CS578- Speech Signal Processing
 Lecture 7: Speech Coding

Yannis Stylianou

University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete

Outline

(1) InTRODUCTION
(2) Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization

4 Vector Quantization

- The k-means algorithm
- The LBG algorithm
(5) Model-Based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)
(6) Acknowledgments

DIGITAL TELEPHONE COMMUNICATION SYSTEM

Categories of speech coders

- Waveform coders (16-64 kbps, $\left.f_{s}=8000 \mathrm{~Hz}\right)$
- Hybrid coders (2.4-16 kbps, $f_{s}=8000 \mathrm{~Hz}$)
- Vocoders (1.2-4.8 kbps, $\left.f_{s}=8000 \mathrm{~Hz}\right)$

Categories of speech coders

- Waveform coders ($16-64 \mathrm{kbps}, f_{s}=8000 \mathrm{~Hz}$)
- Hybrid coders $\left(2.4-16 \mathrm{kbps}, f_{s}=8000 \mathrm{~Hz}\right)$
- Vocoders (1.2-4.8 kbps, $\left.f_{s}=8000 \mathrm{~Hz}\right)$

Categories of speech coders

- Waveform coders ($16-64 \mathrm{kbps}, f_{s}=8000 \mathrm{~Hz}$)
- Hybrid coders (2.4-16 kbps, $\left.f_{s}=8000 \mathrm{~Hz}\right)$
- Vocoders (1.2-4.8 kbps, $\left.f_{s}=8000 \mathrm{~Hz}\right)$

Speech quality

- Closeness of the processed speech waveform to the original speech waveform
- Naturalness
- Background artifacts
- Intelligibility
- Speaker identifiability

Speech quality

- Closeness of the processed speech waveform to the original speech waveform
- Naturalness
- Background artifacts
- Intelligibility
- Speaker identifiability

Speech quality

- Closeness of the processed speech waveform to the original speech waveform
- Naturalness
- Background artifacts
- Intelligibility
- Speaker identifiability

Speech quality

- Closeness of the processed speech waveform to the original speech waveform
- Naturalness
- Background artifacts
- Intelligibility
- Speaker identifiability

Speech quality

- Closeness of the processed speech waveform to the original speech waveform
- Naturalness
- Background artifacts
- Intelligibility
- Speaker identifiability

Measuring Speech Quality

\triangleright Subjective tests:

- Diagnostic Rhyme Test (DRT)
- Diagnostic Acceptability Measure (DAM)
- Mean Opinion Score (MOS)
\triangleright Objective tests:
- Segmental Signal-to-Noise Ratio (SNR)
- Articulation Index

Measuring Speech Quality

\triangleright Subjective tests:

- Diagnostic Rhyme Test (DRT)
- Diagnostic Acceptability Measure (DAM)
- Mean Opinion Score (MOS)
\triangleright Objective tests:
- Segmental Signal-to-Noise Ratio (SNR)
- Articulation Index

Measuring Speech Quality

\triangleright Subjective tests:

- Diagnostic Rhyme Test (DRT)
- Diagnostic Acceptability Measure (DAM)
- Mean Opinion Score (MOS)
\triangleright Objective tests:
- Segmental Signal-to-Noise Ratio (SNR)
- Articulation Index

Measuring Speech Quality

\triangleright Subjective tests:

- Diagnostic Rhyme Test (DRT)
- Diagnostic Acceptability Measure (DAM)
- Mean Opinion Score (MOS)
\triangleright Objective tests:
- Segmental Signal-to-Noise Ratio (SNR)
- Articulation Index

Measuring Speech Quality

\triangleright Subjective tests:

- Diagnostic Rhyme Test (DRT)
- Diagnostic Acceptability Measure (DAM)
- Mean Opinion Score (MOS)
\triangleright Objective tests:
- Segmental Signal-to-Noise Ratio (SNR)
- Articulation Index

QuAntization

- Statistical models of speech (preliminary)
- Scalar quantization (i.e., waveform coding)
- Vector quantization (i.e., subband and sinusoidal coding)

QuAntization

- Statistical models of speech (preliminary)
- Scalar quantization (i.e., waveform coding)
- Vector quantization (i.e., subband and sinusoidal coding)

Quantization

- Statistical models of speech (preliminary)
- Scalar quantization (i.e., waveform coding)
- Vector quantization (i.e., subband and sinusoidal coding)

