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Source-Filter[1]

Source:

u(t) = Re

K(t)∑
k=1

αk(t) exp [jφk(t)]

where:

φk(t) =

∫ t

0
Ωk(σ)dσ + φk

Filter: h(t, τ) with Fourier Transform (FT):

H(t,Ω) = M(t,Ω) exp [jΦ(t,Ω)]
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Output speech

s(t) = Re

K(t)∑
k=1

Ak(t) exp [jθk(t)]

where:

Ak(t) = αk(t)M [t,Ωk(t)]

θk(t) = φk(t) + Φ [t,Ωk(t)]

=

∫ t

0
Ωk(σ)dσ + Φ [t,Ωk(t)] + φk
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Frame-by-Frame analysis



Stationarity Assumption

We assume stationarity inside the analysis window:

Al
k(t) = Al

k

Ωl
k(t) = Ωl

k

which leads to:
θlk(t) = Ωl

k(t − tl) + θlk

and to:

s(t) =
K l∑
k=1

Al
k exp (jθlk) exp

[
jΩl

k(t − tl)
]

tl −
T

2
≤ t ≤ tl +

T

2
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Discrete-Time Formulation

Steps to discrete time formula:

Time shift: t
′

= t − tl

Convert to discrete time:

s[n] =
K l∑
k=1

Al
k exp (jθlk) exp (jωl

kn) − Nw − 1

2
≤ n ≤ Nw − 1

2



Mean-Squared Error

Given the original measured waveform, y [n] and the synthetic
speech waveform, s[n], estimate the unknown parameters Al

k , ωl
k ,

and θlk by minimizing the MSE criterion:

εl =

n=(Nw−1)/2∑
n=−(Nw−1)/2

|y [n]− s[n]|2

which can be written as:

εl =

n=(Nw−1)/2∑
n=−(Nw−1)/2

|y [n]|2 + Nw

K l∑
k=1

(∣∣∣Y (ωl
k)− γ lk

∣∣∣2 − |Y (ωl
k)|2

)
which can be reduced further to:

εl =

n=(Nw−1)/2∑
n=−(Nw−1)/2

|y [n]|2 − Nw

K l∑
k=1

|Y (ωl
k)|2
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Karhunen-Loève Expansion

Karhunen-Loève expansion allows constructing a random
process from harmonic sinusoids with uncorrelated complex
amplitudes.

Estimated power spectrum should not vary “too much” over
consecutive frequencies.

Following the above necessary constraints, for unvoiced speech,
and for a window width to be at least 20ms, an 100 Hz harmonic
structure provides good results.
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Karhunen-Loève expansion allows constructing a random
process from harmonic sinusoids with uncorrelated complex
amplitudes.

Estimated power spectrum should not vary “too much” over
consecutive frequencies.

Following the above necessary constraints, for unvoiced speech,
and for a window width to be at least 20ms, an 100 Hz harmonic
structure provides good results.



Karhunen-Loève Expansion
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Example



Implementation

Window width be 2.5 times the average pitch period or 20
ms, whichever is larger.

Use Hamming window, normalized to one:

∞∑
n=−∞

w [n] = 1

Use zero padding to get enough samples of the underlying
spectrum (i.e., 1024-point FFT)

Remove linear phase offset

Refine your frequency estimates
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Showing the process ...



Block diagram of the Analysis System
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Problem of frequency matching



Frame-to-Frame Peak Matching



The birth/death process



A birth/death process in speech



Why not ...

Why not to estimate the original speech waveform on the lth
frame, directly as:

s[n] =
K l∑
k=1

Al
k cos (nωl

k + θlk), n = 0, 1, 2, · · · , L− 1



A simple solution: OLA



Amplitude Interpolation

Linear Interpolation:

Al
k [n] = Al

k +
(
Al+1
k − Al

k

)(n
L

)
n = 0, 1, 2, · · · , L− 1



Phase wrapped



Cubic Phase model

θ(t) = ζ + γt + αt2 + βt3



About the phase derivative

Assuming that vocal tract is slowly varying, and since:

θ(t) =

∫ t

0
Ω(σ)dσ + φ+ Φ[t,Ω(t)]

θ̇(t) ≈ Ω(t)

So:

θ̇l ≈ Ωl

θ̇l+1 ≈ Ωl+1
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Four constraints for phase polynomial

