate threshold (e.g. -15 dB), then frame is voiced, else it is labeled as unvoiced

INITIAL FUNDAMENTAL FREQUENCY

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$E = rac{\displaystyle \int_{0.7f_0}^{4.3f_0} (|S(f)| - | ilde{S}(f)|)^2}{\displaystyle \int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\tilde{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

 If E < T, where T an appropriate threshold (e.g. -15 dB), then frame is voiced, else it is labeled as unvoiced

INITIAL FUNDAMENTAL FREQUENCY

- Get an initial estimation of fundamental frequency f_0 [5]
- Determine the voicing of the frame using normalized error over first four harmonics:

$$E = \frac{\displaystyle \int_{0.7f_0}^{4.3f_0} (|S(f)| - |\tilde{S}(f)|)^2}{\displaystyle \int_{0.7f_0}^{4.3f_0} |S(f)|^2}$$

where $\tilde{S}(f)$ is a synthetic DFT-based spectrum using the initial f_0 estimation

• If E < T, where T an appropriate threshold (e.g. -15 dB), then frame is voiced, else it is labeled as unvoiced

• The MVF F_M is determined frame-wise from the speech spectrum

- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- The MVF *F_M* is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- The MVF *F_M* is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search}, and the corresponding amplitudes, A(f_i) and cumulative amplitudes A_c(f_i)
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- The MVF *F_M* is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

- The MVF *F_M* is determined frame-wise from the speech spectrum
- Starting from the frequency f_c of the maximum spectral peak, A_m , in $[f_0/2, 3f_0/2]$, spectral peak values are collected around that maximum peak, along with their frequencies
- The range of collection is $R_{search} = [f_c f_0/2, f_c + f_0/2]$
- Determine peak frequencies f_i in R_{search} , and the corresponding amplitudes, $A(f_i)$ and cumulative amplitudes $A_c(f_i)$
- Cumulative amplitude $A_c(f)$ is the sum of all spectral peak values from previous valley to following valley

Fig. 1. Cumulative amplitude definition

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$

- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency *M_F* is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency *M_F* is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency *M_F* is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency *M_F* is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency *M_F* is the maximum frequency of the last voiced spectral area.

- Compute the average cumulative amplitude for all f_i : $\bar{A}_c(f_i)$
- Pass f_c through the voicing test (see next slide)
- Search for the maximum spectral peak in $[f_c + f_0/2, f_c + 3f_0/2]$, and find new f_c
- Repeat the steps until $f_c \leq f_s/2$.
- Determine voiced and unvoiced spectral areas
- Maximum voiced frequency M_F is the maximum frequency of the last voiced spectral area.

Voicing Test: • If

$$\frac{A_c}{\bar{A}_c(f_i)} > 2$$

or

 $|A - \max{A(f_i)}| > 13 \text{ dB}$

then

- if f_c is really close to the closest harmonic lf_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Voicing Test: • If $\frac{A_c}{\bar{A}_c(f_i)} > 2$ or

$$|A - \max{A(f_i)}| > 13 \text{ dB}$$

then

- if f_c is really close to the closest harmonic lf_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Voicing Test: • If

$$\frac{A_c}{\bar{A}_c(f_i)} > 2$$

or

$$|A - \max{A(f_i)}| > 13 \text{ dB}$$

then

- if f_c is really close to the closest harmonic lf_0 , then
- declare f_c as voiced frequency. Otherwise, declare f_c as unvoiced frequency.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MAXIMUM VOICED FREQUENCY EXAMPLE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Using the initial f_0 value and the *L* detected voiced frequencies f_i , then the refined fundamental frequency, \hat{f}_0 is defined as the value that minimizes the error:

$$E(\hat{f}_0) = \sum_{i=1}^{L} |f_i - i \cdot \hat{f}_0|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

REFINEMENT FREQUENCY EXAMPLE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Having f_0 estimated for voiced frames, amplitudes and phases are estimated by minimizing the criterion:

$$\epsilon = \sum_{n=n_a^i-N}^{n_a^i+N} w^2[n](s[n]-\hat{h}[n])^2$$

where $n_a^i = n_a^{i-1} + P(n_a^{i-1})$, and $P(n_a^{i-1})$ denotes the pitch period at n_a^{i-1} .

