CS578- Speech Signal Processing Lecture on Intelligibility

Yannis Stylianou

University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 LISTA <
 - Hurricane Challenge
 - Selected Results
- 3 SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions

4 More tests

- Loudness
- Normal Hearing
- Mild to Moderate Hearing Loss

- **5** ENRICH
 - wSSDRC
 - Listening effort

OUTLINE

1 Introduction

) LISTA

- Hurricane Challenge
- Selected Results
- **3** SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss

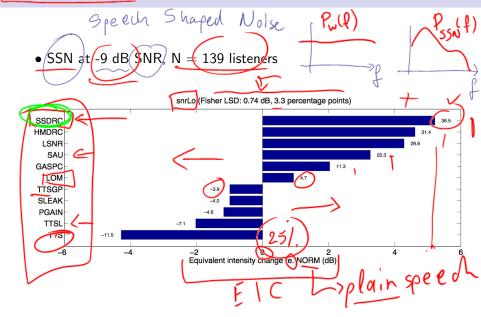
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **5** ENRICH
 - wSSDRC
 - Listening effort
- 6 Refs

Communication barriers

- Detecting and understanding speech in noise plays a significant role in our communication with others
- Speech produced under background noise is not always intelligible ⇒ increase vocal effort when speaking to enhance the audibility of voice (Lombard effect)
- Conversational/casual speech is much less intelligible than clear speech for both normal-hearing (linguistically inexperienced listeners) and hearing-impaired listeners ⇒ try to speak more clear

Communication barriers


- Detecting and understanding speech in noise plays a significant role in our communication with others
- Speech produced under background noise is not always intelligible ⇒ increase vocal effort when speaking to enhance the audibility of voice (Lombard effect)
- Conversational/casual speech is much less intelligible than clear speech for both normal-hearing (linguistically inexperienced listeners) and hearing-impaired listeners ⇒ try to speak more clear

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Detecting and understanding speech in noise plays a significant role in our communication with others
- Speech produced under background noise is not always intelligible ⇒ increase vocal effort when speaking to enhance the audibility of voice (Lombard effect)
- Conversational/casual speech is much less intelligible than clear speech for both normal-hearing (linguistically inexperienced listeners) and hearing-impaired listeners ⇒ try to speak more clear

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MOTIVATION

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

OUTLINE

INTRODUCTION

2 LISTA

- Hurricane Challenge
- Selected Results
- **3** SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **5** ENRICH
 - wSSDRC
 - Listening effort
- 6 Refs

- Current speech output technologies lack an essential element of human interaction, namely the ability to listen while talking
- Investigate how talkers react to changes in the listening environment,
- Apply this information to develop novel techniques for spoken output generation of artificial and natural speech.

- http://listening-talker.org/
- Hurricane Challenge

• Phonetically-balanced sentences more representative of everyday speech

- Harvard sentence: "The key you designed will fit the lock"
- Male native English talker: 72 lists $\times 10$ sentences, very good recording conditions
- Post-processing: Downsampling to 16kHz, removing low-frequency artefacts, adding low amplitude (inaudible) random noise to the beginning and end of each sentence
- Hurricane Challenge: Only sets 1-18 (180 sentences) were used

- Phonetically-balanced sentences more representative of everyday speech
- Harvard sentence: "The key you designed will fit the lock"
- Male native English talker: 72 lists ×10 sentences, very good recording conditions
- Post-processing: Downsampling to 16kHz, removing low-frequency artefacts, adding low amplitude (inaudible) random noise to the beginning and end of each sentence
- Hurricane Challenge: Only sets 1-18 (180 sentences) were used

- Phonetically-balanced sentences more representative of everyday speech
- Harvard sentence: "The key you designed will fit the lock"
- Male native English talker: 72 lists $\times 10$ sentences, very good recording conditions
- Post-processing: Downsampling to 16kHz, removing low-frequency artefacts, adding low amplitude (inaudible) random noise to the beginning and end of each sentence
- Hurricane Challenge: Only sets 1-18 (180 sentences) were used

- Phonetically-balanced sentences more representative of everyday speech
- Harvard sentence: "The key you designed will fit the lock"
- Male native English talker: 72 lists ×10 sentences, very good recording conditions
- Post-processing: Downsampling to 16kHz, removing low-frequency artefacts, adding low amplitude (inaudible) random noise to the beginning and end of each sentence
- Hurricane Challenge: Only sets 1-18 (180 sentences) were used

- Phonetically-balanced sentences more representative of everyday speech
- Harvard sentence: "The key you designed will fit the lock"
- Male native English talker: 72 lists ×10 sentences, very good recording conditions
- Post-processing: Downsampling to 16kHz, removing low-frequency artefacts, adding low amplitude (inaudible) random noise to the beginning and end of each sentence
- Hurricane Challenge: Only sets 1-18 (180 sentences) were used

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

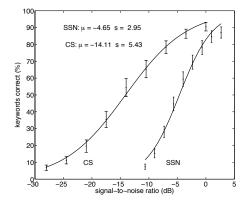
- *Fluctuating Masker:* Female ('Nina') competing speaker (CS); Read news speech, Harvard-like sentences
- *Steady-State Masker:* Speech-Shaped Noise (SSN); long-term average speech spectrum estimated by 'Nina'

- *Fluctuating Masker:* Female ('Nina') competing speaker (CS); Read news speech, Harvard-like sentences
- *Steady-State Masker:* Speech-Shaped Noise (SSN); long-term average speech spectrum estimated by 'Nina'

Speech-Noise Mixtures

• Reduce probability listeners hearing the same background more than once

- Each masker fragment was 1 second longer than the sentence: 500 ms leading and lagging noise.
- Speech levels were scaled to produce a given SNR in the region where the speech was present.
- Intelligibility was evaluated at 3 SNRs for each masker type, expected to produce keyword scores of approximately 25, 50 and 75%.


