CS578- SPEECH SIGNAL PROCESSING

LECTURE 5: SINUSOIDAL MODELING AND MODIFICATIONS

Yannis Stylianou

University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete

OUTLINE

- 1 Sinusoidal Speech Model
- 2 Estimation of Sinewave Parameters
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- 9 REFERENCES

Source-Filter[1]

Source:

$$u(t) = Re \sum_{k=1}^{K(t)} \alpha_k(t) \exp \left[j\phi_k(t)\right]$$

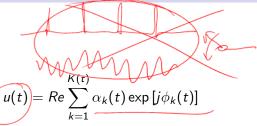
where:

$$\phi_k(t) = \int_0^t \Omega_k(\sigma) d\sigma + \phi_k$$

• Filter: $h(t, \tau)$ with Fourier Transform (FT):

$$H(t,\Omega) = M(t,\Omega) \exp [j\Phi(t,\Omega)]$$

Source-Filter[1]



where:

$$\overbrace{\phi_k(t)} = \int_0^t \underline{\Omega_k(\sigma)} d\sigma + \phi_k$$

 $\frac{d\rho_{\varepsilon}(t)}{dt} = O(t)$

• Filter: $h(t, \tau)$ with Fourier Transform (FT):

$$H(t,\Omega) = M(t,\Omega) \exp[j\Phi(t,\Omega)]$$

OUTPUT SPEECH

$$(a(t)) = Re \sum_{k=1}^{K(t)} A_k(t) \exp[j\theta_k(t)]$$
where:
$$A_k(t) = \alpha_k(t) M[t, \Omega_k(t)]$$

$$\theta_k(t) = \phi_k(t) + \Phi[t, \Omega_k(t)]$$

$$= \int_0^t \Omega_k(\sigma) d\sigma + \Phi[t, \Omega_k(t)] + \phi_k$$

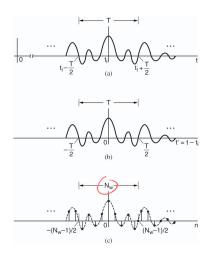
$$= A(t) M(t, \Omega_k(t))$$

$$= \int_0^t \Omega_k(\sigma) d\sigma + \Phi[t, \Omega_k(t)] + \phi_k$$

OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- **2** Estimation of Sinewave Parameters
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 SYNTHESIS
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 SOUND EXAMPLES
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- REFERENCES

FRAME-BY-FRAME ANALYSIS



STATIONARITY ASSUMPTION

We assume stationarity inside the analysis window:

$$A_k^I(t) = A_k^I$$

$$\Omega_k^I(t) = \Omega_k^I$$

which leads to:

$$\theta_k^I(t) = \Omega_k^I(t - t_I) + \theta_k^I$$

and to:

$$s(t) = \sum_{k=1}^{K^I} A_k^I \exp(j\theta_k^I) \exp\left[j\Omega_k^I(t-t_I)\right] \ t_I - \frac{T}{2} \le t \le t_I + \frac{T}{2}$$

STATIONARITY ASSUMPTION

We assume stationarity inside the analysis window:

$$A_k^l(t) = A_k^l$$

 $\Omega_k^l(t) = \Omega_k^l$

which leads to:

$$\theta_k^I(t) = \Omega_k^I(t-t_I) + \theta_k^I$$

and to:

$$s(t) = \sum_{k=1}^{K^I} A_k^I \exp(j\theta_k^I) \exp\left[j\Omega_k^I(t-t_I)\right] \ t_I - \frac{T}{2} \le t \le t_I + \frac{T}{2}$$

STATIONARITY ASSUMPTION

We assume stationarity inside the analysis window:

$$\begin{array}{ccc}
A'_{k}(t) & = & A'_{k} \\
\Omega'_{k}(t) & = & \underline{\Omega'_{k}}
\end{array}$$

which leads to:

$$\theta_k^l(t) = \Omega_k^l(t-t_l) + \theta_k^l$$
 $Q_{ic}^l(t-t_l)$

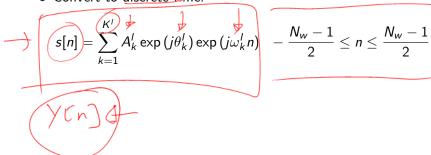
and to:

$$\underline{s(t)} = \sum_{k=1}^{K'} A_{k}^{J} \exp(j\theta_{k}^{J}) \exp\left[j\Omega_{k}^{J}(t-t_{l})\right] \underbrace{t_{l}}_{0} - \frac{T}{2} \le t \le \underline{t_{l}} + \frac{T}{2}$$