- for HNM₁ and HNM₂, this criterion has a quadratic form and is solved by inverting an over-determined system of linear equations.
- For HNM₃, however,a non-linear system of equations has to be solved.

Having f_0 estimated for voiced frames, amplitudes and phases are estimated by minimizing the criterion:

$$\epsilon = \sum_{n=n_a^j-N}^{n_a^j+N} w^2[n](s[n]-\hat{h}[n])^2$$

where $n_a^i = n_a^{i-1} + P(n_a^{i-1})$, and $P(n_a^{i-1})$ denotes the pitch period at n_a^{i-1} .

- for HNM₁ and HNM₂, this criterion has a quadratic form and is solved by inverting an over-determined system of linear equations.
- For HNM₃, however,a non-linear system of equations has to be solved.

Cost function:

$$\epsilon(a_{-L},...,a_{L},f_{0}) = \frac{1}{2}\sum_{n=-N}^{N}(e[n])^{2} = \frac{1}{2}\mathbf{e}^{h}\mathbf{e}$$

where

$$e[n] = w[n](s[n] - h[n])$$

or

$$\mathbf{e} = \begin{bmatrix} e[-N], & e[-N+1], & \dots & e[N] \end{bmatrix}^T$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Reformulate the error function - for HNM_1

$$\epsilon(\mathbf{a}) = rac{1}{2}(\mathbf{s} - \mathbf{E}\mathbf{a})^h \mathbf{W}^2(\mathbf{s} - \mathbf{E}\mathbf{a})$$

where

$$\mathbf{a} = \begin{bmatrix} a_{-L}, & \dots & a_0, & \dots & a_L \end{bmatrix}^T$$

and

$$\mathbf{E} = \begin{bmatrix} e^{j2\pi(-L)\hat{f}_{0}(-N)/f_{s}}, & \dots & e^{j2\pi L\hat{f}_{0}(-N)/f_{s}} \\ e^{j2\pi(-L)\hat{f}_{0}(-N+1)/f_{s}}, & \dots & e^{j2\pi L\hat{f}_{0}(-N+1)/f_{s}} \\ \vdots & \vdots & \vdots \\ e^{j2\pi(-L)\hat{f}_{0}N/f_{s}}, & \dots & e^{j2\pi L\hat{f}_{0}N/f_{s}} \end{bmatrix}^{T}_{(2L+1\times 2N+1)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

• Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in E matrix.

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

• Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in E matrix.

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

• Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in *E* matrix.

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

• Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in *E* matrix.
• Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in E matrix.

• Setting:

$$\frac{\partial \epsilon(\mathbf{a})}{\partial \mathbf{a}} = 0 \Longrightarrow \mathbf{E}^h \mathbf{W}^2 \mathbf{E} \mathbf{a} - \mathbf{E}^h \mathbf{W}^2 \mathbf{s} = 0$$

Solution:

$$\mathbf{a}_{LS} = (\mathbf{E}^h \mathbf{W}^2 \mathbf{E})^{-1} \mathbf{E}^h \mathbf{W}^2 \mathbf{s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Properties:
 - Asymptotically efficient even when the noise is colored.
 - Rather fast, O(L(N + L)).
 - Assumes no errors in E matrix.

- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- For HNM_3 stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- For HNM₃ stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- For HNM₁ there is no problem if window length is twice the local pitch period
- Same thing for HNM₂
- For HNM₃ stands the same in case the maximum voiced frequency is less than 3/4 of the sampling frequency and order of amplitude polynomial is 2

The residual signal r[n] is estimated by

$$\hat{r}[n] = s[n] - \hat{h}[n]$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

TIME DOMAIN CHARACTERISTICS OF $\hat{r}[n]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral domain characteristics of $\hat{r}[n]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

... AND AFTER ADDING NOISE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

MODELING ERROR

VARIANCE OF THE RESIDUAL SIGNAL

The variance of the residual signal is given as:

 $E(\mathbf{rr}^{h}) = \mathbf{I} - \mathbf{WP}(\mathbf{P}^{h}\mathbf{W}^{h}\mathbf{WP})^{-1}\mathbf{P}^{h}\mathbf{W}^{h}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Full bandwidth representation using a low-order (10th) AR filter
- Time-domain characteristics of the residual signal are modeled using deterministic functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