- Reduce probability listeners hearing the same background more than once
- Each masker fragment was 1 second longer than the sentence: 500 ms leading and lagging noise.
- Speech levels were scaled to produce a given SNR in the region where the speech was present.
- Intelligibility was evaluated at 3 SNRs for each masker type, expected to produce keyword scores of approximately 25, 50 and 75%.

- Reduce probability listeners hearing the same background more than once
- Each masker fragment was 1 second longer than the sentence: 500 ms leading and lagging noise.
- Speech levels were scaled to produce a given SNR in the region where the speech was present.
- Intelligibility was evaluated at 3 SNRs for each masker type, expected to produce keyword scores of approximately 25, 50 and 75%.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

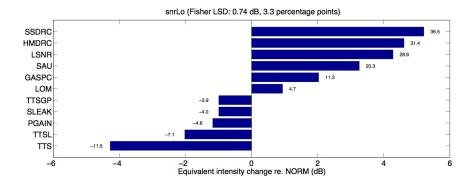
- Reduce probability listeners hearing the same background more than once
- Each masker fragment was 1 second longer than the sentence: 500 ms leading and lagging noise.
- Speech levels were scaled to produce a given SNR in the region where the speech was present.
- Intelligibility was evaluated at 3 SNRs for each masker type, expected to produce keyword scores of approximately 25, 50 and 75%.

BASELINES RESULTS

Two-parameter fitting logistic function:

$$p_n = \frac{1}{1 + e^{-(snr - a_n)/b_n}}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三


• Inverse of logistic approximation to SNR-intelligibility function for speech style *m* and masker *n*:

$$snr_{m,n} = a_n - b_n \log\left(\frac{1}{p_{m,n}} - 1\right)$$

• Equivalent Intensity Change (EIC):

$$EIC_{m,n} = snr_{m,n} - snr_{NORM}$$

• SSN at -9 dB SNR, N = 139 listeners

OUTLINE

1 INTRODUCTION

- Hurricane Challenge
- Selected Results
- 3 SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss

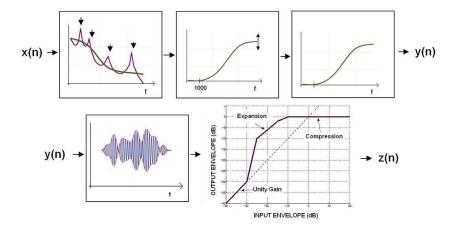
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **5** ENRICH
 - wSSDRC
 - Listening effort
- 6 Refs

- High-pass filtering and amplitude compression (Niederjohn et al. 1976 [1])
- Optimizing objective intelligibility criteria (e.g., SII, GP, STOI) (B. Sauert et al. 2006-2011 [2][3][4], Y. Tang et al. 2012 [5], C.H. Taal et al. 2012 [6])
- Selective enhancement (V. Hazan et al. 1996 [7], S.D.Yoo et al., 2007 [8])

- High-pass filtering and amplitude compression (Niederjohn et al. 1976 [1])
- Optimizing objective intelligibility criteria (e.g., SII, GP, STOI) (B. Sauert et al. 2006-2011 [2][3][4], Y. Tang et al. 2012 [5], C.H. Taal et al. 2012 [6])
- Selective enhancement (V. Hazan et al. 1996 [7], S.D.Yoo et al., 2007 [8])

- High-pass filtering and amplitude compression (Niederjohn et al. 1976 [1])
- Optimizing objective intelligibility criteria (e.g., SII, GP, STOI) (B. Sauert et al. 2006-2011 [2][3][4], Y. Tang et al. 2012 [5], C.H. Taal et al. 2012 [6])
- Selective enhancement (V. Hazan et al. 1996 [7], S.D.Yoo et al., 2007 [8])


- Lombard effect: higher energy in the mid-frequency region of the spectrum, reduced spectral tilt ...
- Clear speech: higher energy in the high-frequency region of the spectrum, expanded vowel space, slower speaking rate ...
- Nasals, onsets, offsets have low energy (speech production constraints)

- Lombard effect: higher energy in the mid-frequency region of the spectrum, reduced spectral tilt ...
- Clear speech: higher energy in the high-frequency region of the spectrum, expanded vowel space, slower speaking rate ...
- Nasals, onsets, offsets have low energy (speech production constraints)

- Lombard effect: higher energy in the mid-frequency region of the spectrum, reduced spectral tilt ...
- Clear speech: higher energy in the high-frequency region of the spectrum, expanded vowel space, slower speaking rate ...
- Nasals, onsets, offsets have low energy (speech production constraints)

