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Additive Noise

A discrete-time noisy sequence:

y [n] = x [n] + b[n]

with power spectra:

Sy (ω) = Sx(ω) + Sb(ω)

Working with STFT:

ypL[n] = w [pL− n](x [n] + b[n])

in the frequency domain:

Y (pL, ω) = X (pL, ω) + B(pL, ω)

Our target:

X̂ (pL, ω) = |X (pL, ω)|e j]Y (pL,ω)
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Convolutional Distortion

A discrete-time convolutional distorted sequence:

y [n] = x [n] ? g [n]

where g [n] is the impulse response of a linear time-invariant
distortion filter.

Working with a frame-by-frame analysis:

ypL[n] = w [pL− n](x [n] ? g [n])

In the frequency domain, we can show that:

Y (pL, ω) = X (pL, ω)G (ω)
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Standard Spectral Subtraction

Assuming that noise and target (object) signal are uncorrelated:

Estimate of object’s short-time squared spectral magnitude

|X̂ (pL, ω)|2 = |Y (pL, ω)|2 − Ŝb(ω) if |Y (pL, ω)|2 − Ŝb(ω) ≥ 0
= 0 otherwise

STFT estimate:

X̂ (pL, ω) = |X̂ (pL, ω)|e j]Y (pL,ω)



Spectral Subtraction as a filtering operation

We can show:

|X̂ (pL, ω)|2 = |Y (pL, ω)|2 − Ŝb(ω)

≈ |Y (pL, ω)|2
[

1 +
1

R(pL, ω)

]−1

where

R(pL, ω) =
|X (pL, ω)|2

Ŝb(ω)

Suppression filter frequency response

Hs(pL, ω) =

[
1 +

1

R(pL, ω)

]−1/2
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The role of the analysis window

Let x [n] = A cos (ω0n) be in a stationary white noise b[n] of
variance σ2 and w [n] be a short-time window. Then:

Average short-time signal power at ω0:

Ŝx(pL, ω0) = E [|X (pL, ω0)|2] ≈ A2

4

∣∣∣∣∣
∞∑

n=−∞
w [n]

∣∣∣∣∣
2

Average power of the windowed noise

Ŝb(pL, ω) = E [|B(pL, ω)|2] = σ2
∞∑

n=−∞
w2[n]

Ratio at ω0:

E [|Y (pL, ω)|2]

Ŝb(pL, ω0)
= 1 +

A2/4

[σ2∆w ]

where

∆w =

∑∞
n=−∞ w2[n]∣∣∑∞
n=−∞ w [n]

∣∣2
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Cepstral Mean Subtraction

Let y [n] = x [n] ? g [n]. Then:

Logarithm of the STFT of y [n]:

Y (pL, ω) ≈ log [X (pL, ω)] + log [G (ω)]

Cepstrum:

ŷ [n, ω] ≈ F−1
p (log [X (pL, ω)]) + F−1

p (log [G (ω)])

= x̂ [n, ω] + ĝ [0, ω]δ[n]

Cepstral filter:
x̂ [n, ω] ≈ l [n]ŷ [n, ω]

where l [n] = u[n − 1]
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Wiener Filtering

Stochastic optimization:
if y [n] = x [n] + b[n], find h[n] such that x̂ [n] = y [n] ? h[n]
minimizes

e = E [|x̂ [n]− x [n]|2]

Frequency domain solution (Wiener filter):

Hw =
Sx(ω)

Sx(ω) + Sb(ω)

Time-varying Wiener filter:

Hw (pL, ω) =
Ŝx(pL, ω)

Ŝx(pL, ω) + Ŝb(ω)

Or

Hw (pL, ω) =

[
1 +

1

R(pL, ω)

]−1

where

R(pL, ω) =
Ŝx(pL, ω)

Ŝb(ω)
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Or

Hw (pL, ω) =

[
1 +

1

R(pL, ω)

]−1

where

R(pL, ω) =
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Comparing the two suppression filters

Solid line: Spectral Subtraction. Dashed-line: Wiener filter



A basic approach

We assume that the Wiener filter of p − 1 frame is known,
then:

X̂ (pL, ω) = Y (pL, ω)Hw ((p − 1)L, ω)

Updating the Wiener filter:

Hw (pL, ω) =
|X̂ (pL, ω)|2

|X̂ (pL, ω)|2 + Ŝb(ω)

Smooth power spectrum:

S̃x(pL, ω) = τ S̃x((p − 1)L, ω) + (1− τ)Ŝx(pL, ω)

where Ŝx(pL, ω) = |X̂ (pL, ω)|2

Initialization: spectral subtraction



Adaptive smoothing

Wiener filter estimator adapts to the “degree of stationarity”
of the measured signal.

A measure of the degree of stationarity

∆Y (pL) = h∆[p]?