DISCRETE-TIME FORMULATION

Steps to discrete time formula:

- Time shift: $t' = t t_1$
- Convert to discrete time:



$$-\frac{N_w-1}{2} \le n \le \frac{N_w-1}{2}$$

MEAN-SQUARED ERROR

Given the original measured waveform, y[n] and the synthetic speech waveform, s[n], estimate the unknown parameters A_k^I , ω_k^I , and θ_k^I by minimizing the MSE criterion:

$$\epsilon^{I} = \sum_{n=-(N_{w}-1)/2}^{n=(N_{w}-1)/2} |y[n] - s[n]|^{2}$$

which can be written as:

$$\epsilon' = \sum_{n=-(N_w-1)/2}^{n=(N_w-1)/2} |y[n]|^2 + N_w \sum_{k=1}^{K'} \left(|Y(\omega_k') - \gamma_k'|^2 - |Y(\omega_k')|^2 \right)$$

which can be reduced further to:

$$\epsilon^{l} = \sum_{n=-(N_{w}-1)/2}^{n=(N_{w}-1)/2} |y[n]|^{2} - N_{w} \sum_{k=1}^{K^{l}} |Y(\omega_{k}^{l})|^{2}$$

MEAN-SQUARED ERROR

Given the original measured waveform, y[n] and the synthetic speech waveform, s[n], estimate the unknown parameters A_k^I , ω_k^I , and θ_k^I by minimizing the MSE criterion:

$$\epsilon^{I} = \sum_{n=-(N_{w}-1)/2}^{n=(N_{w}-1)/2} |y[n] - s[n]|^{2}$$

which can be written as:

$$\epsilon^{l} = \sum_{n=-(N_{w}-1)/2}^{n=(N_{w}-1)/2} |y[n]|^{2} + N_{w} \sum_{k=1}^{K^{l}} \left(\left| Y(\omega_{k}^{l}) - \gamma_{k}^{l} \right|^{2} - |Y(\omega_{k}^{l})|^{2} \right)$$

which can be reduced further to:

$$\epsilon^{l} = \sum_{n=-(N_{w}-1)/2}^{n=(N_{w}-1)/2} |y[n]|^{2} - N_{w} \sum_{k=1}^{K^{l}} |Y(\omega_{k}^{l})|^{2}$$

MEAN-SQUARED ERROR

Given the original measured waveform, y[n] and the synthetic speech waveform, s[n], estimate the unknown parameters A_{k}^{l} , ω_{k}^{l} , and θ_{ν}^{I} by minimizing the MSE criterion:

$$\Sigma|_{\Sigma} = Z \cdot Z^*$$

$$\underbrace{\epsilon'} = \sum_{n=-(N_w-1)/2}^{n=(N_w-1)/2} |y[n] - \underline{s[n]}|^2$$

which can be written as:

$$\sum_{n=-(N_w-1)/2}^{n=(N_w-1)/2}$$

$$\sum_{k=1}^{K'} \left(\left| Y($$

$$\sum_{n=-(N_w-1)/2}^{(N_w-1)/2} |y[n]|^2 + N_w \sum_{k=1}^{K'} \left(\left| Y(\omega_k^l) - \gamma_k^l \right|^2 - |Y(\omega_k^l)|^2 \right)$$

which can be reduced further to:

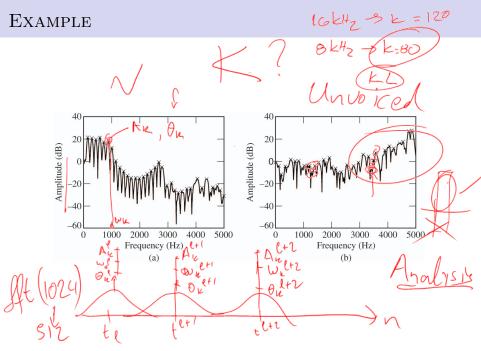
$$\sum_{n=-(N_w-1)/2}^{n=(N_w-1)/2} |y[n]|^2 - N_w \sum_{k=1}^{K^l} |Y(\omega_k^l)|^2$$

- Karhunen-Loève expansion allows constructing a random process from harmonic sinusoids with uncorrelated complex amplitudes.
- Estimated power spectrum should not vary "too much" over consecutive frequencies.

