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SOURCE-FILTER[1]

@ Source:

Rezak ) exp [jow(1)]

where:

;) = /Ot Qu(0)do + b



SOURCE-FILTER[1]

0@9 h(t, ) W|th Fourler Transform (FT): :

&
H(t,Q) = M(t Q) exp [/CD( Q)]




OUTPUT SPEECH
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OUTLINE

© ESTIMATION OF SINEWAVE PARAMETERS
e Voiced Speech
o Unvoiced Speech
@ The Analysis System



FRAME-BY-FRAME ANALYSIS




STATIONARITY ASSUMPTION

We assume stationarity inside the analysis window:

Alt) = A
Q) =



STATIONARITY ASSUMPTION

We assume stationarity inside the analysis window:
I I
A(t) = Ax
I I
Q(t) = @

which leads to:
Oi(t) = Qi(t — 1)) + 6,
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DISCRETE-TIME FORMULATION

Steps to discrete time formula:
o Time shift: t =t — ty

° Convert to discrete time:
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MEAN-SQUARED ERROR

Given the original measured waveform, y[n] and the synthetic
speech waveform, s[n], estimate the unknown parameters Al wL,
and QL by minimizing the MSE criterion:

n=(Nw—1)/2

d=> Iyl ~sn)?

n=—(Ny—1)/2



MEAN-SQUARED ERROR

Given the original measured waveform, y[n] and the synthetic
speech waveform, s[n], estimate the unknown parameters Al wL,
and QL by minimizing the MSE criterion:

n=(Nw—1)/2
= > |yl —sl?
n=—(Ny—1)/2

which can be written as:

n=(Nw—1)/2
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n=—(Nyw—1)/2
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({ MEAN-SQUARED ERROR
Given the original measured waveform, y[n] and the synthetic
speech waveform, s[n], estimate the unknown paraherters Al wk,
and 9’ by minimizing the MSE criterion: '
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which can be reduced further to:
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KARHUNEN-LOEVE EXPANSION

@ Karhunen-Loéve expansion allows constructing a random
process from harmonic sinusoids with uncorrelated complex
amplitudes.



KARHUNEN-LOEVE EXPANSION

@ Karhunen-Loéve expansion allows constructing a random
process from harmonic sinusoids with uncorrelated complex
amplitudes.

o Estimated power spectrum should not vary “too much” over
consecutive frequencies.



KARHUNEN-LOEVE EXPANSION

@ Karhunen-Loéve expansion allows constructing a random
process from harmonic sinusoids with uncorrelated complex
amplitudes.

o Estimated power spectrum should not vary “too much” over
consecutive frequencies.
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@ \Karhunen-Loeéve expansion alléws constructing a random
process from harmenie-sinusoids with uncorrelated complex
amplitudes.

o Estimated power spectrum should not vary “too much” over
consecutive frequencies.

Following the above necessary constraints, for unvoiced speech,
and for a window width to be at least 20ms, an 100 Hz harmonic
structure provides good results.
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IMPLEMENTATION

@ Window width be 2.5 times the average pitch period or 20
ms, whichever is larger.
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spectrum (i.e., 1024-point FFT)



IMPLEMENTATION

Window width be 2.5 times the average pitch period or 20
ms, whichever is larger.

@ Use Hamming window, normalized to one:

o0

Z w[n] =1

n=—oo

Use zero padding to get enough samples of the underlying
spectrum (i.e., 1024-point FFT)

@ Remove linear phase offset



IMPLEMENTATION
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SHOWING THE PROCESS ...




BLOCK DIAGRAM OF THE ANALYSB SYSTEM
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OUTLINE

(3 ) SYNTHESIS
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PROBLEM OF 'NCY MATCHING s
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FRAME-TO-FRAME PEAK MATCHING




THE BIRTH/DEATH PROCESS

'QT | Time



A BIRTH/DEATH PROCESS IN SPEECH
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WHY NOT ...

OLRA

Why not to estimate the original speech waveform on the /th
frame, directly as:




A SIMPLE SOLUTION: OLA
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AMPLITUDE INTERPOLATION

Linear Interpolation:

Al = A+ (A = A (

n



PHASE WRAPPED

Phase
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0(t) = ¢ + vt + at? 4+ 583

«O>» «Fr «Z» «E>» = Q>



ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:

o(t) = /Ot Q(0)do + ¢ + O[t, Q(t)]



ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:

o(t) = /Ot Q(0)do + ¢ + O[t, Q(t)]

0(t) =~ Q(t)



ABOUT THE PHASE DERIVATIVE

Assuming that vocal tract is slowly varying, and since:
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FOUR CONSTRAINTS FOR PHASE POLYNOMIAL

__There are four constraints

| 6(0) = (o'~
0(0) = Q) -
V0(T) = 0 4l2nm
é(-,-) _ .'Q/'+'1""'\ ~



FOUR CONSTRAINTS FOR

There are four constraints

and ... five unknowns

PHASE POLYNOMIAL



FOUR CONSTRAINTS FOR PHASE POLYNOMIAL

There are four constraints

6(0) = ¢

600) = Q

o(T) = 014 27M
oT) = Q'

and ... five unknowns (don't forget M)



FOUR CONSTRAINTS FOR PHASE POLYNOMIAL
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and ... five unknowns (don't forget M)
We need one more constraint!