There are four constraints

θ(0) = θl

θ̇(0) = Ωl

θ(T ) = θl+1 + 2πM

θ̇(T ) = Ωl+1

and ... five unknowns (don’t forget M)
We need one more constraint!
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How to choose M



Estimating M

Find M that minimizes the criterion:

f (M) =

∫ T

0

[
θ̈(t;M)

]2
dt

Using continuous variable:

x∗ =
1

2π

[
(θl + ΩlT − θl+1) + (Ωl+1 − Ωl)

T

2

]
M∗ is the nearest integer to x∗
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Block diagram of the Synthesis System
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Reconstruction Example



Reconstruction Example



Magnitude-only Reconstruction Example
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Sound Examples

Original Mixed Min Zero

Male

Female

Male

Female
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Excitation model

We have seen that:

u(t) =

K(t)∑
k=1

αk(t) exp [jφk(t)]

where:

φk(t) =

∫ t

0
Ωk(σ)dσ + φk

Assuming voiced speech and constant frequency in the analysis
window, then:

u(t) =

K(t)∑
k=1

αk(t) exp [j(t − t0)Ωk ] t ∈ [0,T ]
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Speech model[2]

Then:

s[n] =

K(t)∑
k=1

Ak(t) cos [θk(t)]

where:

Ak(t) = αk(t)Mk(t)

θk(t) = φk(t) + Φk(t)

Therefore:
Φk(t) = θk(t)− (t − t0)Ωk



Uniform time-scale, by ρ

Let’s t represent the original articulation rate and t ′ the
transformed rate:

t ′ = ρ t

Given the source/filter model:

System parameters are time-scaled

Excitation parameters (phase) are scaled in such a way to
maintain fundamental frequency.
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Onset-time model for time-scale



Excitation function in t ′

Time-scaled pitch period:

P̃(t ′) = P(t ′ρ−1)

Modified excitation function

ũ(t ′) =

K(t)∑
k=1

α̃k(t ′) exp
[
j φ̃k(t ′)

]
where:

φ̃k(t ′) = (t
′
ρ−1 − t

′
0)Ωk

and
α̃k(t ′) = αk(t ′ρ−1)



System function parameters in t ′

M̃k(t ′) = Mk(t ′ρ−1)

Φ̃k(t ′) = Φk(t ′ρ−1)



Waveform in t ′

s̃(t ′) =

K(t)∑
k=1

Ãk(t ′) exp
[
j θ̃k(t ′)

]
where

Ãk(t ′) = α̃k(t ′)M̃k(t ′)

θ̃k(t ′) = φ̃k(t ′) + Φ̃k(t ′)



Onset times estimation



Estimating System Phase

Let’s assume that the onset time no(l) for the l th frame is known,
then:

φlk = n̂o(l)ωl
k

where n̂o(l) = no(l)− lL.
Then, the system phase is estimated as:

Φ̃l
k = θlk − φlk
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Estimating Excitation Phase

Let’s assume we know the onset time in the previous frame l − 1,
then the current onset time in t ′, is given by:

n
′
o(l) = n

′
o(l − 1) + J

′
P l

and then:
φ̃lk = (n

′
o(l)− lL

′
)ωl

k

where L
′

= ρL



Synthesis

Synthesis is performed in the same way as if no modification is
applied:

Linear interpolation for amplitudes

Cubic interpolation for phases



Block diagram for Analysis/Synthesis for
Time-Scale modification



Example of Time-scale modification



Sound Examples

0.5 0.8 Orig 1.2 1.5

Male

Female

0.75 Orig 1.25

Trumpet
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Reading paper

Paper:

T. F. Quatieri and R. J. McAulay:
Shape Invariant Time-Scale and Pitch Modification of Speech
IEEE Trans. Acoust., Speech, Signal Processing, Vol.40, No.3,

pp 497-510, March 1992



Outline
1 Sinusoidal Speech Model
2 Estimation of Sinewave Parameters

Voiced Speech
Unvoiced Speech
The Analysis System

3 Synthesis
Linear Amplitude Interpolation
Cubic Phase Interpolation

4 Examples
5 Sound Examples
6 Shape Invariant Time-Scale Modifications

The Model
Parameters Estimation
Synthesis
Sound Examples

7 Shape Invariant Pitch Modifications
8 Acknowledgments
9 References



Acknowledgments

Most, if not all, figures in this lecture are coming from the book:

T. F. Quatieri: Discrete-Time Speech Signal Processing,
principles and practice
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and have been used after permission from Prentice Hall
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