SSDRC

Spectral Shaping and Dynamic Range Compression

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_{\varepsilon}(\omega, t) = \left(rac{E(\omega, t)}{T(\omega, t)}
ight)^{eta \ P_{v}(t)}$$

• Pre-emphasis:

$$egin{aligned} \mathcal{H}_{
ho}(\omega,t) = \left\{egin{aligned} 1 & \omega \leq \omega_0 \ 1 + rac{\omega - \omega_0}{\pi - \omega_0} g \ \mathcal{P}_{
m v}(t) & \omega > \omega_0 \end{aligned}
ight. \end{aligned}$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
 Spectral Shaping:

$$\hat{E}(\omega,t) = E(\omega,t) H_s(\omega,t)H_p(\omega,t)H_r(\omega)$$

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_s(\omega,t) = \left(rac{E(\omega,t)}{T(\omega,t)}
ight)^{eta \ P_v(t)}$$

• Pre-emphasis:

$$H_{P}(\omega, t) = \left\{ egin{array}{cc} 1 & \omega \leq \omega_{0} \ 1 + rac{\omega - \omega_{0}}{\pi - \omega_{0}} g \ P_{v}(t) & \omega > \omega_{0} \end{array}
ight.$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
Spectral Shaping:

$$\hat{E}(\omega,t) = E(\omega,t) H_s(\omega,t)H_p(\omega,t)H_r(\omega)$$

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_{s}(\omega, t) = \left(rac{E(\omega, t)}{T(\omega, t)}
ight)^{eta \ P_{v}(t)}$$

• Pre-emphasis:

$$H_{
ho}(\omega, t) = \left\{ egin{array}{ccc} 1 & \omega \leq \omega_0 \ 1 + rac{\omega - \omega_0}{\pi - \omega_0} g \ P_{
m v}(t) & \omega > \omega_0 \end{array}
ight.$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
Spectral Shaping:

$$\hat{E}(\omega,t) = E(\omega,t) H_s(\omega,t)H_p(\omega,t)H_r(\omega)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_{s}(\omega, t) = \left(rac{E(\omega, t)}{T(\omega, t)}
ight)^{eta \ P_{v}(t)}$$

• Pre-emphasis:

$$H_{p}(\omega, t) = \left\{ egin{array}{ccc} 1 & \omega \leq \omega_{0} \ 1 + rac{\omega - \omega_{0}}{\pi - \omega_{0}} g \ P_{v}(t) & \omega > \omega_{0} \end{array}
ight.$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
Spectral Shaping:

$$\hat{E}(\omega,t) = E(\omega,t) H_s(\omega,t)H_p(\omega,t)H_r(\omega)$$

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_{s}(\omega,t) = \left(rac{E(\omega,t)}{T(\omega,t)}
ight)^{eta \ P_{v}(t)}$$

• Pre-emphasis:

$$egin{aligned} \mathcal{H}_{
ho}(\omega,t) = \left\{ egin{aligned} 1 & \omega \leq \omega_0 \ 1 + rac{\omega - \omega_0}{\pi - \omega_0} g \ \mathcal{P}_{
m v}(t) & \omega > \omega_0 \end{aligned}
ight. \end{aligned}$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
Spectral Shaping:

$$\hat{E}(\omega, t) = E(\omega, t) H_s(\omega, t) H_p(\omega, t) H_r(\omega)$$

- ロ ト - 4 回 ト - 4 □

Spectral Shaping

- Probability of voicing: $P_v(t)$
- Adaptive spectral shaping:
 - Enhancement of spectral maxima:

$$H_{s}(\omega,t) = \left(rac{E(\omega,t)}{T(\omega,t)}
ight)^{eta \ P_{v}(t)}$$

• Pre-emphasis:

$$egin{aligned} \mathcal{H}_{
ho}(\omega,t) = \left\{ egin{aligned} 1 & \omega \leq \omega_0 \ 1 + rac{\omega - \omega_0}{\pi - \omega_0} g \ \mathcal{P}_{
m v}(t) & \omega > \omega_0 \end{aligned}
ight. \end{aligned}$$

Fixed spectral shaping: H_r(ω) (boosting high frequencies)
Spectral Shaping:

$$\hat{E}(\omega, t) = E(\omega, t) H_{s}(\omega, t)H_{p}(\omega, t)H_{r}(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Speech envelope: analytic signal and moving average filteringDynamic stage:

$$\hat{e}(n) = \begin{cases} a_r \hat{e}(n-1) + (1-a_r)e(n), & \text{if } e(n) < \hat{e}(n-1) \\ a_a \hat{e}(n-1) + (1-a_a)e(n), & \text{if } e(n) \ge \hat{e}(n-1) \end{cases}$$

• Static stage:

$$g(n) = 10^{(e_{out}(n) - e_{in}(n))/20}$$

where $e_{in}(n) = 20 \log_{10} (\hat{e}(n)/e_0)$, with e_0 being the reference level

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Speech envelope: analytic signal and moving average filtering
- Oynamic stage:

$$\hat{e}(n) = \left\{ egin{array}{l} a_r \hat{e}(n-1) + (1-a_r) e(n), & \mbox{if } e(n) < \hat{e}(n-1) \ a_a \hat{e}(n-1) + (1-a_a) e(n), & \mbox{if } e(n) \ge \hat{e}(n-1) \end{array}
ight.$$