Linear Prediction Coding, LPC

- Classic LPC
- Mixed Excitation Linear Prediction, MELP
- Multipulse LPC
- Code Excited Linear Prediction (CELP)

Linear Prediction Coding, LPC

- Classic LPC
- Mixed Excitation Linear Prediction, MELP
- Multipulse LPC
- Code Excited Linear Prediction (CELP)

Linear Prediction Coding, LPC

- Classic LPC
- Mixed Excitation Linear Prediction, MELP
- Multipulse LPC
- Code Excited Linear Prediction (CELP)

Linear Prediction Coding, LPC

- Classic LPC
- Mixed Excitation Linear Prediction, MELP
- Multipulse LPC
- Code Excited Linear Prediction (CELP)

Outline

(1) Introduction
(2) Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization
(4) Vector Quantization
- The k-means algorithm
- The LBG algorithm
(5) Model-Based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)
(6) Acknowledgments

Probability Density of speech

By setting $x[n] \rightarrow x$, the histogram of speech samples can be approximated by a gamma density:

$$
p_{X}(x)=\left(\frac{\sqrt{3}}{8 \pi \sigma_{x}|x|}\right)^{1 / 2} e^{-\frac{\sqrt{3}|x|}{2 \sigma_{x}}}
$$

or by a simpler Laplacian density:

$$
p_{X}(x)=\frac{1}{\sqrt{2} \sigma_{x}} e^{-\frac{\sqrt{3}|x|}{\sigma_{x}}}
$$

Densities comparison

Outline

(1) Introduction
2. Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization
(4) Vector Quantization
- The k-means algorithm
- The LBG algorithm
(5) Model-Based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)

6 Acknowledgments

Coding and Decoding

(a)

(b)

Fundamentals of Scalar Coding

- Let's quantize a single sample speech value, $x[n]$ into M reconstruction or decision levels:

$$
\hat{x}[n]=\hat{x}_{i}=Q(x[n]), \quad x_{i-1}<x[n] \leq x_{i}
$$

with $1 \leq i \leq M$ and x_{k} denotes the M decision levels with $0 \leq k \leq M$.

- Assign a codeword in each reconstruction level. Collection of codewords makes a codebook.
- Using B-bit binary codebook we can represent each 2^{B} different quantization (reconstruction) levels.
- Bit rate, I, is defined as: $I=B f_{s}$

Fundamentals of Scalar Coding

- Let's quantize a single sample speech value, $x[n]$ into M reconstruction or decision levels:

$$
\hat{x}[n]=\hat{x}_{i}=Q(x[n]), \quad x_{i-1}<x[n] \leq x_{i}
$$

with $1 \leq i \leq M$ and x_{k} denotes the M decision levels with $0 \leq k \leq M$.

- Assign a codeword in each reconstruction level. Collection of codewords makes a codebook.
- Using B-bit binary codebook we can represent each 2^{B} different quantization (reconstruction) levels.
- Bit rate, I, is defined as: $I=B f_{s}$

Fundamentals of Scalar Coding

- Let's quantize a single sample speech value, $x[n]$ into M reconstruction or decision levels:

$$
\hat{x}[n]=\hat{x}_{i}=Q(x[n]), \quad x_{i-1}<x[n] \leq x_{i}
$$

with $1 \leq i \leq M$ and x_{k} denotes the M decision levels with $0 \leq k \leq M$.

- Assign a codeword in each reconstruction level. Collection of codewords makes a codebook.
- Using B-bit binary codebook we can represent each 2^{B} different quantization (reconstruction) levels.
- Bit rate, I, is defined as: $I=B f_{s}$

Fundamentals of Scalar Coding

- Let's quantize a single sample speech value, $x[n]$ into M reconstruction or decision levels:

$$
\hat{x}[n]=\hat{x}_{i}=Q(x[n]), \quad x_{i-1}<x[n] \leq x_{i}
$$

with $1 \leq i \leq M$ and x_{k} denotes the M decision levels with $0 \leq k \leq M$.

- Assign a codeword in each reconstruction level. Collection of codewords makes a codebook.
- Using B-bit binary codebook we can represent each 2^{B} different quantization (reconstruction) levels.
- Bit rate, I, is defined as: $I=B f_{s}$

Uniform QUANTIZATION

$$
\begin{aligned}
& x_{i}-x_{i-1} \\
& \hat{x}_{i}=\frac{x_{i}+x_{i-1}}{2}, \quad 1 \leq i \leq M
\end{aligned}=\Delta, \quad 1 \leq i \leq M
$$

Δ is referred to as uniform quantization step size.
\triangleright Example of a 2-bit uniform quantization:

Uniform quantization: Designing decision REGIONS

- Signal range: $-4 \sigma_{x} \leq x[n] \leq 4 \sigma_{x}$
- Assuming B-bit binary codebook, we get 2^{B} quantization (reconstruction) levels
- Quantization step size, Δ :

$$
\Delta=\frac{2 x_{\max }}{2^{B}}
$$

- Δ and quantization noise.

