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- provides a succinct re-

_ processing research and

he special series for the 50th anniversary
of the Signal Processing Society contin-
ues in this issue with an article that covers
the domain
of the Speech Process-
ing Technical Commit-

tee. This article
view of the history and
cuarrent status of the

field of speech-

describes future contri-
butions speech process-
ing will make tosociety.

Because speech is the most natural form of hu-
man communication, speech processing has been
one of the most exciting areas of signal processing.
In the last several decades, speech research has
drawn scientists and engineers together to form an
important discipline. It has created many technical
impacts on society. Speech-coding algorithms have
made voice communication and the storage of voice
data effective and efficient. Speech-recognition
technology has made it possible for computers to
follow human voice commands and even undet-
stand human languages. Speech-synthesis tech-
niques have created many interactive systeims that
correspond with humans with a natural voice. As
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computers become faster and more ubiquitous,
these and other areas in speech processing are ex-
pected to flourish further and bring about an era of
true human-computer
interaction,

To summarize the ex-

citing developments in
this field; the. article
presents an - insightful
review and reports the
authors’ views in ‘the
various areas of speech
processing. Topics cov-
ered in this article in-
clude speech analysis
and synthesis, speech
coding, speech enhancement, speech recognition,
spoken-language understanding, speaker identifica-
tion and verification, and multimodal communica-
tion. In addition, a sidebar reviews the history of
secure voice coding, ‘

1 invite you to read this article to review the his-
tory of speech processing, to understand its current
trends, and to foresee its future prospects envisioned
by experts in the field. Enjoy!
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s part of the celebration for the 50th anniver-
sary of the IEEE Signal Processing Society,
this article intends to provide a succinct re-
.view of speech research, in particular its his-
tory, current trends, and prospects for the future. The
research areas covered are speech analysis and synthesis,
speech coding, speech enhancement, speech recognition,
spoken language understanding, speaker identification
and verification, and multimodal communication. We
omit from this discussion such topics as speech percep-
tion and production and related physiological aspects,
not because they are not a part of speech research, but in
order to bound the scope of the effort and to cover those
topics most related to readers of this magazine. We hope
readers of IEEE Signal Processing Magazine as well as
members of the IEEE Signal Processing Society will be
able to draw a picture of this important area of research
and to appreciate its significance, particularly from the
signal-processing perspective. We must caution the
reader that such a review is cursory at best and may suffer
from errors of judgement and omission.

This article was commissioned by the Speech Techni-
cal Committee of the Signal Processing Society. Many re-
nowned speech-communication researchers were invited
to contribute to this article. The list of authors represents
those who submitted written contributions.

Speech Analysis and Synthesis

Research in speech processing and communication, for
the most part, was motivated by people’s desire to build
mechanical models to emulate human verbal communica-
tion capabilities. The earliest attempt of this type was a
mechanical mimic of the human vocal apparatus by Wolt-
gang von Kempelen, described in his book published in
1791 [1]. Charles Wheatstone, some 40 years later, con-
structed a machine based on Kempelen’s specification us-
ing a bellows to represent the lung in providing a
reservoir of compressed air [2]. The vocal cords were re-
placed by a vibrating reed that was placed at one end of a
flexible leather tube—the “vocal tract”—whose cross-
sectional area could be varied to produce various voiced
sounds. Other sounds could be produced by the machine

Contributing Authors
Don Childers, University of Flovida, Gainesville, USA
R.V. Cox, ATST Labs-Research, USA
Renato DeMori, University of Avignon, France
Sadaoki Furui, Tokyo Institute of Technologies, Japon
B.H. Juang, Bell Labs, Lucent Technolggies, USA
J.J. Mariani, LIMSI, France
Patti Price, SRI, USA
Shigeki Sagayama, NTT, Japan
M.M. Sondhi, Bell Labs, Lucent Technologies, USA
Ralph Weischedel, BBN/GTE, USA

MAY 1998

as well, e.g., nasals by opening a side branch tube (the
“nostrils”), fricatives by shutting off the reed and intro-
ducing turbulence at appropriate places in the vocal tract,
and stops by closing the tube and opening it abruptly. It
appears that Wheatstone was able to produce a fairly large
repertoire of vowels and consonants and even some short
sentences using this simple mechanical device.

Interest in mechanical analogs of the human vocal ap-
paratus continued into the 20th century. While several
notable people (Faber, Bell, Paget, and Riesz) followed
Kempelen and Wheatstone’s speech-production models,
Helmbholz, Miller, Koenig, and others pursued a different
design principle. They synthesized vowel sounds by su-
perimposing harmonically related sinusoids with appro-
priately adjusted amplitudes. These two fundamentally
different approaches, source-tract modeling (motivated
by physics) and sinusoidal modeling (motivated by
mathematics), have dominated the speech signal-
processing field for more than 100 years.

Research interest in speech processing today has gone
well beyond the simple notion of mimicking the human
vocal apparatus (which still intrigues many researchers).
The scope (both breadth and depth) of speech research
today has become much larger due to advances in mathe-
matical tools (algorithms), computers, and the almost
limitless potential applications of speech processing in
modern communication systems and networking. Con-
versely, speech research has been viewed as an important
driving force behind many of the advances in computing
and software engineering, including digital signal proces-
sors (DSPs). Such a synergetic relationship will continue
for years to come,

Source-Tract and Source-Filter Modeling

Source-tract modeling by electrical circuits, realized in
the form of a source-filter system, was first proposed by
Homer Dudley at Bell Laboratories in the 1930s [3]. As
an electrical engineer, Dudley exploited his insights in
modulated-carrier radio transmission to construct an elec-
trical speech synthesizer that dispensed with all the me-
chanical devices of von Kempelen’s synthesizer. A highly
simplified, but accurate, schematic of Dudley’s synthe-
sizer 1s shown in Fig. 1. The electrical excitation source
had two components—a “buzz” source (for voiced
speech) and a “hiss” source (for unvoiced speech). The
buzz source was a relaxation oscillator that generated a se-
quence of pulses with a controllable repetition rate (the
fundamental frequency) and provided the voiced carrier.
The hiss source was the shot noise gencrated by a vacuum
tube, and it provided the unvoiced carrier. The message
(i.e., the time-varying characteristics of the vocal tract)
was modulated on the source carrier by passing the out-
put of the source through a filter whose frequency re-
sponse was adjustable. This variable filter was realized by
a bank (10 channels) of bandpass filters covering the
range of speech frequencies. Any desired vocal-tract
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A 1. Schematic diagram of the VODER synthes:zer (after Dudley,
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frequency-response characteristic was achieved by adjust-

ing the amplitudes of the outputs of the bandpass filters.
With the collaboration of Riesz and Watkins, Dudley

implemented two highly acclaimed devices, the VODER
(VOice DEmonstration Recorder) and the VOCODER, -
based on this principle. The VODER (a schematic dia- -

gram of which is shown in Fig.1) was system in which

an operator manipulated a keyboard with 14 keys awrist
bar; and a foot pedal to generate the control’ parameters -

required to control the sound source and the filter bank.

This system was displayed with great success at the New -
York Wotld’s Fair in 1939. According to Dudley; it took
a few weeks of training to be able to operate a VODER a

and produce intelligible speech on demand.
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analog networks were. senal or paraﬂel combmatlons of

second- order resonators. A series of impulsc-like wave-
forms, or white noise, was applied to the resonators inor-
: tion of synthesis technology.

der to gencrate vowels or fricative sounds

 In the 1960s, the discrete domain realizations of for-
~ mant synthesizers were proposed 8, 34]. The resonators -
~for the formant synthesizer were arranged in either a cas-
‘cade or parallel manner {8, 35,36]. Flanagan concluded -
thar the serial form was a better model for non-nasal

voiced sounds, while the parallel structure was superior
for nasal and unvoiced sounds. The reason was that the

vocal tract is considered as an all-pole filter for non-nasal
- voiced sounds and as a pole-zero system for other phona-
_ tions. Thus, it is quite simple to use the cascade structure to
simulate an all-pole system and the parallel form to imple-
~ment a pole-zero system. Klatt’s system combined the cas-
- cade and the paralle]l structures. Anti-resonances were
added to the cascade branch to enhance the ability of the
cascade configuration to model nasal and unvoiced

sounds. When the synthesis

mentation, they allow one to trade off accuracy, the
number of multiplications and additions, and complexity
[40]. These are important considerations in the realiza-