OUTLINE

- **I** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - ${\small \bullet}$ Error Function for ${\small HNM_1}$
 - Least Squares for HNM_1
- Residual
- **4** Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
- **10** References

• $n_s^i \longleftrightarrow n_a^i$

- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

- $n_s^i \longleftrightarrow n_a^i$
- For the periodic part: Overlap-and-Add
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering

for Periodic part (as an alternative to OLA)

- Direct frequency matching
- Linear amplitude interpolation
- Linear phase interpolation using average pitch value

- ロ ト - 4 回 ト - 4 □

OUTLINE

- **I** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - Error Function for HNM_1
 - Least Squares for HNM_1
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 Thanks
- **10** References

AGAIN ON THE ENERGY MODULATION

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

So far we mainly use the Triangular Envelope:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

There are many ways to obtain the "envelope" of a signal, as:

- Hilbert Transform (analytic signal)
- Low-pass local energy (energy envelope):

$$e[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} |r[n-k]|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where r[n] denotes the residual signal.

There are many ways to obtain the "envelope" of a signal, as:

- Hilbert Transform (analytic signal)
- Low-pass local energy (energy envelope):

$$e[n] = \frac{1}{2N+1} \sum_{k=-N}^{N} |r[n-k]|$$

where r[n] denotes the residual signal.

We may also use the Hilbert envelope, computed as:

$$\tilde{e}_{H}[n] = \sum_{k=L-M+1}^{L} a_{k} e^{2\pi k (f_{0}/f_{s})n}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example of Energy Envelope, with N = 7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The energy envelope can be efficiently parameterized with a few Fourier coefficients:

$$\hat{e}[n] = \sum_{k=-L_e}^{L_e} A_k e^{j2\pi k (f_0/f_s)n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where L_e is set to be 3 to 4

LOOKING AT TIME DOMAIN PROPERTIES

RESULTS FROM LISTENING TEST I

	Triangular	No pref.	Hilbert
Male	8 (8.3%)	43 (44.8%)	45 (46.9%)
Female	40 (41.7%)	47 (48.9%)	9 (9.4%)

	Hilbert	No pref.	Energy
Male	22 (22.9%)	47 (49.0%)	27 (28.1%)
Female	22 (22.9%)	54 (56.3%)	20 (20.8%)

	Energy	No pref.	Triangular
Male	43 (44.8%)	50 (52.0%)	3 (3.2%)
Female	16 (16.7%)	67 (69.8%)	13 (13.5%)

TABLE: Results from the listening test for the English sentences.

RESULTS FROM LISTENING TEST II

	Triangular	No pref.	Hilbert
Male	10 (10.4%)	47 (49.0%)	39 (40.6%)
Female	8 (8.3%)	71 (74.0%)	17 (17.7%)

	Hilbert	No pref.	Energy
Male	11 (11.5%)	58 (60.4%)	27 (28.1%)
Female	13 (13.5%)	58 (60.4%)	25 (26.1%)

	Energy	No pref.	Triangular
Male	42 (43.7%)	48 (50.0%)	6 (6.3%)
Female	16 (16.7%)	68 (70.8%)	12 (12.5%)

TABLE: Results from the listening test for the French sentences.

OUTLINE

- **I** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - Error Function for HNM₁
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
- **10** References

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
ESTIMATING SINUSOIDAL PARAMETERS

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ESTIMATING SINUSOIDAL PARAMETERS

• Sinusoidal representation for a speech/signal frame:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi f_k t}\right) w(t)$$

Methods:

- FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [6] [7]])
- Subspace methods
- Least Squares (LS) method
- Frequency mismatch:

$$\hat{f}_k = f_k + \eta_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OUTLINE

- **I** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - Error Function for HNM_1
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 7 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
- **10** References

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-\kappa}^{K} (a_k + tb_k) e^{j2\pi \hat{f}_k t}\right) w(t)$$

- *a_k*, *b_k* are complex numbers
- usually $f_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-K}^{K} (a_k + tb_k) e^{j2\pi \hat{f}_k t}\right) w(t)$$

- *a_k*, *b_k* are complex numbers
- usually $\hat{f}_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$\mathbf{x}(t) = \left(\sum_{k=-K}^{K} (\mathbf{a}_k + t\mathbf{b}_k) e^{j2\pi \hat{f}_k t}\right) \mathbf{w}(t)$$