Classes of Quantization noise

There are two classes of quantization noise:

- Granular Distortion:

$$
\hat{x}[n]=x[n]+e[n]
$$

where $e[n]$ is the quantization noise, with:

$$
-\frac{\Delta}{2} \leq e[n] \leq \frac{\Delta}{2}
$$

- Overload Distortion: clipped samples

Assumptions

- Quantization noise is an ergodic white-noise random process:

$$
\begin{aligned}
r_{e}[m] & =E(e[n] e[n+m]) \\
& =\sigma_{e}^{2}, \quad m=0 \\
& =0, \quad m \neq 0
\end{aligned}
$$

- Quantization noise and input signal are uncorrelated:

$$
E(x[n] e[n+m])=0 \quad \forall m
$$

- Quantization noise is uniform over the quantization interval

$$
\begin{aligned}
p_{e}(e) & =\frac{1}{\Delta},-\frac{\Lambda}{2} \leq e \leq \frac{\Lambda}{2} \\
& =0, \text { otherwise }
\end{aligned}
$$

Assumptions

- Quantization noise is an ergodic white-noise random process:

$$
\begin{aligned}
r_{e}[m] & =E(e[n] e[n+m]) \\
& =\sigma_{e}^{2}, \quad m=0 \\
& =0, \quad m \neq 0
\end{aligned}
$$

- Quantization noise and input signal are uncorrelated:

$$
E(x[n] e[n+m])=0 \quad \forall m
$$

- Quantization noise is uniform over the quantization interval

Assumptions

- Quantization noise is an ergodic white-noise random process:

$$
\begin{aligned}
r_{e}[m] & =E(e[n] e[n+m]) \\
& =\sigma_{e}^{2}, \quad m=0 \\
& =0, \quad m \neq 0
\end{aligned}
$$

- Quantization noise and input signal are uncorrelated:

$$
E(x[n] e[n+m])=0 \quad \forall m
$$

- Quantization noise is uniform over the quantization interval

$$
\begin{aligned}
p_{e}(e) & =\frac{1}{\Delta}, \quad-\frac{\Delta}{2} \leq e \leq \frac{\Delta}{2} \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

Dithering

Definition (Dithering)

We can force $e[n]$ to be white and uncorrelated with $x[n]$ by adding noise to $x[n]$ before quantization!

Signal-to-Noise Ratio

- To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

$$
\begin{aligned}
S N R & =\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \\
& =\frac{E\left(x^{2}[n]\right)}{E\left(e^{2}[n]\right)} \\
& \approx \frac{\frac{N}{N} \sum_{n=0}^{N-1} x^{2}[n]}{\frac{1}{N} \sum_{n=0}^{N-1} e^{2}[n]}
\end{aligned}
$$

- For uniform pdf and quantizer range $2 x_{\max }$

- Or

- and in dB :

$$
S N R(d B) \approx 6 B+4.77-20 \log _{10}\left(\frac{x_{\max }}{\sigma_{x}}\right)
$$

Signal-to-Noise Ratio

- To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

$$
\begin{aligned}
S N R & =\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \\
& =\frac{E\left(x^{2}[n]\right)}{E\left(e^{2}[n]\right)} \\
& \approx \frac{\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]}{\frac{1}{N} \sum_{n=0}^{N-1} e^{2}[n]}
\end{aligned}
$$

- For uniform pdf and quantizer range $2 x_{\max }$:

$$
\begin{aligned}
\sigma_{e}^{2} & =\frac{\Delta^{2}}{12} \\
& =\frac{x_{\max }^{2}}{32^{2 B}}
\end{aligned}
$$

- Or

- and in dB :

$$
S N R(d B) \approx 6 B+4.77-20 \log _{10}\left(\frac{x_{\max }}{\sigma_{x}}\right)
$$

Signal-to-Noise Ratio

- To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

$$
\begin{aligned}
S N R & =\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \\
& =\frac{E\left(x^{2}[n]\right)}{E\left(e^{2}[n]\right)} \\
& \approx \frac{\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]}{\frac{1}{N} \sum_{n=0}^{N-1} e^{2}[n]}
\end{aligned}
$$

