CS578- Speech Signal Processing Lecture 11: Hidden Markov Models, HMM

Yannis Stylianou

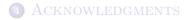
University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete

OUTLINE

1 INTRODUCTION

- 2 Pattern recognition with HMMs
 - Likelihood of a sequence given a HMM
 - Bayesian classification
- OPTIMAL STATE SEQUENCE
 Viterbi Algorithm



- a Markov chain or process is a sequence of events, usually called states, $Q = \{q_1, \dots, q_K\}$), the probability of each of which is dependent only on the event immediately preceding it.
- a *Hidden Markov Model* (HMM) represents stochastic sequences as Markov chains where the states are not directly observed, but are associated with a probability density function (pdf)

- a Markov chain or process is a sequence of events, usually called states, $Q = \{q_1, \dots, q_K\}$), the probability of each of which is dependent only on the event immediately preceding it.
- a Hidden Markov Model (HMM) represents stochastic sequences as Markov chains where the states are not directly observed, but are associated with a probability density function (pdf)

- The generation of a random sequence in HMM is the result of a random walk in the chain (i.e. the browsing of a random sequence of states $Q = \{q_1, \dots, q_K\}$) and of a draw (called an *emission*) at each visit of a state.
- In pattern recognition (and speech recognition) with HMMs, we are interested to associate a sequence of states
 Q = {q₁, · · · q_K} to a sequence of observations
 X = {x₁, · · · x_K}).
- The true sequence of states is therefore *hidden* by a first layer of stochastic processes.

- The generation of a random sequence in HMM is the result of a random walk in the chain (i.e. the browsing of a random sequence of states Q = {q₁, · · · q_K}) and of a draw (called an *emission*) at each visit of a state.
- In pattern recognition (and speech recognition) with HMMs, we are interested to associate a sequence of states
 Q = {q₁, ··· q_K} to a sequence of observations
 X = {x₁, ··· x_K}).
- The true sequence of states is therefore *hidden* by a first layer of stochastic processes.

- The generation of a random sequence in HMM is the result of a random walk in the chain (i.e. the browsing of a random sequence of states Q = {q₁, · · · q_K}) and of a draw (called an *emission*) at each visit of a state.
- In pattern recognition (and speech recognition) with HMMs, we are interested to associate a sequence of states
 Q = {q₁, ··· q_K} to a sequence of observations
 X = {x₁, ··· x_K}).
- The true sequence of states is therefore *hidden* by a first layer of stochastic processes.

- *Emission probabilities*: are the pdfs (usually Gaussians) that characterize each state q_i , i.e. $p(x|q_i)$. To simplify the notations, they will be denoted $b_i(x)$.
- Transition probabilities: are the probability to go from a state *i* to a state *j*, i.e. $P(q_j|q_i)$. They are stored in matrices where each term a_{ij} denotes a probability $P(q_j|q_i)$.
- Non-emitting initial and final states: For a finite length random sequence, two additional states are used in order to model the "start" or "end" events. These states are not associated with some emission probabilities.
- Initial state distribution $P(1|q_j)$: Transitions starting from the initial state.
- *Final-absorbent state*: The final state usually has only one non-null transition that loops onto itself with a probability of 1

- Emission probabilities: are the pdfs (usually Gaussians) that characterize each state q_i , i.e. $p(x|q_i)$. To simplify the notations, they will be denoted $b_i(x)$.
- Transition probabilities: are the probability to go from a state *i* to a state *j*, i.e. $P(q_j|q_i)$. They are stored in matrices where each term a_{ij} denotes a probability $P(q_j|q_i)$.
- *Non-emitting initial and final states*: For a finite length random sequence, two additional states are used in order to model the "start" or "end" events. These states are not associated with some emission probabilities.
- Initial state distribution $P(1|q_j)$: Transitions starting from the initial state.
- *Final-absorbent state*: The final state usually has only one non-null transition that loops onto itself with a probability of 1