• a_k, b_k are complex numbers

- usually $f_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-K}^{K} (a_k + tb_k) e^{j2\pi \hat{f}_k t}\right) w(t)$$

- a_k, b_k are complex numbers
- usually $\hat{f}_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-K}^{K} (a_k + tb_k)e^{j2\pi \hat{f}_k t}\right) w(t)$$

- a_k, b_k are complex numbers
- usually $\hat{f}_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-\kappa}^{\kappa} (a_k + tb_k) e^{j2\pi \hat{f}_k t}\right) w(t)$$

- a_k, b_k are complex numbers
- usually $\hat{f}_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

• Frequency mismatch:

$$x(t) = \left(\sum_{k=-K}^{K} a_k e^{j2\pi \hat{f}_k t}\right) w(t)$$

• QHM (de Prony 1795, Laroche [8] (1989), Stylianou 1993, Pantazis [9] (2008, 2011)):

$$x(t) = \left(\sum_{k=-\kappa}^{\kappa} (a_k + tb_k) e^{j2\pi \hat{f}_k t}\right) w(t)$$

- a_k, b_k are complex numbers
- usually $\hat{f}_k = kf_0$, where f_0 is considered as known
- w(t) is the analysis window
- Again: Least Squares method for finding complex amplitudes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- HM versus QHM in frequency estimation pure tone @ 100 Hz
- Given frequency for both models: 90 Hz

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- HM versus QHM in frequency estimation pure tone @ 100 Hz
- Given frequency for both models: 90 Hz

• Inst. amplitude: $M_k(t) = |a_k + tb_k| = \sqrt{(a_k^R + tb_k^R)^2 + (a_k^I + tb_k^I)^2}$ • Inst. phase: $\Phi_k(t) = 2\pi \hat{f}_k t + \tan^{-1} \frac{a_k^I + tb_k^I}{a_k^R + tb_k^R}$ • Inst. frequency: $F_k(t) = \frac{1}{2\pi} \Phi'(t) = \hat{f}_k + \frac{1}{2\pi} \frac{a_k^R b_k^I - a_k^I b_k^R}{M_k^2(t)}$

• where x^{R}, x^{I} denote the real and imaginary part of x

• Inst. amplitude: $M_k(t) = |a_k + tb_k| = \sqrt{(a_k^R + tb_k^R)^2 + (a_k^I + tb_k^I)^2}$ • Inst. phase: $\Phi_k(t) = 2\pi \hat{f}_k t + \tan^{-1} \frac{a_k^I + tb_k^I}{a_k^R + tb_k^R}$ • Inst. frequency: $F_k(t) = \frac{1}{2\pi} \Phi'(t) = \hat{f}_k + \frac{1}{2\pi} \frac{a_k^R b_k^I - a_k^I b_k^R}{M_k^2(t)}$

• where x^{R}, x^{I} denote the real and imaginary part of x

イロト 不得 トイヨト イヨト ニヨー

• Inst. amplitude: $M_k(t) = |a_k + tb_k| = \sqrt{(a_k^R + tb_k^R)^2 + (a_k^I + tb_k^I)^2}$ • Inst. phase: $\Phi_k(t) = 2\pi \hat{f}_k t + \tan^{-1} \frac{a_k^I + tb_k^I}{a_k^R + tb_k^R}$ • Inst. frequency: $F_k(t) = \frac{1}{2\pi} \Phi'(t) = \hat{f}_k + \frac{1}{2\pi} \frac{a_k^R b_k^I - a_k^I b_k^R}{M_k^2(t)}$

• where x^{R}, x^{I} denote the real and imaginary part of x

Inst. amplitude:

$$M_k(t) = |a_k + tb_k| = \sqrt{(a_k^R + tb_k^R)^2 + (a_k^I + tb_k^I)^2}$$

• Inst. phase:
$$\Phi_k(t) = 2\pi \hat{f}_k t + \tan^{-1} \frac{a_k^l + tb_k^l}{a_k^R + tb_k^R}$$

• Inst. frequency:
$$F_k(t) = \frac{1}{2\pi} \Phi'(t) = \hat{f}_k + \frac{1}{2\pi} \frac{a_k^R b_k' - a_k' b_k^R}{M_k^2(t)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• where x^{R}, x^{I} denote the real and imaginary part of x

- HM vs QHM inside analysis window pure tone @ 100 Hz:
- Given frequency for both models: 90 Hz

(日) (四) (日) (日) (日)

Let's discuss a bit on that...