• Static stage:

$$g(n) = 10^{(e_{out}(n) - e_{in}(n))/20}$$

where $e_{in}(n) = 20 \log_{10} (\hat{e}(n)/e_0)$, with e_0 being the reference level

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Speech envelope: analytic signal and moving average filtering
- Oynamic stage:

$$\hat{e}(n) = \left\{ egin{array}{l} a_r \hat{e}(n-1) + (1-a_r) e(n), & \mbox{if } e(n) < \hat{e}(n-1) \ a_a \hat{e}(n-1) + (1-a_a) e(n), & \mbox{if } e(n) \geq \hat{e}(n-1) \end{array}
ight.$$

• Static stage:

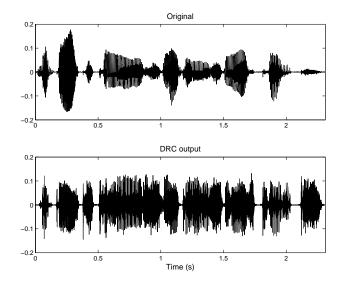
$$g(n) = 10^{(e_{out}(n) - e_{in}(n))/20}$$

where $e_{in}(n) = 20 \log_{10} (\hat{e}(n)/e_0)$, with e_0 being the reference level

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

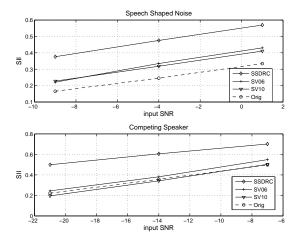
- Speech envelope: analytic signal and moving average filtering
- Oynamic stage:

$$\hat{e}(n) = \left\{ egin{array}{l} a_r \hat{e}(n-1) + (1-a_r) e(n), & \mbox{if } e(n) < \hat{e}(n-1) \ a_a \hat{e}(n-1) + (1-a_a) e(n), & \mbox{if } e(n) \geq \hat{e}(n-1) \end{array}
ight.$$


• Static stage:

$$g(n) = 10^{(e_{out}(n) - e_{in}(n))/20}$$

where $e_{in}(n) = 20 \log_{10} (\hat{e}(n)/e_0)$, with e_0 being the reference level


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SSDRC: EXAMPLE OF APPLICATION

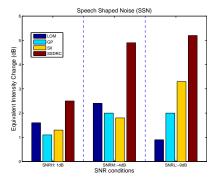
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

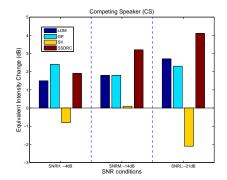
OBJECTIVE EVALUATION

▶ SV06: Sauert et al. 2006, SV10: Sauert et al. 2010

- 139 listeners whose native language was English
- Listeners received an audiological screening
- 6 conditions: 2 masker types \times 3 SNR levels.
- 18 Harvard sets was mixed with noise for each of the 6 conditions
- We made sure that: each listener heard one block in each of the 18 noise conditions, no listener heard the same sentence twice, and each condition was heard by the same number of listeners.

• Each listener heard 180 sentences (apart from practice sentences)

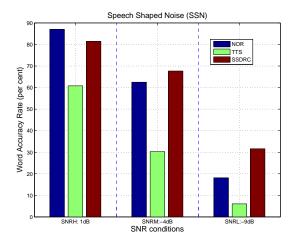

We compare:


- Normal speech
- Lombard speech [LOM]
- Spectral Modification optimizing GP (Y. Tang et al. 2012) [GP][5]
- Spectral Modification optimizing SII (B. Sauert et al. 2011) [SII][9]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

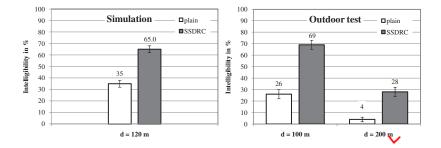
• Suggested approach (Zorila et al. 2012) [SSDRC] [10]

FORMAL LISTENING TEST (NEAR-FIELD): SSN &CS


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- 88 listeners whose native language was English
- Noise: 2 masker types \times 3 SNR levels.
- 180 sentences were mixed with noise for each of the 6 conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


- Each listener heard 180 sentences.
- No listener heard the same sentence twice.

Results (Near-Field): Synthetic Speech

• C. Valentini-Botinhao et al. IS2013[11]

FIELD TRIAL - FAR FIELD

• T.C. Zorila, Y. Stylianou, T. Ishihara and M. Akamine: Near and far field speech-in-noise intelligibility improvements based on a time-frequency energy reallocation approach *IEEE*, *Trans. On Audio, Speech and Language Processing*, vol.24(10), Oct 2016, pp1808-1818