‘Related Topics
1In the carly and mid 1980s, Hanson et al. [41] as well as

McAulay and Quatieri [42] developed a sinusoidal model
for speech analysis/synthesis. This method has found use for
speech transformations, such as time-scale and pirch-scale
modifications. Molines and Charpentier [43] suggested the
pitch-synchronous overlap-add (PSOLA) approach for
text-to-speech applications, This approach can modify the
prosody of the speech and is able to concatenate speech
waveforms. The speech is modified in either the time do-
main or the frequency domain. Other applications of speech

~ svnthesis include reading e-mail, fax, and webpages, and asa

proofing tool for previewing text in word processors.

variables are properly specified [

and the correct conﬁguration is

‘used, this synthesizer is capable
~ of synthesizing high-quality, in-
- telligible speech [37]. :

Linear Pkedit:tiori (LP) synthesis
‘The linear predictive synthe- -
sizer is a- mathematical all-pole

|

- realization of the linear source-
tract model [9]: The lincar pre- -
diction all-pole filter is an IIR

~ (infinite impulse response) fil-
ter, and a wide range of struc- |

. tures were proposed for digital

- implementation of linear pre- -
diction synthesizers [38, 39].

Aside from the usual digital
~filter implementations (direct

_form, parallel form, cascade :

form, etc.); structires devel—f ~ (b)

_oped for linear prediction syn- :

thesis include: 1) a 2-multiplier -

lattice; 2) a 4-multiplier ladder
(having the form of the

‘ Kelly—Lochbaum model [21]);

- 3)al-multiplier form;and4)a
4-multiplier normalized form

[40]. These implémentations

are shown in Fig. 5. These

: structures were developed tor

~ two major reasons: {a) they al-
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Speech Coding

Homer Dudley’s pioneering work {3 | was motivated by
the need to increase the communication capacity
(numberof channels) in a telephone network (which was
analog then). The term “bandwidth compression” was
generally used to refer to such a task. Today, most if not
all of the telephone network is digital and; hence; speech
bandwidth compression translates into speech coding,
which aims at representing the speech signal in binary
digits (bits) with highest efficiency (i.¢., highest quality of
the reconstructed signal with least number of bits).

Digital encoding of speech begins with an analog-to-
digital conversion device that samples the analog speech
waveform at an appropriate rate (usually 8,000 samples
per second for telephone bandwidth speech) and then
represents the amplitude of each sample digitally. In com-
munication systems, this is ‘the so-called" pulse<coded
modulation (PCM). Typically, each waveform sample is
represented by 12-16 bits, resulting in a rate of 96-128
thousand bits per second (kbps:or kb/s). Research in
speech coding attempts to find methods to increase the
efficiency in transmission and storage while maintaining
the speech quality.

Aside from efficient transmission, speech coding is
also essential for achieving secure communications. This
is the main reason that speech compression and coding
research benefited from strong government support in
the past five decades. The “A History of Secure Voice
Coding” sidebar presented with this article provides a
briet, chronological perspective of this work:-

In general, speech-coder attributes can be described in
terms of four classes: bit vate, complexity, delny, and quality.
The it rate is the communication channel bandwidth at
which the coder operates. Digital network. telephony
generally operates at 64 kb/s, cellular systems operate
from 6.7 to 13 kb/s, and secure telephony at 2.4 -and 4.8
kb/s. Systems can also be designed to take advantage of
the natural silences that take place during speech. CDMA
digital cellular telephony employs variable-rate speech
coders that operate at maximum rate during a talk-spurt
and minimal rate during silence.

Complexity refers to the computational complexity of
the speech coder. For most applications, speech coders
ar¢ implemented on either special-purpose devices (such
as DSP chips) or on general-purpose computers (such as
a PC for Internet telephony). Ineither case, the important
quantities are the number of (million). instructions per
second that are needed to operate in real-time and the
amount of memory used. The greater the memory usage
and the greater the number of instructions persecond, the
more expensive and power consuming, the implementa-
tion platform. This has important consequiences for most
applications:

Delay refers to the communications delay caused by
the coder. One component of the delay is due to the algo-
rithm and the other to the computation time. Individual
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sample coders have the lowest delay, while coders that
work ona block or frame of samples have greater delay.
Too much delay can have serious repercussions on a con-
versation. Excessive ‘delay creates critical challenges on
the network echo canceler and also forces speakers into an
inconvenient “push-to-talk” mode, making conversation
ineffective. The practical limit of round-trip delay for te-
lephony is about 300 ms. With the advent of packet te-
lephony, other sources of delay may be present, aftecting
the design of the speech coder:.

Omality refers to a large number of attributes. As bit
rates are lowered, speech coders become more speech
specific and give less-faithful renditions of other sounds.
While music can be transmitted through 64 kb/s PCM, it
may be unrecognizable over some 2.4 kb/s coders. Back-
ground noises such as babble, traffic noise, or noise in-
side a car, office; shopping mall, etc., can all atfect the
perceived quality of a speech coder. For many applica-
tions, speech coders are tandemed. For example, access-
ing a voicemail system froma cellular phone may involve
two different encodings. Quality and even intelligibility
may suffer.

In selecting a speech coder for a given application, the
designer can make tradeoffs among these four classes of
attributes.

Today, speech coding finds a diverse range of applica-
tions such as cellular telephony, voice mail, multimedia
messaging, digital answering machines, packet teleph-
ony, audio-visual teleconferencing, and of course many

“other apphcatxons in the Internet arena.

From Quantization to Model-Based Coding

Digital representation of a signal requires quantization of
the amplitude; 1.¢., an analog sample of infinite precision
needs to be converted to a-discrete number that can be
represented by a fixed number of bits. This is the first step
in speech coding. Early research focused on the design of
a quantization table (the set of values used to represent
speech) that minimizes the average quantization noise
(discrepancy between the original value and the repre-
sented one) [44-47]. Signal companding (compression

“and expansion) [48] such as u-law or A-law is often used

to transform the signal statistics (on a sample by sample
basis) for improved coding efficiency [44]. In digital te-
lephony, y-taw and-4-law PCM [44, 48] are the schemes
that were adopted for transmitting speech at 64 kbps (or
56 kbps).

Munimization of quantization noise requires critical
knowledge of the 51gnal statistics: Since speech characteris-
tics vary with time, improvements (further reduction of
quantization noise) can be achieved by adaptive quantizers
[49, 507, which adjust the quantization table according to
the time-varying signal properties. Adaptation can be im-
plemented in ¢ither a forward or backward manner (or in
more sophisticated systems, a combination of both) [44].
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tory process) typically has a low-pass characterrstrc with
“roughly a 6 dB/octave roll-off. This property is the basis .
of a differential quantization scheme that encodes the dif-:
‘ference between successive samples rather than the origi-
nal sample value, The differentiator essentially equallzes
the long- -term speech spectrum (makes it flat across fre-
quency) and reduces the signal variance for easier quanti-
zation:The method is generally referred toas dlfferentlal
PCM (DPCM) [49, 51] coding. When the coefﬁcrent of '
the ‘differentiator and the quantlzatron table are made. -
adaptlve to: the local srgnal characteristics, it is called
adaptlve DPCM (ADPCM) [52, "53]
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The speech s1gnal (due to its generatron inan artrcula- ;

A dlfferentral codmg scheme can be further elabo-"
rated ‘rather than codmg the dlfference between suc-,'

“cessive samples, it can code: the output 6f a

higher-order filter 1nvolvmg a fixed number:of past .
sample values. The scheme then becomes that of adap '
tive predrctlve codmg (APC) [54], which shares a'simi-

lar i lnterpretatlon tolinear pred1ct1ve codmg (LPC) 197
+ in terms of vocal-tract response modelmg ‘That is, ‘the. ’
predrctor filter tracks the time-varying charactensncs :
~of the vocal tract. The effect of prediction in coding is:

reductron of signal variance (the predrcnon error s1gna1

“or residual has a smaller variance than that of the origi-
“nal signal) and;wh,rtemng of the signal spectrum (the
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‘ ,requlredk between
,synthcmzcr Performance

error signal is essentially uncorrelated since most of
the signal redundancy is represented by the predictor
coefficients).