- *Emission probabilities*: are the pdfs (usually Gaussians) that characterize each state q_i , i.e. $p(x|q_i)$. To simplify the notations, they will be denoted $b_i(x)$.
- Transition probabilities: are the probability to go from a state *i* to a state *j*, i.e. $P(q_j|q_i)$. They are stored in matrices where each term a_{ij} denotes a probability $P(q_j|q_i)$.
- Non-emitting initial and final states: For a finite length random sequence, two additional states are used in order to model the "start" or "end" events. These states are not associated with some emission probabilities.
- *Initial state distribution* $P(I|q_j)$: Transitions starting from the initial state.
- *Final-absorbent state*: The final state usually has only one non-null transition that loops onto itself with a probability of 1

- Emission probabilities: are the pdfs (usually Gaussians) that characterize each state q_i , i.e. $p(x|q_i)$. To simplify the notations, they will be denoted $b_i(x)$.
- Transition probabilities: are the probability to go from a state *i* to a state *j*, i.e. $P(q_j|q_i)$. They are stored in matrices where each term a_{ij} denotes a probability $P(q_j|q_i)$.
- Non-emitting initial and final states: For a finite length random sequence, two additional states are used in order to model the "start" or "end" events. These states are not associated with some emission probabilities.
- Initial state distribution $P(I|q_j)$: Transitions starting from the initial state.
- *Final-absorbent state*: The final state usually has only one non-null transition that loops onto itself with a probability of 1

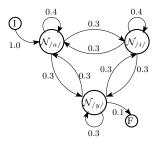
- *Emission probabilities*: are the pdfs (usually Gaussians) that characterize each state q_i , i.e. $p(x|q_i)$. To simplify the notations, they will be denoted $b_i(x)$.
- Transition probabilities: are the probability to go from a state *i* to a state *j*, i.e. $P(q_j|q_i)$. They are stored in matrices where each term a_{ij} denotes a probability $P(q_j|q_i)$.
- Non-emitting initial and final states: For a finite length random sequence, two additional states are used in order to model the "start" or "end" events. These states are not associated with some emission probabilities.
- Initial state distribution $P(I|q_j)$: Transitions starting from the initial state.
- *Final-absorbent state*: The final state usually has only one non-null transition that loops onto itself with a probability of 1

- *Ergodic HMM*: an HMM allowing for transitions from any emitting state to any other emitting state
- *Left-right HMM*: an HMM where the transitions only go from one state to itself or to a unique follower.

- *Ergodic HMM*: an HMM allowing for transitions from any emitting state to any other emitting state
- *Left-right HMM*: an HMM where the transitions only go from one state to itself or to a unique follower.

HMM EXAMPLES

HMM1:

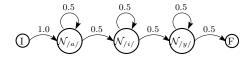


Transition matrix

Г	0.0	1.0	0.0	0.0	ך 0.0								
	0.0	0.4	0.3	0.3	0.0								
	0.0	0.3	0.4	0.3	0.0								
	0.0	0.3	0.3	0.3	0.1								
L	0.0	0.0	0.0	0.0	0.0 0.0 0.1 1.0								
						• 🗗	•	Ē	• •	≣.⊁	a.	596	

HMM EXAMPLES

HMM2:

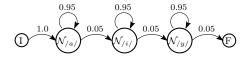


Transition matrix

[0.0	1.0	0.0	0.0	0.0 ך								
	0.0	0.5	0.5	0.0	0.0								
	0.0	0.0	0.5	0.5	0.0								
	0.0	0.0	0.0	0.5	0.5								
l	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.5 1.0								
						• @	•	< E	•	< E	•	æ	999

HMM EXAMPLES

HMM3:



Transition matrix

Г	0.0	1.0	0.0	0.0	0.0 ך
	0.0	0.95	0.05	0.0	0.0
	0.0	0.0	0.95	0.05	0.0 0.0 0.0
L	0.0	0.0	0.0	0.95	0.05
L	0.0	0.0	0.0	0.0	1.0
					▲□▶▲圖▶▲圖▶▲圖▶ 圖 少�?

