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Digital telephone communication system
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Speech quality

Closeness of the processed speech waveform to the original
speech waveform
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Measuring Speech Quality

� Subjective tests:

Diagnostic Rhyme Test (DRT)

Diagnostic Acceptability Measure (DAM)

Mean Opinion Score (MOS)

� Objective tests:

Segmental Signal-to-Noise Ratio (SNR)

Articulation Index
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Probability Density of speech

By setting x [n]→ x , the histogram of speech samples can be
approximated by a gamma density :

pX (x) =

( √
3

8πσx |x |

)1/2

e−
√

3|x|
2σx

or by a simpler Laplacian density :

pX (x) =
1√
2σx

e−
√

3|x|
σx



Densities comparison



Outline

1 Introduction

2 Statistical Models

3 Scalar Quantization
Max Quantizer
Companding
Adaptive quantization
Differential and Residual quantization

4 Vector Quantization
The k-means algorithm
The LBG algorithm

5 Model-based Coding
Basic Linear Prediction, LPC
Mixed Excitation LPC (MELP)

6 Acknowledgments



Coding and Decoding



Fundamentals of Scalar Coding

Let’s quantize a single sample speech value, x [n] into M
reconstruction or decision levels:

x̂ [n] = x̂i = Q(x [n]), xi−1 < x [n] ≤ xi

with 1 ≤ i ≤ M and xk denotes the M decision levels with
0 ≤ k ≤ M.

Assign a codeword in each reconstruction level. Collection of
codewords makes a codebook.

Using B-bit binary codebook we can represent each 2B

different quantization (reconstruction) levels.

Bit rate, I , is defined as: I = Bfs
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Uniform quantization

xi − xi−1 = ∆, 1 ≤ i ≤ M

x̂i =
xi +xi−1

2 , 1 ≤ i ≤ M

∆ is referred to as uniform quantization step size.
� Example of a 2-bit uniform quantization:



Uniform quantization: designing decision
regions

Signal range: −4σx ≤ x [n] ≤ 4σx

Assuming B-bit binary codebook, we get 2B quantization
(reconstruction) levels

Quantization step size, ∆:

∆ =
2xmax

2B

∆ and quantization noise.



Classes of Quantization noise

There are two classes of quantization noise:

Granular Distortion:

x̂ [n] = x [n] + e[n]

where e[n] is the quantization noise, with:

−∆

2
≤ e[n] ≤ ∆

2

Overload Distortion: clipped samples



Assumptions

Quantization noise is an ergodic white-noise random process:

re [m] = E (e[n]e[n + m])
= σ2

e , m = 0
= 0, m 6= 0

Quantization noise and input signal are uncorrelated:

E (x [n]e[n + m]) = 0 ∀m

Quantization noise is uniform over the quantization interval

pe(e) = 1
∆ , −

∆
2 ≤ e ≤ ∆

2
= 0, otherwise
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Dithering

Definition (Dithering)

We can force e[n] to be white and uncorrelated with x [n] by
adding noise to x [n] before quantization!



Signal-to-Noise Ratio

To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =
σ2

x
σ2

e

=
E(x2[n])

E(e2[n])

≈
1
N

∑N−1
n=0

x2[n]

1
N

∑N−1
n=0

e2[n]

For uniform pdf and quantizer range 2xmax :

σ2
e = ∆2

12

=
x2
max

3 22B

Or

SNR =
3 22B

( xmax
σx

)2

and in dB:

SNR(dB) ≈ 6B + 4.77− 20 log10

(
xmax

σx

)
and since xmax = 4σx :

SNR(dB) ≈ 6B − 7.2



Signal-to-Noise Ratio

To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =
σ2

x
σ2

e

=
E(x2[n])

E(e2[n])

≈
1
N

∑N−1
n=0

x2[n]

1
N

∑N−1
n=0

e2[n]

For uniform pdf and quantizer range 2xmax :

σ2
e = ∆2

12

=
x2
max

3 22B

Or

SNR =
3 22B

( xmax
σx

)2

and in dB:

SNR(dB) ≈ 6B + 4.77− 20 log10

(
xmax

σx

)
and since xmax = 4σx :

SNR(dB) ≈ 6B − 7.2



Signal-to-Noise Ratio

To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =
σ2

x
σ2

e

=
E(x2[n])

E(e2[n])

≈
1
N

∑N−1
n=0

x2[n]

1
N

∑N−1
n=0

e2[n]

For uniform pdf and quantizer range 2xmax :

σ2
e = ∆2

12

=
x2
max

3 22B

Or

SNR =
3 22B

( xmax
σx

)2

and in dB:

SNR(dB) ≈ 6B + 4.77− 20 log10

(
xmax

σx

)
and since xmax = 4σx :

SNR(dB) ≈ 6B − 7.2



Signal-to-Noise Ratio

To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =
σ2

x
σ2

e

=
E(x2[n])

E(e2[n])

≈
1
N

∑N−1
n=0

x2[n]

1
N

∑N−1
n=0

e2[n]

For uniform pdf and quantizer range 2xmax :

σ2
e = ∆2

12

=
x2
max

3 22B

Or

SNR =
3 22B

( xmax
σx

)2

and in dB:

SNR(dB) ≈ 6B + 4.77− 20 log10

(
xmax

σx

)
and since xmax = 4σx :

SNR(dB) ≈ 6B − 7.2



Signal-to-Noise Ratio

To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =
σ2

x
σ2

e

=
E(x2[n])

E(e2[n])

≈
1
N

∑N−1
n=0

x2[n]

1
N

∑N−1
n=0

e2[n]

For uniform pdf and quantizer range 2xmax :

σ2
e = ∆2

12

=
x2
max

3 22B

Or

SNR =
3 22B

( xmax
σx

)2

and in dB:

SNR(dB) ≈ 6B + 4.77− 20 log10

(
xmax

σx

)
and since xmax = 4σx :

SNR(dB) ≈ 6B − 7.2



Pulse Code Modulation, PCM

B bits of information per sample are transmitted as a
codeword

instantaneous coding

not signal-specific

11 bits are required for “toll quality”

what is the rate for fs = 10kHz?

For CD, with fs = 44100 and B = 16 (16-bit PCM), what is
the SNR?
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Optimal decision and reconstruction level

if x [n] 7→ px(x) we determine the optimal decision level, xi and the
reconstruction level, x̂ , by minimizing:

D = E [(x̂ − x)2]
=

∫∞
−∞ px(x)(x̂ − x)2dx

and assuming M reconstruction levels x̂ = Q[x ]:

D =
M∑
i=1

=

∫ xi

xi−1

px(x)(x̂i − x)2dx

So:
∂D
∂x̂k

= 0, 1 ≤ k ≤ M
∂D
∂xk

= 0, 1 ≤ k ≤ M − 1
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Optimal decision and reconstruction level,
cont.

The minimization of D over decision level, xk , gives:

xk =
x̂k+1 + x̂k

2
, 1 ≤ k ≤ M − 1

The minimization of D over reconstruction level, x̂k , gives:

x̂k =
∫ xk

xk−1

[
px (x)∫ xk

xk−1
px (s)ds

]
xdx

=
∫ xk

xk−1
p̃x(x)xdx



Optimal decision and reconstruction level,
cont.
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Example with Laplacian pdf



Principle of Companding



Companding examples

Companding examples:

Transformation to a uniform density:

g [n] = T (x [n]) =
∫ x[n]
−∞ px(s)ds − 1

2 ,
−1
2 ≤ g [n] ≤ 1

2

= 0 elsewhere

µ-law:

T (x [n]) = xmax

log (1 + µ |x[n]|
xmax

)

log (1 + µ)
sign(x [n])
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Adaptive quantization



Differential and Residual quantization
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Motivation for VQ



Comparing scalar and vector quantization



Distortion in VQ

Here we have a multidimensional pdf px(x):