[
1

π

∫ π

0
|Y (pL, ω)− Y ((p − 1)L, ω)|2dω

]1/2

Time varying smoothing constant:

τ(p) = Q[1− 2(∆Y (pL)− ∆̄Y )]

where

Q(x) =


x , 0 ≤ x ≤ 1
0, x < 0
1, x > 1

Smooth object spectrum:

S̃x(pL, ω) = τ(p)S̃x((p − 1)L, ω) + [1− τ(p)]Ŝx(pL, ω)
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Example of enhancement



Application to Speech

Satisfying enhanced speech quality with Wiener filter is obtained if:

Window: triangular

Frame length: 4ms

Frame interval (rate): 1ms

OLA synthesis



Example of enhancement in speech



Minimum mean-Square Error

If
y [n] = x [n] + b[n]

compute the expected value of:

E{|X (pL, ω)| | y [n]}

(Ephraim and Malah, 1984)



Suppression Filter

Suppression Filter of Ephraim and Malah

Hs(pL, ω) =
√

π
2

√(
1

1+γpo(pL,ω)

)(
γpr (pL,ω)

1+γpr (pL,ω)

)
× G

[
γpr (pL,ω)+γpo(pL,ω)γpr (pL,ω)

1+γpr (pL,ω)

]
where

G (x) = e−x/2[(1 + x)I0(x/2) + xI1(x/2)]

a posteriori SNR:

γpo(pL, ω) =
P[|Y (pL, ω)|2 − Ŝb(ω)]

Ŝb(ω)

a priori SNR:

γpr (pL, ω) = (1− a)P[γpo(pL, ω)]+

+ a |Hs((p−1)L,ω)Y ((p−1)L,ω)|2

Ŝb(ω)



Binaural Representation

Compute the enhanced signal (object) through Hs(pL, ω)

Compute its complement: 1− Hs(pL, ω)

Play a stereo signal: i.e., left channel for the object and right
channel it complement

Illusion: object and its complement come from different
directions, and thus there is further enhancement!!!
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Model-Based Processing

Model-based Wiener Filter:

H(ω) =
Ŝx(ω)

Ŝx(ω) + Ŝb(ω)

Power spectrum estimate of speech:

Ŝx(ω) =
A2

|1−
∑p

k=1 âke
−jωk |2



Stochastic Estimation methods

Maximum Likelihood, ML

max
a

pY |A(y |a)

Maximum a posteriori, (MAP)

max
a

pA|Y (a|y)

knowing the a priori probability pA(a)

Minimum-Mean-Squared Error, (MMSE)

mean of pA|Y (a|y)
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Example of (L)MAP estimation for
Enhancement

Solution to the MAP problem requires solving a set of
nonlinear equations.

Instead we use a linearized approach of MAP:

Initial estimation of â0

Estimate speech spectrum E [x |â0, y ]
Having a speech estimate, estimate a new parameter vector â1

Estimate speech spectrum:

Ŝ1
x (ω) =

A2

|1−
∑p

k=1 â
1
ke

−jωk |2

Estimate suppression filter:

H1(ω) =
Ŝ1
x (ω)

Ŝ1
x (ω) + Ŝb(ω)

make iterations



Linearized MAP
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Auditory Masking

Auditory masking: one sound component is concealed by the
presence of another sound component.

Frequency masking

Temporal masking

Critical band

Masking threshold

Maskee

Masker



Masking Threshold Curve



Frequency-Domain Masking Principles

Physiologically-based/Psychoacoustically-based filters

Critical Bands: Bandwidth of Psychoacoustically-based filters

Quantized critical bands (Bark Scale):

z = 13 arctan (0.76f ) + 3.5 arctan (f /7500)

Quantized critical bands (Mel Scale):

m = 2595 log1 0(1 + f /700)
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Masking Threshold Calculation

Compute energy Ek in each kth bark filter in the estimated
speech spectrum (after spectral subtraction)

Convolve each Ek with a “spreading function” hk :
Tk = Ek ? hk

Subtract a threshold offset depending if the masker is
noise-like or tone-like.

Map Tk to linear frequency scale to obtain T (pL, ω)



Auditory Masking Threshold Curves



Approach 1

Suppression filter:

Hs(pL, ω) = [1− aQ(pL, ω)γ1 ]γ2 , if Q(pL, ω)γ1 < 1
a+b

= [bQ(pL, ω)γ1 ]γ2 , otherwise

where

Q(pL, ω) =

[
Ŝb(ω)

|Y (pL, ω)|2

]1/2

Requirements: (a) Estimation of Ŝb(ω), and (b) a masking
threshold curve on each frame T (pL, ω).



Approach 2

From y [n] = x [n] + b[n] go to d [n] = x [n] + ab[n]

If hs [n] is the impulse response of the suppression filter, then
the noise error is:

ab[n]− hs [n] ? b[n]

with short-time power spectrum:

Ŝe(pL, ω) = |Hs(pL, ω)− a|2Ŝb(ω)

Constraint:

|Hs(pL, ω)− a|2Ŝb(ω) < T (pL, ω)

or:

a−

√
T (pL, ω)
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