- HM vs QHM inside analysis window pure tone @ 100 Hz:
- Given frequency for both models: 90 Hz

SAC

- HM vs QHM inside analysis window pure tone @ 100 Hz:
- Given frequency for both models: 90 Hz

3

- HM vs QHM inside analysis window pure tone @ 100 Hz:
- Given frequency for both models: 90 Hz

イロト 不得 トイヨト イヨト

3

• Let's discuss a bit on that...

• QHM in the frequency domain:

$$X_k(f) = a_k W(f - \hat{f}_k) + j rac{b_k}{2\pi} W'(f - \hat{f}_k)$$

• **Decomposition of** b_k : $b_k = \rho_{1,k}a_k + \rho_{2,k}ja_k$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• QHM in the frequency domain:

$$X_k(f) = a_k W(f - \hat{f}_k) + j rac{b_k}{2\pi} W'(f - \hat{f}_k)$$

• Decomposition of b_k : $b_k = \rho_{1,k}a_k + \rho_{2,k}ja_k$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Then replacing b_k with the decomposition

$$X_{k}(f) = a_{k} \left[W(f - \hat{f}_{k}) - \frac{\rho_{2,k}}{2\pi} W'(f - \hat{f}_{k}) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_{k}) \right]$$

• and taking into account the Taylor series expansion of $W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi})$:

$$W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi}) = W(f - \hat{f}_k) - \frac{\rho_{2,k}}{2\pi}W'(f - \hat{f}_k) + O(\rho_{2,k}^2W''(f - \hat{f}_k))$$

If the value of term W"(f) at f_k is small, then for small values of ρ_{2,k}, then an **approximation of** the kth component of QHM is:

$$X_k(f) \approx a_k \left[W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi}) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_k) \right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Then replacing b_k with the decomposition

$$X_k(f) = a_k \left[W(f - \hat{f}_k) - \frac{\rho_{2,k}}{2\pi} W'(f - \hat{f}_k) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_k) \right]$$

• and taking into account the Taylor series expansion of $W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi})$:

$$W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) = W(f - \hat{f}_k) - rac{
ho_{2,k}}{2\pi}W'(f - \hat{f}_k) + O(
ho_{2,k}^2W''(f - \hat{f}_k))$$

If the value of term W"(f) at f_k is small, then for small values of ρ_{2,k}, then an **approximation of** the kth component of QHM is:

$$X_k(f) \approx a_k \left[W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi}) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_k) \right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Then replacing b_k with the decomposition

$$X_k(f) = a_k \left[W(f - \hat{f}_k) - \frac{\rho_{2,k}}{2\pi} W'(f - \hat{f}_k) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_k) \right]$$

• and taking into account the Taylor series expansion of $W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi})$:

$$W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) = W(f - \hat{f}_k) - rac{
ho_{2,k}}{2\pi}W'(f - \hat{f}_k) + O(
ho_{2,k}^2W''(f - \hat{f}_k))$$

If the value of term W"(f) at f_k is small, then for small values of ρ_{2,k}, then an **approximation of** the kth component of QHM is:

$$X_k(f) \approx a_k \left[W(f - \hat{f}_k - \frac{\rho_{2,k}}{2\pi}) + j \frac{\rho_{1,k}}{2\pi} W'(f - \hat{f}_k) \right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Copy from previous slide:

$$X_k(f) pprox a_k \left[W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) + j rac{
ho_{1,k}}{2\pi} W'(f - \hat{f}_k)
ight]$$

Back to the time-domain:

$$x_k(t) pprox a_k \left[e^{j(2\pi \hat{f}_k + \rho_{2,k})t} + \rho_{1,k} t e^{j2\pi \hat{f}_k t}
ight] w(t)$$

