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Motion and Structure from L ine Correspondences: 
C losed-Form Solution, Un iqueness, and Optim ization 
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Abstract-This paper discusses estimating motion and structure 
parameters from line correspondences of a rigid scene. We  
present in this paper a new closed-form solution to motion 
and structure parameters from line correspondences through 
three monocular perspective views. The algorithm makes use of 
redundancy in the data to improve the accuracy of the solutions. 
The uniqueness of the solution is established, and necessary and 
sufficient conditions for degenerate spatial line configurations 
have been derived. Optimization has been employed to further 
improve the accuracy of the estimates in the presence of noise. 
Simulations have showed that the errors of the optimized esti- 
mates are close to the theoretical lower error bound. 

Index Terms- Computer vision, dynamic scene analysis, mo- 
tion estimation, optimal estimation, structure from motion. 

I. INTROWJCT~~N 

F ROM MONOCULAR image sequences  taken by  a  camera 
undergoing motion relative to a  scene, one  general ly 

can  determine the parameters of motion and  structure of the 
scene up  to a  scale factor. Conceptually, three steps may be  
involved in motion and  structure analysis, a l though practically, 
a  merge of these steps is possible. First, features are extracted 
from images. Then,  interframe correspondences between the 
selected features are established. Finally, the motion and  
structure are computed from these feature correspondences.  
This paper  is devoted mainly to the last step. 

In order to focus on  the major problems to be  discussed, 
we assume that the scene is rigid. This assumption is valid 
for the cases where a  camera moves in a  static scene. If the 
scene consists of individually moving rigid objects, the images 
need  to be  segmented into regions where each  corresponds to 
a  rigid part of the scene. This can be  done  by, e.g., segment ing 
displacement field based  on  the rigidity [7], [l]. The  results of 
this paper  can then be  appl ied to each  of those rigid regions. 
Such a  segmentat ion is beyond  the scope of this paper.  It is 
worth noting that a  relatively wide field of view is very crucial 
to the reliability of solutions in the presence of noise [23], [28]. 

Object points are a  type of feature commonly used  by  
feature-based algorithms. The  closed-form solutions to motion 
and  structure of the scene from feature points are available 
[14], [22], [25], and  the condit ion of the corresponding de-  
generate spatial configurations is known [15]. In the category 
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of optical f low-based methods, several methods for the corre- 
sponding problem have  been  developed [30], [31], [24]. 

The  choice of types of features depends  on  their availability 
in the images and  the reliability of their measurement.  When  
points are not available in large quantities, other features 
such as  lines or contours can be  used [29], [12], [9], [6]. 
Since higher level features like lines, edges,  and  contours are 
determined by  a  set of pixels, the redundancy in the edge  
pixels make it possible to locate those features accurately in 
image plane. In this paper,  we discuss motion estimation based  
on  lines. In practice, one  certainly may use different types of 
features to obtain robust solutions. However,  the study of the 
use  of single type of feature is very important, theoretically 
and  practically, to the general  use  of multiple types of features. 
It provides insights into the roles of this type of feature in the 
solutions that use  multiple feature types. Our  general  approach 
to using lines might also be  useful to the use  of other types of 
features. The  optimization to be  discussed in this paper  also 
allows the use  of multiple types of features. 

The  lines used  in this study are straight lines without known 
end  points since the end  points of an  extracted line are very 
unstable [4], [9], [16]. For example, the end  points often do  
not correspond to physical points and  move as the view point 
changes.  Many  factors such as  lighting and  surface reflection 
often change  the position of the end  points when  the view 
point changes.  However,  the location and  orientation of the 
line can general ly be  determined reliably by  a  line fitting 
a long a  sequence of edge  points. In other words, long lines 
are preferred since they provide more edge  points to allow a  
more accurate measurement  of the line position. 

From line cor respondences through three perspect ive views, 
Yen and  Huang  [29] and  Liu and  Huang  [12] iteratively solve 
a  set of nonl inear equat ions for the motion parameters. A 
different approach is reported by  Mitiche et al. [17], where 
the property of angular invariance between lines is used.  
Faugeras et al. [9] approximate the nonl inear equat ions by  
linear equat ions and  use iterated extended Kalman filter to 
estimate the motion parameters (the filter is also a  nonl inear 
iterative search method).  These algorithms do  not give a  
closed-form solution to the problem. 