In the 1970s, researchers started to explore the possi-
bility of incorporating our perceptual knowledge of audi-
tory masking in coding schemes, in addition to
attempting. to-invent new . coding structures.” Atal ‘and
Schroeder [55] proposed the concept of error signal
shaping with the implication that the coding error can be
made imperceptible (masked by the coded signal) if its
spectrum is properly shaped and stays below the audible
threshold in the presence of the co-existing signal. This
concept led to the use of perceptual weighting in the error
criterion used by most of the analysis-by-synthesis coding
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round the first generation of
signal processors that
ng was accomplished.

A4, s the third-generation
an enhanced LPC-10 and
roughout the government.
_with Bell Labs, developed
xcited Linear Prediction

ssful variations adopted
in 1995, Tremain was
w2400 bps vocoder

vith exotic encryption
plications todav for
ce mail, network
appluanons Today’s
ing-machines, hlkmg
eb, Internet phones, and
crocellular telephones are
ants of the secure

rmingl family, circa 1986.

structures [56]. The same concept has also been used in
bit-allocation schemes [57].

Figure 6 is a block diagram of a generic analvsis-by-
synthesis coding structure. The speech is first analyzed to
obtain the LPC synthesis filter for a frame of speech. A
perceptual weighting filter is derived from the LPC filter.
The speech is passed through the perceptual weighting
filter to form the target signal. The possible excitation se-
quences are passed through the combination of the LPC
filter and perceptual weighting filter. The excitation sig-
nal that minimizes the mean square error (MSE) between
the ‘weighted output signal and the target signal is se-
lected. The pitch properties of the speech signal can be ex-
ploited prior to sclecting the excitation.
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Analysis-by-synthesis
coders are essentially
waveform:approximating
coders because they produce
an output waveform that fol-
lows  closely the original
waveform.. (The . minimiza-
tion of the MSE in the per-
ceptual space via perceptual -
weighting causes a slight | -
modification - to  the
waveform-approximation
principle.) This avoids the
old vocoder problem of clas-
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sifying a speech segment as
voiced orunvoiced. Such de-
cisions can never be made
flawlessly and many speech segments have both voiced
and unvoiced properties.

Today’s vocoders also have found ways to avoid mak-
ing the voiced/unvoiced decision. The multiband excita-
tion (MBE) [58] and sinusoidal transform coders (STC)
[42], also known as harmonic coders, divide the spec-
trum into a set of harmonic bands. Individual bands can
be declared voiced or unvoiced. This allows the coder to
produce a mixed signal: partially voiced and partially un-
voiced. Mixed-excitation LPC (MELP) [59] and wave-
form interpolation (WI)-[60] produce excitation signals
that are a combination of periodic and noise-like compo-
nents. These modern vocoders produce excellent-quality
speech compared to their predecessors, the channel vo-
coder [61] and the LPCvocoder {62]. However, they are
still less robust than higher-bit-rate waveform coders.
They are more affected by background noise and cannot
code music well.

Vector Quantization

Advances in coding theory suggest that optimal coding
efficiency can be attained asymptotically as the number
of signal samples encoded simultaneously is increased
[63]. This motivated speech-coding researchers in the
late 1970s and 1980s to explore the use of the methods
of vector quantization (as opposed to scalar, or single
sample) schemes.

Vector quantization aims at encoding an entire vector
of samples or coefficients simultaneously. The technique
was applied to spectral-parameter [64, 65] as well as to
waveform quantization {66]. Today, vector quantization
1s used in most speech coders.

Research in vector quantization focused on methods
for generating the codebook [67], the type of distortion
measures. [64], and efficient structures to achieve high-
rate; low-distortion VQ [68]. Vector quantization was
also essential in achieving extremely low-bit-rate (less
than 1000 bps) vocoders [65].
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A 6. A block diagram of a general-analysis-by-synthesis coding structure.

Speech-Coding Standards

For speech coding to be useful in telecommunication ap-
plications, it has to be standardized (i.e., it must conform
to the same algorithm and bit formar) to ensure universal
interoperability. Speech-coding standards are established
by various standards organizations: for example, the Inter-
national Telecommunications Union (ITU), the Telecom-
munications Industry Association (TIA), the Research
and Development Center for Radio Systems (RCR) in Ja-
pan, the International Maritime Satellite Corporation (In-
marsat), the European Telecommunications Standards
Institute (ETSI), and other government agencies.

The ITU (formerly CCITT) defined the “first”
speech-coding algorithm for digital telephony in 1972. It
is the 64 kb/s companded PCM coder. In North America
and Japan, p-law PCM is used. In the rest of the world,
A-law PCM is used. These coders use 8 bits to represent
each sample of the speech signal with a sampling rate of 8
kHz (i.e.; maximum signal frequency of 4 kHz). The
standard is referred toras G711 {69].

In 1984, Recommendation-G.721 [70], which is
based on ADPCM coding operating at 32 kb/s, was stan-
dardized for digital circuit multiplication equipment. As-
sociated with G.721 were 1):G.723 [69], which extends
G721 to two additional bit rates, 24 and 40 kb/s; 2)
G.726 [69], which unifies and replaces G.721 and G.723
and extends it to 16 kb/s; 3) G.727 [69], which has an
even number of levels for all associated coders.

The low-delay, code-excited-linear-prediction (LD-
CELP) coder was standardized in 1992 and 1994 for 16
kb/s applications. It is designated as Recommendation
G.728 [71]: Furthermore, G.729 (8 kb/s) and G.723.1
(5:3 and- 6.3 kby/s) were subsequently standardized in
1995. Both coders are based on the analysis-by-synthesis
striicture. For wideband (7 kHz bandwidth) speech, Rec-
ommendation G.722 [72] was established in 1988 for bit
rates of 48,56 atid 64-kb/s.

For digital cellular applications, the European Groupe
Special Mobile (GSM) of CEPT defined a 13kb/s coder in
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1987 based on the regular-pulse-excitation with long-
term-predictor (RPE-LTP) coding algorithm [73]. An-
other coder defined by ETSI in 1994 was the 5.6 kb/s
vector-sum-excited-linear-prediction” (VSELP) coder
[74], known as GSM Half-Rate. In North America;
VSELP was also adopted in 1989 as the TIA 1554 [54]
coder at 8 kb/s (7.95 kb/s) for digital cellular telephony.
In 1993,1896 [75], the CELDP-based coder, was recom-
mended for CDMA cellular systems operating at bit rates
8.0,4, 2,and 0.8 kb/s. Most recently, 1S-641 was recom-
mended as an improved coder at 8 kb/s for TDMA cellu-
lar systems and IS-127 ‘(or EVRC; enhanced variable
bit-rate coder) for CDMA applications.

Finally, the U.S. Department of Defense (DoD) an-
nounced FS1015 [76] based on linear prediction as the
standard coder at 2.4 kb/s for secure voice applications in
1984. In 1991, the DoD further adopted a CELP based
coder at 4.8 kb/s as the FS1016 standard [77]. A new 2.4
kb/s coder based on MELP was announcedin1996 at 1C-
ASSP in a session dedicated to Tom Tremain [59]

New Challenges

Most of the low-bit speech coders designed in the pastim-
plicitly assume that the signal is generated by a speaker
without much interference: These coders often demon-
strate degradation in quality when ‘used in an environ-
ment in which there is a competing speech or background
noise. A recent research challenge 1s to make coders per-
form robustly under a wide range of conditions, includ-
ing noisy automobile environments.

Another challenge is the coder’s resistance to transmis-
sion errors, which: are particularly critical in cellular and
packet communication applications. Methods that combine
source and channel coding schemes or conceal errors are im-
portant in enhancing the usefulness of the coding system.

As packet networking is becoming more and more
prevalent; a new breed of speech coders is emerging.
These coders need to take into-account and negotiate for
the available network resources (unlike the existing digi-
tal telephony hierarchy in which a constant bit rate per
channel is guaranteed) in order to determine the right
coder to use. They also have to be able to deal with packet
losses (severe at times). For this reason, the idea-of emi-
bedded and scaleable (in termsof bit rates) codersis being
investigated, with much interest [78].

