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@ a Markov chain or process is a sequence of events, usually
called states, Q = {q1, - gk }), the probability of each of
which is dependent only on the event immediately preceding
it.

e a Hidden Markov Model (HMM) represents stochastic
sequences as Markov chains where the states are not directly
observed, but are associated with a probability density
function (pdf)
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@ The generation of a random sequence in HMM is the result of
a random walk in the chain (i.e. the browsing of a random
sequence of states Q = {q1,--- gk }) and of a draw (called an
emission) at each visit of a state.

@ In pattern recognition (and speech recognition) with HMMs,
we are interested to associate a sequence of states
@ ={q1, - - gk} to a sequence of observations
X = {Xl, e -XK}).

@ The true sequence of states is therefore hidden by a first layer
of stochastic processes.
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HMM TERMINOLOGY

o Emission probabilities: are the pdfs (usually Gaussians) that
characterize each state g;, i.e. p(x|g;). To simplify the
notations, they will be denoted b;(x).

e Transition probabilities: are the probability to go from a state
i to a state j, i.e. P(qj|gi). They are stored in matrices where
each term aj; denotes a probability P(qj|qi).

o Non-emitting initial and final states: For a finite length
random sequence, two additional states are used in order to
model the “start” or “end” events. These states are not
associated with some emission probabilities.

e Initial state distribution P(l|q;): Transitions starting from the
initial state.

o Final-absorbent state: The final state usually has only one
non-null transition that loops onto itself with a probability of 1
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HMM TERMINOLOGY

o Ergodic HMM: an HMM allowing for transitions from any
emitting state to any other emitting state

o Left-right HMM: an HMM where the transitions only go from
one state to itself or to a unique follower.



HMM EXAMPLES

HMM1:

Transition matrix

0.0 1.0 00 00 0.0

00 03 04 03 00
00 03 03 03 01
00 00 00 00 1.0



HMM EXAMPLES

HMM2:

Transition matrix

0.0

0.0
0.0
0.0

1.0

0.0
0.0
0.0

0.0

0.5
0.0
0.0

0.0
0.0
0.0
0.5
1.0



HMM EXAMPLES

HMM3:

Transition matrix

0.0

0.0
0.0
0.0

1.0
0.95
0.0
0.0
0.0

0.0
0.05
0.95
0.0
0.0

0.0
0.0
0.05
0.95
0.0

0.0
0.0
0.0
0.05
1.0



HMM MODEL: ©

In the case of HMMs with Gaussian emission probabilities, the
parameter set © comprises:

o the transition probabilities ajj;

o the parameters of the Gaussian densities characterizing each
state, i.e. the means pu; and the variances ¥ ;.

The initial state distribution is sometimes modeled as an additional
parameter instead of being represented in the transition matrix.



Si1ZE OF AN HMM MODEL: ERGODIC AND (GAUSSIAN
CASE

In the case of an ergodic HMM with N emitting states and
Gaussian emission probabilities, we have:
e (N —2) x (N — 2) transitions, plus (N — 2) initial state
probabilities and (N — 2) probabilities to go to the final state;

o (N — 2) emitting states where each pdf is characterized by a
D dimensional mean and a D x D covariance matrix.

Hence, in this case, the total number of parameters is
(N—-2)x (N+ D x (D+1)).
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LIKELIHOOD OF A SEQUENCE GIVEN A HMM

Likelihood of a sequence given a HMM:
p(X[©),

i.e. the likelihood of an observation sequence given a model.
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PROBABILITY OF A STATE SEQUENCE

@ Assume a state sequence Q@ = {q1, - , 97}
o Probability of a state sequence:

T-1

P(Q|©) = H Ayl = al2-ax3 - -arT—1,T
=1
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LIKELIHOOD OF AN OBSERVATION SEQUENCE GIVEN A
STATE SEQUENCE

@ Assume an observation sequence X = {xq,x2, -+ ,x7} and a
state sequence Q = {q1, - ,qT7}
o Likelihood of an observation sequence along a single path, @,
for an HMM, ©:
-

p(X|Q,0) = [ p(xilqi, ©) = b1(x1) - ba(x2) - - - br(xT)

i=1
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LIKELIHOODS

e Joint likelihood of an observation sequence X and a path @ :
it consists in the probability that X and Q@ occur
simultaneously, p(X, Q|©), and decomposes into a product of
the two quantities defined previously :

p(X;Q10) = p(X|Q,0)P(Q[O) (Bayes)

o Likelihood of a sequence with respect to a HMM : the
likelihood of an observation sequence X = {xy,x, -+ ,x7}
with respect to a Hidden Markov Model with parameters ©
expands as follows:

p(X[®)= > p(X.Ql0)

every possible Q
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FORWARD RECURSION

@ There is a recursive way to compute p(X|©): Forward
Recursion (FR)

o In FR, we define a forward variable:
pe(i) = p(x1,x2, - x¢, q° = qi|©)

i.e. pt(f) is the probability of having observed the partial
sequence {x1,x2,- -+, Xt} and being in the state / at time t,
given parameters O.
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COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N — 2 emitting states.
o Initialization:
p1(Jj) = a1jbj(x1)
with2 < ;< N-1
o Recursion:

N-1

> peali)- a,-j] bj(xt),

i=2

p:(j) =

with2<t<Tand2<j<N-1

o Termination:

p(X|©) =
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@ Given the likelihood p(X|©;) computed using the forward
recursion algorithm, we can compute the probability of ©;,
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BAYESIAN CLASSIFICATION

@ Assume that there are many HMMs, ©;, i=1,--- M

@ Given the likelihood p(X|©;) computed using the forward
recursion algorithm, we can compute the probability of ©;,
using Bayes' rule:

Polx) = PRI

o p(X[©;)P(©;)

o Other solution: Maximum likelihood.
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DEFINITIONS

o Highest likelihood &,(i) along a single path among all the
paths ending in state / at time t:

51‘(/): max p(q17q27'” aqt—laqt:qi7X17X27"'Xt|e)
41,92, ,qt—1

e Buffer 1+(i) which allows to keep track of the “best path”
ending in state / at time t:

'l/}t(l) = argmax P(QL q,: -, qe-1, qt = qi, X1, X2, " Xt‘e)
q1,92," " ,qt—1



VITERBI ALGORITHM

@ Initialization :
51(i) = aij- b,'(Xl), 2 < i < N-1
(i) = 0

@ Recursion :

. . 1<t<T-1
deral) =, max [0(0) 2yl bilxess). 522y g
. . 1<t<T-1
venl) = gmes )2l 52y g
@ Termination :
pi(XI0) =, max [57(i)- ain]
qr = gggmﬁjérﬁ)-aN]

@ Backtracking :
Q* = {q]ﬁja T 7q>fl'} so that q:j = wt+l(q:+1)7 t= T_17 T_27
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