In the case of HMMs with Gaussian emission probabilities, the parameter set Θ comprises :

- the transition probabilities *a_{ij}*;
- the parameters of the Gaussian densities characterizing each state, i.e. the means μ_i and the variances Σ_i.

The initial state distribution is sometimes modeled as an additional parameter instead of being represented in the transition matrix.

Size of an HMM model: Ergodic and Gaussian case

In the case of an ergodic HMM with N emitting states and Gaussian emission probabilities, we have:

- (N − 2) × (N − 2) transitions, plus (N − 2) initial state probabilities and (N − 2) probabilities to go to the final state;
- (N-2) emitting states where each pdf is characterized by a D dimensional mean and a $D \times D$ covariance matrix.

Hence, in this case, the total number of parameters is $(N-2) \times (N+D \times (D+1))$.

1 INTRODUCTION

- **2** PATTERN RECOGNITION WITH HMMS
 - Likelihood of a sequence given a HMM
 - Bayesian classification

OPTIMAL STATE SEQUENCE
 Viterbi Algorithm

・ロト・日本・モート・ヨー うべん

Likelihood of a sequence given a HMM:

 $p(X|\Theta),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

i.e. the likelihood of an observation sequence given a model.

• Assume a state sequence $Q = \{q_1, \cdots, q_T\}$

• Probability of a state sequence:

$$P(Q|\Theta) = \prod_{t=1}^{T-1} a_{t,t+1} = a_{1,2} \cdot a_{2,3} \cdots a_{T-1,T}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

- Assume a state sequence $Q = \{q_1, \cdots, q_T\}$
- Probability of a state sequence:

$$P(Q|\Theta) = \prod_{t=1}^{T-1} a_{t,t+1} = a_{1,2} \cdot a_{2,3} \cdots a_{T-1,T}$$

・ロト・日本・モート モー うへぐ

LIKELIHOOD OF AN OBSERVATION SEQUENCE GIVEN A STATE SEQUENCE

- Assume an observation sequence $X = \{x_1, x_2, \cdots, x_T\}$ and a state sequence $Q = \{q_1, \cdots, q_T\}$
- Likelihood of an observation sequence along a single path, Q, for an HMM, Θ:

$$p(X|Q,\Theta) = \prod_{i=1}^{T} p(x_i|q_i,\Theta) = b_1(x_1) \cdot b_2(x_2) \cdots b_T(x_T)$$

LIKELIHOOD OF AN OBSERVATION SEQUENCE GIVEN A STATE SEQUENCE

- Assume an observation sequence X = {x₁, x₂, · · · , x_T} and a state sequence Q = {q₁, · · · , q_T}
- Likelihood of an observation sequence along a single path, Q, for an HMM, Θ:

$$p(X|Q,\Theta) = \prod_{i=1}^{T} p(x_i|q_i,\Theta) = b_1(x_1) \cdot b_2(x_2) \cdots b_T(x_T)$$

LIKELIHOODS

 Joint likelihood of an observation sequence X and a path Q: it consists in the probability that X and Q occur simultaneously, p(X, Q|Θ), and decomposes into a product of the two quantities defined previously:

$p(X, Q|\Theta) = p(X|Q, \Theta)P(Q|\Theta)$ (Bayes)

 Likelihood of a sequence with respect to a HMM: the likelihood of an observation sequence X = {x₁, x₂, · · · , x_T} with respect to a Hidden Markov Model with parameters Θ expands as follows:

$$p(X|\Theta) = \sum_{\text{every possible } O} p(X, Q|\Theta)$$

LIKELIHOODS

 Joint likelihood of an observation sequence X and a path Q: it consists in the probability that X and Q occur simultaneously, p(X, Q|Θ), and decomposes into a product of the two quantities defined previously:

$$p(X, Q|\Theta) = p(X|Q, \Theta)P(Q|\Theta)$$
 (Bayes)