Speech Enhancement

The idea that vocoder principles could be used to improve
the quality of a speech signal corrupted by additive noise
was first introduced by M.R. Schroeder in 1960 [79].
The basic idea was to generate a signal with a fine struc-
ture-as close as possible to. that-of the original specchsig-
nal, but with an envelope  that attenuates the signal
between formant peaks. This idea, with several modifica-
tions, was first simulated by Sievers-and Sondhi [80] in
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1964. Although the idea was shown to be feasible, the
quality attained was not very good.

Since those early days, variants of this idea have been
proposed and implemented by several authors, notably
Weiss, Aschkenasy, and Parsons [81]; Boll [82],
McAulay and Malpass [83]; Ephraim and Malah [84];
and Lim and Oppenheim [85]. The common features of
all these implementations are to split the noisy speech sig-
nal into frequency regions by passing it through a filter
bank and attenuating the output of each channel by a fac-
tor depending ‘on'the estimated signal-to-noise ratio in
that channel. The main differences between these various
proposals are the methods used to estimate the level of
noise and of speech in various frequency bands.

A method proposed by Ephraim, Malah, and Juang
[86] might formally be classified as belonging to this cate-
gory. However, it differs from the rest in that it bases its
selective attenuation of the various frequencies on hidden
Markov models (HMMs) of the noise and the speech.

Enhancement of speech signals in noise has been quite
useful in telephony applications. Some recent implemen-
tations of Etter [87] and Diethorn [88] are some of the
best examples of this application.

Speech Recognition

Speech recognition by machine ina limited and strict sense
can be considered as‘a problem of converting a speech
waveform into words. It requires analysis of the speech sig-
nal; conversion of the signal into elementar\ units of
speech such as phonemes or words, and interpretation of
the converted sequence in order to allow correction of the
misrecognized words/units or for other linguistic process-
ing such as parsing and speech understanding.

A Brief History of the Research (after [89])
Research inautomatic speech recognition by machine has
been done for almost four decades. The earliest attempts
to devise systems for automatic speech recognition by
machitie were made in the 1950s; when various research-
ers tried to exploit the fundamental ideas of acoustic-
phonetics. In 1952, at Bell Laboratories, Davis, Bid-
dulph, and Balashek built a system for isolated digit rec-
ognition for a single speaker [90]. The system relied
heavily “on - measuring spectral resonances during the
vowel region of each digit. In an independent effort at
RCA LEaboratories in 1956, Olson and Belar tried to rec-
ognize 10 distinct syllables of a single speaker, as embod-
ied in 10 monosyllabic words [91]. The system again
relied on spectral measurements (as prov ided by an ana-
log filter bank) primarily during vowel regions. In 1959,
at University College in England, Fry and Denes tried to
build a phoneme recognizer to recognize four vowels and
nine consonants [92]. They used a spectrum analyzer and
a pattern matcher to make the recognition decision. A
novel aspect of this research was the use of statistical in-
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formation about aﬂowable sequcnces of phonemes m‘ ;

English (a rudimentary form of language syntax) to im-

- prove overall phoneme accuracy for words. con51st1ng of

- two or more phonemes. Another effort of note in this pe-

- riod was the vowel recognizer of Forg1e and Forgu: con-
structed at MIT Lincoln Laboratories in 1959, in Wthhm

10 vowels embedded in a /b/-vowel-/t/ format were rec-

_ ognized in a speaker-independent manner [93]. Againa

- filter-bank analyzer was used to provide spectral informa-

_tion, and a time-varying estimate of the vocal-tract reso-

.~ nances was made to decide which vowel was spoken.

In the 1960s several fandamental ideas in speech recog? ‘

- nition surfaced and were pubhshcd However, the decade :
_any given point was hmlted to the synonyms of the possi-

started with scveral Japanese laboratones entering the rec-

- ognition arena and building specml—purpose hardware as

 part of their systems. One early Japanese system, described

by Suzuki and Nakata of the Radio Research Lab in Tokyo
- [94], was a hardware vowel recognizer. An elaborate

-~ filter-bank spectrum analyzer was used along with logic

-~ that connected the outputs of each channel of the spectrum S

' analyzcr (in a weighted manner) to a vowel-decision cir-
 cuit, and a2 majority-decision logic scheme was used to

-~ choose the spoken vowel. Another hardware effort in Ja-
~ pan was the work of Sakai and Doshita of Kyoto Univer-

sity in 1962, who built a hardware phoncme recognizer
= [95] A hardware speech segmenter was used along with a

 zero-crossing analysis of different regions of the spoken in-
' putto provide the recognition output. A third Japanese ef-

 fort was the digit recognizer hardware of Nagata and

- coworkers at NEC Laboratories in 1963 {96]. This effort
- was pcrhaps most notable as the initial attempt at speech
. rccognmon at NEC and led toa long and hlghly produc— ;

. tive research program.

 Inthe1960s three key research pro;ects were mmatcd ~
that have had major -implications on the research andde- .
 velopment of speech recognition for the past 20 years.
_ The first of these projects was the efforts of Martinand
. his colleagues at RCA Laborarories, beginning in the

-~ late 1960s, to develop realistic solutions to the problcms

- associated with nonumforxmty of time scales in speech
events. Martin developed a set of elementary time-

- normalization methods, based on the ability to reliably
~ detect speech starts and ends, thdt mgmﬁcantly reduced

 the variability of the recognition scores [97]. Martin ul-

o timately devclopcd the method and founded one of the .

_first companies, Threshold chhnology, which built,

- marketed, and sold speech-recognition products. At
~ about the same time, in the Soviet Union, Vintsyuk pro-
} posed. the use of dynam1c programming methods for

time aligning a pair of speech utterances [98]. Altheugh
the essence of the concepts of dynamic time warping, as

~well as rudimentary versions of the algorithms for ,
- connected-word tecognition, were embodied in Vint-  plish a task such a
~ syul’s work, it was largely unknown in the Westand did =
. not come to light until the early 1980s; this was. long af
- ter the more formal methods were proposed and 1mple-

“"‘mented by others.
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wvariations of differer ;
: across a Wlde user populauon Thm research has been re-

A fmal achlevemcnt of note in \ the 19603 was the pio-
nccrmg rescarch of Reddy in the field of continuous
speech recognition by dynamic tracking of phonemes
[99]. Reddy’s research eventually spawned a long and

 highly successful speech-recognition research program at
Carnegie Mellon University (CMU) (to which Reddy

moved in the late 1960s). One of the first demonstrations
of spoken-language understanding at CMU was in1973.

‘The Hearsay I System, developed at CMU, was able to
e semantic information to significantly reduce the“‘{

number of alternatives considered by the recognizer, In

the Voice Chess task domain used by Hearsay 1, the

number of alternative sentences that could be spokenat

ble moves. There are not yet many systems ‘that effectwely o

demonstrate the role of semantics in reducing the com:
k;;kplemty of search. However, the prmc1ple that syntactic,

semantic, and contextual knowledge sources can be used

to reduce the number of possible alternatives to be con-

sidered in decoding appears to be central to the desxgn of -
spoken—language-understandmg systems. :
~ In the 1970s speech-recognition research achleved a.
number of significant milestones, First, the area of

isolated-word or discrete-utterance recognmon becamea

viable and usable technology based on fundamental stud-

des by Velichko and Zagoruyko in the Soviet Union
- [100], SakocandChlbam]apan[101],andItakuramthe ﬁ
_ United States [102]. The Russian studies helped advance

the use of pattern-recognition ideas in speech recogni-
tion; the Japanese rescarch showed how dynamic pro-
gramming methods could be successfully applied; and
Ttakura’s research showed how the ideas of LPC, which -

' had already been succcssﬁllly used in low-bit-rate speech -

coding, could be extended to speech recogmuon systems

_ through the use of an appropriate dxstancc measure based‘ o

on LPC spectral parameters. :

Another milestone of the 1970s was the begmnmg ofa
longstandmg, hlghly suceessful group effort in large-
vocabulary antomatic speech dictation at IBM 1in which
researchers studied three distinct tasks over a period of al-

~ most two decades (namcly, the New Ralmgh language‘

[103] for simple database queries, the laser patent text

language [104] for transcribing laser patents, and the of-
 fice correspondence task) with a system called Tangora .