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SSDRC: Signal-processing based approach combining previous knowledge from speech-in-noise and clear/casual speaking styles literature
- Objectively and subjectively, SSDRC outperforms previous approaches
- 5 *dB* improvement in terms of Equivalent Intensity Change (EIC)
- Frame-based approach, no noise measurement ⇒ real time processing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SSDRC: Signal-processing based approach combining previous knowledge from speech-in-noise and clear/casual speaking styles literature
- Objectively and subjectively, SSDRC outperforms previous approaches
- 5 *dB* improvement in terms of Equivalent Intensity Change (EIC)
- Frame-based approach, no noise measurement ⇒ real time processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- SSDRC: Signal-processing based approach combining previous knowledge from speech-in-noise and clear/casual speaking styles literature
- Objectively and subjectively, SSDRC outperforms previous approaches
- 5 *dB* improvement in terms of Equivalent Intensity Change (EIC)
- Frame-based approach, no noise measurement \Rightarrow real time processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- SSDRC: Signal-processing based approach combining previous knowledge from speech-in-noise and clear/casual speaking styles literature
- Objectively and subjectively, SSDRC outperforms previous approaches
- 5 *dB* improvement in terms of Equivalent Intensity Change (EIC)
- Frame-based approach, no noise measurement \Rightarrow real time processing

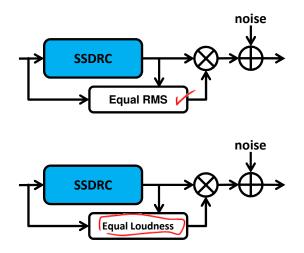
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

FIRST CONCLUSIONS

- SDRC: Signal-processing based approach combining previous knowledge from speech-in-noise and clear/casual speaking styles literature
- Objectively and subjectively, SSDRC outperforms previous approaches
- 5 *dB* improvement in terms of Equivalent Intensity Change (EIC)
- Frame-based approach, no noise measurement ⇒ real time processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

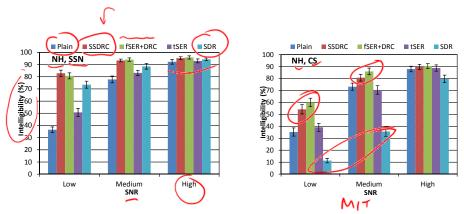
OUTLINE


1 INTRODUCTION 2 LISTA

- Hurricane Challenge
- Selected Results
- **3** SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss
- **5** ENRICH
 - wSSDRC
 - Listening effort
- 6 Refs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ON CONSTRAINTS

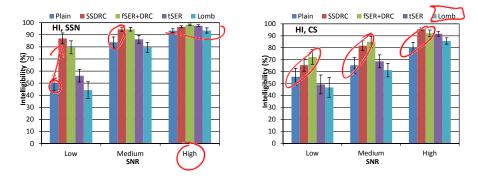

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \Rightarrow We need to repeat some experiments

• T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore: Effectiveness of a loudness model for time-varying sounds in equating the loudness of sentences subjected to different forms of signal processing The Journal of the Acoustical Society of America, vol.140(1), July 2016, pp1057-1061 • T.C. Zorila, Y. Stylianou, S. Flanagan and B.C.J. Moore: Evaluation of Near-End Speech Enhancement under Equal-Loudness Constraint for Listeners with Normal-Hearing and Mild-to-Moderate Hearing Loss The Journal of the Acoustical Society of America, vol.141(1), Jan 2017

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equal Loudness: Normal hearing



- tSER: time domain Spectral Energy Reallocation, Takou et al(IS2013)[12] based on Turiccia et al work (IEEE Trans 2005)[13]
- fSER+DRC: frequency domain Spectral Energy Reallocation and Dynamic Range Compression, Zorila et al. (IS2015)[14]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• SDR: Spectral Dynamic Recovery, Petko et al. (IEEE Trans 2015)[15]

EQUAL LOUDNESS: HEARING IMPAIRED

- tSER: time domain Spectral Energy Reallocation, Takou et al(IS2013)[12] based on Turiccia et al work (IEEE Trans 2005)[13]
- fSER+DRC: frequency domain Spectral Energy Reallocation and Dynamic Range Compression, Zorila et al.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(IS2015)[14]

• Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])

- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

.

- Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])
- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

- Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])
- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])
- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

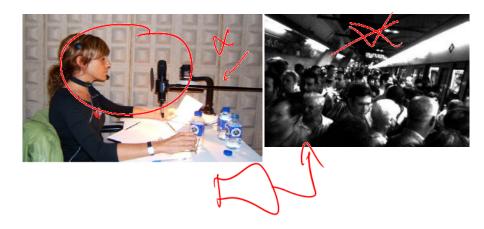
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])
- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

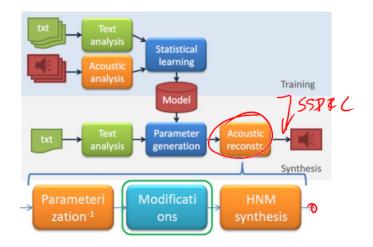
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Clear-Casual Speech (E. Godoy et al., CSL 2014 [16])
- Synthetic Speech, (D. Erro et al. IEEE Trans 2014 [17])
- Special groups of listeners (S. Flanagan et al. Trends in Hearing 2018 [18])
- Noise-Dependent SSDRC (Griffin et al. ICASSP2015 [19])
- Special Session at IS2013 & Special Issue in Computer Speech and Language

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

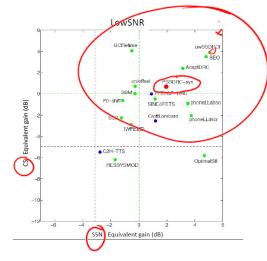

M. Cooke, C. Mayo, C. Valentini-Botinhao, Y. Stylianou, B. Sauert, and Y. Tang: Evaluating the intelligibility benefit of speech modifications in known noise conditions Speech Communication, Jan 2013.