- For uniform pdf and quantizer range $2 x_{\max }$:

$$
\begin{aligned}
\sigma_{e}^{2} & =\frac{\Delta^{2}}{12} \\
& =\frac{x_{\max }^{2}}{32^{2 B}}
\end{aligned}
$$

- Or

$$
S N R=\frac{32^{2 B}}{\left(\frac{x_{\max }}{\sigma_{x}}\right)^{2}}
$$

- and in dB :

$$
S N R(d B) \approx 6 B+4.77-20 \log _{10}\left(\frac{x_{\max }}{\sigma_{x}}\right)
$$

Signal-to-Noise Ratio

- To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

$$
\begin{aligned}
S N R & =\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \\
& =\frac{E\left(x^{2}[n]\right)}{E\left(e^{2}[n]\right)} \\
& \approx \frac{\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]}{\frac{1}{N} \sum_{n=0}^{N-1} e^{2}[n]}
\end{aligned}
$$

- For uniform pdf and quantizer range $2 x_{\max }$:

$$
\begin{aligned}
\sigma_{e}^{2} & =\frac{\Delta^{2}}{12} \\
& =\frac{x_{\max }^{2}}{32^{2 B}}
\end{aligned}
$$

- Or

$$
S N R=\frac{32^{2 B}}{\left(\frac{x_{\max }}{\sigma_{x}}\right)^{2}}
$$

- and in dB :

$$
S N R(d B) \approx 6 B+4.77-20 \log _{10}\left(\frac{x_{\max }}{\sigma_{x}}\right)
$$

Signal-to-Noise Ratio

- To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

$$
\begin{aligned}
S N R & =\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \\
& =\frac{E\left(x^{2}[n]\right)}{E\left(e^{2}[n]\right)} \\
& \approx \frac{\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]}{\frac{1}{N} \sum_{n=0}^{N-1} e^{2}[n]}
\end{aligned}
$$

- For uniform pdf and quantizer range $2 x_{\max }$:

$$
\begin{aligned}
\sigma_{e}^{2} & =\frac{\Delta^{2}}{12} \\
& =\frac{x_{\max }^{2}}{32^{2 B}}
\end{aligned}
$$

- Or

$$
S N R=\frac{32^{2 B}}{\left(\frac{x_{\max }}{\sigma_{x}}\right)^{2}}
$$

- and in dB :

$$
S N R(d B) \approx 6 B+4.77-20 \log _{10}\left(\frac{x_{\max }}{\sigma_{x}}\right)
$$

- and since $x_{\text {max }}=4 \sigma_{x}$:

$$
S N R(d B) \approx 6 B-7.2
$$

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Pulse Code Modulation, PCM

- B bits of information per sample are transmitted as a codeword
- instantaneous coding
- not signal-specific
- 11 bits are required for "toll quality"
- what is the rate for $f_{s}=10 \mathrm{kHz}$?
- For CD, with $f_{s}=44100$ and $B=16$ (16-bit PCM), what is the SNR?

Optimal decision and Reconstruction level

if $x[n] \mapsto p_{x}(x)$ we determine the optimal decision level, x_{i} and the reconstruction level, \hat{x}, by minimizing:

$$
\begin{aligned}
D & =E\left[(\hat{x}-x)^{2}\right] \\
& =\int_{-\infty}^{\infty} p_{x}(x)(\hat{x}-x)^{2} d x
\end{aligned}
$$

and assuming M reconstruction levels $\hat{x}=Q[x]$:

Optimal decision and Reconstruction level

if $x[n] \mapsto p_{x}(x)$ we determine the optimal decision level, x_{i} and the reconstruction level, \hat{x}, by minimizing:

$$
\begin{aligned}
D & =E\left[(\hat{x}-x)^{2}\right] \\
& =\int_{-\infty}^{\infty} p_{x}(x)(\hat{x}-x)^{2} d x
\end{aligned}
$$

and assuming M reconstruction levels $\hat{x}=Q[x]$:

$$
D=\sum_{i=1}^{M}=\int_{x_{i-1}}^{x_{i}} p_{x}(x)\left(\hat{x}_{i}-x\right)^{2} d x
$$