- Karhunen-Loève expansion allows constructing a random process from harmonic sinusoids with uncorrelated complex amplitudes.
- Estimated power spectrum should not vary "too much" over consecutive frequencies.

- Karhunen-Loève expansion allows constructing a random process from harmonic sinusoids with uncorrelated complex amplitudes.
- Estimated power spectrum should not vary "too much" over consecutive frequencies.

- Karhunen-Loève expansion allows constructing a random process from harmonic sinusoids with uncorrelated complex amplitudes.
- Estimated power spectrum should not vary "too much" over consecutive frequencies.



- Window width be 2.5 times the average pitch period or 20 ms, whichever is larger.
- Use Hamming window, normalized to one:

$$\sum_{n=-\infty}^{\infty} w[n] = 1$$

- Use zero padding to get enough samples of the underlying spectrum (i.e., 1024-point FFT)
- Remove linear phase offset
- Refine your frequency estimates

- Window width be 2.5 times the average pitch period or 20 ms, whichever is larger.
- Use Hamming window, normalized to one:

$$\sum_{n=-\infty}^{\infty} w[n] = 1$$

- Use zero padding to get enough samples of the underlying spectrum (i.e., 1024-point FFT)
- Remove linear phase offset
- Refine your frequency estimates

- Window width be 2.5 times the average pitch period or 20 ms, whichever is larger.
- Use Hamming window, normalized to one:

$$\sum_{n=-\infty}^{\infty} w[n] = 1$$

- Use zero padding to get enough samples of the underlying spectrum (i.e., 1024-point FFT)
- Remove linear phase offset
- Refine your frequency estimates

- Window width be 2.5 times the average pitch period or 20 ms, whichever is larger.
- Use Hamming window, normalized to one:

$$\sum_{n=-\infty}^{\infty} w[n] = 1$$

- Use zero padding to get enough samples of the underlying spectrum (i.e., 1024-point FFT)
- Remove linear phase offset
- Refine your frequency estimates

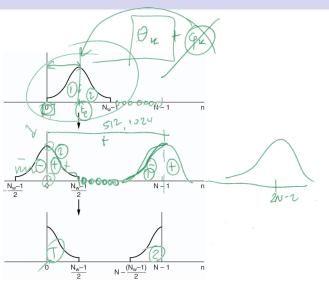
$$S(u) \cdot w(u) = S(w) + W(w) = \int_{0}^{\pi} w(u) S(w-u) du$$

- Window width be 2.5 times the average pitch period or 20 ms, whichever is larger.
 - Use Hamming window, normalized to one:

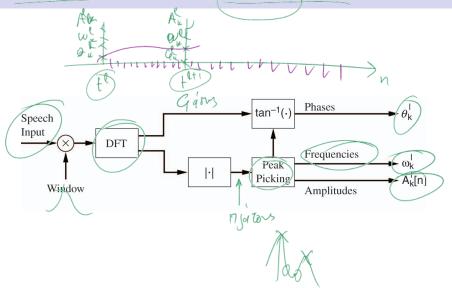
$$\sum_{n=-\infty}^{\infty} w[n] = 1$$

- Use zero padding to get enough samples of the inderlying spectrum (i.e., 1024-point FFT)
- Remove linear phase offset
 - Refine your frequency estimates

SHOWING THE PROCESS ...