• Initially, we assumed:

$$x_k(t) = a_k \left[e^{j(2\pi(\hat{f}_k + \eta_k))t} \right] w(t)$$

• in other words, it is suggested:

$$\hat{\eta}_k = \rho_{2,k}/2\pi = \frac{1}{2\pi} \frac{a_k^R b_k' - a_k' b_k^R}{|a_k|^2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Copy from previous slide:

$$X_k(f) pprox a_k \left[W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) + j rac{
ho_{1,k}}{2\pi} W'(f - \hat{f}_k)
ight]$$

• Back to the time-domain:

$$x_k(t) \approx a_k \left[e^{j(2\pi \hat{f}_k + \rho_{2,k})t} + \rho_{1,k} t e^{j2\pi \hat{f}_k t} \right] w(t)$$

• Initially, we assumed:

$$x_k(t) = a_k \left[e^{j(2\pi(\hat{f}_k + \eta_k))t} \right] w(t)$$

• in other words, it is suggested:

$$\hat{\eta}_k = \rho_{2,k} / 2\pi = \frac{1}{2\pi} \frac{a_k^R b_k' - a_k' b_k^R}{|a_k|^2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Copy from previous slide:

$$X_k(f) pprox a_k \left[W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) + j rac{
ho_{1,k}}{2\pi} W'(f - \hat{f}_k)
ight]$$

• Back to the time-domain:

$$x_k(t) \approx a_k \left[e^{j(2\pi \hat{f}_k + \rho_{2,k})t} + \rho_{1,k} t e^{j2\pi \hat{f}_k t} \right] w(t)$$

• Initially, we assumed:

$$x_k(t) = a_k \left[e^{j(2\pi(\hat{f}_k + \eta_k))t} \right] w(t)$$

• in other words, it is suggested:

$$\hat{\eta}_k = \rho_{2,k} / 2\pi = \frac{1}{2\pi} \frac{a_k^R b_k^I - a_k^I b_k^R}{|a_k|^2}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

• Copy from previous slide:

$$X_k(f) pprox a_k \left[W(f - \hat{f}_k - rac{
ho_{2,k}}{2\pi}) + j rac{
ho_{1,k}}{2\pi} W'(f - \hat{f}_k)
ight]$$

• Back to the time-domain:

$$x_k(t) \approx a_k \left[e^{j(2\pi \hat{f}_k + \rho_{2,k})t} + \rho_{1,k} t e^{j2\pi \hat{f}_k t} \right] w(t)$$

• Initially, we assumed:

$$x_k(t) = a_k \left[e^{j(2\pi(\hat{f}_k + \eta_k))t} \right] w(t)$$

• in other words, it is suggested:

$$\hat{\eta}_k =
ho_{2,k}/2\pi = rac{1}{2\pi} rac{a_k^R b_k' - a_k' b_k^R}{|a_k|^2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- In other words, QHM suggests a frequency correction to the input frequencies \hat{f}_k (or a frequency estimator). This suggestion is however conditional on the magnitude of $\rho_{2,k}$ and the value of term W''(f) at f_k
- Also, the correction term depends on the window mainlobe width

- In other words, QHM suggests a frequency correction to the input frequencies \hat{f}_k (or a frequency estimator). This suggestion is however conditional on the magnitude of $\rho_{2,k}$ and the value of term W''(f) at f_k
- Also, the correction term depends on the window mainlobe width

SINGLE SINUSOID

• Iteratively, the bias can be removed when $|\eta| < B/3$, where B is the bandwidth of the squared analysis window.

OUTLINE

- **1** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 Analysis

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - Error Function for HNM₁
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 Iterative QHM
- 9 THANKS
- **10** References

• This frequency updating mechanism provides frequencies which can be used in the model iteratively and result in better parameter estimation (a_k, b_k)

• This iterative parameter estimation is referred to as the *iterative QHM*

• This frequency updating mechanism provides frequencies which can be used in the model iteratively and result in better parameter estimation (a_k, b_k)

• This iterative parameter estimation is referred to as the *iterative QHM*

ITERATIVE QHM, IQHM [10]

HM versus iQHM in frequency estimation - speech signal:

ROBUSTNESS AGAINST ADDITIVE NOISE

• Signal contaminated by noise:

$$y(t) = \sum_{k=1}^4 a_k e^{j2\pi f_k} + v(t)$$

• Mean Squared Error (MSE):

$$MSE\{\hat{f}_{k}\} = \frac{1}{M} \sum_{i=1}^{M} |\hat{f}_{k}(i) - f_{k}|^{2}$$
$$MSE\{\hat{a}_{k}\} = \frac{1}{M} \sum_{i=1}^{M} |\hat{a}_{k}(i) - a_{k}|^{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Comparison with Cramer-Rao Bounds (CRB) and QIFFT (Abe et al. 2004)
- 10000 Monte Carlo simulations

MSE OF FREQUENCIES AS A FUNCTION OF SNR.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MSE OF AMPLITUDES AS A FUNCTION OF SNR.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

• QHM has been shown to be closely related to:

- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram.
 - AM-FM decomposition
- You will discuss these in the next lecture!

• QHM has been shown to be closely related to:

- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram
 - AM-FM decomposition
- You will discuss these in the next lecture!

- QHM has been shown to be closely related to:
- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram
 - AM-FM decomposition
- You will discuss these in the next lecture!

- QHM has been shown to be closely related to:
- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram
 - AM-FM decomposition
- You will discuss these in the next lecture!

- QHM has been shown to be closely related to:
- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram
 - AM-FM decomposition
- You will discuss these in the next lecture!

- QHM has been shown to be closely related to:
- Gauss-Newton frequency estimation method
 - Reassigned Spectrogram
 - AM-FM decomposition
- You will discuss these in the next lecture!

OUTLINE

- **1** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 ANALYSIS

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - ${\ensuremath{\bullet}}$ Error Function for ${\ensuremath{\mathsf{HNM}}}_1$
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
 - **D** REFERENCES

THANK YOU for your attention

OUTLINE

- **I** FIRST WORKS ON SPEECH DECOMPOSITION...
- 2 Introduction to HNMs

3 ANALYSIS

- Frequency
- Maximum Voiced Frequency
- Amplitudes and Phases
 - \bullet Error Function for HNM_1
 - ${\ensuremath{\bullet}}$ Least Squares for ${\ensuremath{\mathsf{HNM}}}_1$
- Residual
- 4 Synthesis
- **5** Energy modulation function
- 6 Towards Quasi-Harmonicity
- 🕜 Quasi-Harmonic Model QHM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 ITERATIVE QHM
- 9 THANKS
 - 0 References

References I

- D. Griffin and J. Lim, "Multiband-excitation vocoder," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-36, pp. 236–243, Fev 1988.
- A. Abrantes, J. Marques, and I. Transcoso, "Hybrid sinusoidal modeling of speech without voicing decision," *Eurospeech-91*, pp. 231–234, 1991.
- B.Yegnanarayana, C. d'Alessandro, and V. Darsinos, "An iterative algorithm for decomposition of speech signals into periodic and aperiodic components," *IEEE Trans. Speech and Audio Processing*, vol. 6, no. 1, 1998.
- Y. Stylianou, Harmonic plus Noise Models for Speech, combined with Statistical Methods, for Speech and Speaker Modification.
 PhD thesis, Ecole Nationale Supèrieure des Télécommunications, Jan 1996.

References II

W. Hess, Pitch determination of Speech Signals: Algorithmes and Devices.

Berlin: Springer, 1983.

- M. Abe and J. S. III, "CQIFFT: Correcting Bias in a Sinusoidal Parameter Estimator based on Quadratic Interpolation of FFT Magnitude Peaks," Tech. Rep. STAN-M-117, Stanford University, California, Oct 2004.
- M. Abe and J. S. III, "AM/FM Estimation for Time-varying Sinusoidal Modeling," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, (Philadelphia), pp. III 201–204, 2005.
- J. Laroche, "A new analysis/synthesis system of musical signals using Prony's method. Application to heavily damped percussive sounds.," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing*, (Glasgow, UK), pp. 2053–2056, May 1989.

Y. Pantazis, O. Rosec, and Y. Stylianou, "On the Properties of a Time-Varying Quasi-Harmonic Model of Speech," in *Proc. Interspeech*, (Brisbane), Sep 2008.

Y. Pantazis, O. Rosec, and Y. Stylianou, "Iterative Estimation of Sinusoidal Signal Parameters," *IEEE Signal Processing Letters*, vol. 17, no. 5, pp. 461–464, 2010.

ふして 山田 ふぼやえばや 山下