Optimal decision and Reconstruction level

if $x[n] \mapsto p_{x}(x)$ we determine the optimal decision level, x_{i} and the reconstruction level, \hat{x}, by minimizing:

$$
\begin{aligned}
D & =E\left[(\hat{x}-x)^{2}\right] \\
& =\int_{-\infty}^{\infty} p_{x}(x)(\hat{x}-x)^{2} d x
\end{aligned}
$$

and assuming M reconstruction levels $\hat{x}=Q[x]$:

$$
D=\sum_{i=1}^{M} \int_{x_{i-1}}^{x_{i}} p_{x}(x)\left(\hat{x}_{i}-x\right)^{2} d x
$$

So:

$$
\begin{aligned}
& \frac{\partial D}{\partial \hat{x}_{k}}=0, \quad 1 \leq k \leq M \\
& \frac{\partial D}{\partial x_{k}}=0, \quad 1 \leq k \leq M-1
\end{aligned}
$$

Optimal Decision and reconstruction level, cont.

- The minimization of D over decision level, x_{k}, gives:

$$
x_{k}=\frac{\hat{x}_{k+1}+\hat{x}_{k}}{2}, \quad 1 \leq k \leq M-1
$$

- The minimization of D over reconstruction level, \hat{x}_{k}, gives:

Optimal decision and reconstruction level, cont.

- The minimization of D over decision level, x_{k}, gives:

$$
x_{k}=\frac{\hat{x}_{k+1}+\hat{x}_{k}}{2}, \quad 1 \leq k \leq M-1
$$

- The minimization of D over reconstruction level, \hat{x}_{k}, gives:

$$
\begin{aligned}
\hat{x}_{k} & =\int_{x_{k-1}}^{x_{k}}\left[\frac{p_{x}(x)}{\int_{x_{k-1}}^{x_{k}} p_{x}(s) d s}\right] x d x \\
& =\int_{x_{k-1}}^{x_{k}} \tilde{p}_{x}(x) x d x
\end{aligned}
$$

Example with Laplacian pdF

Principle of Companding

(a)

(b)

Companding examples

Companding examples:

- Transformation to a uniform density:

$$
\begin{array}{rlrl}
g[n]=T(x[n]) & =\int_{-\infty}^{\times[n]} p_{x}(s) d s-\frac{1}{2}, & & \frac{-1}{2} \leq g[n] \leq \frac{1}{2} \\
& =0 & \text { elsewhere }
\end{array}
$$

Companding examples

Companding examples:

- Transformation to a uniform density:

$$
\begin{aligned}
g[n]=T(x[n]) & =\int_{-\infty}^{x[n]} p_{x}(s) d s-\frac{1}{2}, & \frac{-1}{2} \leq g[n] \leq \frac{1}{2} \\
& =0 & \text { elsewhere }
\end{aligned}
$$

- μ-law:

$$
T(x[n])=x_{\max } \frac{\log \left(1+\mu \frac{|x[n]|}{x_{\max }}\right)}{\log (1+\mu)} \operatorname{sign}(x[n])
$$

Adaptive quantization

(b)

Differential and Residual quantization

$$
\begin{aligned}
& \tilde{x}[n]=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }
\end{aligned}
$$

Outline

(1) Introduction
2. Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization

4 4 Vector Quantization

- The k-means algorithm
- The LBG algorithm
(5) Model-Based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)
(6) Acknowledgments

Motivation for VQ

Vocal Tract
Frequency Responses

Reflection Coefficients

Comparing scalar and vector quantization

Max quantizer (1-D)

$$
\hat{x}=Q[x]
$$

- = Centroid over the decision interval

$$
D=E\left[(\hat{x}-x)^{2}\right]
$$

Vector quantizer (2-D)

$$
\underline{\hat{x}}=\mathrm{VQ}[\underline{x}]
$$

Decision region (M-Dimensional boundary)

- = Centroid over the decision region

$$
D=E\left[(\underline{\hat{x}}-\underline{x})^{2}(\underline{\hat{x}}-\underline{x})\right]
$$

Distortion in VQ

Here we have a multidimensional pdf $p_{\mathbf{x}}(\mathbf{x})$:

$$
\begin{aligned}
D & =E\left[(\hat{\mathbf{x}}-\mathbf{x})^{T}(\hat{\mathbf{x}}-\mathbf{x})\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}(\hat{\mathbf{x}}-x)^{T}(\hat{\mathbf{x}}-\mathbf{x}) p_{\mathbf{x}}(\mathbf{x}) d \mathbf{x} \\
& =\sum_{i=1}^{M} \iint_{\mathbf{x} \in \mathcal{C}_{i}} \cdots \int\left(\mathbf{r}_{i}-\mathbf{x}\right)^{T}\left(\mathbf{r}_{i}-\mathbf{x}\right) p_{\mathbf{x}}(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Two constraints:

- A vector \mathbf{x} must be quantized to a reconstruction level \mathbf{r}_{i} that gives the smallest distortion:

$$
\mathcal{C}_{i}=\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{r}_{i}\right\|^{2} \leq\left\|\mathbf{x}-\mathbf{r}_{l}\right\|^{2}, \forall I=1,2, \cdots, M\right\}
$$

- Each reconstruction level \mathbf{r}_{i} must be the centroid of the corresponding decision region, i.e., of the cell \mathcal{C}_{i} :

Distortion in VQ

Here we have a multidimensional pdf $p_{\mathbf{x}}(\mathbf{x})$:

$$
\begin{aligned}
D & =E\left[(\hat{\mathbf{x}}-\mathbf{x})^{T}(\hat{\mathbf{x}}-\mathbf{x})\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}(\hat{\mathbf{x}}-x)^{T}(\hat{\mathbf{x}}-\mathbf{x}) p_{\mathbf{x}}(\mathbf{x}) d \mathbf{x} \\
& =\sum_{i=1}^{M} \iint_{\mathbf{x} \in \mathcal{C}_{i}} \cdots \int\left(\mathbf{r}_{i}-\mathbf{x}\right)^{T}\left(\mathbf{r}_{i}-\mathbf{x}\right) p_{\mathbf{x}}(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Two constraints:

- A vector \mathbf{x} must be quantized to a reconstruction level \mathbf{r}_{i} that gives the smallest distortion:

$$
\mathcal{C}_{i}=\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{r}_{i}\right\|^{2} \leq\left\|\mathbf{x}-\mathbf{r}_{l}\right\|^{2}, \forall I=1,2, \cdots, M\right\}
$$

- Each reconstruction level \mathbf{r}_{i} must be the centroid of the corresponding decision region, i.e., of the cell \mathcal{C}_{i} :

$$
\mathbf{r}_{i}=\frac{\sum_{\mathbf{x}_{m} \in \mathcal{C}_{i}} \mathbf{x}_{m}}{\sum_{\mathbf{x}_{m} \in \mathcal{C}_{i}} 1} \quad i=1,2, \cdots, M
$$

The K-means algorithm

- S1:

- S2: Pick an initial guess at the reconstruction levels $\left\{\boldsymbol{r}_{i}\right\}$
- S3: For each \mathbf{x}_{k} elect an \mathbf{r}_{i} closest to \mathbf{x}_{k}. Form clusters (clustering step)
- S4: Find the mean of \mathbf{x}_{k} in each cluster which gives a new \mathbf{r}_{i}. Compute D.
- S5: Stop when the change in D over two consecutive iterations is insignificant.

The LBG algorithm

- Set the desired number of cells: $M=2^{B}$
- Set an initial codebook $\mathcal{C}^{(0)}$ with one codevector which is set as the average of the entire training sequence,
$\mathbf{x}_{k}, \quad k=1,2, \cdots, N$.
- Split the codevector into two and get an initial new codebook $\mathcal{C}^{(1)}$
- Perform a k-means algorithm to optimize the codebook and get the final $\mathcal{C}^{(1)}$
- Split the final codevectors into four and repeat the above process until the desired number of cells is reached.

The LBG algorithm

- Set the desired number of cells: $M=2^{B}$
- Set an initial codebook $\mathcal{C}^{(0)}$ with one codevector which is set as the average of the entire training sequence, $\mathbf{x}_{k}, \quad k=1,2, \cdots, N$.
- Split the codevector into two and get an initial new codebook $\mathcal{C}^{(1)}$
- Perform a k-means algorithm to optimize the codebook and get the final $\mathcal{C}^{(1)}$
- Split the final codevectors into four and repeat the above process until the desired number of cells is reached.

The LBG algorithm

- Set the desired number of cells: $M=2^{B}$
- Set an initial codebook $\mathcal{C}^{(0)}$ with one codevector which is set as the average of the entire training sequence, $\mathbf{x}_{k}, \quad k=1,2, \cdots, N$.
- Split the codevector into two and get an initial new codebook $\mathcal{C}^{(1)}$.
- Perform a k-means algorithm to optimize the codebook and get the final $\mathcal{C}^{(1)}$
- Split the final codevectors into four and repeat the above process until the desired number of cells is reached.