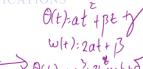


BLOCK DIAGRAM OF THE ANALYSIS SYSTEM



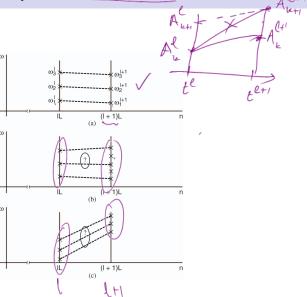
OUTLINE

- SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 Sound Examples
- The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- A CKNOWLED CHENTS
- 8 ACKNOWLEDGMENTS

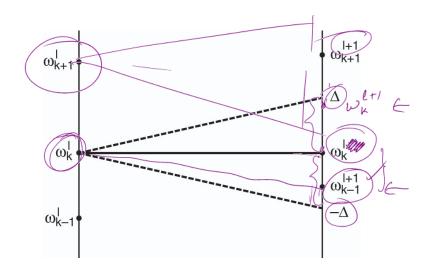


W(+)= 301 + 2pt+)

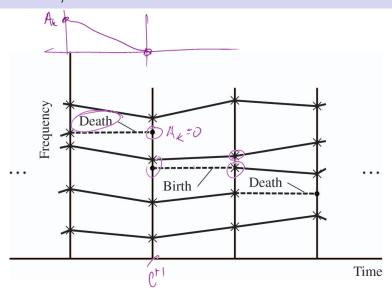
PROBLEM OF FREQUENCY MATCHING



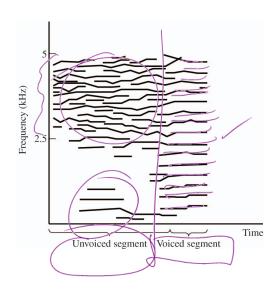
FRAME-TO-FRAME PEAK MATCHING



THE BIRTH/DEATH PROCESS

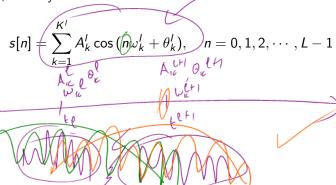


A BIRTH/DEATH PROCESS IN SPEECH

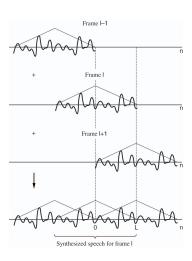


Why not ...

Why not to estimate the original speech waveform on the /th frame, directly as:



A SIMPLE SOLUTION: OLA

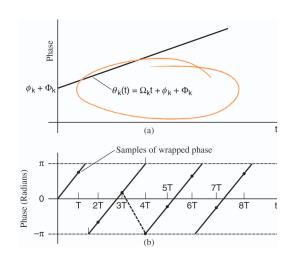


AMPLITUDE INTERPOLATION

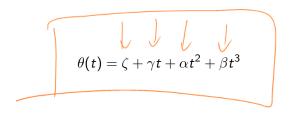
Linear Interpolation:

$$A'_{k}[n] = A'_{k} + \left(A'^{l+1}_{k} - A'_{k}\right) \left(\frac{n}{L}\right) \quad n = 0, 1, 2, \dots, L - 1$$

PHASE WRAPPED



CUBIC PHASE MODEL



ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:

$$heta(t) = \int_0^t \Omega(\sigma) d\sigma + \phi + \Phi[t, \Omega(t)]$$
 $\dot{ heta}(t) pprox \Omega(t)$

So

$$\dot{ heta}' pprox \Omega' \ \dot{ heta}'^{+1} pprox \Omega'^{+1}$$

ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:

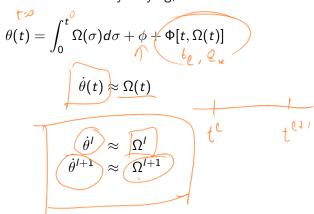
$$heta(t) = \int_0^t \Omega(\sigma) d\sigma + \phi + \Phi[t, \Omega(t)]$$
 $\dot{ heta}(t) pprox \Omega(t)$

So

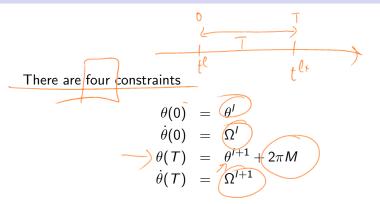
$$\dot{ heta}^{\prime} \; pprox \; \Omega^{\prime} \ \dot{ heta}^{\prime + 1} \; pprox \; \Omega^{\prime + 1}$$

ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:



So:



and ... five unknowns (don't forget M) We need one more constraint!