[104], for dictation of simple memos. o
Finally, at AT&T Bell Labs (now Bell Labs, Lucent ,

_fTechno]oglcs and AT&T Labs-Research), researchers

began a series of experlments aimed at makmg speech-

_recognition systems that were truly speaker-independent

[106] for telecommunication apphcatlons The intended

‘ apphcanon was telecommunication services, where hu-

mans and machmes cc nduct dlalogues in order to accom-
g a call, or making a reservation

on cars ot flights. To achieve this goal, a wide range of so-

phisticated algonthrhs were developed to deal with all
rent words and different expressions |
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fined over a decade so that the techniques for creating
speaker-independent speech models are-now well under-
stood and widely used.

Just as isolated word recognition was a key focus of
research in the 1970s, the problem of connected-word
recognition was a focus of research in the 1980s. Here
the goal was to create a robust system capable of recog-
nizing a fluently spoken string of words (e.g., digits)
based on matching a concatenated pattern of individual
words. A wide variety of connected-word-recognition
algorithms were formulated and implemented, includ-
ing the two-level dynamic programming: approach of
Sakoe at Nippon Electric Corporation (NEC) [107],
the one-pass method of Bridle and Brown at Joint
Speech Research Unit (JSRU) in England [108], the
level-building approach of Myers and Rabiner at Bell
Labs [109], and the frame-synchronous level-building
approach of Lee and Rabiner at Bell Labs [110]. Each of
these “optimal” matching procedures had its own imple-
mentational advantages, which were exploited for a
wide range of tasks.

Speech research in the 1980s was characterized by a
shift in technology from template-based approaches to
statistical modeling methods—especially the HMM ap-
proach [111, 1127 (discussed later).

The success of hidden Markov modeling gave rise to a
major impetus in the 1980s to large-vocabulary,
continuous-speech-recognition systems by the Defense
Advanced Research Projects Agency (DARPA) commu-
nity. (For ARPA efforts in speech understanding in the
1970s, see [113].) Major research contributions resulted
from efforts at CMU (notably the well-known SPHINX
system) [114], BBN with the BYBLOS ‘system [115],
Lincoln Labs [116], SRT [117], MIT [118], and AT&T
Bell Labs [119]. The DARPA program has continued
into the 1990s, with emphasis shifting from air-travel in-
formation retrieval to a range of different speech-
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understanding applications areas, in conjunction with a
new focus ‘on transcription of broadcast news. At the
same time, speech-recognition technology has been in-
creasingly used within traditional telecom networks to
automate as: well as enhance operator services [120].
Figure 7 shows a plot of various applications of
speech-recognition technologies along the dimensions
of vocabulary size and speaking style. The level of diffi-
culty increases roughly along the diagonal line away
from the lower-left corner, and the shaded bar repre-
sents a threshold of applications that can be supported
by the current technology. Many challenges are still
ahead of us.

From Speech Analysis to Statistical Modeling
Until the 1970s-and 1980s; automatic speech recogni-
tion was mostly considered to be a speech-analysis
problem. The fundamental belief was that if a proper
analysis method were available that could reliably pro-
duce the identity of a speech sound, recognition of
speech would be readily attainable. Such a determinis-
tic view of the speech-recognition problem was advo-
cated by researchers in acoustic-phonetics by citing
such examples as ®A stitch in dime saves nine” (in con-
trast to:“A stitch in time saves nine™), which they be-
lieve “can only be recognized correctly by deriving
acoustic-phonetic features. This view may be appropri-
ate ina microscopic sense but does not address the mac-
roscopic question of how a recognizer should be
designed such that, on average (in dealing with all the
input sounds), it achieves the least errors or error rate.
Similarly, template-matching in most practical systems
without a proper statistical foundation does not pro-
vide a rigorous answer'to this question, which is best
addressed by Bayes’ decision ‘theory. (Template-
matching with asymptotically dense reference patterns
certainly would fall into the category of nonparametric
statistical-pattern-recognition approaches whose opti-
mality can be analyzed in reference to the Bayes deci-
sion theory formulation.)

Bayes Decision Theory.

Bayes decision theory deals with random observations
from an information source consisting of M classes of
events where the goal is to identify which class of event
the observation belongs to. Let the joint probability of X
(the observation) and C, (the class identity), P(X, C), be
known to. the designer of the classifier. In other words,
the designer has full knowledge of the random nature of
the source. To measure the performance of the classifier,
for every class pair (,1), a cost or loss function, ¢, is de-
fined to signify the cost of classifying (or recognizing) an
observation from class 4 as belonging to a class 7 event.
The loss function is generally nonnegative with ¢, = 0
representing correct classification.
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Given an arbitfary observation, X, a cnndmonél loss
for classifying X as belongmg toa cla«;s I eventcan, bc de-

ﬁned as.

;R(c,»lx)éﬁeﬁlé(cjlx) .

. the expected loss, deﬁncd as

wherc C (X) represcnts the classifier’s decision, asshming E

. one of the M *values,” Cp, C, ... Gy

~ Hor speech recognition, the loss :ﬁmctmn €, s usually

~ chosen to be the zero-one loss function dcﬁned by £,=0 posed (15,121, 122] as a simple means to charactenze'

fori=j and 1 forz;é], by=1, 2 M Whlch assngns no

f’UR(c IX): ZP(C |X)

The opnmal clasmﬁcr that achieves minimum £ is thus
. theone that 1mplements the following: '

kC(X) c if P(C |X)-maxP(C |X)’

In other words, for m'm’imum error—raté classification, :

- the classifier employs the decision rule of Eq. (4), whichis
called the maximum a posteriovi (MAD) dec131on The
minimum error achieved by the MAP decision is called

- Bayes risk. (It's worth being somewhat mathematical here
-~ since formulating the recognizer’s performance in terms

of minimum expected loss is the basis of the paradigm

_ shift from deterministic pattern rnatchmg to statlsncal-; '

pattern TECOgNItion. )

- The required knowlcdge for an optxmal dassxﬁcanon
decision is, thus, the & posteriors probabiliies for the im- likely it is to be able to achieve Bayes® optimal perfonn—
 plementation of the MAP rule. These probabilities, how-
e 1n advamice and g¢n¢1?a“y havegotic.  rithm to elliptically symmetric densities. In 1984, Juang

estimated from a training data set with known class labels.
Bayes decision theory thus effectively transforms the clas- -
sifier design problem into a distribution estimation prob-

lem. ‘This is the basis of the statistical approach to pattern

recognition:

as

P(CilX)‘f?P(Xici)P(Cii)/~~P(X);~ Hee

MAY 1998

o

'whereP (G X) is the a posteriors probabmty This leads o proper, ustally parametric, distribution form for the ob-

a reasonable performance measure for thc clasmﬁer e s onke chosen in order to implement the MAP de-
el - cision. A key issue is what is the right dlstnbutlon form

I ﬁ , - oooder spcech utterances? ‘This question involves two essen-
_[R(C(X )IX )P(X )”lX < : ' ,(2)  tial aspects: i) finding the speech dimensions that carry

g erences [112] and [122} prowdc good 1ns1ghts
‘ gardlcss of the class. With this type of loss functmn, the, o

- expected | loss £, 1s, thus, thc error probabxhty of classﬂi— -
‘canon or. recogmnon The cond1t1onal Joss bcco,myes‘_, o

Thea poxtmom probablhty P( C } )Q,can be rewritten

Since P(X) is not a functlon of the class index and thus

has no effect in the MAP decision, the needed probablhs-
tic knowledge can be represented by the class S prior, i P(C,) -

~and the conditional probablhty PX l C ).

Probab:llty Dlstnbutfons for Speech
The statistical method, as discussed above, requlres that a

~ the most pertinent linguistic information, and ii) decid-
inghow to statistically. charactenze the mformatlon along‘ -

the chosen dimensions. ,
Based on empirical observanons, the HMM was pro-; -

speech signals. For detailed discussions of the HMM

’ref- .

