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The special series for the 50th anniversary computers become faster and more ubiquitous,
of the Signal Processing Society contin- these and other areas in speech processing are ex-
ues in this issue with an article that covers pected to flourish further and bring about an era of
the domain true human-computer

of the Speech Process- 1 interaction.
ing Technical Commit- I Tosummarize the ex-
tee. This article 1 citing developments in
provides a succinct re this field, the article
view of the history and presents an insightful
current status of the review and reports the
field of speech- authors' views in the
processing research and various areas of speech
describes future contri- processing. Topics coy
butions speech process- ered in this article in-
ing will make to society. dude speech analysis

Because speech is the most natural form of hu- and synthesis, speech
man communication, speech processing has been coding, speech enhancement, speech recognition,
one of the most exciting areas of signal processing. spoken-language understanding, speaker identifica-
In the last several decades, speech research has tion and verification, and multimodal communica
drawn scientists and engineers together to form an tion. In addition, a sidebar reviews the history of
important discipline. It has created many technical secure voice coding.
impacts on society. Speech-coding algorithms have I invite you to read this article to review the his-
made voice communication and the storage of voice tory of speech processing, to understand its current
data effective and efficient. Speech-recognition trends, and to foresee its future prospects envisioned
technology has made it possible for computers to by experts in the field. Enjoy!
follow human voice commands and even under-
stand human languages. Speech-synthesis tech- Tsuhan Chen, Guest Edito
niques have created many interactive systems that Carnegie Mellon University
correspond with humans with a natural voice. As
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s part of the celebration for the 50th anniver as well, e g, nasals by opening a side branch tube (the
sary of the IEEE Signal Processing Society, nostrils'), fricatives by shutting off the reed and intro
this article intends to provide a succinct re ducing turbulence at appropriate places in the vocal tract,

4L. &view of speech research, in particular its his and stops by closing the tubc and opemng it abruptly It
tory, current trends, and prospects for the future The appears that Whcatstone was able to produce a fairly large
research areas covered arc speech analysis and synthesis, repertoire of vowels and consonants and even some short

speech coding, spcech enhancement, speech rccognition, sentences using this simple mechanical device
spoken languagc understanding, speaker identification Interest in mechanical analogs of the human vocal ap
and verification, and multimodal communication We paratus continued into the 20th century While scveral
omit from this discussion such topics as speech percep notable people (Faber, Bell, Paget, and Riesz) followed
tion and production and related physiological aspects, Kempelen and Wheatstone's speech production models,
not because they are not a part of speech research, but in Helmholz, Miller, Kocnig, and others pursued a different
order to bound the scope of the effort and to cover those design principle They synthesized vowel sounds by su
topics most related to rcaders of this magazine We hope pcrimposmg harmonically relati d sinusoids with appro
readers of IEEE Stgnal l'rocesszng Magazrne as well as priatcl adjusted amplitudes These two fundamentally
members of the IEEE Signal Processing Society will be different approaches, source tract modeling (motivated
able to draw a picture of this important area of research by physics) and sinusoidal modeling (motivated by
and to apprcciate its significance, particularly from the mathematics), have dominated the speech signal
signal processing perspective We must caution the processing field for more than 100 ye irs
reader that such a review is cursory at best and may suffer Research interest in speech pi ocessing today has gone
from errors of judgement and omission well beyond the simple notion of mimicking the human

This article was commissioned by the Speech Techni vocal apparatus (which still intrigues many researchers)
cal Committee of the Signal Processing Society Many re The scope (both breadth and depth) of speech research
nowned specch communication researchers were invited today has become much larger due to advances in mathe
to contribute to this article The list of authors represents matical tools (algorithms), computers, and the almost
thosc who submitted written contributions limitless potential applications of speech processing in

modern communication systems and networking Con
versely, speech research has been view d as an important

Speecn Anayss anu ynuiess drivingforce behind many of the advances in computing
Research in speech processing and commumcation for and software engineering, including digital signal proces
the most part, was motivated by people s desire to build sors (DSPs) Such a synergetic relationship will continue
mechanical models to emulate human verbal communica for years to come
tion capabilities The earliest attempt of this type was a
mechanical mimic of the human vocal apparatus by Wolf
gang von Kempelen, dcscribed in his book published in Source-Tract and Source-Filter Modeling
1791 [1] Charles Wheatstone, some 40 years later, con Source tract modeling by electrical circuits, reali7ed in
structed a machine based on Kempelen's specification us the form of a source filter system, was first proposed by
ing a bellows to represent the lung in providing a Homer Dudley at Bell Laboratories in the 1930s [3] Pcs
reservoir of comprcssed air [2] The vocal cords were re an electrical engineer, Dudley exploited his insights in
placed by a vibrating reed that was placed at one end of a modulated carrier radio transmission to construct an dec
flexible leather tube—the "vocal tract"—whose cross trical speech synthesizer that dispensed with all the me
scctional arca could bc varied to produce various voiced chanical devices of von Kempelen's synthesizer A highly
sounds Other sounds could be produced by the machine simplified, but accurate, schematic of Dudley's synthe

sizer is shown in Fig 1 The elcctricaJ excitation source
had two components—a "buzz" source (for voiced
speech) and a "hiss" source (for unvoiced speech). The
buzz source was a relaxation oscillator that generated a se-
quence of pulses with a controllable repetition rate (the
fundamental frequency) and provided the voiced carrier
The hiss source was the shot noise generated by a vacuum
tube, and it provided the unvoiced carrier. The message
(i.e., the time-varying characteristics of the vocal tract)
was modulated on the source carrier by passing the out-
put of the source through a filter whose frequency re-
sponse was adjustable This variable filter was rcahzed by
a bank (10 channels) of bandpass filters covering the
range of speech frequencies Any desired vocal tract
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frequency-response characteristic was achieved by adjust-
ing the amplitudes of the outputs of the bandpass filters.

With the collaboration of Riesz and Watkins, Dudley
implemented two highly acclaimed devices, the V0tER
(VOice DEmonstration Recorder) and the VOCODER,
based on this principle. The VODER (a schematic dia-
gram of which is shown in Fig. 1) was a system in which
an operator manipulated a keyboard with 14 keys, a wrist
bar, and a foot pedal to generate the control parameters
required to control the sound source and the filter bank.
This system was displayed with great success at the New
York World's Fair in 1939. According to Dudley, it took
a few weeks of training to be able to operate a VODER
and produce intelligible speech on demand.

The VOCODEB. [4] derived its control parameters
froni a speech signal recorded using an attached micro-
phone. From the speech signal the machine automatically
determined the fundamental frequency (for voiced
speech) as well as the gains for the bandpass filters. A
value of zero fot the fundamental frequency indicated
that the hiss source was to be used. These control parame-
ters, when used in the manner described above produced
a signal that was perceived to be similar to the input
speech signal. It is worth noting that the wavefbrm of th
reconstructed signal generally was quite different fron
the waveform of the input signal. However, the time-
Variation of the distribution of speech energy with fre-
quency was similar enough to fool the eai into judging
the two signals to be similar in sound.

Dudley's demonstration that a speech signal could lc
represented in terms of a set of slowly varying parameters
that could later be used as control parameters to re-
synthesize an approximately matching speech signal
opened up the possibility of compressing the bandwidth
of a speech signal. In modern digital telephony, this prn-
ciple led to a series of methods for efficient digitization of
speech for transmission (see the Speech Coding seetion)

Prom TractModeling to SpectralEstimation
Dudley used bank of filters to control the sound spectrum
in the VODER system. In order to produce the intended
sound, the gain or attenuation of the filters at various fre-
quencies had to be commensurate with the power of the
input speech sound at those frequencies. Thus, the fnc-
tion of the filter bank Was to model (noriparametrically)
the vocal-tract response and, therefore, the need to ñieas-
ure proper attenuation Values required sophisticated tech
niques for, in modern terms, spectral estimatioti [5]. The
VOCODER, as proposed by Dudley, aimed at the very
same purpose; namely efficient estimation of the time-
varying spectrum of the input speech signal.

Spectral estimation using a filter bank (i.e., in essence
the reverse of the VODER system) is depicted in rig. 2.
Each filter in the bank attempts to estimate the speech sig-
nal energy at and around the center frequency of the filter.
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A 1. Schematic diagram of the VODER synthesizer (after Dudley,

Riesz, Watkins ahd Flanagan [2]).

Speech.

A 2. A block diagram for spectral estimation with filterbank



The nonlinearity that follows the filter measures the en-
ergy of the filtered signal. The result across the filter bank
Is an estimate of the spectral profile, or frequency re-
sponse, tlat can be used to characterize the signal at a par-
ticular time.

The extraction of spectral control parametrs from a
speech signal has many other applications besides speech
synthesis and bandwidth compression. Dudley himself re
alized that the pattern of variation of these parameters with
time is characteristic of the utterance. This idea was ex-
plored by Dudley, and by many other researchers, fbr
automatic recognition of speech by machine, The jarame'
ters could also be used to recognize the identity of a spealcer
from his or her yolce. Finally th realization of the fidá-
mental importance of these parameters led to the conStruc-
tion of the sound spectrograph [6] for displaying the
timevarying spectra of speech (see Fig. 3). This in tqrn led
to attempts at using the principle of the sound spectro-
graph (the sonogram) as ameans for communication with
the deaf; by teaching them how to recognize spoken words
from displays of theic time-varyiig spectra [7].

of the vocal-tract frequency reSponse, i,n-

lepenci source parameters (e.g., voicing and
fundamental frequency), captured researchers' interest in
the 1960s. One approach to this problem was to atialye
the speech signal using a transmission line analog of the
wavepropagation equation. This method allowS use of a
timevarying source signal as excitation to the "linear"
system of the vocal tract.

To make analysis of the vocal-tract respo,tise tractable,
one often assumes that the vocal tract is an acoustic syS-
teth consisting of a oncacenatiOn of uniform cylIndtical
sections of different areas with planar waves propagating
throtigh the system. Each section can he modeled with an
equivalent circuit with wave reflections occurring at the
junctions between sections, Such a model allows analysis
of the system from its inp1t-otirput characteritjcs [4, 8]

In the late 160s, Atal [9] and Itakura [10] indeend
ently developed a spectral analysis ntethod now kron
as linear prediction. While the motivations were differ

ent, they made an identical assumption; namely, that the
speech signal at time t could be approximately predicted
by a linear combination of its past values. In a discrete
time implementation f the nethod, this concept is ex-
pressed as

s1 —I

wherep is called the order of the analysis. The task is to
find the coefficients {aj} that minimize some measure of
the difference between s1and I over a short-time analysis

window. To retain the time-varying characteristics of the
speech signal, the analysis procedure updates the coeffi-
cient estimation process progressively over time. This
process is generally referred to as short-time spectral
analysis.

The linear prediction analysis method has several inter-
esting interptetations. In the frequency domain, the com-
puted coefficients {} define an all-pole spectrum
/4(°)where4(z) = 1— 1ajz withz = e'°. Such a
spectrum is essentially a shot4-term estimate of the spec-
tral envelope of the speech signal, at a given time, as
shown in Fig. 4. The "envelope" models the frequency re-
sponse of th vocal tract while the fine structure in the
Fourier spectrum is a manifestation of the source excita-
tion or driving function, This spectral envelope estimate
can be used for many purposes; eg., as the spectral mag-
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analog networks were serial or parallel combinations of
second-order resonators. A series of impulse-like wave-
forms, or white noise, was applied to the resonators in or-
der to generate vowels or fricative sounds.

In the 1960s, the discrete domain realizations of for-
mant synthesizers were proposed [8, 34]. The resonators
for the formant synthesizer were arranged in either a cas-
cade or parallel manner [8,35,36]. Flanagan concluded
that the serial form was a better model for non-nasal
voiced sounds, while the parallel structure was superior
for nasal and unvoiced sounds. The reason was that the
vocal tract is considered as an all-pole filter for non-nasal
voiced sounds and as a pole-zero system for other phona-
tions. Thus, it is quite simple to use the cascade structure to
simulate an all-pole system and the parallel form to imple-
ment a pole-zero system. Klatt's system combined the cas-
cade and the parallel structures. Anti-resonances were
added to the cascade branch to enhance the ability of the
cascade configuration to model nasal and unvoiced
sounds. When the synthesis
variables are properly specified
and the correct configuration is
used, this synthesizer is capable
of synthesizing high-quality, in-
telligible speech [37].

Linear Prediction (LP) synthesis
The linear predictive synthe-
sizer is a mathematical all-pole
realization of the linear source-
tract model [9]. The linear pre-
diction all-pole filter is an hR
(infinite impulse response) fil-
ter, and a wide range of struc-
tures were proposed for digital
implementation of linear pre-
diction synthesizers [38, 39].

Aside from the usual digital
filter implementations (direct
form, parallel form, cascade
form, etc.). structures devel-
oped for linear prediction syn-
thesis include: 1) a 2-multiplier
lattice; 2) a 4-multiplier ladder
(having the form of the
Kelly—Lochbaum model [21]);
3) a 1-multiplier form; and 4) a
4-multiplier normalized form
[40]. These implementations
are shown in Fig. 5. These
structures were developed for
two major reasons: (a) they al-
low the synthesis filter to be im-
plemented directly from the
reflection coefficients, and (b)
in an actual computer imple-

mentation, they allow one to trade off accuracy, the
number of multiplications and additions, and complexity
[403. These are important considerations in the realiza-
tion of synthesis teclmology.

Related Topics
In the early and mid 1980s, Hanson et at [41] as well as
McAulav and Quatieri [42] developed a sinusoidal model
for speech analysis/synthesis. This method has found use for
speech transformations, such as time-scale and pitch-scale
modifications. Molines and Charpentier [43] suggested the
pitch-synchronous overlap-add (PSOLA) approach for
text-to-speech applications. This approach can modifr the
prosody of the speech and is able to concatenate speech
waveforms. The speech is modified in either the time do-
main or the frequency domain. Other applications of speech
synthesis include reading e-mail, fax, and webpages, and as a
proofing tool for previewing text in word processors.

cos em
sin em

MAY 1998 IEEE SIGNAL PROCESSING MAGAZINE 29

P(z)/A(z)

(a)

Section m

E(z) E_1(z)
1 ±km

km km
1 km4

ZEm(Z) zE1(z)
(C)(b)

Section m
Em_E(z) J__1(z)

Nkm/
E(z)

Section m E1(z)

zE(z) ZErn_i(Z) zErn(z)

(d)

zE1(z)

(e)

A 5. Various forms of digitol filter implementation: a) general form; b) 2-multiplier lattice; c) 4-
maltiplier kidder d) 1-multiplier form; e) 4-multiplier normalized form.



Speech Coding
Homer Dudley's pioneering work [3] was motivated by
the need to increase the communication capacity
(number of channels) in a telephone network (which was
analog then). The term "bandwidth compression" was
generally used to refer to such a task. Today, most if not
all of the telephone network is digital and, hence, speech
bandwidth compression translates into speech coding,
which aims at representing the speech signal in binary
digits (bits) with highest efficiency (i.e., highest quality of
the reconstructed signal with least number of bits).

Digital encoding of speech begins with an analog-to-
digital conversion device that samples the analog speech
waveform at an appropriate rate (usually 8,000 samples
per second for telephone bandwidth speech) and then
represents the amplitude of each sample digitally. In com-
munication systems, this is the so-called pulse-coded
modulation (PCM). Typically, each waveform sample is
represented by 12-16 bits, resulting in a rate of 96-128
thousand bits per second (kbps or kb/s). Research in
speech coding attempts to find methods to increase the
efficiency in transmission and storage while maintaining

the speech quality.
Aside from efficient transmission, speech coding is

also essential for achieving secure communications. This
is the main reason that speech compression and coding
research benefited from strong government support in
the past five decades. The "A History of Secure Voice
Coding" sidebar presented with this article provides a
brief, chronological perspective of this work.

In general, speech-coder attributes can be described in
terms of four classes: bit rate, complexity, delay, and quality.
The bit rate is the communication channel bandwidth at
which the coder operates. Digital network telephony
generally operates at 64 kb/s, cellular systems operate
from 6.7 to 13 kb/s, and secure telephony at 2.4 and 4.8
kb/s. Systems can also be designed to take advantage of
the natural silences that take place during speech. CDMA

digital cellular telephony employs variable-rate speech
coders that operate at maximum rate during a talk-spurt
and minimal rate during silence.

Complexity refers to the computational complexity of
the speech coder. For most applications, speech coders
are implemented on either special-purpose devices (such
as DSP chips) or on general-purpose computers (such as
a PC for Internet telephony). In either case, the important
quantities are the number of (million) instructions per
second that are needed to operate in real-time and the
amount of memory used. The greater the memory usage
and the greater the number of instructions per second, the

more expensive and power consuming the implementa-
tion platform. This has important consequences for most
applications.

Delay refers to the communications delay caused by
the coder. One component of the delay is due to the algo-
rithm and the other to the computation time. Individual

sample coders have the lowest delay, while coders that
work on a block or frame of samples have greater delay.
Too much delay can have serious repercussions on a con-
versation. Excessive delay creates critical challenges on
the network echo canceler and also forces speakers into an
inconvenient "push-to-talk" mode, making conversation
ineffective. The practical limit of round-trip delay for te-
lephony is about 300 ms. With the advent of packet te-
lephony, other sources of delay may be present. affecting
the design of the speech coder.

Quality refers to a large number of attributes. As bit
rates are lowered, speech coders become more speech
specific and give less-faithful renditions of other sounds,
While music can be transmitted through 64 kb/s PCM. it
maybe unrecognizable over some 2.4 kb/s coders. Back-
ground noises such as babble, traffic noise, or noise in-
side a car, office, shopping mall, etc., can all affect the
perceived quality of a speech coder. For many applica-
tions, speech coders are tandemed. For example, access-
ing a voicemail system from a cellular phone may involve
two different encodings. Quality and even intelligibility
may suffer.

In selecting a speech coder for a given application, the
designer can make tradeoffs among these four classes of
attributes.

Today, speech coding finds a diverse range of applica-
tions such as cellular telephony, voice mail, multimedia
messaging, digital answering machines, packet teleph-
ony, audio-visual teleconferencing, and of course many
other applications in the Internet arena.

From Quantization to Model-Based Coding
Digitalrepresentation of a signal requires quantization of
the amplitude; i.e., an analog sample of infinite precision
needs to be converted to a discrete number that can be
represented by a fixed number of bits. This is the first step
in speech coding. Early research focused on the design of
a quantization table (the set of values used to represent
speech) that minimizes the average quantization noise
(discrepancy between the original value and the repre-
sented one) [44-47]. Signal companding (compression
and expansion) [48] such as it-law orA-law is often used
to transform the signal statistics (on a sample by sample
basis) for improved coding efficiency [44]. In digital te-
lephony, ji-law andA-law PCM [44,48] are the schemes
that were adopted for transmitting speech at 64 kbps (or
56kbps).

Minimization of quantization noise requires critical
knowledge of the signal statistics. Since speech characteris-
tics vary with time, improvements (further reduction of
quantization noise) can be achieved by adaptive quantizers
[49, 50], which adjust the quantization table according to
the time-varying signal properties. Adaptation can be im-
plemented in either a forward or backward manner (or in
more sophisticated systems, a combination of both) [44].
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The speech signal (due to its generation in an articula-
tory process) typically has a low-pass characteristic with
roughly a 6 dB/octave roll-off. This property is the basis
of a differential quantization scheme that encodes the dif-
ference between successive samples rather than the origi-
nal sample value. The differentiator essentially equalizes
the long-terii speech spectrum (makes it flat across fre-
quency) and reduces the signal variance for easier quanti-
zation. The method is generally referred to as differential
PCM (DPCM) [49, 511 coding. When the coefficient of
the differentiator and the quantization table are made
adaptive to the local signal characteristics, it is called
adaptive DPCM (ADPCM) [52, 53].

A differential coding scheme can be further elabo-
rated; rather than coding the difference between suc-
cessive samples, it can code the output of a
higher-order filter involving a fixed number of past
sample values. The scheme then becomes that of adap-
tive predictive coding (APC) [54], which shares a simi-
lar interpretation to linear predictive coding (LPC) [9]
in terms of vocal-tract response modeling. That is, the
predictor filter tracks the time-varying characteristics
of the vocal tract. Th effect of prediction in coding is
reduction of signal variance (the prediction error signal
or residual has a smaller variance than that of the origi-
nal signal) and whitening of the signal spectrum (the
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error signal is essentially uncorrelated since most of
the signal redundancy is represented by the predictor
coefficients).

In the 1970s, researchers started to explore the possi-
bility of incorporating our perceptual knowledge of audi-
tory masking in coding schemes, in addition to
attempting to invent new coding structures. Atal and
Schroeder [55] proposed the concept of error signal
shaping with the implication that the coding error can be
made imperceptible (masked by the coded signal) if its
spectrum is properly shaped and stays below the audible
threshold in the presence of the co-existing signal. This
concept led to the use of perceptual weighting in the error
criterion used by most of the analysis-by-synthesis coding

structures [56J. The same concept has also been used in
bit-allocation schemes [57].

Figure 6 is a block diagram of a generic analysis-by-
synthesis coding structure. The speech is first analyzed to
obtain the LPC synthesis filter for a frame of speech. A
perceptual weighting filter is derived from the LPC filter.

The speech is passed through the perceptual weighting
filter to form the target signal. The possible excitation se-
quences are passed through the combination of the LPC
filter and perceptual weighting filter. The excitation sig-
nal that minimizes the mean square error (MSE) between
the weighted output signal and the target signal is se-
lected. The pitch properties of the speech signal can be ex-
ploited prior to selecting the excitation.
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Analysis-by-synthesis
coders are essentially
waveform- approximating
coders because they produce
an output waveform that fol-
lows closely the original
waveform. (The minimiza-
tion of the MSE in the per-
ceptual space via perceptual
weighting causes a slight
modification to the
waveform-approximation
principle.) This avoids the
old vocoder problem of clas-

sif'ing a speech segment as
voiced or unvoiced. Such de-
cisions can never be made
flawlessly and many speech segments have both voiced
and unvoiced properties.

Today's vocoders also have found ways to avoid mak-
ing the voiced/unvoiced decision. The multiband excita-
tion (MBE) [58] and sinusoidal transform coders (STC)
[42], also known as harmonic coders, divide the spec-
trum into a set of harmonic bands. Individual bands can
be declared voiced or unvoiced. This allows the coder to
produce a mixed signal: partially voiced and partially un-
voiced. Mixed-excitation LPC (MELP) [59] and wave-
form interpolation (WI) [60] produce excitation signals
that are a combination of periodic and noise-like compo-
nents. These modern vocoders produce excellent-quality
speech compared to their predecessors, the channel vo-
coder [61] and the LPC vocoder [62]. However, they are
still less robust than higher-bit-rate waveform coders.
They are more affected by background noise and cannot
code music well.

Vector Quantization
Advances in coding theory suggest that optimal coding
efficiency can be attained asymptotically as the number
of signal samples encoded simultaneously is increased
[63]. This motivated speech-coding researchers in the
late 1970s and 1980s to explore the use of the methods
of vector quantization (as opposed to scalar, or single
sample) schemes.

Vector quantization aims at encoding an entire vector
of samples or coefficients simultaneously. The technique
was applied to spectral-parameter [64, 65] as well as to
waveform quantization [66]. Today, vector quantization
is used in most speech coders.

Research in vector quantization focused on methods
for generating the codebook [67], the type of distortion
measures [64], and efficient structures to achieve high-
rate, low-distortion VQ [68]. Vector quantization was
also essential in achieving extremely low-bit-rate (less
than 1000 bps) vocoders [65].

Speech-Coding Standards
For speech coding to be useful in telecommunication ap-
plications, it has to be standardized (i.e., it must conform
to the same algorithm and bit format) to ensure universal
interoperability. Speech-coding standards are established
by various standards organizations: for example, the Inter-
national Telecommunications Union (ITU), the Telecom-
munications Industry Association (TIA), the Research
and Development Center for Radio Systems (RCR) in Ja-
pan, the International Maritime Sateffite Corporation (In-
marsat), the European Telecommunications Standards
Institute (ETSI), and other government agencies.

The ITU (formerly CCITT') defined the Tirst"
speech-coding algorithm for digital telephony in 1972. It
is the 64 kb/s companded PCM coder. In North America
and Japan, j.t-law PCM is used. In the rest of the world,
A-law PCM is used. These coders use 8 bits to represent
each sample of the speech signal with a sampling rate of 8
kHz (i.e., maximum signal frequency of 4 kHz). The
standard is referred to as G. 711 [69].

In 1984, Recommendation G.721 [70], which is
based on ADPCM coding operating at 32 kb s, was stan-
dardized for digital circuit multiplication equipment. As-
sociated with G.721 were 1) G,723 [69], which extends
G.721 to two additional bit rates, 24 and 40 kb/s; 2)
G.726 [69],which unifies and replaces G.721 and G.723
and extends it to 16 kb/s; 3) G.727 [69], which has an
even number of levels for all associated coders.

The low-delay, code-excited-linear-prediction LD-
CELP) coder was standardized in 1992 and 1994 for 16
kb/s applications. It is designated as Reconmiendation
G.728 [71]. Furthermore, G.729 (8 kb/s) and G.723.1
(5.3 and 6.3 kb/s) were subsequently standardized in
1995. Both coders are based on the analysis-by-synthesis
structure. For wideband (7kHz bandwidth speech, Rec-
ommendation G.722 [72] was established in 1988 for hit
rates of 48, 56 and 64 kb/s.

For digital cellular applications, the European Groupe
Special Mobile (GSM) of CEPT defined a 13kbs coder in
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1987 based on the regular-pulse-excitation with long-
term-predictor (RPE—LTP) coding algorithm [73]. An-
other coder defined by ETSI in 1994 was the 5.6 kb/s
vector-sum-excited-linear-prediction (VSELP) coder
[74], known as GSM Half-Rate. In North America,
VSELP was also adopted in 1989 as the TIA 1S54 [54]
coder at 8 kb/s (7.95 kb/s) for digital cellular telephony.
In 1993, 1S96 [75], the CELP-based coder, was recom-
mended for CDMA cellular systems operating at bit rates
8.0,4,2, and 0.8 kb/s. Most recently, IS-641 was recom-
mended as an improved coder at 8 kb/s for TDMA cellu-
lar systems and IS-127 (or EVRC, enhanced variable
bit-rate coder) for CDMA applications.

Finally, the U.S. Department of Defense (DoD) an-
nounced FS1O15 [76] based on linear prediction as the
standard coder at 2.4 kb/s for secure voice applications in
1984. In 1991, the DoD further adopted a CELP based
coder at 4.8 kb/s as the FS1O16 standard [77]. A new 2.4
kb/s coder based onMELP was announced in 1996 at IC-
ASSP in a session dedicated to Tom Tremain [59].

New Challenges
Mostof the low-bit speech coders designed in the past im-
plicitly assume that the signal is generated by a speaker
without much interference. These coders often demon-
strate degradation in quality when used in an environ-
ment in which there is a competing speech or background
noise. A recent research challenge is to make coders per-
form robustly under a wide range of conditions, includ-
ing noisy automobile environments.

Another challenge is the coder's resistance to transmis-
sion errors, which are particularly critical in cellular and
packet communication applications. Methods that combine
source and channel coding schemes or conceal errors are im-
portant in enhancing the usefulness of the coding system.

As packet networking is becoming more and more
prevalent, a new breed of speech coders is emerging.
These coders need to take into account and negotiate for
the available network resources (unlike the existing digi-
tal telephony hierarchy in which a constant bit rate per
channel is guaranteed) in order to determine the right
coder to use. They also have to be able to deal with packet
losses (severe at times). For this reason, the idea of em-
bedded and scaleable (in terms of bit rates) coders is being
investigated, with much interest [78].

Speech Enhancement
The idea that vocoder principles could be used to improve
the quality of a speech signal corrupted by additive noise
was first introduced by M.R. Schroeder in 1960 [79].
The basic idea was to generate a signal with a fine struc-
ture as close as possible to that of the original speech sig-
nal, but with an envelope that attenuates the signal
between formant peaks. This idea, with several modifica-
tions, was first simulated by Sievers and Sondhi [80] in

1964. Although the idea was shown to be feasible, the
quality attained was not very good.

Since those early days, variants of this idea have been
proposed and implemented by several authors, notably
Weiss, Aschkenasy, and Parsons [81]; Boll [82],
McAulay and Malpass [83]; Ephraim and Malah [84];
and Lim and Oppenheim [85]. The common features of
all these implementations are to split the noisy speech sig-
nal into frequency regions by passing it through a filter
bank and attenuating the output of each channel by a fac-
tor depending on the estimated signal-to-noise ratio in
that channel. The main differences between these various
proposals are the methods used to estimate the level of
noise and of speech in various frequency bands.

A method proposed by Ephraim, Malah, and Juang
[86] might formally be classified as belonging to this cate-
gory. However, it differs from the rest in that it bases its
selective attenuation of the various frequencies on hidden
Markov models (HMMs) of the noise and the speech.

Enhancement of speech signals in noise has been quite
useful in telephony applications. Some recent implemen-
tations of Etter [87] and Diethorn [88] are some of the
best examples of this application.

Speech Recognition
Speech recognition by machine in a limited and strict sense
can be considered as a problem of converting a speech
waveform into words. It requires analysis of the speech sig-
nal, conversion of the signal into elementary units of
speech such as phonemes or words, and interpretation of
the converted sequence in order to allow correction of the
misrecognized words/units or for other linguistic process-
ing such as parsing and speech understanding.

A Brief History ofthe Research (after f89J)
Research in automatic speech recognition by machine has
been done for almost four decades. The earliest attempts
to devise systems for automatic speech recognition by
machine were made in the 1950s, when various research-
ers tried to exploit the fundamental ideas of acoustic-
phonetics. In 1952, at Bell Laboratories, Davis, Bid-
duiph, and Balashek built a system for isolated digit rec-
ognition for a single speaker [90]. The system relied
heavily on measuring spectral resonances during the
vowel region of each digit. In an independent effort at
RCA Laboratories in 1956, Olson and Belar tried to rec-
ognize 10 distinct syllables of a single speaker, as embod-
ied in 10 monosyllabic words [91]. The system again
relied on spectral measurements (as provided by an ana-
log filter bank) primarily during vowel regions. In 1959,
at University College in England, Fry and Denes tried to
build a phoneme recognizer to recognize four vowels and
nine consonants [92]. They used a spectrum analyzer and
a pattern matcher to make the recognition decision. A
novel aspect of this research was the use of statistical in-
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formation about allowable sequences of phonemes in
English (a rudimentary form of language syntax) to im-
prove overall phoneme accuracy for words consisting of
two or more phonemes. Another effort of note in this pe-
riod was the vowel recognizer of Forgie and Forgie, con-
structed at MiT Lincoln Laboratories in 1959, in which
10 vowels embedded in a /bJ-vowel-/t/ format were rec-
ognized in a speaker-independent manner [93]. Again a
filter-bank analyzer was used to provide spectral informa-
tion, and a time-varying estimate of the vocal'tract reso-
nances was made to decide which vowel was spoken.

In the 1960s several fundamental ideas in speech recog-
nition surfaced and were published. However, the decade
started with several Japanese laboratories entering the rec-
ognition arena and building special-purpose hardware as
part of their systems. One early Japanese system, described
by Suzuki and Nakata of the Radio Research Lab in Tokyo
[94], was a hardware vowel recognizer. An elaborate
filter-bank spectrum analyzer was used along with logic
that connected the outputs of each channel of the spectrum
analyzer (in a weighted manner) to a vowel-decision cir-
cuit, and a majority-decision logic scheme was used to
choose the spoken vowel. Another hardware effort in Ja-
pan was the work of Sakai and Doshita of Kyoto Univer-
sity in 1962, who built a hardware phoneme recognizer
[95]. A hardware speech segmenter was used along with a
zero-crossing analysis of different regions of the spoken in-
put to provide the recognition output. A third Japanese ef-
fort was the digit recognizer hardware of Nagata and
coworkers at NEC Laboratories in 1963 [961. This effort
was perhaps most notable as the initial attempt at speech
recognition at NEC and led to a long and highly produc-
tive research program.

In the 1960s three key research projects were initiated
that have had major implications on the research and de-
velopment of speech recognition for the past 20 years.
The first of these projects was the efforts of Martin and
his colleagues at RCA Laboratories, beginning in the
late 1960s, to develop realistic solutions to the problems
associated with nonuniformity of time scales in speech
events. Martin developed a set of elementary time-
normalization methods, based on the ability to reliably
detect speech starts and ends, that significantly reduced
the variability of the recognition scores [97]. Martin ul-
timately developed the method and founded one of the
first companies, Threshold Technology, which built,
marketed, and sold speech-recognition products. At
about the same time, in the Soviet Union, Vintsyuk pro-
posed the use of dynamic programming methods for
time aligning a pair of speech utterances [98]. Although
the essence of the concepts of dynamic time warping, as
well as rudimentary versions of the algorithms for
connected-word recognition, were embodied in Vint-
syuk's work, it was largely unknown in the West and did
not come to light until the early 1980s; this was long af-
ter the more formal methods were proposed and imple-
mented by others.

A final achievement of note in the 1960s was the pio-
neering research of Reddy in the field of continuous
speech recognition by dynamic tracking of phonemes
[99]. Reddy's research eventually spawned a long and
highly successful speech-recognition research program at
Carnegie Mellon University (CMU) (to which Reddy
moved in the late l960s). One of the first demonstrations
of spoken-language understanding at CMU was in 1973.
The Hearsay I System, developed at CMU, was able to
use semantic information to significantly reduce the
number of alternatives considered by the recognizer. In
the Voice Chess task domain used by Hearsay I, the
number of alternative sentences that could be spoken at
any given point was limited to the synonyms of the possi-
ble moves. There are not yet many systems that effectively
demonstrate the role of semantics in reducing the com-
plexity of search. However, the principle that syntactic,
semantic, and contextual knowledge sources can be used
to reduce the number of possible alternatives to be con-
sidered in decoding appears to be central to the design of

spoken-language-understanding systems.
In the 1970s speech-recognition research achieved a

number of significant milestones. First, the area of
isolated-word or discrete-utterance recognition became a
viable and usable technology based on fundamental stud-
ies by Velichko and Zagoruyko in the Soviet Union
[100], Sakoe andChibain Japan [101], andltakura in the
United States [102]. The Russian studies helped advance
the use of pattern-recognition ideas in speech recogni-
tion; the Japanese research showed how dynamic pro-
gramming methods could be successfully applied; and
Itakura's research showed how the ideas of LPC, which
had already been successfully used in low-bit-rate speech
coding, could be extended to speech-recognition systems
through the use of an appropriate distance measure based
on LPC spectral parameters.

Another milestone of the 1970s was the beginning of a

longstanding, highly successful group effort in large-
vocabulary automatic speech dictation at IBM in which
researchers studied three distinct tasks over a period of al-
most two decades (namely, the New Raleigh language
[103] for simple database queries, the laser patent text
language [104] for transcribing laser patents, and the of-
fice correspondence task) with a system called Tangora
[104], for dictation of simple memos.

Finally, at AT&T Bell Labs (now Bell Labs, Lucent
Technologies, and AT&T Labs—Research), researchers
began a series of experiments aimed at making speech-
recognition systems that were truly speaker-independent
[106] for telecommunication applications. The intended
application was telecommunication services, where hu-
mans and machines conduct dialogues in order to accom-
plish a task such as routing a call, or making a reservation
on cars or flights. To achieve this goal, a wide range of so-
phisticated algorithms were developed to deal with all
variations of different words and different expressions
across a wide user population. This research has been re-
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A 7. Dimensions of automatic-speech-recognition applications

and the current capabilities (shaded line).

fined over a decade so that the techniques for creating
speaker-independent speech models are now well under-
stood and widely used.

Just as isolated word recognition was a key focus of
research in the 1970s, the problem of connected-word
recognition was a focus of research in the 1980s. Here
the goal was to create a robust system capable of recog-
nizing a fluently spoken string of words (e.g., digits)
based on matching a concatenated pattern of individual
words. A wide variety of connected-word-recognition
algorithms were formulated and implemented, includ-
ing the two-level dynamic programming approach of
Sakoe at Nippon Electric Corporation (NEC) [107],
the one-pass method of Bridle and Brown at Joint
Speech Research Unit (JSRU) in England [108], the
level-building approach of Myers and Rabiner at Bell
Labs [109], and the frame-synchronous level-building
approach of Lee and Rabiner at Bell Labs [110]. Each of
these "optimal" matching procedures had its own imple-
mentational advantages, which were exploited for a
wide range of tasks.

Speech research in the 1980s was characterized by a
shift in technology from template-based approaches to
statistical modeling methods—especially the HMM ap-
proach [111, 112] (discussed later).

The success of hidden Markov modeling gave rise to a
major impetus in the 1980s to large-vocabulary,
continuous-speech-recognition systems by the Defense
Advanced Research Projects Agency (DARPA) commu-
nity. (For ARPA efforts in speech understanding in the
1970s, see [113].) Major research contributions resulted
from efforts at CMU (notably the well-known SPHINX
system) [114], BBN with the BYBLOS system [115],
Lincoln Labs [116], SRI [117], MIT {118], and AT&T
Bell Labs [119]. The DARPA program has continued
into the 1990s, with emphasis shifting from air-travel in-
formation retrieval to a range of different speech-

understanding applications areas, in conjunction with a
new focus on transcription of broadcast news. At the
same time, speech-recognition technology has been in-
creasingly used within traditional telecom networks to
automate as well as enhance operator services [120].
Figure 7 shows a plot of various applications of
speech-recognition technologies along the dimensions
of vocabulary size and speaking style. The level of diffi-

culty increases roughly along the diagonal line away
from the lower-left corner, and the shaded bar repre-
sents a threshold of applications that can be supported
by the current technology. Many challenges are still
ahead of us.

From Speech Analysis to Statistical Modeling
Until the 1970s and 1980s, automatic speech recogni-
tion was mostly considered to be a speech-analysis
problem. The fundamental belief was that if a proper
analysis method were available that could reliably pro-
duce the identity of a speech sound, recognition of
speech would be readily attainable. Such a determinis-
tic view of the speech-recognition problem was advo-
cated by researchers in acoustic-phonetics by citing
such examples as "A stitch in dime saves nine" (in con-
trast to "A stitch in time saves nine"), which they be-
lieve can only be recognized correctly by deriving
acoustic-phonetic features. This view may be appropri-
ate in a microscopic sense but does not address the mac-
roscopic question of how a recognizer should be
designed such that, on average (in dealing with all the
input sounds), it achieves the least errors or error rate.
Similarly, template-matching in most practical systems
without a proper statistical foundation does not pro-
vide a rigorous answer to this question, which is best
addressed by Bayes' decision theory. (Template-
matching with asymptotically dense reference patterns
certainly would fall into the category of nonparametric
statistical-pattern-recognition approaches whose opti-
mality can be analyzed in reference to the Bayes deci-
sion theory formulation.)

Bayes Decision Theory

Bayes decision theory deals with random observations
from an information source consisting of M classes of
events where the goal is to identify which class of event
the observation belongs to. Let the joint probability ofX
(the observation) and C (the class identity), P(X, C), be
known to the designer of the classifier. In other words,
the designer has full knowledge of the random nature of
the source. To measure the performance of the classifier,
for every class pair (j,i,), a cost or loss function, e, is de-
fined to signify the cost of classifying (or recognizing) an
observation from class i as belonging to a class jevent.
The loss function is generally nonnegative with = 0
representing correct classification.
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Given an arbitrary observation, X, a conditional loss
for classifyingX as belonging to a class, I, event can be de-
fined as

R(C1X) te1ìP(C1IX)

where P(C I X) is the aposteriori probability. This leads to
a reasonable performance measure for the classifier, i.e.
the expected loss, defined as

=fR(C(X)JX)p(X)dX (2)

where C(X) represents the classifier's decision, assuming
one oftheMvatues," C1, C2 ... CM.

For speech recognition, the loss function, e, is usually
chosen to be the zero-one loss function defined by e=O
fori —j and =1 fori #j, i,j = 1,2 ... M, which assigns no
loss to correct dassification and a unit loss to any error, re-
gardless of the class. With this type of loss function, the
expected loss, , is, thus, the error probability of classifi-
cation or recognition. The conditional loss becomes

R(C1IX) =P(CjX)1j
=i-P(CjX)

The optimal classifier that achieves minimum f is thus
the one that implements the following:

C(X) =C if P(C1jX)_— rnaxP(C11X).

In other words, for minimum-error-rate classification,
the classifier employs the decision rule of Eq. (4), which is
called the maximum a posteriori (MAP) decision. The
minimum error achieved by the MAP decision is called
Bayes risk. (It's worth being somewhat mathematical here
since formulating the recognizer's performance in terms
of minimum expected loss is the basis of the paradigm
shift from deterministic pattern matching to statistical-
pattern recognition.)

The required knowledge for an optimal classification
decision is, thus, the a posteriori probabilities for the im-
plementation of the MAP rule. These probabilities, how-
ever, are not known in advance and generally have to be
estimated from a training data set with known class labels.
Bayes decision theory thus effectively transforms the clas-
sifier design problem into a distribution estimation prob-
lem. This is the basis of the statistical approach to pattern

recognition.
The aposteriori probability P(C1 j X) can be rewritten

as

P(C1 Ix) = P(xc)P(c) / P(X).

(3)

Since P(X) is not a function of the class index and, thus,
has no effect in the MAP decision, the needed probabilis-
tic knowledge can be represented by the class prior, P(C),
and the conditional probability P(XI C1).

(1) ProbabilItyDistributions for Speech
The statistical method, as discussed above, requires that a
proper, usually parametric, distribution form for the ob-
servations be chosen in order to implement the MAP de-
cision. A key issue is what is the right distribution form
for speech utterances? This question involves two essen-
tial aspects: i) finding the speech dimensions that carry
the most pertinent linguistic information, and ii) decid-
ing how to statistically characterize the information along
the chosen dimensions.

Based on empitical observations, the HMM was pro-
posed [15, 121, 122] as a simple means to characterize
speech signals. For detailed discussions of the H.MM, ref-
erences [112] and [122] provide good insights.

Developmentsof HMM
The statistical method of hidden Markov modeling for
speech recognition encompasses several interesting prob-
lems, particularly the estimation problem [111, 123, 124,
125]. Given an observation sequence (or a set of se-
quences), X, the estimation problem involves finding the
'right" model parameter values that specify a source
model (probability distribution) most likely to produce
the given sequence of observations. In solving the estima-
tion problem, we usually use the method of maximum

(4)
likelihood (ML); that is, we choose 7 such that P (X I X)
is maximized for the given 'training" sequence, X.

Several major advances have been made since Baum
[123] proposed the original idea of HMM. Baum's work
allows estimation of parameters associated with a discrete
HMM (i.e.,a model in which the probability distribution
of observations in each Markov state is discrete) or a con-
tinuous density HMM in which the observation density
in a state satisfies a log-concavity assumption. This is a se-
rious limitation on this otherwise powerful modeling
technique because the more the chosen form of the distri-
bution deviates from that of the true distribution, the less
likely it is to be able to achieve Bayes' optimal perform-
ance. In 1982, Liporace [124] broadened the class of
HMMs that can be estimated by the re-estimation algo-
rithm to elliptically symmetric densities, In 1984, Juang
[125] (and subsequently Juang, Levinson, and Sondhi
[126]) was successful in eliminating these prior assump-
tions and limitations on the form of the distribution and
showed a method for estimating HMMs with mixture
densities (which allow arbitrarily close approximation to
the true data distribution). This advance gave HMM a
firm foundation for use as a probability distribution of
speech for statistical-recognition system designs.
Mixture-density HMM has since become the prevalent
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speech-modeling method and is being used in most
speech-recognition systems.

The Search Problem
Hidden Markov models are finjte-stae utQmata in na-
ture and form a powerful tmiori When conThined with
fiqite-state networks to represent a language froin pho-
nemes to words to grammars that specify tb *o4 se-
quence relationship), particnlarly for large-vdcabttlay
continuous-speech-recognition systems 127, 12$],
Such networks are often very large, and it becoues ini-
portant to find efficient seatch methods that evaliliate the
likelihood that a "path" in such a vast network produces
the observed acoustic signal and then 6nd the best among
all possible paths.

In the early development of speech recognition, dy
namic programming (DP) techniques [107-19J were
the focus ot'the efforts (discussed earlier). Along with the
development of the HMM, the fundamental DP tech-
nique is now often called the Viterbi algorithm t89).

To deal with large-vocabulary, continttotis-speeb-
recognition problems, the techniques often tised are
beam search [1291, which prunes nulikely evenr ftom
the search list to achieve efficiency, and the' sck algo-
rithm 1130], which attempts to find the best path first.
New algorithms such as the tree-trellis algorithm 11311
which combines a Viterbi forward search and an
[132] backward search are very efficient in generating
N-best results.

From Bayes to Neyman-Pearson
Bayes' formulation of the pattern-recognition problem
assumes that each unknown observation belongs to one
ofM classes. The maximum a posteriori (M.P) deision
rule guarantees optimal performance, i.e., ninimut
B ayes risk or error, if the joint distribution of the observa-
tion and the class, P(X,C1), is known. In many speech-
recognition applications, however, the speech pattern to
be recognized may not belong to any of the registered
classes. This may appear in the fprm of socalled "out-of-
vocabulary" (OOV) words or as a result of disfltieny
such as repair ot partially spoken Words. Another exam-
ple occurs hi a particular telecommunication cafl-rotiting
application [120] in which the speaker is allowed to em-
bed "keywords" ("collect,' "person-to-person," 'pcra
tor," "credit card," etc.) in naturally spoken seutences
(e.g., "t'd like to make a collect calL"). tn such Cas the
recognizer needs to be able tt distingtiish keyWords froto
nonkeywords as well as tp identify Which keyword has
been spoken. For this kind of task, namely detection of
target event, a formulation based on hypothesis tsting
becomes necessary [133, 134].

Let us denote the target event (e.g., a keyword) byE
and the nontarget event by E. The likelihood ratio test
performed on an unknown observation, X is dstined as

F(XiE)J, then XE
t)l<t, then XE

The Jikelihod ratio is an importain parameter for the
calcilaticni o a confi4erice measure, he thteøhojd de
fans art Qperatiig point on the ROC (receiver operating
characteristic) curye for a desired tradeoff between mis-
detection and false-alarm (false-triggering) errors. Eot
many Voice comniaxid and control applications, the abil-
ity to ayjd false triggering by spurious sounds is criti-
cally iniportarlt.

The Neymait--Pearson formalism is also the basis of a
new aproaeh to speech understanding thcttsing on key
words atid key phrases that carry the main intention or
ineanitig that the speaker would like to deliver 115].

language Modeling
Just s hc goal of acoustic modeling is to find the regu
larities artd variability in the reiiation ofWords and
phrase, he aim of a lan9iage model is to itid and rçpre-
5en te relationsJlp among word in sentenceS. Tradi-
ionaliy wor4 riatiohsbips are etpressed in terms of a
graxnmar (e.g. Shatinons inforniation theory
spawned a new perspective in language modeling in
which word sequence relationships are expressed as con-
djttonal probabiries. If Wis a sequence of words;

W WW •WQ

then

w1)

IWQ1 .. w1)

The ensemble of the conditional probabilities (often
truncated to length N,i?(WQ w ',.WQ$÷1), the so-called
N-grazti) foni a probabilistic model of the language.
Specific/values of tb conditional probabilities can be esti
mated from a large text data set via methods such as maxi-
mum likelihood trainihg [104] This cOrreponds to
modeling a language with a finite-state stochastic gram-
mar that can be effectively used in practice. Although
such a grainmr often overgenetates With respect to a
natural lguage gramiiar, it has the advantage of com-
p],ete coverage of nati*ral sentences. If the model is Well
traind then ungranimtical setitences would have lower
ptobahiithies than the grammatical ones.

The statistical language model has been shown to be
effective in large-vocabulary speech recognition. Row-
ever, its interaction with the acoustic model, in terms of
the overall accuracy for speech-to-text conversion, is still
not well uliderstood, A language model that achieves
loWer perlcximy average Word-branching factQr) for a
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par ciar (tct) di* t*y 1iio a4y l4 t
hiber recnitk* /

The RobustnessPaob1e*
/

sttistiel aprap /

ily oi the trainiig 4* rht iS tiiib r çt /

rfnwo4el, The 1tisrth çleçt ai
to tl ctul siiaI bed vjzg o$ th
hher the recognition u* IS ir b
variability in speech howesr, oft ixi liy ftG4
nd is so lar (n4 atti1c hte4 t1t Øt
rare casçs is the attithit o{' colleed e1 dcta Øt
ered to be reliably sufficient. What is often obstvdTh
speech-recognition applications is that a recognizer de-
signed on a data set in the laboratory does not perform as
well in the field. In other words, a mismatch between the

modeling (training) and the operating (testing) condi-
tions usually exists and causes degradation in the recog-
nizer's performance [137].

Besides the mismatch, several adverse conditions are
also often present during operation, such as ambient and
transmission noise, distortions due to room acoustics and
transducers, and even changes in speech characteristics
due to psychological awareness of talking to a machine
[137]. These conditions need to be dealt with in order for
the recognizer to be able to deliver reliable results. This is
the so-called "robustness" problem in automatic speech
recognition.

One method that achieves robust results isto collect an
extremely large amount of data that reflects the actual op-
erating conditions of the recognizer. With a proper data
set, multi-style training [138] was shown to be effective.
When the distortion is mostly linear, cepstral compensa-
tion in the form of cepstral mean subtraction [139] and
cepstral bias removal [140] is simple and works well. More
recent advances in robust speech recognition include paral-
lel model combination [141], maximum aposteriori adap-
tation [142, 143], and stochastic matching [144].

In spite of these developments, the robustness problem
remains today an active research area in speech recognition.

OtherAdvances
While the paradigm shift to statistical methods put
speech-recognition research on a mathematically sound
basis, it also exposed the limitation of our knowledge in
pursuing the Bayes minimum error. Recall that the opti-
mal performance of a recognition system, in terms of the
error rate, is attainable only when complete, accurate
knowledge on the joint observation-class distribution is
available to the designer. Practically, the distribution can
only be approximated and, therefore, the distribution es-
timation approach cannot guarantee any optimality. To
circumvent this problem, in order to obtain best accuracy
given the choice (form) of the recognizer structure (or
distribution function), the method of minimum classifi-

descent algo
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adsance is dp-
Stet parat13eter S uce$-

trrd *
deliser tP

rent
A systemneeds to track changes in
the speaker's speech characteristics (e.g., as a result of
catching a cold).

The maximum aposteriori formulation has been pro-
posed as a framework [142,143]. This is also an active re-
search area at present.

Spoken-Language Understanding
Except for dictation and some simple command and con-
trol applications, speech recognition (transcribing the
words spoken) is not nearly as useful as speech under-
standing (interpreting those words). Although spoken
language has been used for centuries by humans to inter-
actively solve problems, it is only in recent years that it has
begun to be used in human-machine interfaces. It is also
only in recent years that it is possible to envision technol-
ogy that makes speech as accessible as text as an informa-
tion source. This section outlines progress in
spoken-language understanding over the past 50 years,
summarizes current applications in database query and
information extraction, and discusses future possibilities.

A Brief History
Spoken-language understanding as undertaken at present
involves integrating speech recognition (what are the
words?) and natural language understanding (what do
those words mean?). The past 50 years have witnessed
dramatic changes in each of these component technolo-
gies. Some of these changes in speech recognition have al-
ready been reviewed in this article. Dramatic changes
have also taken place in language understanding. Two im-
portant books ci-ystalizing a formal approach to language
appeared in 1951, one more influenced by algebra (Zellig
Harris's Methods in Structural Linguistics appeared in
1951), and one more influenced by psychology and the
processing of information by humans (George Miller's
Language and Communication). Taken together, these
works made it possible to imagine the possibility of auto-
matic speech understanding as the computation of an ab-
stract representation and extraction of information.

In the late 1950s and early 1960s, one of Harris's stu-
dents, Noam Chomsky, promoted a new view of the
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proper study of linguistics. This view built on the formal
methods developed by Harris but replaced the previous
focus on language analysis with a new focus on language

generation. This work was influential in advances in speech
synthesis, and it could have served as an important comple-
ment to the earlier analytical work (since, normally, people
hot hgenerate and understand language). However, the im-
pact was to defme linguistics for a large share of language
researchers as the study of how to generate speech from the
"perfect" speaker-hearer. This dramatically limited the use-
flulness of linguistics in language understanding since
analysis (not just generation) is required for understand-
ing, and since understanding of "imperfect" input needs to
be accounted for. A side-effect was the interpretation of
'data": instead of being what people actually said, data
came to be interpreted as the linguist's intuitions about
what the ideal speaker would say. Such methods and goals
that are so different from those of engineers led to some-
what of a cultural gap between "linguistic knowledge" and

"speech knowledge." Successful speech understanding re-
quires the bridging of this gap.

In the 1960s and 1970s, as socio-linguists and anthro-
pological linguists remained focussed on observing actu-

ally occurring language, computational linguists began
linguistically relevant computations. However, it was
only about 10 years ago that the natural-language-
understanding community began to change the trend
from the use of "typical" examples based on intuitions to
test their systems to the use of data from humans produc-
ing language in a communicative setting.

Efforts over the last 10 years show au ircreasing im-
pact of the two fields on each other csee,
[146]- [151]). Although the use of linguistic kuowlcdge
and techniques in engineering may have lagged th use of
statistical methods in computational linguistics, thereare
signs of growth in this area as engineers tackle the more
abstract linguistic units (with and without collaboration
with natural language experts). These more-abstract inits
are more rare, and therefore more difficult to model by
standard, data-hutgry engineering techniques. How-
ever, perhaps the biggest recent developthent for loth
speech and language understanding has been the us of
more realistic data, This fpcus, partially driven by funding
sources (e.g., DARPA) in search of more near-terAi ap-
plications, has led to some basic research towatd theories
that can accommodate the broadest class of la.nguge use:
we will be able to "generalize" more of what we learn
from working on conversational speech to recognizirg
isolated digits than we would be able to generalize frotu
digits to conversational speech.

PresentFocus: Database Query and
in formation Extraction
Natural-languageunderstanding presently focuses on ap-
plications of the following two classes: database query
systems and information extraction systems. A naturaF

language-database query system formulates a query, usu-
ally based on one or a few sentences, into a specification of
information fields and values in the context of the particu-
lar database's structure. An information-extraction svs-
tern aims at detecting or summarizing information of
interest from a report (e.g., a newswire story or broad-
cast) in general domains. A pioneering effort that utilized
formal models of linguistic structure for database query"
was the work by Levinson and Shipley [1 52], which pre-
ceded much of the current focus and taxonomy of ap-
proaches.

Evaluation of spoken-language-understanding svs-
tems is required to estimate the state of the art objectively.
However, evaluation itself has been one of the challenges
of spoken-language understanding. The only systematic
program with broad participation for assessing speech
understanding has been the (D)ARPA benchmarks fo-
cussed on the air travel planning domain (see
[153]-[155]). Since it has not yet been possible to agree
on a representation for meaning, these evaluations were
carried out by human assessment of the results of a data-
base query. Trained annotators translated the human
queries into formal database queries with additional an-
notations for ambiguities and context dependencies. For
example, a query, "I want flights from Boston to DC" is
expected to produce a table of flights, listing carriers,
flight numbers, departing times, and arrival times, etc.
Annotation of this type proved to be an expensi\ e propo-
sition, and yet it did not allow for the evaluation of the in-
teractive aspect of the task, since systems were evaluated
only on the teult rtqrned from a database. Although
one test set was set aside for future evaluations, these tests
haVe not been uect since 1994.

Iii. the last Air Travel Information Service (ATIS)
evaluation of DARPA (December 1994) [155] the
speech-recognition word error rate in the best system was
under 2%; utterance error rates were about 13% to 25%.
The utterance-understanding error rates ranged from 6%
to 41%, although about 25% of the utterances were con-
sidered impossible to evaluate in the testing paradigm
(the trained annotator Lould ot determine what the cor-
rect response should be). ence, these figures do not con-
sider quite the atue set. For limited domains, these error
rates are probably adequate for many potential applica-
tions. Since conversational repairs in human-human dia-
logue can often be in the ranges observed for these
systems, the botindirtg factor in applications may be not
the error rates so much. as the ability of the system to man-
age and recover from errors.

The state of the art in information extraction, based on
the DARPA Message Understanding Conference
(MtJC) evaluations, spans a wide range [156]. Informa-
tion extraction addresses the problem of updating struc-
tured databases (relational or object-oriented) from
speech or text. For instance, suppose one needs to update
a database of the officers of a corporation with the posi-
tions that they hold from brOadcast news or newswire
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stories that report ches in thç company øfficers. t1e
goal is not oilyto scan ouce speech and text fpr sncl an-
nouncmeiits, bu ajso to antontatically update tji data-
base. 1ot the "rth,ned entity' pp1icatiori, where 1±e
syteni ha to find all named organiatons locatiOp, per
$ots dte, ines montay amoints, and perentae
the efto rate frcmtett is 5%. ikr te "setiarip template"
application, where the systeni has to rtradt o xp1et (btit
prespecified) relationships in well-defined domains (such
as cl'nes in orporate officers) in an open scurce (such
s the Vll Strec Journal), the error rate fbr finding the
correct elements f the templates i around 4%.

searchets are still discussin possibUitie fbr pme
type of limited speech understanding that would l,e less
eostiy and mcre releant in appfiations. Pr-nf-speech
taming has been discusse4, l,ut it has nc)t been shovti
that oc4 part-*speech taglri is eithet ncessay or
sufficient ftr good understanding. Other possibilities ib
elude dividing spoken conversations into Iinguitic units
'note like sentence and phrase boundaries, finding the
n*ir vet-i, fiy) in that unit, and/or iu4icating rds
with çtr e'nphasis.

Fuure challenges
8peech-tndrstandin teseaich as none*istnt O yeats
ago. The dramaxic changes in speech recogninon and hi
laEguae understandiii duting the past 50 ear, cpnt
bined with political changes and changes in the cozuutin
infrastructure, led to the state of the art that we observe to-
day. Challenges remain in several areas (see [157]):
A Integration. There is much evidence that human
speech understanding involves the integration of a great
variety ofknowledge sources, including knowledge of the
world or context, knowledge of the speaker and/or topic,
lexical frequency, previous uses of a word or a semanti-
cally related topic, facial expressions (in face-to-face com-
munication), prosody, In addition to the acoustic
attributes of the words. Our systems could do much bet-
ter by integrating these knowledge sources.
A Prosody. Prosody can be defined as information in
speech that is not localized to a specific sound segment, or
information that does not change the identity of speech
segments (see, e.g., [158], [159], [160]). Such informa-
tion includes the pitch, duration, energy, stress, and other
supra-segmental attributes. The segmentation (or group-
ing) function of prosody may be related more to syntax
(with some relation to semantics), while the saliency or
prominence function may play a larger role in semantics
and pragmatics than in syntax. To make maximum use of
the potential of prosody will likely require a well-
integrated system, since prosody is related to linguistic
units not just at and below the word level, but also to ab-
stract units in syntax, semantics, discourse, and pragmat-
ics. Our systems make quite limited (or no) use of
prosody at present.

A Spontaneous Speech. The same acoustic attributes
that indicate much of the prosodic structure (e.g., pitch,
stress, and duration patterns) are also very common in as-
pects of spontaneous speech that seem to be more related
to the speech planning process than to the structure of the
utterance. For example, a long syllable followed by a
pause can indicate either an important syntactic boundary
or that the speaker is planning the rest of the utterance.

Similarly, a prominent syllable may mark new or impor-
tant information, or a restart intended to replace some-
thing said in error. Although spontaneous speech effects
are quite common in human communication and may be
expected to increase in human machine discourse as peo-
pie become more comfortable conversing with machines,
modeling of speech disfluencies is only just beginning
(see, e.g., [161], [162]).

Much of our thinking about spoken language has been
focused on its use as an interface in human-machine inter-
actions mostly for information access and extraction.
With increases in cellular phone use and dependence on
networked information resources, and as rapid access to
information becomes an increasingly important eco-
nomic factor, telephone access to data and telephone
transactions will no doubt rise dramatically. There is a
growing interest, however, in viewing spoken language
not just as a means to access information, but as, itself, a
source of information. Important attributes that would
make spoken language more useful in this respect in-
clude: random access, sorting (e.g., by speaker, by topic,
by urgency), scanning, and editing. How could our lives
be changed by such tools? Enabling such a vision chal-
lenges our systems still further in noise robustness and in
spontaneous speech effects. Further, the resulting in-
creased accessibility to information from conversational
speech will likely also raise increased concern for privacy
and security, some of which may be addressed by control-
ling access by speech: speaker identification and verifica-
tion (see the nect section.

While such near-term application possibilities are ex-
citing, we can envision an even greater information revo-
lution on par with the development of writing systems if
we can successfully meet the challenges of spoken lan-
guage both as a medium for information access and as it-
self a source of information. Spoken language is still the
means of communication used first and foremost by hu-
mans, and only a small percentage of human communica-
tion is written. Automatic-spoken-language
understanding can add many of the advantages normally
associated only with text (random access, sorting, and ac-
cess at different times and places 1 to the many benefits of
spoken language. Making this vision a reality will require
significant advances.

Speaker Verification and dentification
Speaker recognition is the process of automatically recog-
nizing a speaker by using speaker-specific information in-
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eluded in his or her speech [163-166]. This technique can
be used to verify the identity claimed by people accessing
systems; that is, it enables control of access to various
services by voice. Applicable services include voice dial-

ing, banking over a telephone network, telephone shop-
ping, database access services, information and
reservation services, voice mail, security control for confi-
dential information, and remote access to computers.

Speaker recognition can be classified irto speaker
identification and speaker verification. Closed-set speaker
identification is the process of determining which of the
registered speakers a given utterance comes from.
Speaker verification is the process of accepting or reject-
ing the identity claim of a speaker. Most of the applica-
tions in which voice is used to confirm the identity claim
of a speaker require speaker verification.

Speaker-recognition methods can also be divided into
text-dependent and text-independent methods. The
former requires the speaker to provide utterances of key
words or sentences that are the same text for both training
and recognition, whereas the latter does not rely on a spe-
cific, prescribed text. The text-dependent methods are
usually based on template-matching techniques in which
the time axis of an input speech sample and each reference
template or reference model of the registered speakers are
aligned, and the similarity between them is accumulated
from the beginning to the end of the utterance [164, 167,
168]. Since this method can directly exploit voice indi-
viduality associated with each phoneme or syllable, it gen-
erally achieves higher-recognition performance than the
text-independent model.

However, there are several applications, such as foren-
sic and surveillance applications, in which predetermined
keywords cannot be used. Moreover, human beings can
often recognize speakers irrespective of the content of the
utterance. Therefore, text-independent methods have re-
cently attracted more attention. Another advantage of
text-independent recognition is that it can be done se-
quentially, until a desired level of significance is reached,
without the annoyance of the speaker having to repeat the
key words again and again

Both text-dependent and text-independent methods
have a serious weakness. These systems can easily be de-
feated, because someone who plays back the recorded
voice of a registered speaker uttering key words or sen-
tences into the microphone can be accepted as the regis-
tered speaker. To cope with this problem, a
text-prompted speaker-recognition method has recently
been proposed.

BaskStructures of Speaker-Recognition Systems
The fundamental techniques, such as signal analysis,
modeling and pattern matching, in a speaker identifica-
tion/verification system are essentially identical to those
used in a speech-recognition system. What differentiates

them is the need to find speaker-specific information and
the explicit use of hypothesis analysis and thresholding.

In the closed-set speaker-identification task, a speech
utterance from an unknown speaker is analyzed and com-
pared with speech models of known speakers. The un-
known speaker is identified as the speaker whose model
best matches the input utterance. In speaker verification,
an identity claim is made by an unknown speaker. and an
utterance of this unknown speaker is compared with the
model for the speaker whose identity is claimed. If the
match is good enough, that is, above a threshold, the
identity claim is accepted. A high threshold makes it diffi-
cult for impostors to be accepted by the system, but at the
price of falsely rejecting valid users. Conversely, a low
threshold enables valid users to be accepted consistently,
but at the price of accepting impostors. To set the thresh-
old at the desired level of customer rejection and impostor
acceptance, it is necessary to know the distribution of cus-
tomer and impostor scores.

The effectiveness of speaker-verification systems can
be evaluated by using the receiver operating characteris-
tics (ROC) curve, which shows the system performance
in terms of two probabilities: the probability of correct
acceptance and the probability of incorrect acceptance.
By varying the decision threshold, a point on the ROC
curve can be selected for operating purposes (to achieve
the desired tradeoff between the two probabilities
[169]. The equal-error rate (EER) is commonly accepted
as an overall measure of the system performance. It corre-
sponds to the threshold at which the false acceptance rate
is equal to the false rejection rate.

From Spoken Language
to Multimodal Communication
Human-machine communication (11MG) is evolving
from text interface (i.e., keyboard and screen display) to
spoken language (automatic speech recognition and un-
derstanding) to multimodal communication involving
different senses (audio, visual, tactile, or even gesmral
with synergy [170, 171]. Human communication in-
cludes the perception or production of a message or of an
action as an explicit or implicit cognitive process. For per-
ception, there are the "five senses": hearing, vision,
touch, taste, and smell, with reading as a specific visual
operation, and speech perception as a specific hearing op-
eration. For production, it includes sound (speech, or
general sound production) and vision (generation of
drawings, graphics or, more typically, written messages).
Cognition includes the means to understand or to gener-
ate a message or an action from a knowledge source.

The machine serves as a means for the human being to
communicate with the world, In the domain of HMC,
the computer has various artificial perception abilities:
speech, character, graphics, and gesture or movement
recognition. This recognition function can be accompa-
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*ocgtip Q' id4ity of the person
oigb lØvement recogni-
ti is itad jrcgb he d&quipment (such
s I(ie VP,i a1Qp tØ$* 4t the Cybergiove),W1j tI t$øt Sensors allow for

th dtoti e*i through an oculo-
ttpt4allv, the computerc up toes ranging from

/ 1Idipiay øt tl t$rp1%it (ip1tding icons) mes-
ig tç $iQ ummary genera-
tjpri spØc1 shl a4j r animated image
yrtth$is Tt*i $ø4 4* be produced int ¶jtj Øisironment in which
tbe lir is ni rsd (i 1al"'ratIty),br itcan be super-
imposed on the real environment ("augmented" reality),
which would require the wearing of special equipment.
The provided information can be multimedia, including
text, real or synthetic images, and sound. It is also possi-
ble, in the gestural communication mode, to produce a
kinesthetic feedback, allowing for the generation of simu-
lated solid objects.

The machine also needs to have cognitive abilities, It
must take into account a model of the user, of the world
on which he acts, of the relationship between those two
elements, but also of the task that has to be carried out and
of the structures of the dialogue. It must be able to reason,
to plan a linguistic or nonlinguistic act in order to reach a
target/, to solve problems and aid in decision making, to
merge information coming from various sensors, and to
learn new knowledge or new structures. Multimodal
communication raises the problem of co-reference (e.g.,
when the user designates an object, or a spot, on the com-
puter display and pronounces a sentence relative to an ac-
tion on that object).

To accomplish the goal of multimodal human-
machine communication, while it is important to under-
stand the human functions in order to get some inspira-
tion when designing a system, of greater importance is
the ability to model in the machine the user with whom it
has to communicate. It is also necessary to model the
world in which they occur, This extends HMC to various
research domains such as room acoustics, physics, or op-
tics, and also physiology and cognitive psychology (for
generating intelligent agents or avatars).

LinkingLanguage and Image
With the coming of "intelligent" images, the relationship
between language and image is getting closer [172]. It
justifies advanced human-machine communication
modes. In an "intelligent" synthetic image (which implies
the modeling of physical characteristics of the real world),
a sentence such as "Throw the ball on the table" will in-
duce a complex scenario where the ball will rebound on
the table, then fall on the ground. This scenario would be
difficult to describe to the machine with usual low-level
computer languages or interfaces. Visual communication

is directly involved in human-to-machine communica-
tion (e.g., for recognizing the user or the expressions on
his face), but also indirectly involved in the building of a
visual reference that will be shared by the human and the
machine, allowing for a common understanding of the
messages that they exchange (for example, in the under-
standing of the command "Take the knife which is on the
small marble table" addressed to a robot). Instead of con-
sidering the user on one side and the machine on the other
side, the user himself may become an element of the simu-
lated world: acting and moving in this world, and getting
reactions from it.

There are several similarities in the research concern-
ing these different communication modes. In speech, vi-
sion, and gesture processing, similar methods are used for
signal processing, coding and pattern recognition. The
same approach based on statistical modeling has been ap-
plied with similar algorithms to various domains of HMC
such as speech recognition, visual recognition of charac-
ter or object, or gesture [173]. This approach requires
large databases, which are now available for speech, char-
acters and text data, but have yet to be made available for
visual, gestural, and multimodal data.

Humans use multimodal communication when they
speak to each other, except in the case of pathology or of
telephone communication. Movements of the face and
lips, as vell as expression and posture, will be involved in
the spoken language communication process. Studies in
speech intelligibility also showed that having both visual
and audio information improves the information com-
munication, especially when the message is complex or
when the communication takes place in a noisy environ-
ment [174], [175]. This has led to studies in bimodal
speech synthesis and recognition.

In the field of speech synthesis, models of speaking
faces were designed and used in speech dialogue systems
[176]. The face and lip movements were synthesized by
studying those movements in human speech production
through image analysis. It resulted in text-to-talking
heads synthesis systems. Studies in using the visual infor-
mation in speech communication (e.g., using the image
of the lips only, or the bottom of the face or the entire
face) showed that the inteffigibiitv of the synthesized
speech was improved for the human "listener," especially
in a noisy environment. In the same way, the use of the
visual face information, and especially the lips, in speech
recognition was studied, and results showed that using
both types of information gives better recognition per-
formances than using only the audio or only the visual in-
formation, especially in a noisy environment [177, 178].

While this visual information on the human image can
be used as part of the spoken-language-communication
process, other types of visual information related to the hu-
man user can also be considered by the machine. The fact
that the user is in the room, or is seated in front of the com-
puter display, as well as the direction of his/her gaze can be
used in the communication process (e.g., waiting for the
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presence of the human in the room to synthesize a mes-
sage, or choosing between a graphic or spoken mode for
delivering information, depending of whether the user is
in front of thc computer or somewhere else in the room,
adjusting the synthesis volume depending on how far he
is from the loudspeaker, adapting a microphone array on
the basis of the position of the user in the room [179].
checkingwhat the user is looking at on the screen in order
to deliver information relative to that area [180], etc.)

MultimodalMultimedia communication
Communication can also involve several verbal and non-
verbal media. Berkley and Flanagan [1811 designed the
AT&T Bell Labs HuMaNet system for multipoint con-
ferencing over the public telephone network. The system
features hands-free sopnd pick tp through microphone
arrays, voice control of call set-up, data access and display

through speech recognition, speech synthesis, speaker
verification for privileged data, still image and stereo im-
age coding. It has been extended tc also include tactile in-
teraction, gesturing and handwriting inputs, and face
recognition [182]. In Japan, ATR has a similar advanced
teleconferencing progeam, including 3D object model-
ing, face modeling, voice command, and gesrural com-
munication. At IRST, Stringa et al. [183] have designed,
within the MAXA project, a multimodal interface (speech
recognition and synthesis, and vision) to communicate
with a "concierge" of the institute, which answers ques-
tions on the institute arid its researchers, and with a mo-
bile robot, which has the task of delivering books or
accompanying visitors.

In the ESPRIT "MukimodalMulrimedia Automated
Service Kiosk" (MASK) project, speech recognition and
synthesis are used in parallel with other input (touch
screen) and output (graphics) means [184]. The applica-
tion li to provide railway travel information to railway
customerS, including the possibility of making reserva-
tions. The users get both visual (graphics) and audio
(speech synthesis) information, and they may choose to
either use speech or tactile input. First studies show that
subjects tend to use one mode or the other, based on its
apparent reliability or on their own preference, but they
will not mix them up during the dialQg.

In the closely rejated domain ot'multimedia informa-
tion processing, interesting results have been obtained in
the Informedia project at CMU oi. the automatic index-
ing of TV broadcast data (news), and multimedia infor-
mation query by voice, The system uses continuous
speech recognition to transcribe the speech. It segments
the video information in sequncs, and uses natural-
language-processing techniques to automatically index
those sequences from the result of the textual transcrip-
tions. Although the speech recognition is far from being
perfect (about 50% recognition zat), t seems to be good
enough for allowing the user to get a sufficient amount of
multime&a information froitn his queries [185].

Current Speech Processing
Technical Committee Members
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Conclusion
We attempted to provide a comprehensive, albeit cur-
sory, review of how speech signal-processing technolo-
gies progressed in the past as well as the challenges ahead.
Speech processing is one of the most intriguing areas of

intelligent signal processing because humans generate,
use, and appreciate speech on a daily basis. Speech re-
search has attracted scientists as an important discipline
and has created technological impact on society and is ex-
pected to further flourish in this era of machine intelli-
gence and human-machine interaction, We hope this
article brings about understanding as well as inspiration.
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