The LBG algorithm

- Set the desired number of cells: $M=2^{B}$
- Set an initial codebook $\mathcal{C}^{(0)}$ with one codevector which is set as the average of the entire training sequence, $\mathbf{x}_{k}, \quad k=1,2, \cdots, N$.
- Split the codevector into two and get an initial new codebook $\mathcal{C}^{(1)}$.
- Perform a k-means algorithm to optimize the codebook and get the final $\mathcal{C}^{(1)}$
- Split the final codevectors into four and repeat the above process until the desired number of cells is reached.

The LBG algorithm

- Set the desired number of cells: $M=2^{B}$
- Set an initial codebook $\mathcal{C}^{(0)}$ with one codevector which is set as the average of the entire training sequence, $\mathbf{x}_{k}, \quad k=1,2, \cdots, N$.
- Split the codevector into two and get an initial new codebook $\mathcal{C}^{(1)}$.
- Perform a k-means algorithm to optimize the codebook and get the final $\mathcal{C}^{(1)}$
- Split the final codevectors into four and repeat the above process until the desired number of cells is reached.

Outline

(1) Introduction
2. Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization
(4) Vector Quantization
- The k-means algorithm
- The LBG algorithm
(5) Model-Based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)
(6) Acknowledgments

BASIC CODING SCHEME IN LPC

- Vocal tract system function:

$$
H(z)=\frac{A}{1-P(z)}
$$

where

$$
P(z)=\sum_{k=1}^{p} a_{k} z^{-1}
$$

- Input is binary: impulse/noise excitation.
- If frame rate is 100 frames/s and we use 13 parameters ($p=10,1$ for Gain, 1 for pitch, 1 for voicing decision) we need 1300 parameters/s, instead of 8000 samples/s for $f_{s}=8000 \mathrm{~Hz}$.

BASIC CODING SCHEME IN LPC

- Vocal tract system function:

$$
H(z)=\frac{A}{1-P(z)}
$$

where

$$
P(z)=\sum_{k=1}^{p} a_{k} z^{-1}
$$

- Input is binary: impulse/noise excitation.
- If frame rate is 100 frames/s and we use 13 parameters ($p=10,1$ for Gain, 1 for pitch, 1 for voicing decision) we need 1300 parameters/s, instead of 8000 samples/s for $f_{s}=8000 \mathrm{~Hz}$.

BASIC CODING SCHEME IN LPC

- Vocal tract system function:

$$
H(z)=\frac{A}{1-P(z)}
$$

where

$$
P(z)=\sum_{k=1}^{p} a_{k} z^{-1}
$$

- Input is binary: impulse/noise excitation.
- If frame rate is 100 frames/s and we use 13 parameters ($p=10,1$ for Gain, 1 for pitch, 1 for voicing decision) we need 1300 parameters/s, instead of 8000 samples/s for $f_{s}=8000 \mathrm{~Hz}$.

Scalar quantization within LPC

For 7200 bps:

- Voiced/unvoiced decision: 1 bit
- Pitch (if voiced): 6 bits (uniform)
- Gain: 5 bits (nonuniform)
- Poles d_{i} : 10 bits (nonuniform) [5 bits for frequency and 5 bits for bandwidth] $\times 6$ poles $=60$ bits
So: $(1+6+5+60) \times 100$ frames $/ \mathrm{s}=7200 \mathrm{bps}$

Scalar quantization within LPC

For 7200 bps:

- Voiced/unvoiced decision: 1 bit
- Pitch (if voiced): 6 bits (uniform)
- Gain: 5 bits (nonuniform)
- Poles d_{i} : 10 bits (nonuniform) [5 bits for frequency and 5 bits for bandwidth] $\times 6$ poles $=60$ bits
So: $(1+6+5+60) \times 100$ frames $/ \mathrm{s}=7200 \mathrm{bps}$

Refinements to the basic LPC coding scheme

- Companding in the form of a logarithmic operator on pitch and gain
- Instead of poles use the reflection (or the PARCOR) coefficients k_{i},(nonuniform)
- Companding of k_{i} :

- Coefficients g_{i} can be coded at 5-6 bits each! (which results in 4800 bps for an order 6 predictor, and 100 frames/s)
- Reduce the frame rate by a factor of two (50 frames/s) gives us a bit rate of 2400 bps