Developments of HMM '
The statistical method of hldden Markov modelmg for,

speech recognition encompasses several i interesting prob-

o ~ lems, particularly the estimation pmblem[lll 123,124,
-

125]. Given an observation | sequence (of a set of se-
quences), X, the estimation problem involves ﬁndmg the

~ “right” model parameter values that spf:cxfy a source

model (probability distribution) most likely to producc ,
the given sequence of observations. In solving the estima-

 tion problem, we usually use the method of maximum

e

“ 1s maximized for the given “training” sequence X

likelihood (ML); that is, we choose X such that P (X | 7»)

Several major advances have been made since Baum
[123] proposed the original idea of HMM. Baum’s work

 allows estimation of parameters associated witha discrete

HMM (i.e., a model in which the probablhty distribution

of observatlons in each Markov stare is discrete) or a con-

tinuous density HMM in which the observation density

in a state satisfics a log-concavity assumption. This is a se-

_ rious limitation on this otherwise powerful modeling -
technique because the more the chosen form of the distri-

bution dcv1ates from that of the true dlstnbutlon the less

ance. In 1982, Liporace [124] broadened the class of k
HMMs that can be estimated by the re-estimation algo-

[125] (and subsequently Juang, Levinson, and Sondhi
[126]) was successful in eliminating these prior assump-

_tiohs and limitations on the form of the distribution and

showed a method for estimating HMMs with mixture

 densities (which allow arbitrarily close approximation to
the true data dJstmbunon) _This advance gave HMM a

firm foundation for use as a probablhty distribution of
speech for statistical- recognmon system designs.

; leXtUI‘C den31ty HMM has since become the prevalent
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 wellinthe ﬁcld In other Words a mxsrnatch bctween the
~ modeling (training) and the operating (testmg) condi-
tions usually exists and causes degradation in the recog-

nizer’s performance [137].

 Besides the mismatch, several adverse condmons are;
also often present during operation, such as ambient and
transmission noise, distortions due to room acoustics and
- transducers, and even changes in speech characteristics
“due to psychological awareness of talking to a machine
[137]. These conditions need to be dealt with in order for
the recognizer to be able to deliver reliable results. This is
the so-called “robustness” problem in automatxc spe:echi

recogmtlon.

One method that achieves robust rcsults isto collect an
 extremely large amount of data that reflects the actual op-
erating conditions of the recognizer. With a proper data
set, multi-style tranung [138] was shown to be effective.
When the distortion is mostly linear, cepstral compensa-
tion in the form of cepstral mean subtraction [139] and.
cepstral bias removal [ 1401 is simple and works well. More
recent advarces in robust speech recogmnon include paral-
* lel model combination {141}, maximum a posteriori adap-

tation [142, 143], and stochastic matching [144].

In spite of these developments the robustness problemfw ;
remains today an active rcsearch area in speech rccogmnon. :

Other Advances

While the paradigm shift to statxstlcal methods put
speech- recognition research on a mathematically sound
basis, it also exposed the limitation of our knowledge in
pursuing the Bayes minimum error. Recall that the opti-
mal performance of a recognition system, in terms of the

error rate, is atrainable only when complete, accurate
knowledge on the joint observation-class distribution is
available to the designer. Practically, the distribution can
only be approximated and, therefore, the distribution es-

timation approach cannot guarantee any optlmahty To

circumvent this problem, in order to obtain best accuracy.

given the choice (form) of the recogmzer structure (or

dlstnbutlon function); the method of minimum classifi-
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cpendent system needs to track changes in

- the speakers Spc,ech charactcrlstlcs (e g, as a result of L

catching a cold) ,

The maximum & posteriors formulanon s bccn pro~
posed as a framework [142, 143] ThlS is also anactive re-
search area at prescit. ,

Spoken-!.angﬂage Understandmg

Except for dictation and some sunple command and con-
trol apphcatlon speech recognition ( transcrlbmg the

~ words spoken) is not nearly as useful as speech under-
 standing (interpreting those words). Although spokcn
language has been used for centuries by humans to inter-

 actively solve problems, it is only in recent years tharit has
: begun to be used in human-machine interfaces. It is also

_ only in recent years that it is possible to envision technol-

ogy that makes speech as accessible as text as an informa-
tion source. This section Quthnes ‘progress in
spoken»language understandmg over the past 50 years,

~ summarizes current applications in darabase query and -
: mformauon extraction, anddlscusses future poss1b1hues.

A Bnef Hlstary

Spoken—language undcrstandmg as undertaken at present

involves integrating speech recognition (what are the

‘words?) and natural language understanding (what do

those words mean?) ‘The past 50 years have witnessed
dramatic changes in each of these component technolo-
gies. Some of these changes in speech recognition have al-
ready been reviewed in this article. Dramatic changes

“have also taken place in language understanding. Twoim- -
 portant books crystalizing a formal approach to language

appeared in 1951, one more influenced by algebra (chhg
Harris’s Methods in Structural Linguistics appeared in
1951) and one more influenced by psychology and the

~ processing of information by humans (George Miller’s -

Lomgunge and, Communication). Taken together, these
works made it possible to imagine the possxbmty ofauto-

_matic speech understanding as the computation of an ab-

stract representation and extraction of information.
In the late 1950s and early 1960s; one of Harris’s stu-
dcnts, Noam (‘homsky promotcd 4 new view of the

IEEE SIGNAL PROCESSING MAGAZINE 39



proper study of linguistics. This view built on the formal
methods developed by Harris but replaced the previous
focus on language analysis with a new focus on language

genevation. This work was influential in advances in speech -

synthesis, and it could have served as an important comple-
ment to the earlieranalytical work (since, normally, people
both generate and understand language). However, the im-
pact-was to define linguistics for a large share of language
researchers as the study of how to generate speech from the

“perfect” speaker-hearer. This dramatically limited the use-

fulness of linguistics in language understanding since

analysis (not just generation) is required for understand-
ing, and since understanding of “imperfect” input needs to
be accounted for. A side-effect was the interpretation of
“data”: instead of being what people actually said, data
came to be interpreted as the linguist’s intuitions about

what the ideal speaker would say. Such methods and goals

that are so different from those of engineers led to some-
what of a cultural gap between “linguistic knowledge” and
“speech knowledge.” Successful speech understanding re-
quires the bridging of this gap. -

In the 1960s and 1970s, as socio- linguists and anthro-
pological linguists remained focussed on observing actu-
ally occurring language, computational linguists began
linguistically relevant computations. However, it was
only about 10 years ago that the natural-language-
understanding community began to change the trend
from the use of “typical” examples based on intuitions to
test their systems to the use of data from humans produc-
ing language in a communicative setting
. Efforts over the last 10 years show an: 1r1crea

~pact of ‘the two- fields.on'each other (
[146]-[151]): Although the use of l1nguls i¢ knowl

- and: tcchmques in engineenng may ‘have lagged thie

statisncal mcthods in computational hnguist, A

: ,standard data hungry engineermg techmqiie
',ever perhaps the biggest recent developfnent for be

- sources (e. g DARPA) in search of more ’near term ap

B phcanons has led to some basm research toWard theo

L we w1ll be able to: generalize more of

“from’ working on conversational speech to'r ogm’zing”

isolated digits than we would be able to’g er, iz fror
: ’dlglts to conversanonal speech o

T Present Focus- Datnbase Query and
Information Extractmn :
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tion' ex'craction addreqses the problem of updanng struc-

language-database query system formulates a query, usu-
ally based onone ora few sentences, into a speuncanon of
information fields and values in the context of the particu-
lar database’s structure, An information-extraction sys-
tem aims at detecting or summarizing information of
interest from a report (€.g., a newswire story or broad-
cast) in general domains. A pioneering effort that utilized
formal models of linguistic structure for “database query”
was the work by Levinson and Shiplev [152], which pre-
ceded much of the current focus and taxonomy of ap-
proaches. , :

Evaluation of  spoken-language-understanding svs-
tems is required to estimate the state of the art objectively.
However, evaluation itself has been one of the challenges
of spoken-language understanding The only systematic
program with broad participation for assessing speech
understanding has been the (D)ARPA benchmarks fo-
cussed on the air travel planning domain (see
[ 153 ]-[1557). Since it-has not yet been possible to agree
on a representation for meaning; these evaluations were

carried out by human assessment of the results of a data-

base query. Trained annotators translated the human
queries into formal database queries with additional an-

notations for ambiguities and context dependencies. For

example, a query, “I want flights from Boston to DC” is

~expected to produce a table of flights, listing carriers,

flight numbers, departing times, and arrival times, etc.
Annotation of this type proved to be an expensive propo-
sition, and yet it did not allow for the evaluation ol thein-

rates are probably adequate for manv potential applica-
tions’;’f Since conversational repairs in human-human dia-

UC) evaluat1ons spans a w1de range [156]. Informa-

peech o)
database. of e ofﬁcers of a corporanon with the posi-

’tions tha/c'the hold: from brc)a,dcast news or newswire
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day. Challenges remain in several areas (see [157]):

a Integration. There is much evidence that human
speech understanding involyes the integration of a great
~variety of knowledge sources; including knowledge of the
world or context, knowlcdge of the speaker and/or topic,
lexical frequency, previous uses of a word or a semanti-
cally related topic; facial expressions (in face-to-face com-
munication); prosody, in addition to the ‘acoustic
attributes of the words. Our systems could do much bet-
tet by integrating these knowledge sources.