Spetsakis and  Aloimonos [21], and  Liu and  Huang  [13] 
recently developed linear algorithms for estimating motion 
and  structure parameters from line correspondences.  The  basic 
strategies are similar to those of point-based linear algorithms. 
First, a  set of intermediate parameters are estimated by  solving 
linear equations. Then,  the motion parameters are solved from 
those intermediate parameters. Although closed-form solutions 
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are derived in those linear algorithms, many  problems remain 
to be  solved. First, many  spurious solutions are generated 
by  their algorithms. The  number  of spur ious solutions is 
so  large that the computat ion is inefficient, and  the correct 
solutions are difficult to identify in the presence of noise. The  
formulations of the algorithms also generate some degenerate 
cases that may otherwise be  avoided. Second,  the quest ion 
of un iqueness was left unanswered.  Do the algorithms give 
a  unique solution? What  are the necessary and  sufficient 
condit ions for the algorithm to give a  unique solution? Third, 
preliminary experiments have  shown that the algorithms are 
extremely sensitive to noise. Only results for noise-free data 
were publ ished. These problems are taken up  in this paper.  In 
addition, we develop methods to obtain optimal solutions from 
noise-corrupted lines. W e  also study the inherent stability of 
using lines for motion analysis. 

W e  first present a  guideline of our  approach to those 
problems. A common characteristic of l inear algorithms is 
solving for a  matrix of intermediate unknowns through linear 
equations. Those intermediate unknowns are not independent.  
In other words, there exist constraints on  the variables of inter- 
mediate unknowns,  and  there are more intermediate unknown 
variables than the “independent” unknowns.  The  linear equa-  
tions are solved without using those constraints (otherwise, 
we are forced to solve nonl inear equations). The  resulting 
intermediate unknowns contain redundant  information. One  of 
the objectives of our  linear algorithm is to make good  use 
of such redundancy to improve the accuracy of the solutions 
in the presence of noise. On  the other hand,  the problem to 
be  investigated here involves three image frames with line 
features, and  therefore, it is significantly more complicated 
than a  two-frame point-based problem. W e  derive compact  
computat ional steps to avoid, as  much as possible, degenerate 
cases and  spurious solutions that may otherwise be  generated.  
As a  result, we are able to investigate the un iqueness of 
solutions. Although our linear algorithm is des igned to well 
utilize the redundancy in the data, the solutions are not overall 
optimal in the presence of noise. However,  those solutions 
can be  used as  an  initial guess  for further improvement 
through optimization. Since the optimization is nonlinear, the 
good  initial guess  provided by  the solution of the linear 
algorithm is very crucial to the correct convergence of the 
optimization. Finally, we will compare the error var iance 
of our  optimal solution with that of a  theoretical lower 
bound.  

The  remainder of this paper  is organized as  follows. The  
linear algorithm is der ived in the next section. Section III 
is devoted to the problem of degeneracy  and  uniqueness.  
Optimization is d iscussed in Section IV. Simulation results 
are presented in Section V. Section VI presents concluding 
remarks. 

II. SOLUTION AND ALGORITHM 

This section presents a  linear algorithm for motion and  
structure estimation. The  goal is to determine the relative 
motion between the camera and  the scene, as  well as  the 
structure of the scene. 

Fig. I. Motion and structure cannot be  determined from lines in two images. 

A. Why  Two Views Are Not SufJkient 

W e  first show that inherently, motion cannot  be  determined 
from lines in just two images. To  do  this, it is more convenient 
to consider the situation where a  camera is moving in a  static 
scene. Let a  camera system consist of a  projection center 
and  an  image plane. At each  time instant, define a  camera 
system at the corresponding position a long the trajectory of 
motion associated with the corresponding image. The  problem 
to be  investigated is equivalent to the following: Fixing the 
first camera system at a  known position and  orientation, we 
want to determine the position and  orientation of the second 
camera system and  the 3-D posit ions of the lines from the 
projections of lines in the two image planes (see Fig. 1). 
W e  show that it is impossible. For each  line in an  image 
plane, we define a  3-D plane called the projection plane of the 
line, which passes through the projection center and  the line. 
For each  line correspondence,  two camera systems determine 
two corresponding projection planes, whose intersection gives 
the line in 3-D. Suppose that the second camera system is 
arbitrarily perturbed away from the correct position with the 
projection planes fixed with the camera system. Since any  
two nonparal lel 3-D planes intersect and  the corresponding 
intersection yields a  line, every pair of projection planes 
still intersects as  long as  the perturbation is not so  large 
that two corresponding projection planes become parallel (see 
Fig. 1). In other words, the arbitrarily perturbed position of 
the second camera system still gives a  3-D line configuration 
that is consistent with the two images observed.  Therefore, 
the solution to the position and  orientation of the camera is 
arbitrary (at least in an  open  set including the correct one),  as  is 
the corresponding 3-D line structure. If a  third image is added,  
it is possible to determine the position of the second and  the 
third camera systems as well as  the 3-D position of the lines 
because the intersection of three projection planes is general ly 
not a  line. In the following, we discuss determining motion and  
3-D line structure using line cor respondences through three 
images. 