T.C. Zorila, V. Kandia, and Y. Stylianou: Speech-in-noise intelligibility improvement based on spectral shaping and dynamic range compression, Interspeech 2012


- M. Koutsogiannaki, M. Pettinato, C. Mayo, V. Kandia and Y. Stylianou: Can modified casual speech reach the intelligibility of clear speech?, Interspeech 2012
- D. Erro, T.C. Zorila, Y. Stylianou, E. Navas and I. Hernaez: *Statistical Synthesizer with Embedded Prosodic and Spectral Modifications to Generate Highly Intelligible Speech in Noise*, Interspeech 2013
- E. Godoy, C. Mayo, Y. Stylianou: Increasing Speech Intelligibility via Spectral Shaping with Frequency Warping and Dynamic Range Compression plus Transient, Interspeech 2013
- C. Valentini-Botinhao, J. Yamagishi, S. King and Y. Stylianou: Combining perceptually-motivated spectral shaping with loudness and duration modification for intelligibility enhancement of HMMbased synthetic speech in noise Interspeech 2013

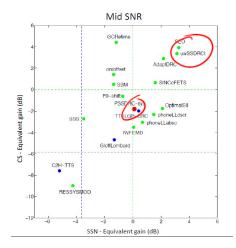
(日) (四) (日) (日) (日)

The issue for TTS



SSDRC LIKE POST-PROCESSING[17]

 \Rightarrow plus some modifications on duration and pitch


HURRICANE II: LOW SNRS

 \Rightarrow look for PSSDRC-syn

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

HURRICANE II: MID SNRS

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 \Rightarrow look for PSSDRC-syn

OUTLINE

1 INTRODUCTION

- Hurricane Challenge
- Selected Results
- **3** SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- wSSDRC
- Listening effort

ENRICH (2016-2019)

• **ENRICH:** Enriched communication across the lifespan. *MSCE, European Training Network*

- Transform speech to decrease its processing load, both universally and for individuals or populations of listeners
- Cognitive studies, modelling, engineering and real-world field evaluation with a range of listener groups
- Implementation of 14 projects, in three themes: 1) Reducing listening effort; 2) Enrichment and modalities; 3) Benefits for individuals and groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• http://www.enrich-etn.eu/

ENRICH (2016-2019)

- **ENRICH:** Enriched communication across the lifespan. *MSCE, European Training Network*
- Transform speech to decrease its processing load, both universally and for individuals or populations of listeners
- Cognitive studies, modelling, engineering and real-world field evaluation with a range of listener groups
- Implementation of 14 projects, in three themes: 1) Reducing listening effort; 2) Enrichment and modalities; 3) Benefits for individuals and groups

ENRICH (2016-2019)

- **ENRICH:** Enriched communication across the lifespan. *MSCE, European Training Network*
- Transform speech to decrease its processing load, both universally and for individuals or populations of listeners
- Cognitive studies, modelling, engineering and real-world field evaluation with a range of listener groups
- Implementation of 14 projects, in three themes: 1) Reducing listening effort; 2) Enrichment and modalities; 3) Benefits for individuals and groups

ENRICH (2016-2019)

- **ENRICH:** Enriched communication across the lifespan. *MSCE, European Training Network*
- Transform speech to decrease its processing load, both universally and for individuals or populations of listeners
- Cognitive studies, modelling, engineering and real-world field evaluation with a range of listener groups
- Implementation of 14 projects, in three themes: 1) Reducing listening effort; 2) Enrichment and modalities; 3) Benefits for individuals and groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **ENRICH:** Enriched communication across the lifespan. *MSCE, European Training Network*
- Transform speech to decrease its processing load, both universally and for individuals or populations of listeners
- Cognitive studies, modelling, engineering and real-world field evaluation with a range of listener groups
- Implementation of 14 projects, in three themes: 1) Reducing listening effort; 2) Enrichment and modalities; 3) Benefits for individuals and groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

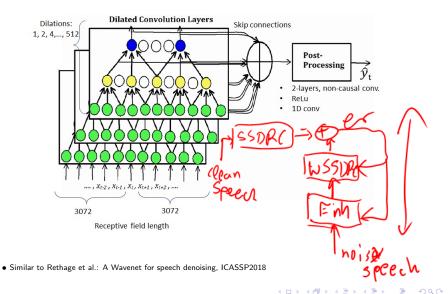
FOCUSING ON TWO RECENT WORKS

Wavenet-based SSDRC: wSSDRC;

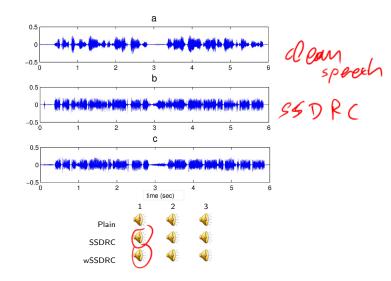
Muhammed Shifas PV, Vassilis Tsiaras and Yannis Stylianou, Speech intelligibility enhancement based on a non-causal Wavenet-like model, Interpseech 2018, Hyderabad, India