A Prosody. Prosody can be defined as information in
speech that is not localized to a specific sound segment, or

i information that does not change the identity of speech

segments (sec, €.g., [158], [159], [1607]). Such informa-
tion includes the pitch, duration, energy, stress, and other
supra-segmental attributes. The segmentation (or group-
ing) function of prosody may be related more to syntax
(with some relation to semantics), while the saliency or
prominence function may play a larger role in semantics

and pragmatics than in syntax. To make mammum use of

the potential of prosody will hkely require a well-
integrated system; since prosody is related to linguistic
-units not just at and below the word level; but also to ab-
- stract units in syntax, semantics, discourse, and pragmat-
ics. Our systems. make quite limited (or no) use of
prosody at present.
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infrastructure; led to the state of the art that we observe to: -

A Spontaneous Speech. The same acoustic attributes
that indicate much of the prosodic structure (e.g., pitch,

stress, and duration patterns) are also very common in as-
pects of spontar.eous speech that seem to be more related
to the speech planning process than to the structure of the
utterance. For example, a long syllable followed by a
pause can indicate either an important syntactic boundary
or that the speaker is planning the rest of the utterance.
Similarly, a prominent syllable may mark new or impor-
tant information, or a restart intended to replace some-
thing said in error. Although spontaneous speech effects
are quite common in human communication and may be
expected to increase in human machine discourse as peo-
ple become more comfortable conversing with machines,
modeling of speech disfluencies is only just beginning
(see, e.g., [161], [162]).

Much of our thinking about spoken language has been
focused on its use as an interface in human-machine inter-
actions mostly for information access and extraction.
With increases in cellular phone use and dependence on
networked information resources, and as rapid access to
information becomes an increasingly important eco-
nomic factor, telephone access to data and telephone
transactions will no doubt rise dramatically. There is a
growing interest, however, in viewing spoken language
not just as a means to access information, but as, itself, a
source of information. Important attributes that would
make spoken language more useful in this respect in-
clude: random access, sorting (e.g., by speaker, by topic,
by urgency), scanning, and editing. How could our lives
be changed by such tools? Enabling such a vision chal-
lenges our systems still further in noise robustness and in
spontaneous speech effects. Further, the resulting in-
creased accessibility to information from conversational
speech will Likely also raise increased concern for privacy
and security, some of which may be addressed by control-
ling access by speech: speaker identification and verifica-
tion (see the next section).

While such near-term application possibilities are ex-
citing, we can envision an even greater information revo-
lution on par with the development of writing systems if
we can successfully meet the challenges of spoken lan-
guage both as a medium for information access and as it-
self a source of information. Spoken language is still the
means of communication used first and foremost by hu-
mans, and only a small percentage of human communica-
tion is written. Automatic-spoken-language
understanding can add many of the advantages normally
associated only with text (random access, sorting, and ac-
cess at different times and places) to the many benefits of
spoken language. Making this vision a reality will require
significant advances.

Speaker Verification and identification

Speaker recognition is the process of automatically recog-
nizing a speaker by using speaker-specific information in-
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cluded in his or her speech [163-166]. This technique can
be used to verify the identity claimed by people accessing
systems; that is, it enables control of access to various
services by voice. Applicable services include voice dial-
ing, banking over a telephone network, telephone shop-
ping, database access services, information and
reservation services, voice mail, security control for confi-
dential information, and remote access to computers.
Speaker recognition can be- classified into speaker
identification and speaker verification. Closed-set speaker
identification is the process of determining which of the
registered speakers a given utterance comes from.
Speaker verification is the process of accepting or reject-
mg the identity claim of a speaker: Most of the applica-
tions in which voice is used to confirm the identity claim
~of a speaker require speaker verification.
‘Speaker-recognition methods can also be divided into
" text- dependent and. text- 1ndependent methods. The
former requires the speaker. to prov1de utterances of key
- words or sentences thatare the same text for both training
.and recognition, whereas the latter does not rely on a spe-
cific, prescribed text. The text- dependent methods are
; usually based on template matching techniques in which
-the time axis of an inputspeech sampleand each reference
template or reférence model of the registered speakers are
aligned, and the s1m11ar1ty between them is accumulated
from the beginning to the end of the utterance [164, 167,
- 1687 Since this method can directly exploit voice indi-
viduality associated with each 'phonen'ae’or syllable, it gen-
erally achieves higher- recognmon performance than the
text- 1ndependent model: '
" However, there are several apphcatlons such as foren-
sic and surveillance applications, irt which predetermined
“ keywords cannot be used. Moreover, human beings can
‘often recognize speakers i 1rrespec’c1ve of the content of the
utterance, Therefore, text- mdependent methcds have re-
“cently attracted more’ attention. Another advantage of
text-independent recognition is that it can be done se-
quentially, until a desired level of sxgnlﬁcance is reached,
“without the: annoyance of the speaker havmg to repeat the
key words again and again:
Both text—dependent -and text-mdependent methods
“have a serious weakness. These systems can easily be de-
feated, because: somheone. who. plays back the recorded
voice of a registered. speaker uttenng key words or sen-
tences into the microphone can be. accepted as the regis-
“tered speaker. To cope with this problem, a
text-prompted speaker recognmon method has recently
been proposed

‘Basic Structures of Speaker-Recognition Systems
The fundamental techniques, such as signal analysis,
modeling and pattern matchlng, in a speaker identifica-
'non/venﬁcation system are essennally identical to those
: used in a speech- recogmnon system ,,What differentiates
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them is the need to find speaker-specific information and
the explicit use of hypothesis analysis and thresholding.

In the closed-set speaker-identification task, a speech
utterance from an unknown speaker is analyzed and com-
pared with speech models of known speakers. The un-
known speaker is identified as the speaker whose model
best matches the input utterance. In speaker verification,
an identity claim is made by an unknown speaker, and an
utterance of this unknown speaker is compa1ed with the
model for the speaker whose identity is claimed. If the
match is good enough, that is, above a threshold, the
identity claim is accepted. A high threshold makes it diffi-
cult for impostors to be accepted by the system, but at the
price of falsely rejecting valid users. Conversely, a low
threshold enables valid users to be accepted consmtentl} ,
but at the price of accepting impostors. To set the thresh-
old at the desired level of customer rejection and impostor
acceptance, it is necessary to know the distribution of cus-
tomer and impostor scores.

The effectiveness of speaker-verification systems can
be evaluated by using the receiver operating characteris-
tics (ROC) curve, which shows the system performance
in terms of two probab1ht1es the probab1ht} of correct
acceptance and the probability of incorrect acceptance.
By varying the decision threshold, a point on the ROC
curve can be selected for operating purposes (to achieve
the desired tradeoff between the two probabilities)
[169]. The equal-error rate (EER) is commonly accepted
as an overall measure of the system performance. It corre-
sponds to the threshold at which the false acceptance rate
is equal to the false rejection rate.