There are four constraints

$$\theta(0) = \theta^{l}
\dot{\theta}(0) = \Omega^{l}
\theta(T) = \theta^{l+1} + 2\pi M
\dot{\theta}(T) = \Omega^{l+1}$$

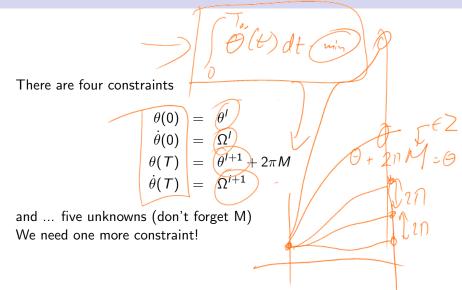
and ... five unknowns (don't forget M)
We need one more constraint!

There are four constraints

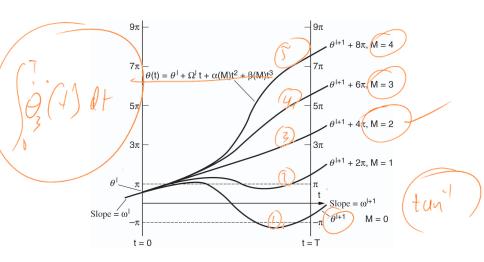
$$\theta(0) = \theta^{l}
\dot{\theta}(0) = \Omega^{l}
\theta(T) = \theta^{l+1} + 2\pi M
\dot{\theta}(T) = \Omega^{l+1}$$

and ... five unknowns (don't forget M)

We need one more constraint



How to choose M



ESTIMATING M

• Find M that minimizes the criterion:

$$f(M) = \int_0^T \left[\ddot{\theta}(t; M) \right]^2 dt$$

Using continuous variable:

$$x^* = \frac{1}{2\pi} \left[(\theta^l + \Omega^l T - \theta^{l+1}) + (\Omega^{l+1} - \Omega I) \frac{T}{2} \right]$$

• M^* is the nearest integer to x^*

ESTIMATING M

• Find M that minimizes the criterion:

$$f(M) = \int_0^T \left[\ddot{\theta}(t; M) \right]^2 dt$$

Using continuous variable:

$$x^* = \frac{1}{2\pi} \left[(\theta^l + \Omega^l T - \theta^{l+1}) + (\Omega^{l+1} - \Omega l) \frac{T}{2} \right]$$

• M^* is the nearest integer to x^*

ESTIMATING M

• Find M that minimizes the criterion:

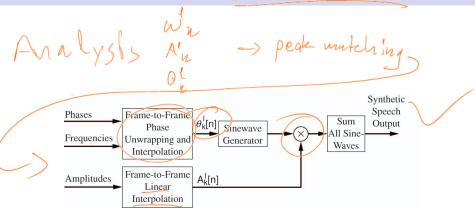
$$f(M) = \int_0^T \left[\ddot{\theta}(t; M) \right]^2 dt$$

Using continuous variable:

$$x^* = \frac{1}{2\pi} \left[(\theta^l + \Omega^l T - \theta^{l+1}) + (\Omega^{l+1} - \Omega^l) \frac{T}{2} \right]$$

• M^* is the nearest integer to x^*

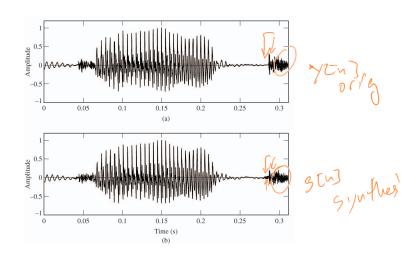
BLOCK DIAGRAM OF THE SYNTHESIS SYSTEM



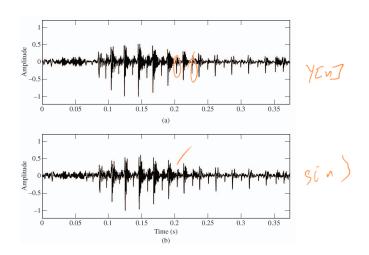
OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 EXAMPLES
- **5** Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- REFERENCES