B. Three Mews 

Let the coordinate system be  fixed on  the camera with the 
origin coinciding with the projection center of the camera and  
the z axis coinciding with the optical axis and  pointing toward 
the scene. Therefore, in this coordinate system, the camera 
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is fixed, and the scene is moving. By the pin-hole camera 
model, the image and the focal length can be scaled by any 
positive common factor without changing the direction of the 
projection lines. If we scale the image and focal length by the 
reciprocal of the focal length, we obtain a normalized camera 
model, in which the focal length is one, and the normalized 
image size determines the field of view. Therefore, without 
loss of generality, we consider the normalized camera model. 
Visible objects are always located in front of the camera, i.e., 
z  > 0. (z 5 1 can occur since the focal length is normalized.) 

We introduce some notation to simplify the presentation. A 
vector is regarded as both vector and column matrix. There- 
fore, vector operations and matrix operations can be applied 
to 3-D vectors with matrix operations taking precedence over 
vector operations. // denotes “parallel” relationship. a//b if 
and only if a x  b = 0. For a matrix A = [a,,], 11.11 denotes 
the Euclidean norm: ]][aij]]]* = C,, CL&. [Xl, is a 3 x 3 
skew symmetric matrix determined by 3-D vector X such that 
X x Y = [X] ,Y holds for any 3-D vector Y [28]. 

Consider a coordinate system fixed on the camera. A line 
passing through a point zp (to be specific, let zp be the point 
on the line that is the closest to the origin) with direction Z at 
time to can be expressed in the following parametric form: 

20 = cl+ + kl 

where the subscript in LCO means time to, and /G is the 
parameter. At another time instant tr, the line is moved from 
to by a rotation represented by a rotation matrix R and a 
translation represented by a translation vector T, that is, any 
point at position 21 at time tr is related to its position ze at 
times to by 

z1 = Rx0 + T. 

The line equation at time tl is 

(2.1) 

tl: zl=Rzo+T=(Rz,+T)+kRZ. (2.2) 

It is easy to see that after motion, the line at time tr passes 
through point RxP + T with a direction RI. Similarly, at 
another time instant ta, the line is rotated by a rotation matrix 
5’ and then translated by a vector U from time to. The line 
equation at t2 is 

t* : z* = szo + u = (Ss, + U) + kSZ. (2.3) 

Notice that it is not necessary that to 5 tl 5 t2 holds. The 
order of the three time instants to, tl, and t2 can be arbitrary 
(see Fig. 2). 

C. Two Important Equations 

We define the projection plane of a line as the plane that 
passes through the line and the projection center and define 
projection normal of a line as the normal of the projection 
plane. Since the projection normal of a line is orthogonal to 
the line and the position vector of any point on the line, it 
is easy to get the projection normal at the three time instants 
from (2.1)-(2.3): 

to : no = zp x  1 (2.4) 

t1 t 0 12 

Fig. 2. Motion and structure from lines in three images. 

tl : n1 = (R+ + T) x  RI = R( (z?, + R-lT) x  1) 

= R(no + R-lT x  I) (2.5) 
t* : n2 = (Sz, + U) x SZ = S( (if+ + S-lU) x I) 

= s(n0 + s-lu x I). (2.6) 

Equation (2.5) gives 

R-In1 = no + R-lT x  1. (2.7) 

Using the vector identity a x (b x  c) = (a. c)b - (a. b)c 
and (2.7) yields 

no x  R-‘nl = no x  (R-‘T x  I) 

= (no Z)R-lT - (no . R-lT)Z 

= -(no R-lT)Z. (2.8) 

The last equation follows from the fact that no . Z = 0. Using 
no solved from (2.7) gives 

no R-l T = (R-‘nl - R-IT x  I) ’ R-IT 
= R-In1 . R-lT = n1 . T. (2.9) 