 Likelihood of a sequence with respect to a HMM: the likelihood of an observation sequence X = {x₁, x₂, ···, x_T} with respect to a Hidden Markov Model with parameters Θ expands as follows:

$$p(X|\Theta) = \sum_{\text{every possible } Q} p(X, Q|\Theta)$$

 There is a recursive way to compute p(X|Θ): Forward Recursion (FR)

• In FR, we define a *forward* variable:

$$p_t(i) = p(x_1, x_2, \cdots x_t, q^t = q_i | \Theta)$$

i.e. $p_t(i)$ is the probability of having observed the partial sequence $\{x_1, x_2, \dots, x_t\}$ and being in the state *i* at time *t*, given parameters Θ .

- There is a recursive way to compute p(X|Θ): Forward Recursion (FR)
- In FR, we define a *forward* variable:

$$p_t(i) = p(x_1, x_2, \cdots x_t, q^t = q_i | \Theta)$$

i.e. $p_t(i)$ is the probability of having observed the partial sequence $\{x_1, x_2, \dots, x_t\}$ and being in the state *i* at time *t*, given parameters Θ .

COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N - 2 emitting states.

Initialization:

$$p_1(j) = a_{1j}b_j(x_1)$$

with $2 \le j \le N-1$

• Recursion:

$$p_t(j) = \left[\sum_{i=2}^{N-1} p_{t-1}(i) \cdot a_{ij}\right] b_j(x_t),$$

with $2 \le t \le T$ and $2 \le j \le N-1$

• Termination:

$$p(X|\Theta) = \left[\sum_{i=2}^{N-1} p_T(i) \cdot a_{iN}\right]$$

COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N - 2 emitting states.

Initialization:

$$p_1(j) = a_{1j}b_j(x_1)$$

with $2 \leq j \leq N-1$

• Recursion:

$$p_t(j) = \left[\sum_{i=2}^{N-1} p_{t-1}(i) \cdot a_{ij}\right] b_j(x_t),$$

with $2 \leq t \leq T$ and $2 \leq j \leq N-1$

• Termination:

$$p(X|\Theta) = \left[\sum_{i=2}^{N-1} p_{\mathcal{T}}(i) \cdot a_{iN}\right]$$

COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N - 2 emitting states.

Initialization:

$$p_1(j) = a_{1j}b_j(x_1)$$

with $2 \leq j \leq N-1$

• Recursion:

$$p_t(j) = \left[\sum_{i=2}^{N-1} p_{t-1}(i) \cdot a_{ij}\right] b_j(x_t),$$

with $2 \leq t \leq T$ and $2 \leq j \leq N-1$

• Termination:

$$p(X|\Theta) = \left[\sum_{i=2}^{N-1} p_T(i) \cdot a_{iN}\right]$$

• Assume that there are many HMMs, Θ_i , $i = 1, \cdots, M$

 Given the likelihood p(X|Θ_i) computed using the forward recursion algorithm, we can compute the probability of Θ_i, using Bayes' rule:

$$P(\Theta_i|X) = \frac{p(X|\Theta_i)P(\Theta_i)}{P(X|\Theta)}$$

 $\propto p(X|\Theta_i)P(\Theta_i)$

• Other solution: Maximum likelihood.

- Assume that there are many HMMs, Θ_i , $i = 1, \cdots, M$
- Given the likelihood p(X|Θ_i) computed using the forward recursion algorithm, we can compute the probability of Θ_i, using Bayes' rule:

$$P(\Theta_i|X) = \frac{p(X|\Theta_i)P(\Theta_i)}{P(X|\Theta)}$$

\$\propto p(X|\Theta_i)P(\Theta_i)\$

• Other solution: Maximum likelihood.