Refinements to the basic LPC coding scheme

- Companding in the form of a logarithmic operator on pitch and gain
- Instead of poles use the reflection (or the PARCOR) coefficients k_{i},(nonuniform)
- Companding of k_{i} :

- Coefficients g_{i} can be coded at 5-6 bits each! (which results in 4800 bps for an order 6 predictor, and 100 frames $/ \mathrm{s}$)
- Reduce the frame rate by a factor of two (50 frames/s) gives us a bit rate of 2400 bps

Refinements to the basic LPC coding scheme

- Companding in the form of a logarithmic operator on pitch and gain
- Instead of poles use the reflection (or the PARCOR) coefficients k_{i},(nonuniform)
- Companding of k_{i} :

$$
\begin{aligned}
g_{i} & =T\left[k_{i}\right] \\
& =\log \left(\frac{1-k_{i}}{1+k_{i}}\right)
\end{aligned}
$$

- Coefficients g_{i} can be coded at 5-6 bits each! (which results in 4800 bps for an order 6 predictor, and 100 frames/s)
- Reduce the frame rate by a factor of two (50 frames/s) gives us a bit rate of 2400 bps

Refinements to the basic LPC coding scheme

- Companding in the form of a logarithmic operator on pitch and gain
- Instead of poles use the reflection (or the PARCOR) coefficients k_{i},(nonuniform)
- Companding of k_{i} :

$$
\begin{aligned}
g_{i} & =T\left[k_{i}\right] \\
& =\log \left(\frac{1-k_{i}}{1+k_{i}}\right)
\end{aligned}
$$

- Coefficients g_{i} can be coded at 5-6 bits each! (which results in 4800 bps for an order 6 predictor, and 100 frames $/ \mathrm{s}$)
- Reduce the frame rate by a factor of two (50 frames/s) gives us a bit rate of 2400 bps

Refinements to the basic LPC coding scheme

- Companding in the form of a logarithmic operator on pitch and gain
- Instead of poles use the reflection (or the PARCOR) coefficients k_{i}, (nonuniform)
- Companding of k_{i} :

$$
\begin{aligned}
g_{i} & =T\left[k_{i}\right] \\
& =\log \left(\frac{1-k_{i}}{1+k_{i}}\right)
\end{aligned}
$$

- Coefficients g_{i} can be coded at 5-6 bits each! (which results in 4800 bps for an order 6 predictor, and 100 frames $/ \mathrm{s}$)
- Reduce the frame rate by a factor of two (50 frames/s) gives us a bit rate of 2400 bps

VQ in LPC coding

\triangleright A 10-bit codebook (1024 codewords), 800 bps VQ provides a comparable quality to a 2400 bps scalar quantizer.
\triangleright A 22-bit codebook (4200000 codewords), 2400 bps VQ provides a higher output speech quality.

Unique components of MELP

- Mixed pulse and noise excitation
- Periodic or aperiodic pulses
- Adaptive spectral enhancements
- Pulse dispersion filter

Line Spectral Frequencies (LSFs) in MELP

LSFs for a pth order all-pole model are defines as follows:
(1) Form two polynomials:

$$
\begin{aligned}
& P(z)=A(z)+z^{-(p+1)} A\left(z^{-1}\right) \\
& Q(z)=A(z)-z^{-(p+1)} A\left(z^{-1}\right)
\end{aligned}
$$

(2) Find the roots of $P(z)$ and $Q(z), \omega_{i}$ which are on the unit circle.
(3) Exclude trivial roots at $\omega_{i}=0$ and $\omega_{i}=\pi$.

MELP CODING

For a 2400 bps:

- 34 bits allocated to scalar quantization of the LSFs
- 8 bits for gain
- 7 bits for pitch and overall voicing
- 5 bits for multi-band voicing
- 1 bit for the jittery state
which is 54 bits. With a frame rate of 22.5 ms , we get an 2400 bps coder.

Outline

(1) Introduction
2. Statistical Models
(3) Scalar Quantization

- Max Quantizer
- Companding
- Adaptive quantization
- Differential and Residual quantization

44 Vector Quantization

- The k-means algorithm
- The LBG algorithm
(5) Model-based Coding
- Basic Linear Prediction, LPC
- Mixed Excitation LPC (MELP)
(6) Acknowledgments

Acknowledgments

Most, if not all, figures in this lecture are coming from the book:

T. F. Quatieri: Discrete-Time Speech Signal Processing, principles and practice 2002, Prentice Hall

and have been used after permission from Prentice Hall