Equations (2.8) and (2.9) yield 

no x  R-‘nl = -(nl . T)Z. (2.10) 

Similarly, we get 

no x  S-ln2 = -(n2 U)Z. (2.11) 

D. A Geometrical View 

These two equations, (2.10) and (2.11) can also be proved 
geometrically as shown in the following: For each line, we 
arbitrarily choose its direction from two possible alternative 
ones and thus represent it by a vector 1. Viewed along this 
direction, the configuration can be shown in Fig. 3, where 
the line vector Z points towards the paper (a cross marks the 
tail of the vector), and the point “0” denotes the projection 
center of the camera. We first assume that the line does not go 
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through the projection center “0.” From the original motion 
equat ion (2.1), we have  

R-lx1 = x0 + R-IT. 

This means  that if the moved line is rotated back by  R-‘, the 
resulting composite motion is a  pure translation represented 
by  vector R-IT. This composite motion is shown in Fig. 3  
(only the projection of R-IT onto the viewing plane can be  
shown in the figure). Viewed from the direction employed 
for Fig. 3, the vector R-lT can lie on  either side of the 
projection plane of the line (I the plane that passes “0” and  
I, which is visible as  a  line in Fig. 3). In order to show 
both cases, we let the corresponding vectors R-IT (first 
motion) and  S-lU (second motion) lie on  different sides in 
Fig. 3. The  vector R-‘nl is the projection normal of the 
plane after the pure translation R-lT, and  therefore, it is 
orthogonal to the line that is translated by  vector R-lT from 
1. Because the composite motion is a  translation, the vector 
R-In1 is also orthogonal to 1  as  shown in Fig. 3. Therefore, 
both R-In1 and  no  are orthogonal to 1  : Z//(ne x R-lnl), 
which gives the “al ignment part” of (2.10). By definition in 
(2.4), the length of no, da, is equal  to the distance between 
the line and  the origin. In Fig. 3, there exist two congruent  
right triangles determined by  two equal  angles B’s and  the 
two equal  hypotenuses with length de. The  corresponding 
sides opposite to /3’s, respectively, should be  equal: One  side 
is equal  to I/no x R-‘nl Il/llnr]I, and  the other is equal  to 
R-‘nl RplT/ljnllj = nlT/jJnl I). This proves the “length 
part” of (2.10). What  remains to be  establ ished is the “sign 
part.” As we ment ioned above,  the vector R-lT can lie on  
either side of the projection plane of I: the side as  in Fig. 3  
or the side of S-rlJ shown in Fig. 3. In the former case, 
no x R-In1 has a  direction opposite to 1, and  we have  
nl . T 2  0  because R-‘nl and  R-IT lie on  the same side 
of the projection plane of 1  and  the angle between them is 
an  internal angle of the right triangle. nl . T = 0  holds 
true if and  only if T = 0, and  so does  no  x R-In1 = 0. 
This concludes the “sign part” of (2.10) for the former case. 
For the latter case, the vector no  x R-‘nl gets the same 
direction as  I, and  nl . T 5  0  because Rwlnl and  R-IT 
are located on  the different sides of the projection plane of 
I, and  the angle between them is an  external angle of a  right 
triangle. Therefore, the “sign part” of (2.10) is always true for 
both cases. Suppose the line 1  does  go  through the projection 
center “0.” Then,  no  = 0  according to the definition of 
(2.4), and  R-lT is orthogonal to R-‘nl as can be  seen from 
Fig. 3. Thus, (2.10) still holds true since both sides vanish. 
This completes the proof for (2.10). The  proof for (2.11) is 
analogous.  Compared with the geometrical proof, the algebraic 
derivation discussed earlier appears  to be  more r igorous but 
less intuitive. From the geometrical proof, one  can see what 
propert ies are used  to determine the solution. 