• **Speaking style and listening effort:** Olympia Simantiraki, Martin Cooke, and Simon King, *Impact of different speech types on listening effort*, Interspeech 2018, Hyderabad, India

FOCUSING ON TWO RECENT WORKS

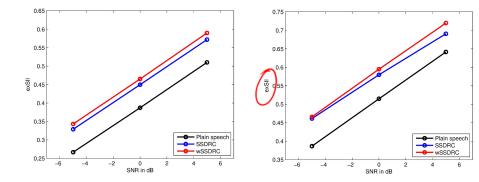

• Wavenet-based SSDRC: wSSDRC:

Muhammed Shifas PV, Vassilis Tsiaras and Yannis Stylianou, Speech intelligibility enhancement based on a non-causal Wavenet-like model, Interpseech 2018, Hyderabad, India


• Speaking style and listening effort:

Olympia Simantiraki, Martin Cooke, and Simon King, *Impact* of different speech types on listening effort, Interspeech 2018, Hyderabad, India

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Sound Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

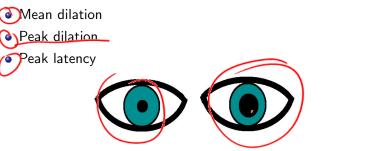
OBJECTIVE EVALUATIONS

• Left: with stationary white noise (SWN); • Right: with stationary shaped noise (SSN)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

• Listening Effort: "The mental exertion required to attend to and understand, an auditory message." *McGarrigle et al*

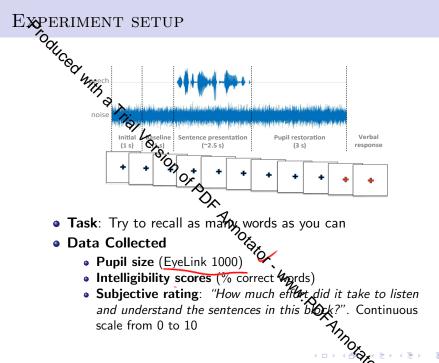
Self-reports


- Behavioural measures (single/dual-task \rightarrow reaction time)
- Physiological measures (fMRI, EEG, skin conductance, heart rate, muscle tension, pupil size, hormone levels)

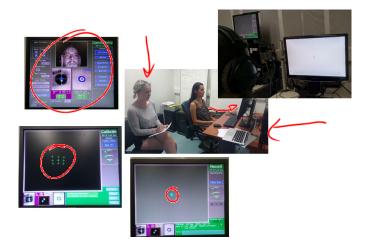
- Listening Effort: "The mental exertion required to attend to and understand, an auditory message." *McGarrigle et al*
- Self-reports
- Behavioural measures (single/dual-task \rightarrow reaction time)
- Physiological measures (fMRI, EEG, skin conductance, heart rate, muscle tension, pupil size, hormone levels)

• Listening Effort: "The mental exertion required to attend to and understand, an auditory message." *McGarrigle et al*

 Self-reports Behavioural measures (single/dual-task → reaction time)
 Physiological measures (fMRI EEG skin conductance, heart rate, muscle tension, pupil size, hormone levels)


- Pupil Dilation:
 - Widely used as a measure of mental effort
 - More challenging listening conditions \rightarrow Larger pupil size
 - Sensitive to differences in speech intelligibility, masker type, sentence complexity, location uncertainty, motivation
- Pupil Data:

• Question: Does listening effort differ among different speech types? Plain, Lombard, Modified speech (SSDRC), Synthetic speech (TTS)

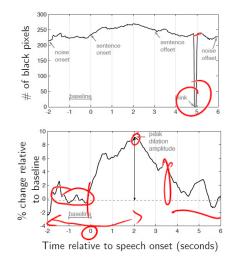

• Listeners and Design:

- 26 young adults (age range 18-24), normal hearing, native British English (3 participants excluded)
- -Harvard sentences male English talker
- Speech Shaped Noise at -1, -3 and -5 dB SNR
- 🔨 12 blocks, 20 sentences (first 5 used for familiarisation)
 - Audiological screening (hearing test)
 - Whole procedure with 5-min break took approximately 1h

Sac

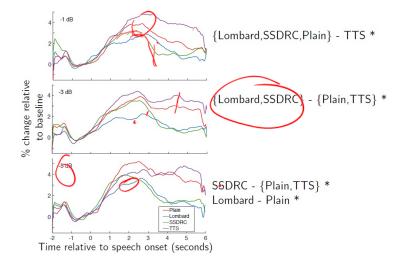
EXPERIMENT SETUP

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

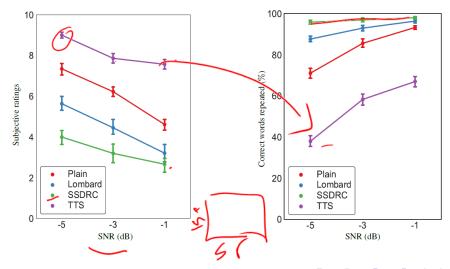

• Preprocessing:

- 5 first traces of each block were excluded
- Downsampling to 50 Hz
- Pupil size measured in units of area was converted to diameter
- Blink detection and computation of the percentage of blinks (traces were excluded when blinks were more than 15%)
- Linear interpolation from the start to the end of the blink

O√5-point moving average smoothing filter


- Pupil data calibration (proportional increase in pupil dilation relative to the baseline)
- Average of the traces of each block

EXAMPLE OF PRE-PROCESSING


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

some $\operatorname{Results}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SUBJECTIVE EFFORT & INTELLIGIBILITY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OUTLINE

1 INTRODUCTION

- Hurricane Challenge
- Selected Results
- **3** SSDRC
 - Introduction
 - Spectral Shaping (SS)
 - Evaluation
 - Conclusions
- 4 More tests
 - Loudness
 - Normal Hearing
 - Mild to Moderate Hearing Loss

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **5** ENRICH
 - wSSDRC
 - Listening effort

R. J. Niederjohn and J. H. Grotelueschen, "The enhancement of speech intelligibility in high noise levels by high-pass filtering followed by rapid amplitude compression," *IEEE Trans. on Acoustics, Speech and Signal Processing*, vol. 24, pp. 277–282, Aug. 1976.

B. Sauert and P. Vary, "Near end listeniing enhancement: Speech intelligibility improvement in noisy environments," in *Proceedings of IEEE ICASSP-2006*, (Toulouse, France), pp. 493–496.

B. Sauert and P. Vary, "Recursive closed-form optimization of spectral audio power allocation for near end listening enhancement," in *Proc. of ITG-Fachtagung Sprachkommunikation*, vol. 9, (Berlin [u.a.]), VDE-Verlag, 10 2010.

B. Sauert and P. Vary, "Near end listening enhancement considering thermal limit of mobile phone loudspeakers," in *Proc. of Conf. on Elektronische Sprachsignalverarbeitung (ESSV)*, vol. 61, (Dresden, Germany), pp. 333–340, ITG, DEGA, TuDPress Verlag der Wissenschaften GmbH, 9 2011.

Y. Tang and M. Cooke, "Optimised spectral weightings for noise-dependent speech intelligibility enhancement," in *Interspeech 2012*, 2012.

V. Hazan and A. Simpson, "Cue-enhancement strategies for natural VCV and sentence materials presented in noise," Speech, Hearing and Language, vol. 9, pp. 43–55, 1996.

S. D. Yoo, J. R. Boston, A. El-Jaroudi, C.-C. Li, J. D. Durrant, K. Kovacyk, and S. Shaiman, "Speech signal modification to increase intelligibility in noisy environments," *J. Acoust. Soc. Am.*, vol. 122, pp. 1138–1149, Aug. 2007.

B. Sauert and P. Vary, "Recursive closed-form optimization of spectral audio power allocation for near end listening enhancement," in *ITG-Fachtagung Sprachkommunikation*, (Bochum, Germany), 2010.

T. C. Zorilä, V. Kandia, and Y. Stylianou, "Speech-in-noise intelligibility improvement based on spectral shaping and dynamic range compression," in *Interspeech 2012*, (Portland, USA), 2012.

C. Valentini-Botinhao, J. Yamagishi, S. King, and Y. Stylianou, "Combining perceptually-motivated spectral shaping with loudness and duration modification for intelligibility enhancement of hmmbased synthetic speech in noise," in *Proc. Interspeech*, 2013.

R. Takou, N. Seiyama, and A. Imai, "Improvement of speech intelligibility by reallocation of spectral energy," in *Proc. Interspeech*, pp. 3605–3607, 2013.

L. Turicchia and R. Sarpeshkar, "A bio-inspired companding strategy for spectral enhancement," *IEEE Trans. Speech and Audio Process.*, vol. 13, no. 2, pp. 243–253, 2005.

T. Zorilă and Y. Stylianou, "A fast algorithm for improved intelligibility of speech-in-noise based on frequency and time domain energy reallocation," in *Proc. Interspeech*, pp. 60–64, 2015.

P. Petkov and W. Kleijn, "Spectral dynamics recovery for enhanced speech intelligibility in noise," *IEEE Trans. Audio Speech Language Process.*, vol. 23, no. 2, pp. 327–338, 2015.

E. Godoy, M. Koutsogiannaki, and Y. Stylianou, "Approaching speech intelligibility enhancement with inspiration from Lombard and clear speaking styles," *Computer Speech & Language*, vol. 28, no. 2, pp. 629–647, 2014.

D. Erro, C. Zorilă, and Y. Stylianou, "Enhancing the intelligibility of statistically generated synthetic speech by means of noise-independent modifications," *IEEE Trans. Audio Speech Language Process.*, vol. 22, no. 12, pp. 2101–2111, 2014.

S. Flanagan, T. Zorilă, Y. Stylianou, and B. Moore, "Speech processing to improve the perception of speech in background noise for children with auditory processing disorder and typically developing peers," *Trends in Hearing*, vol. 22, pp. 1–8, 2018.

A. Griffin, T. Zorilă, and Y. Stylianou, "Improved face-to-face communication using noise reduction and speech intelligibility enhancement," in *Proc. IEEE ICASSP*, pp. 5103–5107, 2015.

V. Tsiaras, C. Zorilă, Y. Stylianou, and M. Akamine, "Real time speech-in-noise intelligibility enhancement based on spectral shaping and dynamic range compression," in *ICASSP Show & Tell Session*, 2014.

THANK YOU for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

.