From Spoken Language
to Multimodal Communication

Human-machine communication (HMC) is evolving
from text interface (i.e., keyboard and screen display) to
spoken language (automatic speech recognition and un-
derstanding) to multimodal communication involving
different senses (audio, visual, tactile, or even gestural)
with synergy [170, 171]. Human communication in-
cludes the perception or production of a message or of an
action as an explicit or implicit cognitive process. For per-
ception, there are the “five senses”: hearing, vision,
touch, taste, and smell, with reading as a specific visual
operation, and speech perception as a specific hearing op-
eration. For production, it includes sound (speech, or
general sound production) and vision (generation of
drawings, graphics or, more typically, written messages).
Cognition includes the means to understand or to gener-
ate a message or an action from a knowledge source.
The machine serves as a means for the human being to
communicate with the world. In the domain of HMC,
the computer has various artificial perception abilities:
speech, character, graphics, and gesture or movement
recognition. This recognition function can be accompa-
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des ranging from

i

ading icons) mes-

i

o 1m ‘ , Or it can be super-
ylmposed on the real environment (“augmented” reahtv),
~ which would require the wearing of special equipment.
- The provided information can be multimedia, including
 text, realor synthetic i nnages, -and sound. It is also possi-
ble, in the gestural communication mode, to produce a
kinesthetic feedback, allowing for the generation of simu-
lated solid objects,
- The machine also needs to have mgnmve abilities. It
must take into account a model of the user, of the world
~on which he acts, of the relationship between those two
clements, but also of the task thathas to be carried out and
of the structures of the dialogue. It must be able to reason,
- to plan a linguistic or nonlinguistic act in order to reach a
- target, to solve problems and aid in decision making, to
~ merge information coming from various sensors, and to
learn new knowledge or new structures. Multimodal
_ communication raises the problem of co-reference (e.g.,
- when the user designates an object, or a spot, on the com-
 puter display and pronounces a sentence relative to an ac-
_ tion on that object). f ~
To accomphsh the goal of mulumodal human-
machme communication, while it is important to under-
stand the human functlons in order to get some msplra-
~ tion when designing a system, of greater importance is
the ability to model in the machine the user with whom it
has to communicate. It is also necessary to model the
world in which they occur. This extends HMC to various
‘research domains such as room acoustics, physics, or op-
tics, and also physiology and cognitive psychology (for
;generatmg,mtyell gmt agmts Of avarars).

: Linking t.anguage and lmage
With the coming of “intelligent” i unages, the relationship
between language and image is getting closer [172]. It
justifies advanced human- -machine communication
- modes. In an “intelligent” synthetic image (which implies
_the modeling of physical characteristics of the real world),
a sentence such as “Throw the ball on the table” will in-
duice a complex scenario where the ball will rebound on
~ thetable, then fall on the ground. This scenario would be
difficult to describe to the machine with usual low-level
computer languages or mterfaces V;sual communication
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pament in which

is directly involved in human-to-machine communica-
tion {(e.g., for recognizing the user or the expressions on
his face), but also indirectly involved in the building of a
visual reference that will be shared by the human and the
machine, allowing for a common u.nderstand'mg of the
messages that they exchange (for example, in the under-
standing of the command “Take the knife which is on the
small marble table” addressed to a robot). Instead of con-
sidering the user on one side and the machine on the other
side, the user himself may become an element of the simu-
iated world: actmg and moving in this world, and getting
reactions from it.

“There are several similarities in the research concern-
ing these different communication modes. In speech, vi-
sion, and gesture processing, similar methods are used for
signal processing, coding and pattern recognition. The
same approach based on statistical modeling has been ap-
plied with similar algorithms to various domains of HMC
such as speech recognition, visual recognition of charac-
ter or object, or gesture [173]. This approach requires
large databases, which are now available for speech, char-
acters and text data, but have vet to be made available for
visual, gestural, and multimodal data.

Humans use multimodal communication when they
speak to each other, except in the case of pathology or of
telephone communication. Movements of the face and
lips, as well as expression and posture, will be involved in
the spoken language communication process. Studies in
speech intelligibility also showed that having both visual
and audio information improves the information com-
munication, especially when the message is complex or
when the communication takes place in a noisy environ-
ment [174}], [175]. This has led to studies in bimodal
speech synthesis and recognition.

In the field of speech synthesis, models of speaking
taces were designed and used in speech dialogue systems
[176]. The face and lip movements were synthesized by
studying those movements in human speech production
through image analysis. It resulted in text-to-talking
heads synthesis systems. Studies in using the visual infor-
mation in speech communication (e.g., using the image
of the lips only, or the bottom of the face or the entire
face) showed that the intelligibility of the synthesized
speech was 1mproved for the human “listener,” especially
in a nolsy environment. In the same way, the use of the
visual face information, and especially the lips, in speech
recognition was studied, and results showed that using
both types of information gives better recognition per-
formances than using only the audio or only the visual in-
formation, especially in a noisy environment [177, 178].

While this visual information on the human image can
be used as part of the spoken-language-communication
process, other types of visual information related to the hu-
man user can also be considered by the machine. The fact
that the user is in the room, or is seated in front of the com-
puter display, as well as the direction of his/her gaze can be
used in the communication process (e.g., waiting for the
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presence of the human in the room to synthesize a mes-
sage, or choosing between a graphic or spoken mode for
delivering information, depending of whether the user is
in front of the computer or somewhere else in the room,
adjusting the synthesis volume depending on how far he
is from the loudspeaker, adapting a microphone array on
the basis of the position of the user in the room [179],
checking what the user 1s looking at on the screen in order
to deliver information relative to that area [180], etc.)

Multimodal Multimedia Communication
- Communication can also involve several verbal and non-
verbal media. Berkley and: Flanagan [181] designed the
AT&T Bell Labs HuMaNet system for multipoint con-
ferencing over the public. teleph”,' network. The system
features hands-free sound pick up: through microphone
- arrays, voice control of call set~ up; dataaccess and display
- through speech recognltlon, speech synthesis, speaker
verification for privileged data; still image and stereo im-
-age codmg It has beért extended toalso include tactile in-
teraction, gesturing and handwrmng inputs, and face
+ recognition [182]: In. ]apa.n ATR haga similar advanced
’telcconferencrng program, mclud.mg 3D object model-
" ing, face modeling, yoice command; and gestural com-
’mumcamon ‘At IRST, Strmga etal. [183] have designed,
- within the MATA project,a multlmcﬁdal interface (speech
, recogmtron and synthesis, and vision) to communicate
: ythh a concrerge” of the' 1nst1tute, ‘Which answers ques-
. tions on the institute and its researchers and with a mo-
, blle robot Wthh has the tasl( of cdclwermg books or
accompanymg visitors: £ ,
“In the ESPRIT “Multrmpdal My 'trmedra Automared
.. Service Kiosk™ (MASK) project, 'sp
- synthesis are used'in parallel ‘with other input (touch
screen)-and output (graphrcs) ‘means [184]. The applica-
tion is to: provrdc rallway travel information to railway
customers, 1nclud1ng the posslbllltv of making reserva-
tions. The users get both vistal graphrcs) and audio
(speech synthesrs) information, and they may choose to
cither use speech or tacnle input. First studies show that
sub]ects tend 10 Use one mode or: th other, based on its
. appatent relrabrhty or o their ow g preference but they
-~ will not mix them up during the dialog.
In the closely related domarn of multimedia informa-
_tion processing, mtercstmg results have been obrained in
the Informedia project at CMU o the automatic index-
ing of TV broadcast data (news ' d// multimedia infor-
*-mation qucry by voice. The 8y ,em uses continuous
: ,speech recognition to: transcrrbe 1 speech. It segments
- the’ video: 1nf0rmat10n in: seq,,, c¢s;and uses natural-
“language- processing; techniques to auromatically index
‘those sequences: from the resul: of the textual transcrip-
tions. Although the speech recogmtrOn is far from being
perfect (about 50%: recognition rate), it seems to be good
- enough for allowing the usertogeta sufficient amount of
rmulumedla mformatlon from h1s q, ries [185].

Vi

.
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John D. Lafferty, Carnegie Mellon University
Lori Lamel, LIMSI-CNRS
Chin-BHui Lee, Lucent Technologies-Bell Labs (Chaiy)
Martthew Lennig, Nuance Communications
Alan McCree, Texas Instruments
Takehiro Moriya, NTT
Eric F. Moulines, Ecole Nationale Superieure des

Telecommunications
Hermann Ney, RWTH Aachen -

University of Technology
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Steve Young, Cambridge University
Marc A. Zissman, Lincoln Laboratory

Conclusion

We attempted to provide a comprehensive, albeit cur-
sory, review of how speech signal-processing technolo-
gies progressed in the past as well as the challenges ahead.
Speech processing is one of the most intriguing areas of
intelligent signal processing because humans generate,
use, and appreciate speech on a daily basis. Speech re-
search has attracted scientists as an important discipline
and has created technological impact on society and is ex-
pected to further flourish in this era of machine intelli-
gence and human-machine interaction. We hope this
article brings about understanding as well as inspiration.
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