How TO CHOOSE M
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EsTiMATING M

@ Find M that minimizes the criterion:

f(M) = /OT [é(t; I\/l)rdt



EsTiMATING M

@ Find M that minimizes the criterion:
Tr. 2
F(M) = / (e, )] at
0
e Using continuous variable:

x* = 2i [(9’ +Q'T -0 + (" - QI)Z]

™



EsTiMATING M

@ Find M that minimizes the criterion:

Tr. 2
F(M) = / (e, )] at
0
o Using continuous variable:

i e LU ol il 1 on
| X‘zw[(“‘:” 041) + (@1 - i) |

o/M* is the nearest integer to x*



BLOCK DIAGRAM OF THE SYNTHESIS SYSTEM
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RECONSTRUCTION EXAMPLE
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RECONSTRUCTION EXAMPLE

Amplitude

Amplitude

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)
(b)



MAGNITUDE-ONLY RECONSTRUCTION EXAMPLE
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SOUND EXAMPLES
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EXCITATION MODEL

We have seen that:

K(t)
u(t) = 3 an(t) exp [idu(t)]
k=1

where:

oul(t) = /Otﬂk(a)da + &



EXCITATION MODEL

We have seen that:

K(t)
u(t) = 3 an(t) exp [idu(t)]
k=1

where: .
oul(t) = / Qu(0)do + o
0

Assuming voiced speech and constant frequency in the analysis
window, then:
K(t)

u(t) = ax(t)exp[i(t — to)Q] t € [0, T]

k=1



SPEECH MODEL|[2]

Then:
K(t)
s[n] = ZAk ) cos [0x(t)
where:
Ak(t) = Ozk(t)/\//k(t)
Ok(t) = ou(t) + Di(t)
Therefore:

q)k(t) = 0k(t) — (t — to)Qk



UNIFORM TIME-SCALE, BY p

Let's t represent the original articulation rate and t’ the
transformed rate:
t=pt



UNIFORM TIME-SCALE, BY p

Let's t represent the original articulation rate and t’ the
transformed rate:
t=pt
Given the source/filter model:
o System parameters are time-scaled

o Excitation parameters (phase) are scaled in such a way to
maintain fundamental frequency.



ONSET-TIME MODEL FOR TIME-SCALE
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EXCITATION FUNCTION IN t/
@ Time-scaled pitch period:

o Modified excitation function

K(t)

Z ak(t') exp |j [ (t')}
where:

and



SYSTEM FUNCTION PARAMETERS IN t/



WAVEFORM IN t/

where



ONSET TIMES ESTIMATION

Frame centers
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ESTIMATING SYSTEM PHASE

Let's assume that the onset time n,(/) for the /™ frame is known,
then:

where i, (1) = no(l) — IL.



ESTIMATING SYSTEM PHASE

Let's assume that the onset time n,(/) for the /™ frame is known,
then:

where i, (1) = no(l) — IL.
Then, the system phase is estimated as:

& pl /
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ESTIMATING EXCITATION PHASE

Let's assume we know the onset time in the previous frame | — 1,
then the current onset time in t/, is given by:

’

n()=n,(I—1)+JP

and then: )
i = (no(1) = IL )
where L' = pL



SYNTHESIS

Synthesis is performed in the same way as if no modification is
applied:
@ Linear interpolation for amplitudes

@ Cubic interpolation for phases



BLOCK DIAGRAM FOR ANALYSIS/SYNTHESIS FOR

TIME-SCALE MODIFICATION

Analysis | Synthesis

Sech Peak
Spe Spectral Picking

Analysis

\ ! Dy

Window o Ok

p!

Pitch
Estimation

Onset
Estimation

[

p

Linear ~j

Interpolation Agln]
Frequency
Matching

il

Modified
Speech



EXAMPLE OF TIME-SCALE MODIFICATION
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SOUND EXAMPLES
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READING PAPER
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T. F. Quatieri and R. J. McAulay:
Shape Invariant Time-Scale and Pitch Modification of Speech
IEEE Trans. Acoust., Speech, Signal Processing, Vol.40, No.3,
pp 497-510, March 1992
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