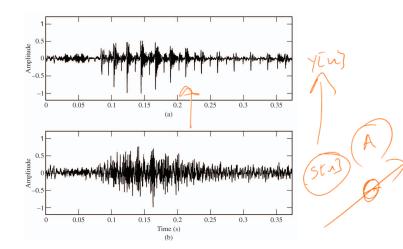
RECONSTRUCTION EXAMPLE



RECONSTRUCTION EXAMPLE



MAGNITUDE-ONLY RECONSTRUCTION EXAMPLE



OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- **5** Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- 9 REFERENCES

SOUND EXAMPLES

	Original	Mixed	Min	Zero
Male	C]*		4	4
Female	4	4		C]*
Male	4	C]*		
Female	4	4		

OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 SYNTHESIS
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- REFERENCES

EXCITATION MODEL

We have seen that:

$$u(t) = \sum_{k=1}^{K(t)} \alpha_k(t) \exp \left[j \phi_k(t) \right]$$

where:

$$\phi_k(t) = \int_0^t \Omega_k(\sigma) d\sigma + \phi_k$$

Assuming voiced speech and constant frequency in the analysis window, then:

$$u(t) = \sum_{k=1}^{K(t)} \alpha_k(t) \exp\left[j(t-t_0)\Omega_k\right] \ t \in [0, T]$$

EXCITATION MODEL

We have seen that:

$$u(t) = \sum_{k=1}^{K(t)} \alpha_k(t) \exp[j\phi_k(t)]$$

where:

$$\phi_k(t) = \int_0^t \Omega_k(\sigma) d\sigma + \phi_k$$

Assuming voiced speech and constant frequency in the analysis window, then:

$$u(t) = \sum_{k=1}^{K(t)} \alpha_k(t) \exp\left[j(t-t_0)\Omega_k\right] \ t \in [0, T]$$

Speech model[2]

Then:

$$s[n] = \sum_{k=1}^{K(t)} A_k(t) \cos \left[\theta_k(t)\right]$$

where:

$$A_k(t) = \alpha_k(t)M_k(t)$$

$$\theta_k(t) = \phi_k(t) + \Phi_k(t)$$

Therefore:

$$\Phi_k(t) = \theta_k(t) - (t - t_0)\Omega_k$$

Uniform time-scale, by ρ

Let's t represent the original articulation rate and t' the transformed rate:

$$t' = \rho t$$

Given the source/filter model:

- System parameters are time-scaled
- Excitation parameters (phase) are scaled in such a way to maintain fundamental frequency.

Uniform time-scale, by ρ

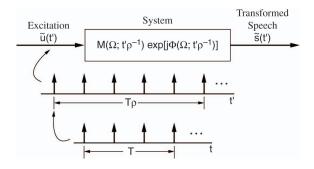
Let's t represent the original articulation rate and t' the transformed rate:

$$t' = \rho t$$

Given the source/filter model:

- System parameters are time-scaled
- Excitation parameters (phase) are scaled in such a way to maintain fundamental frequency.

Onset-time model for time-scale



EXCITATION FUNCTION IN t'

Time-scaled pitch period:

$$\tilde{P}(t') = P(t'\rho^{-1})$$

Modified excitation function

$$ilde{u}(t') = \sum_{k=1}^{K(t)} ilde{lpha}_k(t') \exp\left[j ilde{\phi}_k(t')
ight]$$

where:

$$\tilde{\phi}_{k}(t') = (t'\rho^{-1} - t'_{0})\Omega_{k}$$

and

$$\tilde{\alpha}_k(t') = \alpha_k(t'\rho^{-1})$$

System function parameters in t'

$$\begin{array}{lcl} \tilde{M}_k(t') & = & M_k(t'\rho^{-1}) \\ \tilde{\Phi}_k(t') & = & \Phi_k(t'\rho^{-1}) \end{array}$$

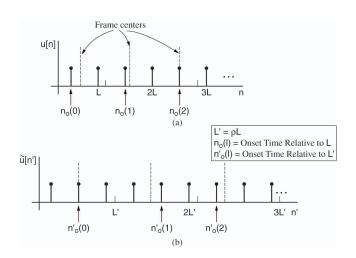
Waveform in t'

$$ilde{s}(t') = \sum_{k=1}^{K(t)} ilde{A}_k(t') \exp\left[j ilde{ heta}_k(t')
ight]$$

where

$$\begin{array}{lcl} \tilde{A}_k(t') & = & \tilde{\alpha}_k(t')\tilde{M}_k(t') \\ \tilde{\theta}_k(t') & = & \tilde{\phi}_k(t') + \tilde{\Phi}_k(t') \end{array}$$

ONSET TIMES ESTIMATION



ESTIMATING SYSTEM PHASE

Let's assume that the onset time $n_o(I)$ for the I^{th} frame is known, then:

$$\phi_k^I = \hat{n}_o(I)\omega_k^I$$

where $\hat{n}_o(I) = n_o(I) - IL$.