- Assume that there are many HMMs, Θ_i , $i = 1, \cdots, M$
- Given the likelihood p(X|Θ_i) computed using the forward recursion algorithm, we can compute the probability of Θ_i, using Bayes' rule:

$$P(\Theta_i|X) = \frac{p(X|\Theta_i)P(\Theta_i)}{P(X|\Theta)}$$

\$\propto p(X|\Theta_i)P(\Theta_i)\$

• Other solution: Maximum likelihood.

1 INTRODUCTION

- 2 PATTERN RECOGNITION WITH HMMS
 - Likelihood of a sequence given a HMM
 - Bayesian classification
- OPTIMAL STATE SEQUENCE
 Viterbi Algorithm

Highest likelihood δ_t(i) along a single path among all the paths ending in state i at time t:

$$\delta_t(i) = \max_{q_1, q_2, \cdots, q_{t-1}} p(q_1, q_2, \cdots, q_{t-1}, q^t = q_i, x_1, x_2, \cdots x_t | \Theta)$$

 Buffer ψ_t(i) which allows to keep track of the "best path" ending in state i at time t:

$$\psi_t(i) = \operatorname*{argmax}_{q_1,q_2,\cdots,q_{t-1}} p(q_1,q_2,\cdots,q_{t-1},q^t = q_i,x_1,x_2,\cdots,x_t|\Theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Highest likelihood δ_t(i) along a single path among all the paths ending in state i at time t:

$$\delta_t(i) = \max_{q_1,q_2,\cdots,q_{t-1}} p(q_1,q_2,\cdots,q_{t-1},q^t = q_i,x_1,x_2,\cdots x_t |\Theta)$$

 Buffer ψ_t(i) which allows to keep track of the "best path" ending in state i at time t:

$$\psi_t(i) = \operatorname*{argmax}_{q_1,q_2,\cdots,q_{t-1}} p(q_1,q_2,\cdots,q_{t-1},q^t = q_i,x_1,x_2,\cdots x_t |\Theta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

VITERBI ALGORITHM

Initialization :

$$egin{array}{rcl} \delta_1(i) &=& a_{1i} \cdot b_i(x_1), & 2 \leq i \leq N-1 \ \psi_1(i) &=& 0 \end{array}$$

ecursion :

$$\begin{split} \delta_{t+1}(j) &= \max_{2 \le i \le N-1} [\delta_t(i) \cdot a_{ij}] \cdot b_j(x_{t+1}), & \begin{array}{l} 1 \le t \le I-1 \\ 2 \le j \le N-1 \\ \psi_{t+1}(j) &= \arg\max_{2 \le i \le N-1} [\delta_t(i) \cdot a_{ij}], & \begin{array}{l} 1 \le t \le T-1 \\ 2 \le j \le N-1 \\ 2 \le j \le N-1 \\ \end{array} \end{split}$$

③ Termination :

$$p^{*}(X|\Theta) = \max_{\substack{2 \le i \le N-1}} [\delta_{T}(i) \cdot a_{iN}]$$
$$q^{*}_{T} = \arg \max_{\substack{2 \le i \le N-1}} [\delta_{T}(i) \cdot a_{iN}]$$

Backtracking :

 $Q^* = \{q_1^*, \cdots, q_T^*\} \text{ so that } q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T-1, T-2, \\ (1 + 1)^{-1} (q_{t+1}^*), \quad t = T-1, T-1, \\ (1 + 1)^{-1} (q_{t+1}^*),$

OUTLINE

1 INTRODUCTION

- 2 PATTERN RECOGNITION WITH HMMS
 - Likelihood of a sequence given a HMM
 - Bayesian classification
- OPTIMAL STATE SEQUENCE
 Viterbi Algorithm

Most of this material is from Hervé Bourlard's course on Speech processing and speech recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >