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Abstract-The existing linear algorithms exhibit various high 
sensitivities to noise. The analysis presented in this paper pro- 
vides insight into the causes for such high sensitivities. It is 
shown in thii paper that even a small pixel-level perturbation 
may override the epipolar information that is essential for the 
linear algorithms to distinguish different motions. This analysis 
indicates the need for optimal estimation in the presence of 
noise. Then, we introduce methods for optimal motion and 
structure estimation under two situations of noise distribution: 1) 
known and 2) unknown. Computationally, the optimal estimation 
amounts to minimizing a nonlinear function. For the correct 
convergence of this nonlinear minimixation, we use a two-step 
approach. The first step is using a linear algorithm to give a 
preliminary estimate for the parameters. The second step is 
minimizing the optimal objective function starting from that 
preliminary estimate as an initial guess. A remarkable accuracy 
improvement has been achieved by this two-step approach over 
using the linear algorithm alone. In order to assess the accuracy 
of the optimal solution, the error in the solution of the optimal 
estimation algorithm is compared with a theoretical lower error 
bound-CramCr-Rao bound. The simulations have shown that 
with Gaussian noise added to the coordinates of the image points, 
the actual error in the optimal solution is very close to the 
bound. In addition, we also use the CramCr-Rao bound to indicate 
the inherent instability of motion estimation from small image 
disparities, such as motion from optical flow. Finally, it is known 
that given the same nonlinear objective function and the same 
initial guess, different minimization methods may lead to different 
solutions. We investigate the performance difference between 
a batch least-squares technique (Levenberg-Marquardt) and a 
sequential least-squares technique (iterated extended Kalman 
filter) for this motion estimation problem, and the simulations 
showed that the former gives better results. 

Index Terms- Cramer-Rao bound, extended Kalman filter, 
maximum likelihood estimation, minimum variance estimation, 
motion estimation, nonlinear least-squares, structure from mo- 
tion. 

I. INTRODUCTION 

T W O  TYPES OF methods have been used for 3-D motion 
and structure analysis. The first type is iteratively solving 

nonlinear equations, which can be traced back to 1979 [39] 
when nonlinear equations were derived to relate 3-D motion 
parameters with the observables in the image plane. The 
challenge for these type of methods [39], [7], [57] is to solve 
these nonlinear equations. Although numerical methods could 
be applied to these nonlinear equations, the solution is not 
guaranteed, and as reported by a number of researchers, one 

Manuscript received November 1, 1991; revised August 26, 1992. This 
work was supported by the National Science Foundation under grants ECS- 
83-52 408 and IRI-86-05 400. Recommended for acceptance by Associate 
Editor A. Blake. 

The authors are with the Beckman Institute, University of Illinois, Urbana, 
Illinois 61801. 

IEEE Log Number 9211194. 

may end up with a false solution if the initial guess is not 
sufficiently near the true value. The second type is solving the 
problem using linear algorithms [23], [46]. However,  it has 
been reported that the solutions are highly sensitive to noise. 
This situation has raised concerns over whether the structure 
from motion problem itself is unstable. 

In fact, a stable solution is possible if appropriate optimality 
conditions are enforced. The optimization approach presented 
here started in early 1986 [51], [52], and this is its journal 
version. Our  approach to optimization was motivated by the 
following observations on linear algorithms. 

1) 

2) 

For certain types of motion, even pixel-level perturba- 
tions (such as spatial digitization noise of conventional 
CCD video cameras) may override the information char- 
acterized by the epipolar constraint, which is a key 
constraint used for determining motion and structure by 
linear algorithms. The epipolar constraint only constrains 
one of the two components of the image position of a 
point. 
Existing linear algorithms give closed-form solutions 
to motion parameters; however, the constraints in the 
intermediate parameter matrix are not fully used. It is 
useful to examine the constraint in the intermediate 
parameter matrix and use this constraint to improve the 
accuracy of the solution in the presence of noise. 

The above considerations are unified under a general frame- 
work of optimal estimation: Given the noise-contaminated 
points, we want the best estimator for motion and structure 
parameters. The following are the highlights of the paper: 

1) 

4 

3) 

4) 

This paper investigates approaches to optimal estimation 
with known or unknown noise distributions. 
Further, this paper introduces an approach to assessing 
the accuracy of the optimal solutions, which requires a 
method that is different from that for the linear algorithm 
w. 
Given an algorithm that computes a solution from noise- 
contaminated data, a fundamental question to ask is: Can 
one design an algorithm that gives solutions with higher 
accuracy? The questions of this type address the inherent 
stability issue of motion estimation. In this paper, we 
formulate the theoretical performance bounds for this 
problem and compare them with the actual performance. 
This study also enables us to quantitatively assess the 
inherent stability problem of estimating motion from 
small image disparities such as motion from optical flow. 
The type of algorithms used for nonlinear optimization is 
crucial in determining whether the optimal solution can 
be reliably obtained. The sequential processing method 
(Kalman filtering) has been used in many applications 
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Fig. 1. Normalized camera model and a moving scene. 

[42], [5], [lo], [38], [ll], [4], [31]. However,  the prob- 
lems with Kalman filtering have been largely neglected 
in this field. This paper analyzes sequential and batch 
processing algorithms and their performance differences 
for our motion problem. In fact, the performance differ- 
ences between these two types of methods is quite large 
for this nonlinear problem. 

II. LINEAR ALGORITHMS AND THEIR STABILITY 

The problem of estimating motion and structure from point 
correspondences through two views can be formulated as 
follows. Two images are taken at different positions and 
orientations in a rigid environment. The objective is to estimate 
the relative motion between the camera and the environment 
as well as the structure of the visible scene. 

Let the coordinate system be fixed on the camera as shown 
in Fig. 1. The image vector of the point z  = (2, y, 2)” is 
defined by 

x = (?&?I, l)t = (z/z, y/z, l)t 

in the 3-D coordinate system. The image plane vector u = 
(w$ = W,Yl~>” * 1s the projection of the 3-D point. Let 
R  be the rotation matrix and T be the translation vector, and 
let z  move to z’ under the motion, that is 

d = Rz + T. (2.1) 

Similarly, define the image plane vector u’ of the image vector 
x’. x’ = (u’,w’, l)t = (z’/z’, y//z’, l)t. 

Equivalently, the relative motion can also be viewed as that 
due to the motion of the camera. Let the world coordinate 
system be fixed with the scene and coincide with the camera 
coordinate system at time tr as shown in Fig. 2. To result 
in the same images as before, the motion of the camera can 
be represented by a “reverse motion,” that is, a translation 
-T followed by a rotation Rt in the world coordinate system 
(namely, any point p on the camera is moved to p’ in the world 
coordinate system), and p and p’ are related by 

p’= Rt(p-T) (2.2) 

in the world coordinate system (see Fig. 2). We will mainly 
consider the case where the camera is stationary. When it is 
necessary, we will give the interpretations for the case of a 
moving camera. 

Fig. 2. Another view of the relative motion. Moving camera takes hvo 
images. 

A. Linear Algorithms 

Different versions of linear algorithms have been published 
in literature (a partial list would include [23], [46] [59], [ll], 
and [49]). Although those algorithms use different ways to 
determine the unknowns, they share the same key structure: 
determining intermediate parameters, which are called essen- 
tial parameters, based on the epipolar constraint. To be specific, 
we use the algorithm in [55] as an example. 

B. The Epipolar Constraint 

The key constraint that the linear algorithms employ to 
solve for motion parameters is that X’, RtX, and T, must 
be linearly dependent (or coplanar) according to (2.1), or 
equivalently, the vector triple product vanishes: 

(X’)‘(Ts x (RX)) = 0 (2.3) 

where x denotes vector cross product. Its geometrical illus- 
tration is shown in Fig. 3. We define a mapping [-I. from a 
3-D vector to a 3 x  3 matrix: 

[ (Xl,X2,X3)t = X3 0 
’ [ 

0 -X3 X2 
-x1 . 

x 
-X2 Xl 0 1 

Using this mapping, we can express the cross product of two 
vectors by the matrix multiplication of a 3 x  3 matrix and a 
column matrix: X x Y = [X] x  Y. Define the essential matrix 
E to be 

E = [T&R (2.4) 

where T, is a unit vector such that T x  T, = 0. Equation 
(2.3) can then be rewritten as 

(X’)‘EX = 0. (2.5) 

Equation (2.5) is linear in the elements of matrix E. Using 
eight or more point correspondences, the linear algorithms 
first solve for E based on (2.5) and then solve for motion 
parameters from E. 

The plane in which X’, T, and RX lie is called the epipolar 
plane of the point. Its intersection with the image plane is 
called the epipolar line of the point. The constraint that Rx, 
T, and X’ are coplanar is called the epipolar constraint. 
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Fig. 3. Epipolar line constraint: RX, T, and X’ are coplanar. 

We will show below that only one component of the image 
position of a point is used by the epipolar constraint. In 
fact, consider two unit vectors in the image plane from a 
point X’: One is aligned with the epipolar line (denoted 
by 6,), and the other is perpendicular to the epipolar line 
(denoted by 6,). Any perturbed image position of X’ can 
be represented by X’(E) = X’ + a& + bS, for some real 
numbers a and b. Since 6i(T, x  RX) = 0, from (2.3), 
we have X’(E)~(T~ x RX) = i$(T x RX). In other words, 
the perturbation of X’ along the epipolar line direction does 
not affect the value of X’(E)~ (T, x  RX). The location of 
the points on the epipolar line is irrelevant to the epipolar 
constraint. It is related to the depth of the point as well as the 
motion parameters. 

It has been proved that based on the epipolar constraint, 
the rotation and translation parameters can be solved uniquely 
from image vectors of a nondegenerate configuration of 3-D 
points. However,  the questions to ask include the following: 

1) 

2) 

3) 

The essential matrix E has only five degrees of freedom 
(two for unit vector T, and three for rotation matrix R). 
How can the constraint in E be used to improve the 
accuracy in the presence of noise? 
How reliably the motion parameters can be estimated 
using just the epipolar constraint? 
Can another component (along the epipolar line) of 
the image points be used, in addition to the epipolar 
constraint, to improve the reliability of the estimated 
motion and structure parameters in the presence of 
noise? 

These problems are investigated in the following sections. 

C. Using the Constraint in the Essential Matrix 

By definition of (2.4), E has only five degrees of freedom. E 
should be the product of a skew symmetric matrix (S = -St) 
and a rotation matrix R  (orthonormal with determinant 1). 

Theorem: Given a 3 x  3 matrix E, the necessary and 
sufficient condition for an existing rotation matrix R  and a 
unit vector T,, such that E = [T,] x  R, is that the eigenvalues 
of EtE are 0, 1, 1, respectively. 

Proof: See [18]. 
The constraint on the eigenvalues of EtE can be written as 

polynomial equations in terms of elements of E. However,  
polynomial equations introduce spurious solutions. In the 

presence of noise, E estimated from the linear equations 
generally does not satisfy the conditions in the Theorem. This 
causes errors in the solutions of R  and T,. 

The constraint in E can be used by iteratively improving 
the computed R and, T, to minimize the weighted sum of 
((X’)‘(T. x  RX)) .Th e weight is the reciprocal of the error 

variance of (X’) t (T, x  RX). Assuming the components of 
u and u’ have additive uncorrelated zero mean noise with 
variance u2, it is shown in Appendix A that the variance of 
the first-order error of (X’) “(Ts x RX) is given by 

u2 llRt ( ( Ts x  X’)ll:=o + IITs x  RXll:=,,) (2.6) 

where (I(a,b,c)]I~=, e a2 + b2. 
Some comments are in order here: 
1) Since the weights include the unknowns R and T,, one 

cannot use those weights in solving (2.5) without using 
iterations. 

2) To ensure that the equations to be solved are all linear, 
the constraints in E stated in the above theorem cannot 
be used either since those constraints are nonlinear. 

3) If those constraints are used together with (2.5), gen- 
erally fewer than eight points are need to solve for 
motion parameters. However,  this again requires solving 
nonlinear equations. 

4) More constraints beside the epipolar constraint can be 
used in the presence of noise. The epipolar constraint 
alone cannot always ensure a reliable solution, which 
we will discuss in the next section. 

D. A Type of Motion 
The reliability of the estimated motion and structure pa- 

rameters depends on many factors, including structure of the 
scene, motion parameters, and imaging system parameters. The 
effects of those factors on the reliability of the estimates are 
discussed qualitatively in [55]. Here, we quantitatively analyze 
the fact that even small errors can override the information 
used by the epipolar constraint. 

Let us consider two corresponding types of motion: One 
is a pure translation, and the other is a pure rotation. For 
the type of translation, the translation vector and the optical 
axis are orthogonal. For the type of pure rotation, the rotation 
axis is orthogonal to both the optical axis and the translation 
vector of the pure translation. Without loss of generality, 
let the translation direction be aligned with the y axis and 
the rotation axis be aligned with the x axis. Fig. 4 shows 
examples of the displacement fields of the pure translation and 
the pure rotation, respectively. It is clear that the translation 
produces horizontal displacement vectors, and the rotation 
produces almost horizontal ones. We analyze this property 
quantitatively. For a horizontal pure translation T = (0, t2, O)“, 
tz # 0, from z’ = z + T, we have 

d = x1/i = xc/z = 21, 
?I = y//z’ = (y + Q/Z = w + tz/z # 21. (2.7) 



WENG et al.: OPTIMAL MOTION AND STRUCTURE ESTIMATION 867 

---- - - - - -- - -- - 
_ __ __ _ - - -- - - - - 
____ --- ----- _ - 
______ --- ----- 
__ _ _ _ _- ----- - - 
_-_-_---- ----- 
______ -__- ---- 
__ _ _ _ _ - _ - - - - - - 
_-_----------- 
_ _ _ _ _-- -- - - -- - 
- ----- - - - -- - - - 
-- --- --------- 
_ ----- - -- - - - -- 
-------------- 

(4 

---------- _--- 
_____--------- 
______--------  
____------- --- 
______--------  
___----------- 
____---------- 
_----------_~~ 
-------------- 
-------------- 
-------------- 
-------------- 
-------------- 
--------__--__ 

@I 
Fig. 4. Two image plane displacement fields: (a) From a horizontal transla- 
tion; (b) rotation about a vertical axis. The field from the translation is exactly 
horizontal. The field from the rotation is almost horizontal since the maximum 
vertical displacement is just 2.9 pixels. Image size: 0.7. resolution: 512 x 512. 

The displacement vector on image plane is equal to 

u’ - u = (u’ - u,u’ - v)” = (0, v’ - ?J)“. 

The left-hand side of (2.3) for this case is 

(X’)‘(T, x  RX) = u’ - u 

which should be equal to 0. Therefore, the epipolar constraint 
for this pure horizontal translation is that the image plane 
displacement vector u’ - u should be horizontal. 

For the pure rotation, the rotation matrix is given by 

R= [i ;zi ;in:]. 

From Z’ = Rz, it follows that 

u’-u21 u 
wsin8 + coS6 

-u= u(l-case-Using) 
vsin8+cos8 , (2.8) 

J-u= vcos6 - sin8 -v=- (1 + u”) sin 8 
vsin0+cos0 vsinfl+ cos.0 (2.9) 

Since, generally, u’ - u # 0, the pure rotation does not exactly 
satisfy the epipolar constraint of the horizontal translation. 
However,  the value of u’ - u is very close to zero: Assume 

Vertical Displacement from Rotations 

--------- 4-pixel Horizontal Displacement 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 1.1 1.2 1.3 1.4 1.5 
Image Size 

Fig. 5. Vertical displacement of a rotation about the I axis versus image size 
for different horizontal displacement. Image point: center of an upper right 
quadrant of the image plane. Image resolution: 512 x 512. 

the image size is s  (image is a s  x  s  square) with m x m 
resolution (pixels). The pixel size is then s/m. The vertical 
displacement in (2.8) in terms of the number of pixels is then 

(u’ - u)m ~(1 -case - vsinB)m 
(2.10) 

S s(wsin8 +cos8) ’ 

Fig. 5 shows the value of the vertical displacement based 
on (2.10) in terms of number of pixels, at the center of a 
quadrant of an image with 512 x 512 resolution, for different 
horizontal displacement ZJ’ - II, and different image sizes s. For 
example, for image size 1 with a unit focal length (roughly 
equivalent to a 35-mm wide-angle lens of a 35-mm camera), 
the vertical displacement is just about 2 pixels for a large 
40-pixel horizontal displacement. For small motions with 4- 
pixel image displacement (similar or even smaller motion is 
generally required for optical flow approaches), the vertical 
displacement is less than a half pixel even with a very wide 
field of view. This implies that in the presence of small errors 
in the image coordinates (e.g., in a magnitude of one or two 
pixels), pure translation can be interpreted by a rotation as 
far as the epipolar constraint is concerned, and vice versa. In 
other words, the epipolar constraint cannot disambiguate the 
translation from the corresponding rotation in the presence of 
even small image digitization noise. 

Now, let us consider the factor of decreasing the field of 
view or, equivalently, the image size with unit focal length. 
From Fig. 5, we can see that the vertical displacement, in 
terms of number of pixels, approaches zero as the image size 
decreases with a constant image resolution and a constant 
image horizontal displacement (in pixels). In fact, the vertical 
displacement, in terms of pixels, decreases quadratically as the 
image size decreases. This fact can be derived from (2.10). 
For a small rotation with angle 19, the horizontal displacement 
is in the same order as 6 (remember that we have a unit 
focal length). To fix the amount of horizontal displacement 
in the image plane with respect to image size s, let fJ = sk, 
where k is a constant. For a point (u, w) fixed relatively in the 
image frame, lul = sk, and 101 = SIC,, where k, and k, are 



constants. Letting s go to zero, the absolute value of (2.10) 
is in the order of 

y(;4) =mkk,s2(~-kJ (2.11) 

which is quadratic in s. We have showed that the number 
of pixels of vertical displacement goes to zero quadratically 
as the image size s approaches zero. Therefore, the vertical 
displacement decreases much faster than the pixel size. This 
result implies that motion estimation based on only the epipo- 
lar constraint is inherently very unreliable with a small field 
of view since the epipolar constraint relies on the amount of 
vertical displacement to disambiguate a pure rotation from the 
pure translation. 

In summary, we have shown that for each lateral translation 
(parallel to the image plane), there exists a corresponding type 
of rotation such that the displacement field of translation can 
be interpreted by the rotation without significantly violating the 
epipolar constraint. In the presence of even small pixel-level 
noise, the displacement of the translation can be interpreted 
by appropriate rotation and vise versa. Therefore, small pixel- 
level errors will cause large errors in the estimated R and T,. 
Worse still, once a lateral translation is mistakenly interpreted 
as the corresponding pure rotation, the estimated translation 
direction can be arbitrary since pure rotation is an inherently 
degenerate case. Up until now, we have answered the second 
question raised at the end of Section II-B: There is a large 
class of motion with which the motion parameters cannot be 
estimated reliably using just the epipolar constraint. 

There are two ways to improve the estimated motion pa- 
rameters. The first one is to use a large number of points (or 
a dense displacement field). If the measurement error has a 
zero mean and is highly random, the solution error tends to be 
overcome in the solution of an overdetermined system. This 
is true for the cases of our computer simulations where the 
noise is generated by a zero mean pseudo-random number 
generator. However, with the displacement field (or point 
correspondences) computed automatically by an algorithm, the 
measurement errors are often biased, and the amount of bias is 
usually unknown. This fact makes the overdetermination less 
effective. 

The second way is to use both components of the features in 
the image plane, which gives an answer to the third question 
raised at the end of Section II-B and will be discussed in the 
following subsection. 

E. Beyond the Epipolar Constraint 

From (2.3) one can see that the depths of the object 
points are excluded from the epipolar constraint. This is 
desirable to the linear algorithms since the depths of the 
points are unknown. The epipolar constraint uses only one 
component of the coordinates of the image points: X’ can be 
any image vector in the epipolar plane where T, and RX 
lie. However, the other component left out by the epipolar 
constraint is important for determining motion parameters due 
to the following properties: 

Fig. 6. Rotation and translation yield different displacement fields (a 2-D 
illustration). For a rotation, all the points on a projection line have the same 
projections after motion. For a translation, those points on a projection line 
have different projections after motion. 

1) Under a rotation, all the points on a projection line 
(passing through the origin and an image point) project 
on to the same image point after rotation. 

2) Under a translation, those points on a projection line 
have different projections after translation: the closer the 
point is to the image plane, the larger the displacement 
in the image plane. 

Fig. 6 illustrates these properties. The first property is 
obvious. For the second property, let T = (tZ, t,, tZ)‘. From 
Z’ = z + T, after some algebraic manipulations, we have 

llu’ -l&II” = ((tz - t,7q2 + (ty - t*w)2)I(Z + L12. (2.12) 

Notice that .Z + t, = Z’ > 0. With u and T fixed, the larger 
the Z, the smaller the magnitude of the image displacement. 

From (2.12), we know that the magnitude of the image 
displacement is inversely proportional to the depth z’. As long 
as l/z’ = l/(.~ + tZ) has a large variation among points, the 
displacement field is quite different between a translation and 
a rotation. These differences are useful for distinguishing a 
rotation from a translation. For example, in Fig. 4, the image 
displacement vectors are almost horizontal for both rotation 
and translation. However, the lengths of the displacement 
vectors are quite different with the translation but are similar 
with the rotation. It is impossible to interpret a translation by 
a rotation if both components of the points are used. 

With the aim of a closed-form solution, the linear algorithms 
have to exclude information that is related to point depths. 
Only the component of the points that is independent with 
depth is used by the epipolar constraint. Mathematically, this 
is enough to determine motion parameters. However, in the 
presence of noise, disregarding information that is related to 
the structure of the scene results in less reliable estimates 
of motion parameters since this information is also related 
to motion (Figs. 4 and 6). The optimization approach we 
will introduce in the following section makes use of both 
components of the image points in an integrated way. As 
shown by simulations, this significantly improves accuracy 
over using the epipolar constraint only, especially with a 
relatively small field of view where the epipolar constraint 
is particularly week in determining motion (see Fig. 5). The 
next two sections discuss these optimization methods. 
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III. OPTIMAL MOTION ESTIMATION 
WITH KNOWN NOISE DISTRIBUTION 

A. Gaussian Noise in image Plane 

Before discussing optimality, we briefly review some objec- 
tive functions other algorithms have used. From optical flow, 
Bruss and Horn [7] propose an approach to minimizing some 
measure of the discrepancy between the measured flow and 
that predicted from the computed motion parameters. Mitiche 
and Aggarwal [30] employ a rigidity criterion: Using depth 
of each point as parameters, the sum of squared changes in 
the point-to-point distances, before and after motion, is to 
be minimized. The linear algorithms in [ll] and [49] employ 
least-squares criteria for different equations. 

Gaussian distribution is commonly used for modeling noise. 
Intuitively, if the errors arise from many sources and are 
influenced by the sum of many factors, the distribution is 
roughly Gaussian by the central limit theorem. 

A more statistically sound way of estimating the parameters 
is using the information about error (or noise) distribution. In 
reality, the feature locations and their displacement vectors in 
the image plane are the results from a feature detector and 
the corresponding matcher, whose accuracy is influenced by 
a variety of factors including the condition of lighting, the 
structure of the scene, the accuracy of the system calibration, 
image resolution and the performance of the feature detecting, 
and matching algorithms. The observed 2-D image plane 
vectors ui of image 1 and TL~ of image 2 are noise-contaminated 
versions of the true ones. In other words, (ui, u:) is the 
observed value of a pair of random vectors (Vi, Vi). What 
we obtain is a sequence of the observed image vector pairs 

Now, assume that each image coordinate of the observed 
projection has an additive zero mean Gaussian noise. There- 
fore, we assume that the distributions, given motion and 
structure, are independent between different points. When the 
distance between two points is not very small, compared with 
pixel size, such an assumption of independence is reasonable. 
Let hi(m, z) be the noise-free projection of the ith point in the 
first image, given motion m and structure z, and let h’;(m, z) 
be the corresponding projection in the second image. Then, 
after some simple manipulation, we know that the maximum 
likelihood estimator is the one that minimizes 

2 (11~ - hi(v9112 + II=:: - h:(+l12) (3.2) 
i=l 

which is simply the sum of discrepancies between the observed 
and the inferred projections. We define the image plane error, 
or simply image error, as 

u fi (u;, (u;)t,u;, (U$, . . . ,u;, (uh,“y 
[ 
& C (11% - hi(m,z)l12 + 114 - hi(m72)l12) 

112 
. 

a=1 1 
(3.3) 

of a sequence of random vector pairs 

The image error can be easily extended to a weighted version 
when we have knowledge about the reliability of each point. 

u 4 (u;, (u;)‘,u;, (u;)“, . . * ,u;, (uqt. 

We need to estimate the motion parameter vector M and the 
3-D positions of the feature points (scene structure) 

Although the noise in the 2-D image is Gaussian, the 3- 
D  distribution of the error in the 3-D points is obviously 
no longer Gaussian, as shown in Fig. 7. This shape of 3-D 
uncertainty is easily taken into account by the minimization 
of the 2-D image plane error. 

B. Noise with a Limited Extent 

Let the probability density function of U, given M = m 
and X = z, be pr~l~,x(u]m,z). The maximum likelihood 
estimates of motion parameters m* and scene structure z* are 
such that the density p~l~~(u]m,z) reaches the maximum, 
namely 

Let us briefly consider another case where the noise mag- 
nitude is confined to a small range. This example is useful 
later in our experiments to indicate the impact of variation in 
noise distribution. 

(3.1) 

holds for all possible motion parameters m and scene structure 
2. The motivation for using maximum likelihood criterion 
is that, among others, under fairly general conditions, the 
estimator is consistent (it converges in probability to the 
correct value when the number of observations approaches 
infinity), asymptotically unbiased, asymptotically Gaussian, 
and asymptotically efficient (as the number of observations 
approaches infinity, it is unbiased, has finite covariance, and 
there is no other unbiased estimate whose covariance is 
smaller) [8], [45], [56], [28]. 

With digitization noise, for example, the true projection of a 
point is confined to a rectangle centered at the observed image 
position of the point. Such a rectangle is called the uncertainty 
rectangle. The true 3-D position of the point is confined to an 
infinite pyramid defined by the focal point as the apex and the 
uncertainty rectangle as a cross section, as shown in Fig. 8. 
The second view defines another pyramid for the point. The 
3-D point must lie inside the volume of intersection of these 
two pyramids. Such an intersection of the pyramids is called 
the uncertainty polyhedron. 

When the observed image positions of a point, which are 
determined by motion parameter vector m and structure 2, are 
exactly correct, the corresponding uncertainty polyhedron has 
a volume V(m,z). If those image positions are perturbed by 
noise, the volume of the uncertainty polyhedron will generally 
decrease to a value ‘u(u, m, z), where u is a noisy observation 
vector. Therefore, we assume that the probability for a point 
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(4 

(b) 
Fig. 7. Two-dimensional illustration of point distribution in 3-D based on 
Gaussian error distribution in the image planes. Darker areas have higher 
probability. Two diagonal lines across the figure are optical axes of two 
cameras: (a) ‘Dvo observed projection lines, with error distribution, intersect; 
(b) two observed projection lines, with error distribution, determine the 
distribution of the point in 3-D. 

to be confined to the uncertainty polyhedron with a volume 
21 is equal to v/V. 

For simplicity of computation, we assume that the proba- 
bility of a point lying in the intersection is independent from 
point to point. For the observed point i, the volumes w and V 
discussed above are denoted by vi and Vi, respectively. The 
event observed is that the feature points are all confined to the 
corresponding uncertainty polyhedrons. Thus, the probability 
that all points lie in the corresponding intersection can be 
written as 

(3.4) 

We call this probability model the uncertainty polyhedron 
model. Obviously, this probability does not characterize the 
actual probability exactly since the actual “density” within 
each uncertainty polyhedron is not uniform. Since the size of 
each uncertainty polyhedron is actually very small compared 
with the object to camera distance, such a nonuniformity 
can be neglected without degrading performance significantly. 
The maximization of the objective function in (3.4) has been 
implemented by a numerical method [52], and the details are 
omitted here. 

An alternative way to consider noise distribution with a 
limited extent is modeling noise directly in the 2-D image 

Fig. 8 Intersection of two pyramids defines uncertainty polyhedron. 

plane, but this will lead to a complex objective function that 
has little practical value. 

IV. OPTIMAL MOTION ESTIMATION 
WITH UNKNOWN NOISE DISTRIBUTION 

The computation of the maximum likelihood estimate re- 
quires the knowledge of actual noise distribution and the 
solution of likelihood equation. This causes difficulties in 
practice. First, the distribution of noise is usually unknown. 
Second, even if the noise distribution is known, the solution 
of the maximum likelihood estimator is often very difficult 
to obtain analytically. In this section, we discuss an optimal 
estimator for general error distributions. 

A. Minimum Variance 
Let m be the parameter vector to be estimated and h(u) 

be the estimator baFd on the observation vector u. The error 
vector of ti is Sm = rir - m. The estimator fi that minimizes 

EllSml12 = EJlti - rnl12 (4-I) 

is called the minimum variance estimator (or least-squares 
estimator or minimum mean square estimator). Let us first 
consider a linear problem. 

Suppose 

y=Am+Sy (4.2) 

where iI9 is a random vector with zero mean E6g = o and 
covariance matrix rY = EG&,. According to Gauss-Markov 
theorem [24], [41], [14], the unbiased linear minimum variance 
estimator of m is 

rir = (AT~~A)-~AT$~ (4.3) 

whose error covariance matrix is 

r,g 2 E(T% - m)(ti - m)t = (AtI’;lA)-l. 

In other words, among all the possible estimators of the form 
rir = Ly, where L is any matrix, the estimator in (4.3) 
minimizes Ellrir - ml12. 
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The estimator in (4.3) is equivalent to the least-squares 
estimator with weight matrix I&‘, i.e., the estimator minimizes 

(y - Am)tl?yl(y - Am). 

In our problem, we may linearize the system model at an 
estimated parameter vector. Given motion m  and structure z, 
the image projection vector is denoted by 

With the best z  directly computed from u and m by y(u,m), 
the residual vector in the image plane is 

f(u, m) = h(m, du, m)) - u (4.4) 

where f(m) is a (4n)-D vector for n point correspondences 
(we drop the variable u for simplicity). Given an estimated m, 
m;, expanding f(m) at m; yields 

f(m) M  f(mi) + v(rn - m;). (4.5) 

Denoting Ji 5 w, (4.5) may be rewritten as 

-f(W) + Jimi = Jim - f(m) + o(llm - mill). 

Denoting the left-hand side as yi and Ji as Ai, we have 

yi = Aim - f(m) + o(llm - mill). (4.6) 

Neglecting the higher order term o( Ilrn - mil I), (4.6) is of 
the form of (4.2). The “noise” term -f(m) corresponds to 
the noise in the coordinates of the image points. Instead of 
assuming independent Gaussian noise, we just assume that 
the noises are uncorrelated and have a zero mean and equal 
variance. By the Gauss-Markov Theorem, the unbiased linear 
minimum variance estimator is the one that minimizes I If(m) I I 
based on the locally linearized equation of (4.6) neglecting 
the higher order terms. After the iterations correctly converge, 
the converged point m; is not far from the true solution if 
noise is not very large. Therefore, o( Ilm - mi 11) is small, 
and (4.6) is a good linear approximation of the system. The 
nonzero o( Ilm - mill) accounts for the nonlinear nature of 
the problem. If the convergence occurs far from the true 
solution, e.g., when the iteration is stuck at a local minimum, 
4llm -mill> * g is enerally large, and the linearized model does 
not well characterize the system. 

The objective of minimizing the image errors was intro- 
duced in Section III-A when maximum likelihood estimation 
of Gaussian noise distribution is investigated. Here, we dis- 
cussed the optimality of this objective for general noise 
distribution. Therefore, it can be expected that minimizing 
the image error leads to good estimates for other noise dis- 
tributions, e.g., the uncertainty polyhedron model introduced 
in Section III-B. Since minimizing the image error is easier 
to implement than the optimal solution for the uncertainty 
polyhedron model and is computationally less expensive, it is 
recommended for general applications where the exact noise 
distribution is unknown. 
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V. ERROR ESTIMATIONAND PERFORMANCE BOUNDS 

Further, we need to investigate the following two issues: 
1) How can we assess the accuracy of the solutions? 
2) What is the theoretical bound of the performance? How 

close can the performance of the algorithm approach 
the bound? 

A. Error Estimation 
The error estimation problem has been discussed for linear 

algorithms in [55]. There, the aim is basically to estimate errors 
in the least-squares solution of a linear system Am = y, where 
both matrix A and y are contaminated by noise. The problem 
here is simpler since only y  is contaminated by noise. The 
reliability of the solution depends not only on noise level but 
also on the structure of the scene, motion parameters, and 
the parameters of sensor system. Different components of the 
motion parameters may have quite different accuracies [55]. 
Therefore, a method for automatic error estimation is very 
useful for the problem here. 

The minimum variance estimation discussed above leads to 
a method for estimating errors in the estimates. By the Gauss-  
Markov Theorem, the covariance matrix of the error vector 
ti - m is given by 

rh 5 E(riz - m)(rir - m)” = (Atl?ylA) 
-1 

. 

For the nonlinear problem investigated here, the matrix A 
corresponds to 

J _ af FAti’ 

evaluated at the finally estimated parameter ti and actual 
noisy observation &. For uncorrelated uniform variance noise 
l?y = 0~1, the covariance matrix is simply 

l?h = E(ti - m)(Gz - m)t = a2(JtJ)-‘. (5.1) 

The trace of the covariance matrix gives the expected squared 
norm of the error vector 

trace{l?h} = E(riz - m)“(rir - m)  = Ellrir - ml12. 

Since the optimization discussed in Section IV does not require 
knowledge about exact noise distribution, the error estimation 
discussed here does not either. 

The elements of J  are partial derivatives. The partial 
derivatives can also be estimated by finite differences, which is 
easier to program. We have implemented both analytical and 
finite difference versions. The estimated errors showed only 
negligible differences between those two versions. 

The motion parameters can be represented in many ways. 
Sometimes, one needs to know the errors in terms of the 
required representation. Generally, for a representation m’ = 
g(m), we have 

A I. m -mm’- 
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Therefore, with I?+ the covariance matrix of the error vector 
of riz’ can be estimated by 

B. Performance Bounds 

Bias and covariance of error provide two measures of the 
quality of an estimator. Suppose ti is an estimator of m, its 
expected mean is 6(m), E ti = b(m), and its covariance matrix 
is Ch. We have 

r,,=C,,+Bti (5.2) 

where I?h is the correlation matrix of the error vector 
rir - m: rrir e E(fh-m)(ti-m)t, and Bh = 
(b(m) - m)@(m) - m)t. Equation (5.2) implies 

trace{I’h} = trace{C+} + trace{ Bk}. (5.3) 

Therefore, if the estimator is unbiased, the trace of the covari- 
ante matrix of the estimator directly gives the expected error. 
Otherwise, it just indicates a part of the expected error since 
both terms on the right-hand side of (5.3) are nonnegative. In 
our case, it is very difficult to get the bias of an estimator in 
an analytical form. However,  the bias is usually small. If we 
have a lower bound on Ch for any unbiased estimator, then 
according to (5.2), this bound is a lower error bound for the 
unbiased estimator. 

Suppose m is a parameter vector of probability density 
p(u,m). rir is an estimator of m based on measurement u 
with Erh = b(m). Letting yt = ““Pzm), define F = Eyyt, 
where matrix F is called the Fisher information matrix. Denote 

B = Wm> -. 
am 

Then, the error covariance matrix is bounded as 

E(rh - b(m))(h - b(m))t 2 BFtBt (5.4) 

where the inequality means that the larger side minus the 
smaller side is a nonnegative definite matrix. This lower bound 
is called Cramer-Rao bound. Ft is the pseudo inverse of F. If 
F is invertible, the pseudo inverse is the same as inverse (see 
1321, [35], [36], and [24] for discussions on pseudo inverse). 
The equality (5.4) holds if and only if 

rir - b(m) = BFt 
rn,,,)X 

almost everywhere. 
The proof of the Cramer-Rao bound can be found in [37] 

and [58], in [41] for the case B = I, and in [8] for the scaler 
case. Appendix B presents our alternative proof, which seems 
simpler than the existing proofs. 

As we discussed above, although we do not know the actual 
bias of our estimator, we can compare the actual error with 
the Cramer-Rao bound for an unbiased estimator. 

For an unbiased estimator rir with identically independently 
distributed zero mean Gaussian noise added to true image 
projections, the Cramer-Rao bound gives 

lYti 2 F-l = rr2(JtJ)-’ 

where, using the notation in (4.4) 

(5.5) 

J - afkm). 

More generally, if the noise has a covariance matrix C, then 
the Fisher information matrix is given by F = JtCml J. 

When the minimum attainable variance is larger than the 
Cramer-Rao bound, other tighter bounds can be derived. For 
example, the Bhattacharyya bound gives another lower bound 
of covariance [58], [41], [45]. In fact, the Cramer-Rao bound 
is actually a special case of the Bhattacharyya bound. Since 
the Bhattacharyya bound involves higher order derivatives of 
probability density, the computation is more involved. If the 
actual errors are close to the Cramer-Rao bound (this is true 
in the experiments presented in Section VIII-H), the more 
general Bhattacharyya bound is obviously very close to the 
Cramer-Rao bound. 

In Section VII, the simulations show that for the optimized 
solution, the actual bias is small, and the actual errors are 
very close to the Cramer-Rao bound for unbiased estimators. 
In other words, the errors are very close to those that would 
result from the “best possible” unbiased estimator. 

It is interesting to compare the expressions of error estima- 
tion and the Cramer-Rao bound. The estimated error in (5.1) 
looks similar to the bound in (5.5). However,  they are very 
different. Matrix J  in (5.1) is evaluated with the estimated 
m and the noise-contaminated observation u, whereas J in 
(5.5) is evaluated with the true m and noise-free u. In 
fact, the estimated errors indicate the expected amount of 
perturbation of solution, away from the current solution, which 
are caused by the amount of perturbation away from the actual 
observations. If the performance of an algorithm is so poor 
that the estimated parameters have large errors (e.g., a false 
local minimum), the matrix J  does not well characterize the 
actual system since it is evaluated with bad parameters. In 
this case, the estimated errors may significantly underestimate 
the actual errors. Therefore, for a nonlinear problem, a correct 
convergence is important to the reliability of error estimation. 
On  the other hand, the Cramer-Rao bound is independent of 
actual algorithms and actual values of noise. 

VI. COMPUTATIONAL CONSIDERATIONS 

For our problem, the optimizations discussed in the previous 
sections are nonlinear. Computationally, we need reliable 
schemes to ensure that the global optimal solution can be 
reached. This is, in fact, one of the most important issues 
for any iterative method for nonlinear problems. According to 
our experience, as discussed in Section VIII-A, in most cases, 
standard iterative numerical methods that start with a “zero” 
initial guess do not converge to the correct solution to our 
problem. In this section, we investigate how to compute the 
optimal solution reliably and efficiently. 



WENG et al.: OPTIMAL MOTION AND STRUCTURE ESTIMATION 

A. A Two-Step Approach 

A two-step approach is proposed here. First, a linear algo- 
rithm that gives a closed-form solution is applied. Then, in the 
second step, this solution is used as an initial guess solution 
for an iterative algorithm, which improves the initial guess to 
minimize an objective function. This two-step approach has 
the following advantages: 

1) 

2) 

3) 

4) 

A solution is generally guaranteed. The linear algorithm 
always gives a solution, provided that degeneracy does 
not occur [24]. Unless the noise level is very high, 
this solution is close to the true one. As long as the 
initial guess is within the convergent region to a globally 
optimal point, iteration leads to the optimal solution. 
The approach allows flexible design of the objective 
functions. If a good initial guess is available, the design 
of the nonlinear algorithm can emphasize the stability 
of the derived estimates, and the objective function can 
be chosen with more flexibility. 
The approach yields reliable solutions. The linear algo- 
rithms use only the epipolar constraint, and therefore, 
the solution is sensitive to noise, and the reliability of 
solutions varies with motion types. The optimization in 
the second step employs more global constraints and 
achieves significant improvements over the first step. 
The computation is faster than straight iterative methods 
that start with a “zero” initial guess. Generally, a linear 
algorithm is fast, and a nonlinear algorithm is slow. 
When a linear algorithm is followed by a nonlinear 
algorithm, the amount of computation is not simply 
equal to the sum of those needed by each algorithm 
individually. Since the linear algorithm provides a good 
initial guess, the time taken by the nonlinear algorithm 
to reach a solution is greatly reduced. 

In order for such a two-step approach to be successful, the 
initial guess provided by the linear algorithm must be good 
enough to fall into the convergence area that leads to the global 
minimum of the selected objective function. As to whether 
such a requirement is satisfied in our case, we will examine 
our data of experiments in Section VII. 

B. Space Decomposit ion Using Motion-Structure Dependency 
Equation (3.2) involves both motion parameters and 3-D 

position of every feature point. The maximum is over all 
the possible motion parameters and scene structures. The 
parameter space for iteration is huge, and computation is very 
expensive. However,  we do not have to iterate on the structure 
of the scene. 

In fact, given motion parameters m, the structure z that 
minimizes the value of (3.2) can be estimated analytically, 
that is, we can compute 

rn$ { 1174 - hi(m,2)l12 + 117~: - hi(m,z)(12} fi gi(m) 
(6.1) 

from a given m. In fact 

min m,z 1 
2 (II74 - hi(m,z)l12 + 1174: - h:(m,z)l12) 
i=l 1 

= I@ ~Illl{llUi -hi(m,z)112+ 
t i=l 

11 ui - h:(m,z)l12} 
I 

= $lcgi(m). 
i=l 

Therefore, computationally, structure z will not be included 
in the parameter space of iteration. Given an m, z  can 
be computed directly. This drastically reduces the amount 
of computation. Otherwise, it is computationally extremely 
expensive to iterate on this huge (m,z) space (iterations on 
n points need (3n+5)-D parameter space). Since the optimal 
structure z can be determined from motion parameters, we can 
exclude z from the notation for parameters to be estimated, 
that is, symbolically, the parameters to be determined are just 
m. 

To derive the closed-form expression for z  that gives 
gi(m) in (6.1) w  e use the following methods. From motion 
parameter vector m and the observed projections of point 
i, the two observed projection lines are determined. These 
two observed projection lines do not intersect in general (see 
Fig. 2). If the true 3-D point is on the observed projection 
line of the first image, the discrepancy / ]ui - hi(m, z)]12 
is equal to zero, but ]]ui - h:(m, z) I I2 is generally not. If 
the true 3-D point is on the other observed projection line, 
11~4’; - h:(m,z)l12 ’ IS equal to zero, whereas I ]ui - hi(m, Z) I I2 
is not. Given the motion parameters, we need to find a 3-D 
point for each feature point such that the corresponding term 
II~~-h~(rn,~)~~~+IIu~-h~(rn,z)~~~ isminimized. Obviously, 
under a normal configuration, the point lies in the shortest line 
segment L that connects the two observed projection lines 
(see Fig. 2) because otherwise, the perpendicular projection 
of a 3-D point onto L is better than the 3-D point. An exact 
solution of the optimal point requires solving a fourth-order 
polynomial equation. It can be shown that using a reasonable 
approximation, we can get a closed-form solution. The optimal 
point is generally not far from the midpoint of the line segment 
L unless the distance to the object and the viewing angle differ 
a lot for two images. In simulations, only a small performance 
difference is observed if the midpoint is used as the optimal 
point instead of the analytical solution. For computational 
efficiency, we may just use the midpoint of the line L as an 
approximated optimal point. 

For both maximum likehood estimator under Gaussian noise 
and minimum variance estimator for general unknown noise, 
we minimize image error, which is equivalent to the following 
minimization: 

my. Ilf(v4ll. (6.2) 

A Denoting Ji = afm) where m; is the ith estimate of m, 
and using the Leve%erg-Marquardt (L-M) method [22], [27], 
[34], [26], we get a sequence of approximation to a minimum 
solution 

mi+l = rni + (Di + J,” Ji)-l Jif(mi) 

where Di is a diagonal matrix with nonnegative diagonal 
elements. The finite difference analogs of the L-M and Gauss 
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algorithms by Brown [6] does not require an analytical ex- 
pression of Jacobian Ji. 

C. Batch and Sequential Solutions 

If all the data acquired are processed simultaneously, the 
processing method is called batch processing. If a new solution 
is computed after each set of new data is acquired, and the 
new solution is computed based on the old solution and the 
new data, the method is called sequential processing. Due to 
the popularity of a sequential processing technique called the 
Kalman filtering, the sequential processing method has been 
used for many applications. Therefore, it is very important to 
analyze and compare the performances of batch techniques 
and sequential techniques. This section shows that although 
both types of techniques are mathematically equivalent for 
linear problems, the performance of the batch techniques is 
generally better than that of the sequential techniques for 
nonlinear problems. 

I) Linear Systems: In the interest of generality, we first 
extend the problem to allow the parameters to change, or 
evolve, when observations are acquired sequentially. The 
system dynamic model (which is also known as the plant 
model) is given by 

mk+l = @kmk + f?k (6.3) 

and measurement yl, is determined by the measurement model 

yk = Akmk + ck (6.4) 

k = 0, 1,2, . . .) where mk is the parameter vector (or state) at 
time Ic, +k and Ak are matrices, vk and ek are random errors 
with zero means, Erli9~ = &jQi, Eeiej = S;,Ci, and qi and 
ej are all uncorrelated for i 2 0 and j 2 0. ( Sij = 0 for 
i # j and Sii = 1 for all i.) 

The linear time-varying system can be solved naturally and 
efficiently by a sequential approach, due to the dynamic nature 
(or time-varying parameters) of system (6.3). A sequential 
least-squares approach called Kalman filtering [20], [13], [28], 
[3], [41], [29], [14] is widely used. The formulation of Kalman 
filtering is relegated into Appendix C, which is initialized by 
tie,-1 = a and Pa,-I = E(rire,-r - u)(&,-~ - a)“. 

The Kalman filtering algorithm can be derived by either 
probabilistic or deterministic methods. Both types methods 
are unified under Hilbert space optimization [24], [14]. The 
Kalman filtering algorithm can also be derived by solving for 
riri and +ji that minimizes 

C%‘l(yi - Airiri) + C i fQ%‘l+ji 
i=o 

subject to the constraint mk+r = @kmk + qk. 
Without a priori knowledge of the parameters, the batch 

solution and the sequential solution are the same for linear 
systems. 

2) Nonlinear Systems: However,  like most real-world prob- 
lems, the problem of estimating motion and structure parame- 
ters of the scene is nonlinear. A general nonlinear system with 
time-invariant parameters can be expressed as 

f&m) = 0 (6.7) 

where h is a noise-free observation vector, and m is the 
parameter to be estimated. With actual noisy observation h* 
and estimate m*, expending f(h, m)  at (h*, m*) yields 

w3) 

Letting 

J = H(h*,m*),G = af(h*,m*) 
dm dh (6.9) 

y = -f(h*,m*), E = -G(h - h*), and neglecting higher 
order terms, (6.8) becomes 

y = J(m - m*) + E. (6.10) 

The vector h - h* gives the difference between the noise-free 
observation h and actual observation h*. Therefore, h-h* cor- 
responds to observation noise. Letting E(h - h*)(h - h*)t = 
Qh, we have EEEt = G Q h G ’. 

By the Gauss-Markov Theorem, obtaining the linear mini- 
mum variance estimate of (m - m*) in (6.10) yields 

rir = m* + (Jt(GQhGt)PIJ)- l (GQhGt)- lJ’y. (6.11) 

Since the problem is nonlinear, J is evaluated at the estimated 
parameter m*. A sequence of approximations of m is obtained 
by iterations based on (6.11) each iteration replacing m* by 
rir. After the iterations converge, the estimate ti is an ap- 
proximated minimum variance estimate of m or, equivalently, 
a weighted nonlinear least-s 
minimizes f(~%)~ (GQhGt)  -1 

uares approximate solution that 
f(k). This is a batch technique 

for nonlinear systems. 
For time-varying parameters, the system model (6.3) should 

be replaced by 

mk+l = @k(mk)  + qk (6.12) 

where @k(mk)  is a nonlinear function. In principle, a batch 
technique can also be applied to nonlinear system with time- 
varying parameters. 

With a typical sequential processing technique (nonlinear 
Kalman filtering), conventionally, a nonlinear measurement 
model is assumed: 

yk = hk(mk) -:- Ek (6.13) 

where hk(m) is a nonlinear function. Equation (6.13) is a 
special case of (6.7) in that the observation can be explicitly 
expressed as a function of parameters and measurement errors. 

Unlike the case of a linear system, for a nonlinear system, 
the batch solution and sequential solution are not the same. J  
in (6.10) for a nonlinear problem corresponds to A in (4.2) for 
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a linear problem. Although A is constant, J  is not. J  defined in 
(6.9) is a function of observation h* and current estimate m* . 

Due to the sequential nature of the Kalman filter, the 
estimate of mk is based on the estimate of m&r, its co- 
variance matrix, and a new observation. Once the previous 
parameter mk-1 is estimated, it is not improved after new 
observations {yi} and i > k  are obtained. Let us consider 
the nonlinear system of (6.13). Using the Kalman filter, the 
objective function (6.5) becomes 

(6 - a)tP<Al(& - a) + 2 (yi - Jimi)” 
i=O 
n-1 

C,-‘(yi - Jiriri) + C ~~Qi’rii 
i=O 

(6.14) 

subject to mk+l = !I$(,?&) + ,,]k and 

J, = t3hi (tiii’) 
z  am 

where tici) is the estimated mi based on the observations 
{&lo 5 i 5 i}. T o see more clearly what (6.14) implies, 
assume that the parameter is time invariant @k(&) = &k, 
qk = 0, Ci = I, and P{Jl = 0. Equation (6.14) becomes 

2 IlYi - JitilI” = ~ llyi - ah,gci’ rFrl12. ( > (6.15) 
i=O i=O 

We can compare (6.15) with (6.10). To improve the perfor- 
mance for nonlinear systems, the Kalman filtering algorithm 
needs iterations (iterated extended Kalman filter (IEKF) al- 
gorithm) at each observation yi: After m is estimated from 
yi, it is used to evaluate Ji. yi and the improved Ji in turn 
give a new estimate of m. Such an iteration is carried on until 
no improvement for m  occurs. Then, tici) is determined. For 
small i, rirti) has a large error since just i + 1 observations 
are available. Therefore, Ji evaluated at rirci) gives a system 
matrix that is evaluated far from the true parameter. This 
results in inaccurate system equations. Once those inaccurate 
system equations are generated, they will not be updated later 
when new observations are collected. They are included in 
the objective function (6.15), further preventing the estimated 
parameter m  from approaching the correct parameters while 
new data are obtained. The more nonlinear h(u, m) is in terms 
of m, the worse Ji is. Therefore, sequential methods generally 
are not suitable to be used to solve a highly nonlinear equation 
from an arbitrary initial guess for m. 

The performance of the IEKF algorithm also depends very 
much on the initial guess solution o and the initial covariance 
matrix PO,-1. Table I lists the effects of initial condition r&,-l 
and the associated covariance matrix PO,-1 on the estimated 
parameter rirk for a nonlinear time-varying system. In all 
cases, the covariance matrix 4 is always small, that is, Pk 
may significantly underestimate the errors of the estimated 
parameters. 

TABLE I 
CHARACTERISTICS OF IEKF FOR NONLINEAR SYSTEMS 

&0,-l PO,-1 hk %  

bad large 
bad small 

good large 
good small 

divergent 
not improved 

divergent 
improved 

-small 
small 
small 
small 

The batch method treats Ji differently. For the model 
discussed above, the objective of the batch solution is to 
minimize 

~ llyi - Jirirl12 = ~ (lyi - ~all2 (6.16) 
i=O i=O 

through iterations. We can compare (6.16) with (6.15). In 
each iteration, the estimated parameters are modified based 
on all observations (unlike the sequential algorithm, which 
modifies the parameters with each observation). Therefore, 
such a modification is more reliable. Further, Ji is always 
updated through iterations. As a local minimum is reached, all 
Ji’s are evaluated at this final solution. 

With the Kalman filter, divergence is said to occur when 
the error covariance matrix computed by the filter becomes 
unjustifiably small compared with the actual error in the 
estimate. Divergence of the Kalman filter has been observed 
for nonlinear systems, and it has been attributed to system 
nonlinearity [40], [12], [3], [41], [29], [5]. Although it is 
known that states and the associated covariance are no longer 
sufficient statistics in a nonlinear system with Gaussian noise, 
the underlying problems of Kalman filtering for nonlinear 
systems, with Gaussian or nonGaussian noise, have not been 
fully analyzed. Our  discussion here focuses on the reasons for 
the poorer performance, and (6.15) and (6.16) display a funda- 
mental difference between the sequential and batch solutions. 
It is worth mentioning that the conventional Gaussian noise 
assumption is not required for our discussion. 

In summary, the divergence and poorer performance of 
Kalman filtering, compared with batch approaches, are conse- 
quences of the following: a) Fluctuations of parameters when 
updating using early observations cause system matrix Ji to 
be evaluated at bad parameters, even if the initial parameters 
are good; b) system matrix Ji is not updated using newer 
observations &., k  > i. The performance difference between a 
sequential and a batch approach is especially large for highly 
nonlinear systems. 

VII. EXPERIMENTAL RESULTS 

To further verify the analyses presented above and demon- 
strate the performances of the algorithms, experiments using 
simulated data and real-world images have been conducted. 

For the simulated data, the focal length is one unit. The 
image frame forms a s x  s  square. The field of view is 
then determined by the image size s and the unit focal 
length. Unless stated otherwise, s  = 0.70, and 12-point 
correspondences are used. The object points are generated 
randomly and uniformly between depths 6 and 16. The image 
coordinates of the points are digitized according to the spatial 
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resolution of the camera. If the resolution is m by m, the 
horizontal and vertical coordinates each have uniformly spaced 
m levels. The image coordinates are rounded off to the nearest 
levels before they are used by the motion estimation algorithm. 
Although the noise here is simulated by digitization noise, it 
may represent other kinds of noise. For example, additive noise 
can be simulated by a reduced resolution. (Our experiments on 
real images have indicated that the error variance of the points 
given by the matching algorithm are generally not larger than 
the quantization noise of a 256 x 256 image.) 

All errors shown in this section are relative, except for those 
with real images. Relative error of a matrix, or vector, is 
defined by the Euclidean norm of the error matrix, or vector, 
divided by the Euclidean norm of the correct matrix, or vector, 
respectively. The linear algorithm presented in [55] was used 
to generate initial guesses. 

The subroutine ZXSSQ in the IMSL library is designed to 
find the minimum of the sum of squares of multivariate non- 
linear functions using a finite difference Levenberg-Marquardt 
algorithm. This subroutine was used for the batch nonlinear 
minimization in our experiments presented here. 

A. Whether a Good Initial Guess Is Necessary 

First, to investigate whether the initial guess provided by the 
linear algorithm indeed helps the second optimization step, a 
fixed guess is used as the initial guess. The fixed initial guess 
has a zero rotation angle and a translation vector of (1, 1,l). 
The image resolution is 256 x 256, and the sign reversal 
for the translation and rotation angle is performed when 
the iteration does not converge. Different motion parameters 
are selected randomly. Among 36 examples with 12 point 
correspondences, 16 of them do not converge, or they converge 
to a wrong answer. A wrong answer means that the error of 
translation is larger than lOO%, or the error of rotation matrix 
is larger than 50%. Remaining cases give correct solutions 
with the translation error less than 10% and the rotation error 
less than 5%. This shows that a good initial guess is necessary 
to ensure a correct solution. 

If the noise is moderate (resolution is 128 x 128 or higher), 
the initial guess provided by the linear algorithm [49] in 
the first step is generally good enough to ensure correct 
convergence in the second step. With a resolution of 64 x 64 
or lower, very good estimation of motion parameters is not 
possible since the the Cramer-Rao bound is already large. 
However,  if one insists on getting something from this very 
low resolution, the initial guess given by the linear algorithm 
is severely contaminated by noise, and the iteration might 
not correctly converge. Thus, a search can be conducted on 
a coarse grid in the parameter space, and the initial guess is 
selected as the one at which the objective function reaches the 
minimum among all the grid points. 

B. Minimizing the Epipolar Error Versus 
Minimizing the Image Error 

After the solution is obtained by the linear algorithm, the 
solution can be improved by using the constraint on E to 

minimize the sum of a weighted version of (2.5): 

+ 
( (X:)“(Ts x nil)’ 

L i=l 0 2 ( ( llRt Ts x X~)ll:=, + IITs x =ill:=,) 

where the weight has been presented in (2.6). This is called 
the epipolar improvement, and the above expression is called 
the epipolar error. By doing this, the constraint in matrix E is 
taken into account since E appears as a decomposed form 
in the above expression. However,  the effect of the scene 
structure discussed in Sections II-D and E is not used. 

Fig. 9 compares the errors from the linear algorithm, the 
epipolar improvement, and minimizing the image error, re- 
spectively, using different fields of view. First, we see that 
minimizing the image error brings about significant improve- 
ment over the linear algorithm: Error reduction is about a 
factor 2 for rotation and a factor of 4 to 8 for translation. Next, 
we consider the difference between the epipolar improvement 
and minimizing the image error in terms of the accuracy of 
the solutions. For longitudinal translation (orthogonal to the 
image plane), both methods give very similar errors since 
the solutions of the linear algorithm are already very good 
[55], and the epipolar constraint is capable of disambiguating 
motion in this case. The performance shows a difference for 
unstable lateral translations (which are parallel to the image 
plane). As indicated in Fig. 9, the epipolar improvement over 
the linear algorithm is obviously significant, but the errors after 
minimizing the image errors are further significantly smaller 
than those after minimizing the epipolar errors, especially for 
small fields of view. 

C. Sequential Versus Batch Solutions 

Minimizing the image error in (3.3) is a nonlinear problem. 
We compute batch solutions using the L-M method. The 
sequential solution is obtained by the IEKF. Iterations are 
performed for each point correspondence (four observations, 
i.e., rank-four update) to improve the performance of the 
regular IEKF (which just iterates on one observation). 

Fig. 10 shows typical sequences of IEKF sequential updat- 
ing. In Fig. lo(a), with a very good initial guess and a relatively 
small diagonal covariance matrix PO,-1, the IEKF improves 
the initial guess. In Fig. 10(b), a large diagonal covariance 
matrix PO,-1 is used. The final errors are significantly larger 
than those in Fig. 10(a) because the Kalman filter updates the 
estimates without much a priori information due to a large ini- 
tial covariance. A few early noise-contaminated observations 
cause premature updating of the estimated parameters, which 
causes Jk to be evaluated at deteriorated parameters. In Fig. 
10(c), the IEKF diverges from a zero initial guess and a large 
diagonal initial covariance PO,-1 (if a small PO,-1 is used, 
the errors will remain almost the same as that of the initial 
guess). 

Next, the performances of the linear algorithm, a sequential 
algorithm (IEKF) and a batch algorithm (the GM method) 
are compared in Fig. 11. Both the IEKF and the L-M method 
use the solutions of the linear algorithm as initial guesses. 
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Fig. 9. Epipolar improvement versus minimizing the image errors. Rotation 
axis: (l,l, 1); rotation angle: lo; translation: (tr,O,O), where t, varies 
linearly from 0.1 (for image size 0.2) to 0.7 (for image size 1.4). One-hundred 
random trials: (a) Relative errors of rotation matrix R; (b) relative errors of 
translation vector T. 
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The sequential algorithm improves over linear algorithm for 
most of cases. However,  for some cases, the results are worse 
than the initial guesses (see some average errors in Fig. 11). 
The initial covariance matrix PO,-1 of the IEKF is carefully 
selected (same as that in Fig. 10(a)). A larger PO,-i will 
result in more divergent cases, and a smaller one will impede 
parameter improvement. In contrast, the image error in Fig. 
11(d) shows that the batch method finds the minimum very 
consistently, but the IEKF does not always find the minimum. 
Sometimes, the IEKF diverges. From Fig. 11, we can see 
that the batch optimization significantly outperforms the IEKF 
sequential algorithm. 

With different resolutions, the improvement of the batch 
optimization over the linear algorithm is shown in Fig. 12. As 
can be seen, the motion error reduction is a factor of 2 to 3. It 
can also be seen that the average image errors after the batch 
minimization are always about equal to the standard deviation 
of the actual noise in the image coordinates. This is true even 
for extremely low resolution (32 x 32). This implies that the 
global minimum solutions can be consistently reached by the 
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Fig. 10. IEKF for the nonlinear problem: a sample sequence. Rotation 
axis: (1, 1,l); rotation angle: 30; translation vector: (1.732,1.732, -1.732). 
“Expected by IEICF” denotes the error predicted by the covariance matrix Pk: 
(a) With good initial guesses, generated by the linear algorithm, and a small 
diagonal PO,-1 ; (b) with the same good initial guesses as in (a) and a large 
PO,-1. For a clearer display of the other values, the covariance of IEKP is 
not shown here for the cases with less than 25 observations and is shown in 
(c) instead under “Part of expected by IEKP (with good initial guess)“; (c) 
with zero initial guesses and a large PO,-1. 

batch method, and the solutions of the linear algorithm are 
good enough to be used as initial guesses. 
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Fig. 11. Relative errors of the linear algorithm, batch solution (the L-M 
method), and sequential solution (IEKF). Rotation axis: (1, 1.1); rotation 
angle: 30. For a  horizontal index from 0  to 20, the direction of translation 
changes from (1, 0,O) to (0, 0,l) in the sz plane at evenly spaced 21  steps. 
The length of the translation vector is equal  to 2.1 units. 100 random trials: 
(a) R; (b) image errors. 

D. The Uncertainty Polyhedron Model  
Fig. 13  presents the compar ison between model  1  (the 

Gaussian distribution) and  model  2  (the uncertainty polyhe- 
dron distribution). The  actual noise is spatial digitization noise. 
Although model  2  seems more appropriate here than model  1, 
the errors in motion parameters are very similar between these 
two models. This implies that the per formance of minimizing 
the image error is not very sensitive to the changes  in the 
assumed noise distribution. 

Here, it would be  clearer to observe the image errors in 
Fig. 13(b). The  value of the resulting image error from the 
method of model  2  is virtually equal  to the standard deviation 
of the actual image plane noise, indicating again that the 
global minimum is consistently reached from the initial guess  
provided by  the linear algorithm. 

E. Error Estimation and  the Cram&--Rao Bound 

Fig. 15  shows the compar ison between the actual relative 
errors and  the corresponding Cramer-Rao bound  with Gaussian 
noise. Two types of noise are simulated: Gaussian and  uniform 
(with same variance). As shown in Fig. 15(a) and  (b), the 
actual relative errors in the est imated solutions are very close 
to the Cramer-Rao bound  with Gaussian noise. In other words, 
the errors of the algorithm are very close to those of a  best 
possible unbiased estimator with Gaussian noise. 

Fig. 14  shows the average relative errors, the average devi- By compar ing Fig. 15(b) and  (c) with Fig. 7(a) and  (b) it 
ation of the error estimation (which is the absolute dif ference can be  seen that the errors under  digitization noise are similar 
between the estimated relative errors and  the actual relative to those under  the Gaussian noise with the same variance. This 

0.20 
lmprovemenl for R versus Resolution 
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---- Minimizing the image error 

ImDmvement  for T  versus Resolution 

Fig. 12. Improvement of the hatch optimization over the linear algorithm 
versus image resolutions. The simulated image has 2m x 2m pixels. Image 
size: 1; rotation axis: (1.1, 1); rotation angle: 50; translation: (3,0,0); 100 
random trials: (a) R; (b) T. 

errors), and  the bias of error estimation (which is the average 
difference between the estimated relative errors and  the actual 
relative errors) over  40  random trials. As can be  seen from the 
figure, the bias is small, and  the average deviation is general ly 
a round a  half of the magni tude of the actual relative errors. 

It is worth mentioning that the average deviation of error 
estimates reflects the deviation of actual errors (which are 
directly related to s tandard deviation or var iance of the errors). 
To  see the deviation of errors in the solutions of the linear 
algorithm, refer to the result of error estimation for the linear 
algorithm (see Fig. 8  of [%I). 
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Fig. 13. Relative errors of the linear algorithm: model 1 (minimizing the 
image error) and model 2 (uncertainty polyhedron). Rotation axis: (1, l,l); 
rotation angle: 30; for horizontal index from 0 to 20. the direction of translation 
changes from (1, 0,O) to (0, 0,l) in the PZ plane at 21 evenly spaced steps. 
The length of the translation vector is equal to 2.1 units. 100 random trials: 
(a) T; (b) image error. 

implies that the shape of noise distribution function does not 
significantly affect the actual errors as long as the variance is 
kept the same. Therefore, it is reasonable to expect, provided 
that the data do not contain extremely bad data or outliers [19], 
that minimizing the image error will lead to good performance 
under general noise, even if the shape of noise distribution 
function differs significantly from Gaussian. 

Fig. 15 also shows the relative absolute bias of the estimates 
(the norm of the bias matrix, or vector, divided by the norm 
of the true matrix, or vector). The bias is small relative to the 
actual errors. 

The performance of the algorithm has virtually reached 
the theoretical lower bounds with Gaussian noise. This fact 
provides quantitative insight into the impact of errors that may 
seem negligible, such as digitization errors. From Fig. 15, we 
know that to give an estimated translation direction with under 
2.0% expected error, the variance of the errors in the image 
points cannot be larger than those of digitization errors of 
256 x 256 images. 

We can also see from Figs. 12 and 15 that the error in 
the estimate is roughly inversely proportional to the image 
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resolution and the number of point correspondences. To reduce 
the error by a factor of two, for example, one can either double 
the image resolution (reduce the amount of noise in image 
point position) or double the number of point correspondences. 

F. Inherent Limitation of Small Motion 

The restriction of small motion for optical f low-based ap- 
proaches arises primarily from two facts: 1) Optical flow, by 
ideal definition, is the projection of 3-D velocity onto the 
image plane. The formulation of computing optical flow is in 
terms of velocity (e.g., [17], [15], [33], [21], [16], [47]). 2) The 
mathematical formulation of computing motion parameters 
from optical flow is also in terms of motion velocity [7], 
[60], [l], [48]. However,  what is actually observed is the 
displacement between images. Only in the case of small 
motion can displacement be approximated by velocity. 

Although the restriction of small interframe motion sim- 
plifies both computing image matching (optical flow as a 
result) and computing motion parameters from optical flow 
(motion velocity asa result), the reliability of the computed 
motion parameters in the presence of noise is inherently 
limited. A small amount of motion is easily overridden by 
the pixel-level errors in the estimated optical flow. Even if 
the optical flow can be estimated with a subpixel precision, 
such a subpixel precision does not mean subpixel accuracy 
since spatial digitization noise coupled with variation and 
discontinuity of flow field makes smoothing or interpolation 
less effective in terms of accuracy. The essence here is that 
with a small motion, the ratio of signal to spatial digitization 
noise is low since the power of the latter is a constant. 

As shown in Fig. 15, our algorithm has essentially reached 
the theoretical error bound. What about small motions, e.g., 
those typically used for velocity-based formulation or optical 
flow? We consider a setup: The image is a unit square with 
512 x 512 pixels. We assume that the image positions of the 
points are contaminated by additive white Gaussian noise with 
a variance equal to that of the uniform distribution in the 
range of fl pixel. The magnitudes of translation are such that 
the maximum disparities caused by translation in the image 
plane are 2, 4, 8, and 16 pixels, respectively. The CramCr- 
Rao bounds on the relative error in the estimated translation, 
which average over 10 random point sets, are shown in Fig. 
16. It can be seen that under a small motion with a 2-pixel 
maximum disparity (average disparity is roughly 1 pixel), the 
errors in translation are bounded below by 60%, even when 
using a large number of points (70). For a small motion with 
a 4-pixel maximum disparity, the error bound is still large 
(about 38% with 70 points). Whether or not one uses discrete 
features or optical flow, the data shown here quantitatively 
predict the inherent stability problem for motion and structure 
from small motions. 

G. Real- World Images 
Our  algorithm has been tested on real images. A CCD video 

camera with roughly 480 x 500 pixels was used to take two 
images of each scene at unknown positions. The field of view 
is roughly equivalent to that of a f =62.5 mm 35-mm camera 
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Fig. 14. Statistical record of errcrr estimation. Actual relative error, deviation of error estimation, and bias of error estimation for (a) R and (b) T versus 
number of point correspondences. Sample sequences of estimated errors and actual errors with 9-point correspondences: (c) R and (d) T. Rotation axis: 
(1,0.9,0.8); rotation angle: 50; translation: (0.5, -0.5, -3.0). 40 random trials. 

(or image size is about 0.42 by 0.56 for the pin-hole camera Table III>. The results for other examples have been omitted 
model with a unit focal length shown in Fig. 1). The focal due to space limitations. 
length of the camera is calibrated, but no nonlinear correction 
has been made for the camera. A two-view matcher computes VIII. SUMMARY 

an image displacement field and occlusion map on a pixel grid 
[53]. The displacement field gives point correspondences. Fig. 

This paper first discusses a type of motion with which 
the algorithms based on only the epipolar constraint are very 

17 shows one of the two images of a scene in our laboratory sensitive to noise, especially under a small field of view. The 
(which is known as a Mac Scene). Samples of the displacement analysis leads to the conclusion that it is important to use 
field computed are shown on a 13 by 14 grid in Fig. 17 both components in the image coordinates of the points to 
and superimposed on the first image, which is extended to determine the motion parameters in the presence of noi%. 

provide context for the peripheral areas of the image. Those The simulations showed that the use of both components 
13 X 14 = 182 displacement vectors shown in Fig. 17 are used (i.e., minimizing the image error) significantly improves the 

as point correspondences to compute motion parameters. The accuracy of the estimates compared with the use of only one 
results are shown in Table IIa. Since no attempt was made component (i.e., minimizing the epipolar error), especially 
to obtain the ground truth, we do not how the accuracy of with a small field of view. 
those motion parameters. However,  the image error is equal Both components of image coordinates and the constraints 
to about half a pixel width, as is shown in Table IIa, which in the motion parameters are taken into account in a unified 
seems to be satisfactory. way by our approach to optimal estimation. The maximum 

Assuming that the errors in the coordinates of the matching likelihood estimator with independent Gaussian noise leads to 
points are uncorrelated, the estimated variance of the errors is minimization of the image error. With uncorrelated general 
given by the squared image errors. The estimated errors of the noise distribution, minimizing the image error corresponds to 
computed motion parameters for the Mac Scene are shown in minimum variance estimation for the locally linearized system. 
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Fig. 15. Actual errors, the Cramer-Rao bound with Gaussian noise, and the absolute bias of the estimator versus the number of point correspondences. 
Comparison for R: (a) Gaussian noise added; (b) uniform noise added. Comparison for T: (c) Gaussian noise added; (d) uniform noise added. Rotation 
axis: (1,0.9,0.8). Rotation angle: 50. Translation: (0.5, -0.5, -3.0). 40 random trials. 
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Fig. 16. Cramer-Rao bound for relative errors in translation under small 
motions. 10 random trials. Translation: (k, k, 0). The value of k is such that 
the maximum disparity caused by translation is d pixels: d = 2,4,8.16. 
Rotation axis: (1,0.9,0.8); rotation angle: 50. 

Therefore, minimizing the image error is a good objective, The optimal estimation leads to a remarkable improvement 
even when the noise distribution is unknown. over the preliminary estimates given by a linear algorithm. 

Fig. 17. One of the two views of a laboratory Scene (Mac Scone) and samples 
of computed image plane displacement field. 
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TABLE IIa 
DATA AND RESULTS FOR THE MAC SCENE 

Parameters z Y * 

Translation 0.016 0.991 0.13 
Rotation axis 

Rotation angle 
Image error 
Pixel width 

0.966 0.18 -0.19 
1.6’= 

0.00 033 
o.ollO94 

TABLE IIb 
ESTIMATED ERRORS IN THE SOLUTION FOR THE MAC SCENE 

Parameters 

Errors of f 

2 Y f 

0.0026 0.0011 0.012 
Errors of Rotation axis 0.0091 0.021 0.023 
Errors in rotation angle 0.140 

Relative error in 9 0.012 
Relative error in rotation axis 0.032 

The stability of the motion estimation problem has been 
investigated in terms of theoretical limits. The Cramer-Rao 
lower error bound has been determined for the problem, and 
the experiments showed that the actual errors are quite close 
to the Cramer-Rao bound for unbiased estimators with Gauss-  
ian noise. This close-to-limit achievement for our nonlinear 
optimization problem is mainly due to the following: 

1) The closed-form solution that provides a good initial 
guess 

2) the optimal estimation that makes good use of all the 
available information and constraints 

3) the effective batch processing. 
A technique for estimating errors in the optimal estimates is 
introduced and tested. This provides a general f ramework of 
error estimation for iterative optimization algorithms. 

The analysis and experiments on batch processing (the L- 
M or the Gauss-Newton method) and sequential processing 
(IEKF) lead to the following conclusions: For this highly 
nonlinear problem, the performance of the IEKF algorithm is 
inferior to that of the L-M algorithm in terms of accuracy, and 
the covariance matrices given by the IEKF may significantly 
underestimate the actual errors. To improve the computational 
efficiency for nonlinear problems with very long observation 
sequences, a sequential-batch processing approach [9] may be 
used. 

The task of passive navigation or structure from motion has 
been recognized as problematic due to the instability observed. 
In this paper, the performance achieved for synthetic data and 
images of real-world scenes indicates that this task is fairly 
stable. 

This is a journal version, for archival purposes, of our work 
on optimal motion estimation that we started in early 1986 [51] 
using an optimal objective function and the two-step approach, 
which was continued in 1987 [52], employing a maximum 
likehood method and extended in 1988 [54] to minimum 
variance estimation for unknown noise distribution. During 
the same early period in 1986, a technique of reconstruction 
and reprojection was developed by Toscani and Faugeras 
and appeared in the same workshop [44]. In 1988, Aisbett 

submitted her work on the iterative epipolar minimization [2], 
and around the same time, Spetsakis and Aloimonos published 
their work on optimal motion estimation using the epipolar 
minimization [43]. 

APPENDIX A 

We need to derive (2.6). Equation (2.3) is equivalent to 
Tz (X’ x RX) = 0. With additive noise X’(E) = X’ + Sk 
and X(E) = X + Sx, we have 

q e Tt,(X’(e) x  RX(E)) 

=Tt,((X’+bx’) x  R(X+bx)) 
~Tt,(X’xRX+X’xRSx+Sx~ xRX) 

where the second-order term 6x! x  (ax) is neglected. Since 
Ti (X’ x RX) =EO, we have 

q N T”, (X’ x Rbx) + T:(&r x  RX) 

= (@(T, x  X’))‘S, - (T, x  RX)&. 

The first two components of X are the image plane coordi- 
nates, and the last component is exactly 1. Assume that the first 
two components of its error vector Sx are uncorrelated random 
noise with zero mean and variance a2, that is, E&& = 
diag{ 02, g2, 0} . Similarly, assume X’ has additive zero mean 
uncorrelated nose with variance g2. Then 

ET& N (RtT, x  X”))diag{a2, u2, O}Rt(T, x X’) 
+ (T, x  RX)tdiag{ 02,02,0}(Ts x RX) 

=U 2 ( ( llRt Ts x  x’)II:=, + IITs x  RXll:,o) 

where /[(a, b, c) I IzZo 6 a2 + b2 is defined. 

APPENDIX B 

To prove the Cramer-Rao bound [8], [37] in (5.4), we first 
prove an inequality. Denoting Cxu e EXYt, then 

cxx 2 CXYCyy XY. + ct (C.1) 

In fact, for any matrix M, we have 

o < E(X + MY)(X + MY)t 
= E(XXt + XYtMt + MYXt + MYYtMt) 
= Cxx + CxyMt + MC;, + MCyyMt. 

(C.2) 
t Letting M = -C’X&‘~~ and using C,, w  w - C,, t c  ct - t 

(C.2) gives (C.l) immediately. The equality of (C.l) holds if 
and only of X + My = 0 almost everywhere. 

Let X = rir - b(m) and Yt = yt = a tnP$“‘. Using 
(C.l), we need to establish 

EXYt fi Cxy = B 

to finish the proof. In fact 
dlnp 

Eyt=E3z= J 
dlnp 
=pdu = 

J 
gdu 

d Z- 
am J pdu=&l=O (C-3) 
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where assuming the integration and the differentiation can [lo] 0. D. Faugeras, N. Ayache, B. Faverjon, and F. Lustman, “Building 
exchange the order (similar for the following). In addition visual maps by combining noisy stereo measurements,” in Proc. IEEE 

Int. Conj Robotics Auromat (San Francisco, CA), Apr. 1986, pp. 
B = L%(m) tIEri, 1433-1438. 

-=-= 
am i?m J 

hap, 

m-p& = EGG = Eriryt. 

[ 111 0. D. Faugeras, F. Lustman, and G. Toscani, “Motion and structure from 

alnp 
point and line matches,” in Proc. Int. Conf Comput. Ksion (London, 

J 

A 
(c.4) 

England), June, 1987. 
= 

am 
[12] R. J. Fitzgerald, “Divergence of the Kalman filter,” IEEE Trans. Au- 

tomat. Contr., vol. AC-16, pp. 736-747, Dec. 1971. 

From (C.3) and (C.4), we have 
[13] A. Gelb (Ed.), Applied Optimal Estimation. Cambridge, MA: MIT 

Press. 1974. 

EXYt = E(rir - b(m))yt = Eihyt - Eb(m)yt 

= B - b(m)Ot = B. 

0 

APPENDIX C 
The following is a version of the Kalman filtering algorithm: 

Kalman gain : GI, = Pk,k-&(A&+& + &)-I 

current estimate : r& = 7hk~+~ + Gk(y,  - Ak?kk,k-I) 

current covariance : Pk = %,+I - GkAkPk,k-l.  

predicted estimate : &+l,k = @kfhk, 

predicted covariance : Pk+l,k = @kPk@k + &k. 

The above computations are done for k  = 0, 1,2, . . . n, ini- 
tialized by T&,-I = a and Po,-I = E(tio,-l -a)(~%,,,-~ -a)“. 
If a priori information for mo is available, no is viewed as 
a random vector, assuming that mo is uncorrelated with {qk} 
and {Ek}. Then, a should be the expected %: o = Ew. 
When there is no a priori information about mo, one can let 
a = 0 and PO,-I = 001. If yk is a p-D vector, the update is 
called a rank-p update. 
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