Then, the system phase is estimated as:

$$\tilde{\Phi}_k^I = \theta_k^I - \phi_k^I$$

ESTIMATING SYSTEM PHASE

Let's assume that the onset time $n_o(I)$ for the I^{th} frame is known, then:

$$\phi_k^I = \hat{n}_o(I)\omega_k^I$$

where $\hat{n}_o(I) = n_o(I) - IL$.

Then, the system phase is estimated as:

$$\tilde{\Phi}_k^I = \theta_k^I - \phi_k^I$$

ESTIMATING EXCITATION PHASE

Let's assume we know the onset time in the previous frame l-1, then the current onset time in t^{\prime} , is given by:

$$n_{o}^{'}(I) = n_{o}^{'}(I-1) + J^{'}P^{I}$$

and then:

$$\tilde{\phi}_{k}^{I} = (n_{o}^{\prime}(I) - IL^{\prime})\omega_{k}^{I}$$

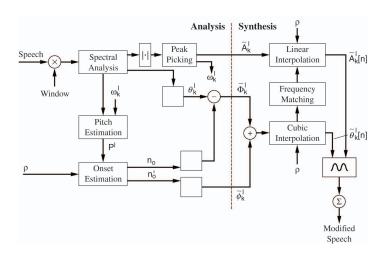
where $L' = \rho L$

Synthesis

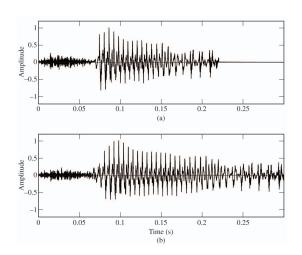
Synthesis is performed in the same way as if no modification is applied:

- Linear interpolation for amplitudes
- Cubic interpolation for phases

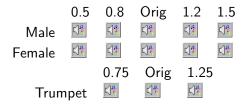
BLOCK DIAGRAM FOR ANALYSIS/SYNTHESIS FOR TIME-SCALE MODIFICATION



EXAMPLE OF TIME-SCALE MODIFICATION



SOUND EXAMPLES



OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- **5** Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- **7** Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- REFERENCES

READING PAPER

Paper:

T. F. Quatieri and R. J. McAulay: Shape Invariant Time-Scale and Pitch Modification of Speech IEEE Trans. Acoust., Speech, Signal Processing, Vol.40, No.3, pp 497-510, March 1992

OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 Sound Examples
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- SHAPE INVARIANT PITCH MODIFICATIONS
- 8 ACKNOWLEDGMENTS
- 9 References

ACKNOWLEDGMENTS

Most, if not all, figures in this lecture are coming from the book:

T. F. Quatieri: Discrete-Time Speech Signal Processing, principles and practice 2002, Prentice Hall

and have been used after permission from Prentice Hall

OUTLINE

- 1 SINUSOIDAL SPEECH MODEL
- 2 ESTIMATION OF SINEWAVE PARAMETERS
 - Voiced Speech
 - Unvoiced Speech
 - The Analysis System
- 3 Synthesis
 - Linear Amplitude Interpolation
 - Cubic Phase Interpolation
- 4 Examples
- 5 SOUND EXAMPLES
- 6 Shape Invariant Time-Scale Modifications
 - The Model
 - Parameters Estimation
 - Synthesis
 - Sound Examples
- 7 Shape Invariant Pitch Modifications
- 8 ACKNOWLEDGMENTS
- 9 References

R. J. McAulay and T. F. Quatieri, "Speech analysis/synthesis based on a sinusoidal representation," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-34, pp. 744–754, Aug 1986.

T. F. Quatieri and R. J. McAulay, "Shape Invariant Time-Scale and Pitch Modification of Speech," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-40, pp. 497–510, March 1992.