D = E [(x̂− x)T (x̂− x)]
=

∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞(x̂− x)T (x̂− x)px(x)dx

=
∑M

i=1

∫ ∫
x∈Ci · · ·

∫
(ri − x)T (ri − x)px(x)dx

Two constraints:

A vector x must be quantized to a reconstruction level ri that
gives the smallest distortion:

Ci = {x : ||x− ri ||2 ≤ ||x− rl ||2, ∀l = 1, 2, · · · ,M}

Each reconstruction level ri must be the centroid of the
corresponding decision region, i.e., of the cell Ci :

ri =

∑
xm∈Ci xm∑
xm∈Ci 1

i = 1, 2, · · · ,M
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The k-means algorithm

S1:

D =
1

N

N−1∑
k=0

(x̂k − xk)T (x̂k − xk)

S2: Pick an initial guess at the reconstruction levels {ri}
S3: For each xk elect an ri closest to xk . Form clusters
(clustering step)

S4: Find the mean of xk in each cluster which gives a new ri .
Compute D.

S5: Stop when the change in D over two consecutive
iterations is insignificant.



The LBG algorithm

Set the desired number of cells: M = 2B

Set an initial codebook C(0) with one codevector which is set
as the average of the entire training sequence,
xk , k = 1, 2, · · · ,N.

Split the codevector into two and get an initial new codebook
C(1).

Perform a k-means algorithm to optimize the codebook and
get the final C(1)

Split the final codevectors into four and repeat the above
process until the desired number of cells is reached.
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Basic coding scheme in LPC

Vocal tract system function:

H(z) =
A

1− P(z)

where

P(z) =

p∑
k=1

akz−1

Input is binary: impulse/noise excitation.

If frame rate is 100 frames/s and we use 13 parameters
(p = 10, 1 for Gain, 1 for pitch, 1 for voicing decision) we
need 1300 parameters/s, instead of 8000 samples/s for
fs = 8000Hz .
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Scalar quantization within LPC

For 7200 bps:

Voiced/unvoiced decision: 1 bit

Pitch (if voiced): 6 bits (uniform)

Gain: 5 bits (nonuniform)

Poles di : 10 bits (nonuniform) [5 bits for frequency and 5 bits
for bandwidth] × 6 poles = 60 bits

So: (1 + 6 + 5 + 60)× 100 frames/s = 7200 bps
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Refinements to the basic LPC coding scheme

Companding in the form of a logarithmic operator on pitch
and gain

Instead of poles use the reflection (or the PARCOR)
coefficients ki ,(nonuniform)

Companding of ki :

gi = T [ki ]

= log
(

1−ki
1+ki

)
Coefficients gi can be coded at 5-6 bits each! (which results
in 4800 bps for an order 6 predictor, and 100 frames/s)

Reduce the frame rate by a factor of two (50 frames/s) gives
us a bit rate of 2400 bps
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VQ in LPC coding

� A 10-bit codebook (1024 codewords), 800 bps VQ provides a
comparable quality to a 2400 bps scalar quantizer.
� A 22-bit codebook (4200000 codewords), 2400 bps VQ provides
a higher output speech quality.



Unique components of MELP

Mixed pulse and noise excitation

Periodic or aperiodic pulses

Adaptive spectral enhancements

Pulse dispersion filter



Line Spectral Frequencies (LSFs) in MELP

LSFs for a pth order all-pole model are defines as follows:

1 Form two polynomials:

P(z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− z−(p+1)A(z−1)

2 Find the roots of P(z) and Q(z), ωi which are on the unit
circle.

3 Exclude trivial roots at ωi = 0 and ωi = π.



MELP coding

For a 2400 bps:

34 bits allocated to scalar quantization of the LSFs

8 bits for gain

7 bits for pitch and overall voicing

5 bits for multi-band voicing

1 bit for the jittery state

which is 54 bits. With a frame rate of 22.5 ms, we get an 2400 bps
coder.
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