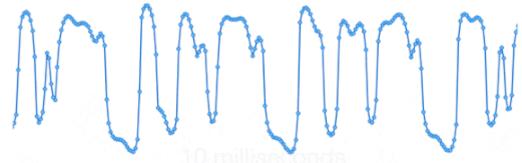
An implementation of WaveNet

May 2017

Vassilis Tsiaras
Computer Science Department
University of Crete

Motivation

- In September 2016, DeepMind presented WaveNet.
- WaveNet is a deep generative model of raw audio waveforms.
- It is able to generate speech which mimics any human voice and which sounds more natural than the best existing Text-to-Speech systems.
- WaveNet directly models the raw waveform of the audio signal, one sample at a time.



- By modelling the waveforms, WaveNet can model any kind of audio, including music.
- DeepMind published a paper about WaveNet, which does not reveal all the details of the network.
- We built an implementation of WaveNet based on partial information about their architecture.
- This attempt revealed the computational requirements of WaveNet. Also the new software will be used to investigate the properties of these networks and their potential applications.

WaveNet architecture – Pre-processing

• The joint probability of a speech waveform $\mathbf{x} = x_1 x_2 \cdots x_T$ can be written as

$$p(x) = \prod_{t=1}^{r} p(x_t | x_1, \dots, x_{t-1})$$

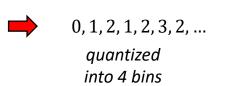
- WaveNet represents $p(x_t|x_1,...,x_{t-1})$ with a categorical distribution where x_t falls into one of a number of bins (usually 256).
- Raw audio, y_t , is first transformed into x_t , where $-1 < x_t < 1$, using an μ -law transformation

$$x_t = sign(y_t) \frac{\ln(1 + \mu|y_t|)}{\ln(1 + \mu)}$$

where $\mu = 255$

- Then x_t is quantized into 256 values and encoded to one-hot vectors.
- Example:

$$-2.2, -1.43, -0.77, -1.13, -0.58, -0.43, -0.67, ...$$
 \longrightarrow $-0.7, -0.3, 0.2, -0.1, 0.4, 0.6, 0.3, ...$ $signal$ μ -law transformed



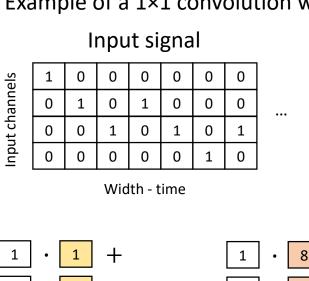
bin 0	1	0	0	0	0	0	0
bin 1	0	1	0	1	0	0	0
bin 2	0	0	1	0	1	0	1
bin 3	0	0	0	0	0	1	0

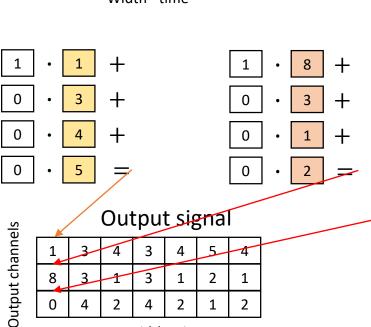
one-hot vectors

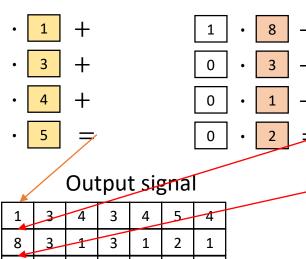
Input to WaveNet

WaveNet architecture — 1×1 Convolutions

- 1×1 convolutions are used to change the number of channels. They do not operate in time dimension
- Example of a 1×1 convolution with 4 input channels, and 3 output channels

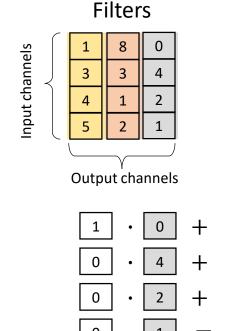






Width - time

2



$$out[c_{out}, t] = \sum_{c_{in}=0}^{3} in[c_{in}, t] \cdot filter[c_{out}, c_{in}]$$

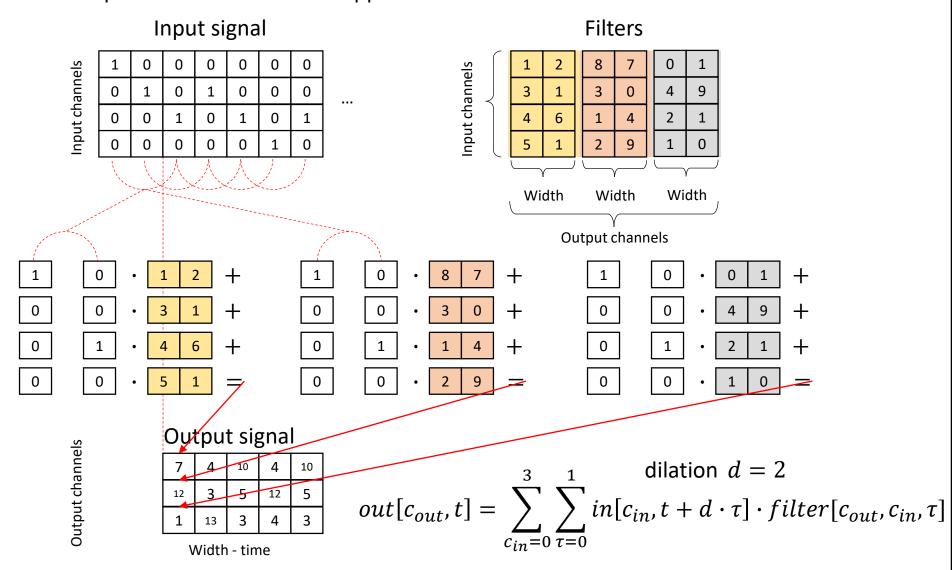
WaveNet architecture – Causal convolutions

• Example of a causal convolution of width 2, 4 input channels, and 3 output channels



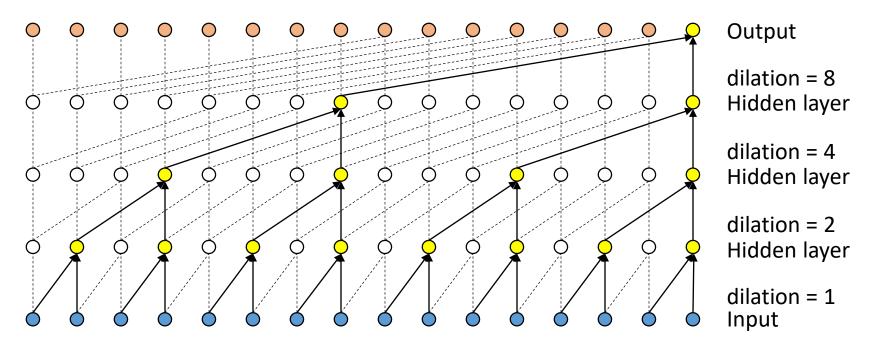
WaveNet architecture – Dilated convolutions

• Example of a **causal dilated** convolution of width 2, dilation 2, 4 input channels, and 3 output channels. Dilation is applied in time dimension



WaveNet architecture – Dilated convolutions

• WaveNet models the conditional probability distribution $p(x_t|x_1,...,x_{t-1})$ with a stack of dilated causal convolutions.

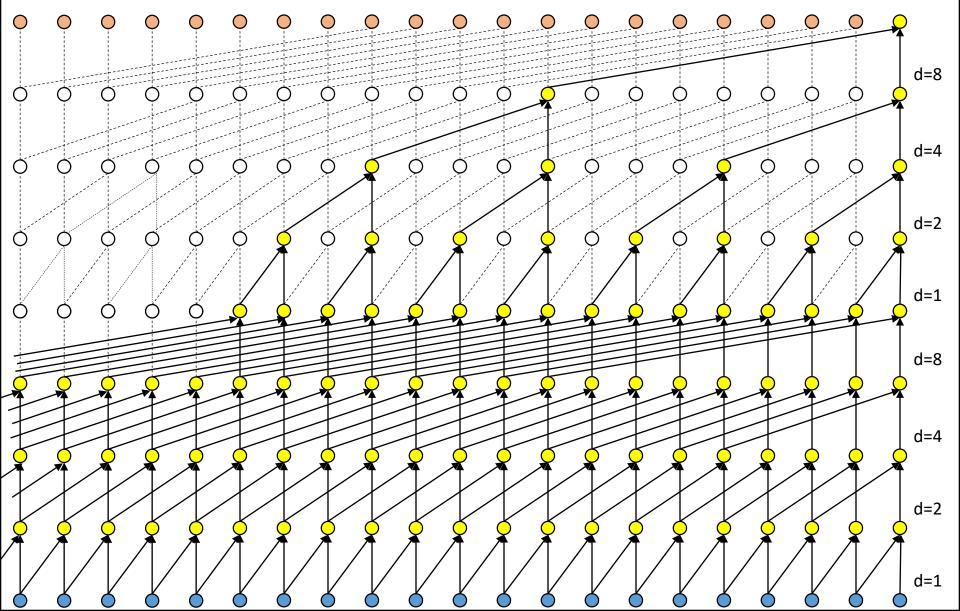


Visualization of a stack of dilated causal convolutional layers

- Stacked dilated convolutions enable very large receptive fields with just a few layers.
- In WaveNet, the dilation is doubled for every layer up to a certain point and then repeated: 1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, ..., 512

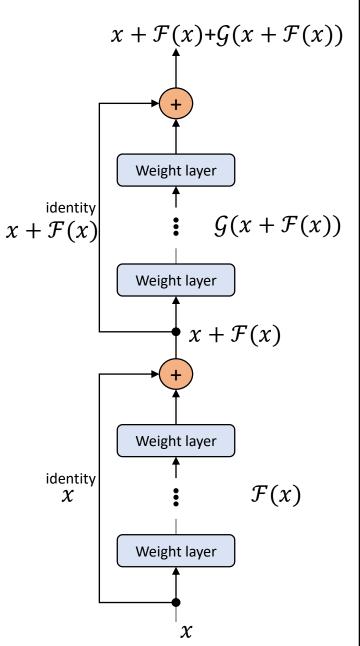
WaveNet architecture – Dilated convolutions

Example with dilations 1,2,4,8,1,2,4,8



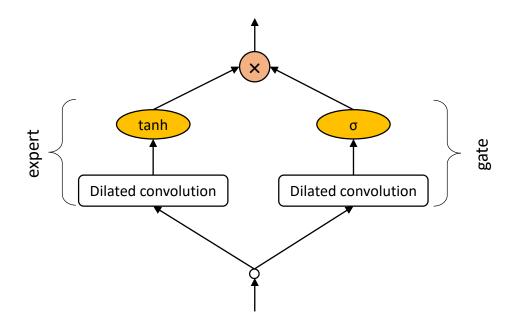
WaveNet architecture – Residual connections

- In order to train a WaveNet with more than 30 layers, residual connections are used.
- Residual networks were developed by researchers from Microsoft Research.
- They reformulated the mapping function, $x \to f(x)$, between layers from $f(x) = \mathcal{F}(x)$ to $f(x) = x + \mathcal{F}(x)$.
- The residual networks have identity mappings, x, as skip connections and inter-block activations $\mathcal{F}(x)$.
- Benefits
 - The residual $\mathcal{F}(x)$ can be more easily learned by the optimization algorithms.
 - The forward and backward signals can be directly propagated from one block to any other block.
 - The vanishing gradient problem is not a concern.



WaveNet architecture – Experts & Gates

- WaveNet uses gated networks.
- For each output channel an expert is defined.
 - Experts may specialize in different parts of the input space
- The contribution of each expert is controlled by a corresponding *gate* network.
- The components of the output vector are mixed in higher layers, creating mixture of experts.



WaveNet architecture – Post-processing

• WaveNet assigns to an input vector x_t a probability distribution using the softmax function.

$$h(z)_j = \frac{e^{z_j}}{\sum_{c=1}^{256} e^{z_c}}, \quad j = 1, ..., 256$$

WaveNet output: probabilities from softmax

• The loss function used is the mean (across time) cross entropy.

$$H(in, out) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{c=1}^{256} in(c, t) \log(out(c, t))$$

WaveNet – Audio generation

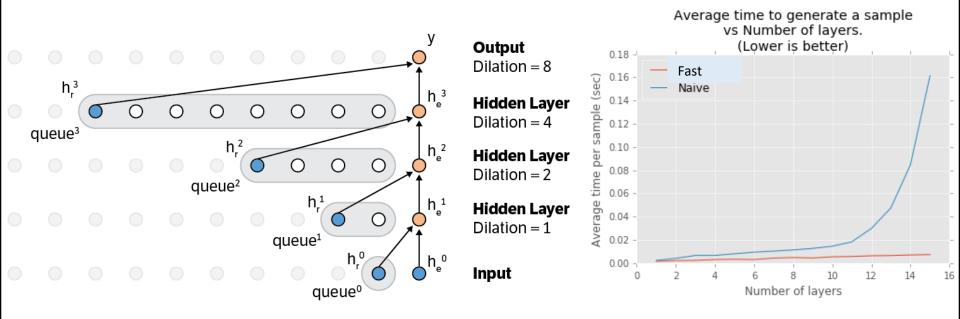
- After training, the network is sampled to generate synthetic utterances.
- At each step during sampling a value is drawn from the probability distribution computed by the network.
- This value is then fed back into the input and a new prediction for the next step is made.
- The output, out, of the network is scaled back to speech with the inverse μ -law transformation.

$$u = 2\frac{out}{\mu} - 1$$
 From $out \in \{0, 1, 2, ..., 255\}$ to $u \in [-1, 1]$

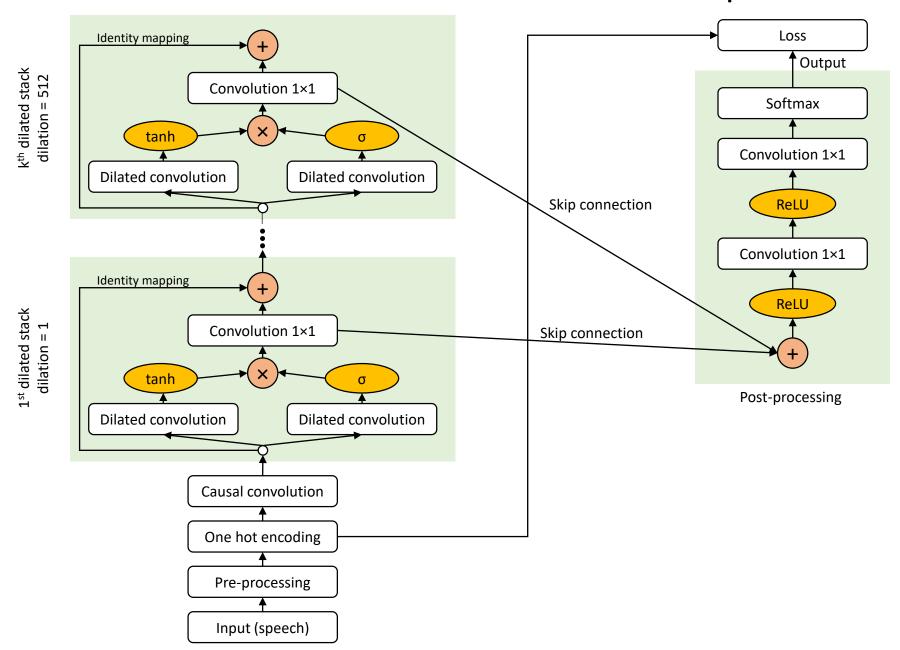
speech=
$$\frac{sign(u)}{\mu} ((1 + \mu)^u - 1)$$
 Inverse μ -law transform

Fast WaveNet – Audio generation

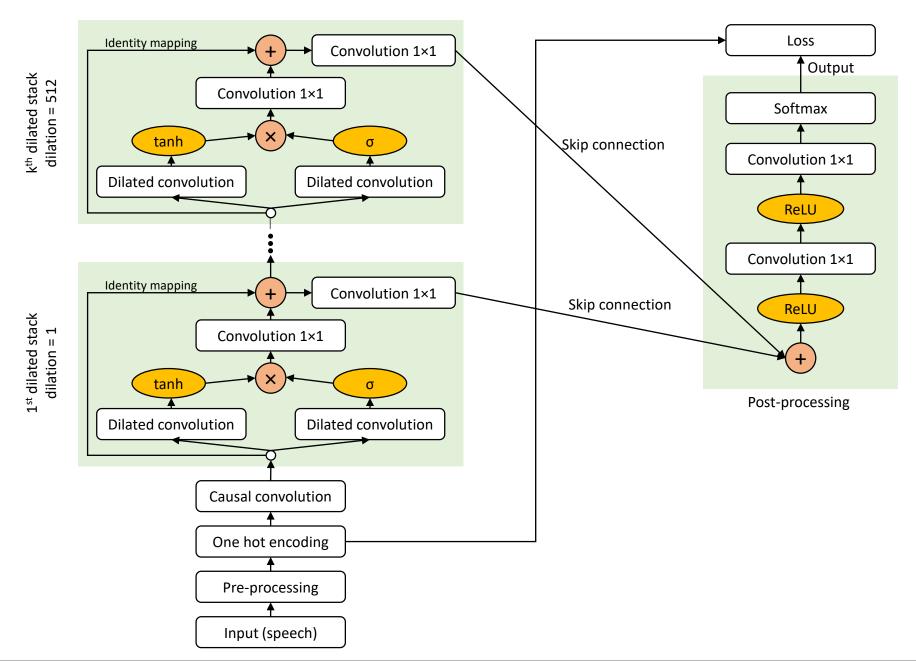
- A naïve implementation of WaveNet generation requires time $O(2^L)$, where L is the number of layers.
- Recently, Tom Le Paine et al. have published their code for fast generation of sequences from trained WaveNets.
- Their algorithm uses queues to avoid redundant calculations of convolutions.
- This implementation requires time O(L).



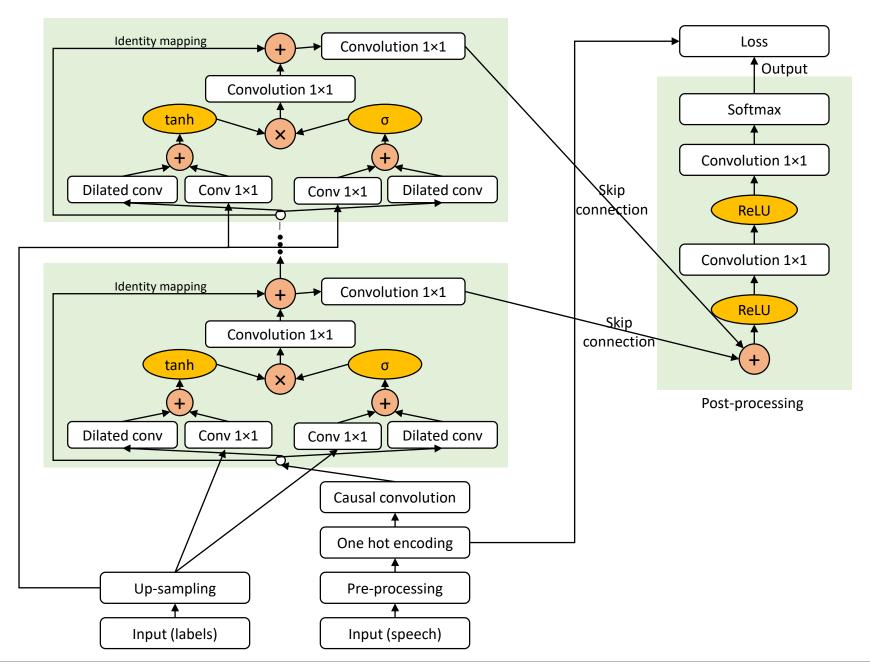
Basic WaveNet architecture - DeepMind



Basic WaveNet architecture – Un. Crete

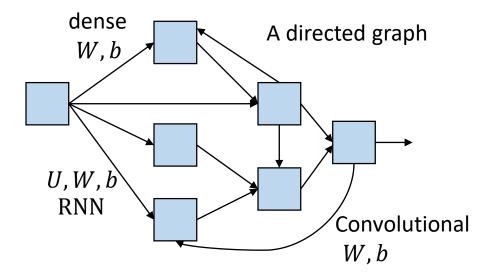


WaveNet architecture for TTS — Un. Crete



An implementation of WaveNet

• The NNARC library, which we build in the University of Crete, supports network architectures which are directed graphs.



- Due to this support the integration of WaveNet into NNARC was straight-forward.
- The only new components were the dilated causal convolutional layer and the data reader.