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Motivation
• In September 2016, DeepMind presented WaveNet.

• WaveNet is a deep generative model of raw audio waveforms.

• It is able to generate speech which mimics any human voice and which sounds more 
natural than the best existing Text-to-Speech systems.

• WaveNet directly models the raw waveform of the audio signal, one sample at a time.

• By modelling the waveforms, WaveNet can model any kind of audio, including music.

• DeepMind published a paper about WaveNet, which does not reveal all the details of 
the network.

• We built an implementation of WaveNet based on partial information about their 
architecture.

• This attempt revealed the computational requirements of WaveNet. Also the new 
software will be used to investigate the properties of these networks and their 
potential applications.  



WaveNet architecture – Pre-processing
• The joint probability of a speech waveform x = 𝑥1𝑥2⋯𝑥𝑇 can be written as

𝑝 𝑥 = 

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

• WaveNet represents 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 with a categorical distribution where 𝑥𝑡 falls 
into one of a number of bins (usually 256). 

• Raw audio, 𝑦𝑡, is first transformed into 𝑥𝑡, where −1 < 𝑥𝑡 < 1, using an μ-law 
transformation

𝑥𝑡 = 𝑠𝑖𝑔𝑛(𝑦𝑡)
ln(1 + 𝜇 𝑦𝑡 )

ln(1 + 𝜇)

where 𝜇 = 255

• Τhen 𝑥𝑡 is quantized into 256 values and encoded to one-hot vectors.

• Example:
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WaveNet architecture – 1×1 Convolutions
• 1×1 convolutions are used to change the number of channels. They do not operate in 

time dimension

• Example of a 1×1 convolution with 4 input channels, and 3 output channels
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WaveNet architecture – Causal convolutions
• Example of a causal convolution of width 2, 4 input channels, and 3 output channels
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WaveNet architecture – Dilated convolutions
• Example of a causal dilated convolution of width 2, dilation 2, 4 input channels, and 3 

output channels. Dilation is applied in time dimension
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WaveNet architecture – Dilated convolutions
• WaveNet models the conditional probability distribution 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 with a 

stack of dilated causal convolutions.

Visualization of a stack of dilated causal convolutional layers

Input

Hidden layer 

Hidden layer 

Hidden layer 

Output 

dilation = 8

dilation = 4

dilation = 2

dilation = 1

• Stacked dilated convolutions enable very large receptive fields with just a few layers.

• In WaveNet, the dilation is doubled for every layer up to a certain point and then 
repeated: 1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, …, 512, 1, 2, 4, …, 512



WaveNet architecture – Dilated convolutions
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• Example with dilations 1,2,4,8,1,2,4,8



WaveNet architecture – Residual connections
• In order to train a WaveNet with more than 30 

layers, residual connections are used.

• Residual networks were developed by researchers 
from Microsoft Research.

• They reformulated the mapping function,
𝑥 → 𝑓 𝑥 , between layers from 𝑓 𝑥 = ℱ(𝑥) to 
𝑓 𝑥 = 𝑥 + ℱ(𝑥). 

• The residual networks have identity mappings, 𝑥, 
as skip connections and inter-block activations 
ℱ(𝑥).

• Benefits

• The residual ℱ(𝑥) can be more easily learned 
by the optimization algorithms.

• The forward and backward signals can be 
directly propagated from one block to any 
other block.

• The vanishing gradient problem is not a 
concern.

Weight layer

Weight layer 

+

𝑥

identity
𝑥 ℱ(𝑥)

𝑥 + ℱ(𝑥)

Weight layer

Weight layer

+

identity

𝑥 + ℱ(𝑥) 𝒢(𝑥 + ℱ(𝑥))

𝑥 + ℱ(𝑥)+𝒢(𝑥 + ℱ(𝑥))



WaveNet architecture – Experts & Gates
• WaveNet uses gated networks.

• For each output channel an expert is defined. 

• Experts may specialize in different parts of the input space  

• The contribution of each expert is controlled by a corresponding gate network. 

• The components of the output vector are mixed in higher layers, creating mixture 
of experts. 

Dilated convolution Dilated convolution

tanh σ

×
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te
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p
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WaveNet architecture – Post-processing
• WaveNet assigns to an input vector 𝑥𝑡 a probability distribution using the softmax

function.

ℎ(𝑧)𝑗 =
𝑒
𝑧𝑗

 𝑐=1
256 𝑒𝑧𝑐

,    𝑗 = 1,… , 256

• The loss function used is the mean (across time) cross entropy.

𝐻 𝑖𝑛, 𝑜𝑢𝑡 = −
1

𝑇
 

𝑡=1
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WaveNet – Audio generation
• After training, the network is sampled to generate synthetic utterances.

• At each step during sampling a value is drawn from the probability distribution 
computed by the network. 

• This value is then fed back into the input and a new prediction for the next step is 
made. 

• The output, 𝑜𝑢𝑡,  of the network is scaled back to speech with the inverse μ-law 
transformation.

𝑢 = 2
𝑜𝑢𝑡

𝜇
− 1

speech=
𝑠𝑖𝑔𝑛(𝑢)

𝜇
1 + 𝜇 𝑢 − 1

From 𝑜𝑢𝑡 ∈ 0,1,2, … , 255 to 𝑢 ∈ −1,1

Inverse μ-law transform



Fast WaveNet – Audio generation
• A naïve implementation of WaveNet generation requires time 𝑂 2𝐿 , where 𝐿 is the 

number of layers.

• Recently, Tom Le Paine et al. have published their code for fast generation of 
sequences from trained WaveNets.

• Their algorithm uses queues to avoid redundant calculations of convolutions.

• This implementation requires time 𝑂(𝐿).

Fast



Basic WaveNet architecture - DeepMind
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Basic WaveNet architecture – Un. Crete
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WaveNet architecture for TTS – Un. Crete

Input (speech)
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An implementation of WaveNet

A directed graph
𝑊, 𝑏

𝑈,𝑊, 𝑏
RNN

dense

• The NNARC library, which we build in the University of Crete, supports network 
architectures which are directed graphs.

• Due to this support the integration of WaveNet into NNARC was straight-forward. 

• The only new components were the dilated causal convolutional layer and the data 
reader.  

𝑊, 𝑏
Convolutional