E. Intermediate Parameters 

Multiplying both sides of (2.10) by  na  U and  those of 
(2.11) by  nr . T yields 

(n2 . U) (no x R-‘nl) = (nl . T) (no x S-‘nz) 

n0 

Fig. 3. Geometrical illustration of (2.10) and  (2.11). 

or 

[nol.B = 0  

where B = (na . U)R-‘nl - (nl . T)S-‘n2. Letting R = 
[RI R2 Rs] and  S = [Sr S2 Ss], B can be  expressed as  

[ 

nT(RIUT - TST)np ny En2 
B = nT(RzUT -TST)nz g nTFn2 

nf ( R3UT - TST)ng I[ 1  ny Gn2 

where we define the intermediate parameters (E, F. G): 

E = RIUT - TST. F  = RzUT - TS;, 

G  = R$J* - TS;. (2.12) 

W e  have  

ny  En2 

hl x  
i 1  

nTFn2 = 0. (2.13) 
n7 Gnz 

Equation (2.13) is a  vector equat ion involving motion pa-  
rameters R, T, S, U, and  observables no, nl, and  n2. As 
can be  seen,  if we  scale any  of no, nl, and  n2 in (2.13) 
by  a  positive number,  the equat ion still holds. Therefore, 
no, nl, and  na  can be  normalized to be  unit vectors. The  
three scalar equat ions in (2.13) are linear in the 9  x 3  =  27  
components  of the intermediate parameters (E, F, G). Since 
7-ank([n~],) = 2 f or no # 0, (2.13) has  at most two 
independent  scalar equations. From each  line cor respondence 
through three perspect ive views, we get a  set of corresponding 
projection normals: no, nr, and  n2. If we  have  at least 13  
line cor respondences through three views, we might have  
26  independent  scalar equations. If so, we can solve for the 
intermediate parameters (E, F, G) up  to a  scale factor based  
on  (2.13). When  a  matrix is determined up  to a  scale factor, we 
say that it is essentially determined. The  condit ion to have  26  
independent  scalar equat ions (2.13) is d iscussed in the next 
section. 

In the subsequent  analysis, it is assumed that the inter- 
mediate parameters (E, F, G) are essentially determined. For 
convenience,  we solve for the normalized intermediate param- 
eters (E,, F,.G,) with l lE31\2 + llFSl\2 +  \(G,l12 = 1, such 
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that 

(Es, Fs, Gs) =  G, F, G) 

where Q  is an  unknown scale factor. The  motion parame- 
ters are to be  determined from the normalized intermediate 
parameters. 

It is easy to see from (2.12) that llTl\2 + jlUJj2 is pro- 
portional to (IElI + ((F(12 + (IGl12. If the scene is scaled 
with respect to the origin by  a  positive factor of k and  the 
translations T and  U are also scaled by  k, we get the same 
images. Therefore, (IT[12 + (IU([’ cannot  be  determined from 
the monocular  images. For simplicity of notation, we drop 
the subscript s and  let [IElI + 11Fl12 + [IGIl =  1, with the 
understanding that (E, F, G) are known only up  to a  scale 
factor. As shown later, the rotation matrices are independent  
of this scale factor. 

F. Motion Parameters from Intermediate Parameters 

Let V; = T x R;, i =  1,2,3. From (2.12) we have  
ETVl = 0, FTV2 = 0, and  GTV3 = 0. If the ranks of 
E, F, G are all equal  to two, Vi can be  essentially determined 
from (E, F, G). Then,  the translation vector T can be  essen-  
tially determined by  T . Vi = 0, i = 1,2,3. However  the 
ranks of E, F, G are not always equal  to 2. The  following 
theorem enumerates all the possible cases. 

Theorem 1: Assume T #  0  and  U #  0. Then,  there exist 
unit vectors VI, Vz, and  Vs such that 

ETVl = 0 (2.14) 
FTV2 = 0 (2.15) 
GTV3 = 0 (2.16) 

and  the ranks of E, F, and  G  fall into three cases. 
Case 1: All of E, F, G have rank two. V; is then 

essentially determined. Let 

A = [VI V2 V,] (2.17) 

Then,  rank(A) = 2, and  T is essentially determined by  
ATT = 0. 

Case 2: Two of E, F, G have rank two, and  the third has  
rank one.  W ithout loss of generality, let rank(E) = 1. Let 
A = [V, V,]. If rank(A) = 2, T is still essentially deter- 
mined by  ATT = 0. Otherwise, T is essentially determined 
by T//P% x V2) x V 2, where Ei is any  nonzero column 
vector of E. (Ei x V2) x V2 #  0  is guaranteed.  

Case 3: Only one  of E, F, G  has rank two, and  the other 
two matrices have  rank one.  W ithout loss of generality, let 
rank(G) = 2. Then,  there are two orthogonal solutions in 
(2.14) and  (2.15), respectively: 

ET&, = 0, ETVlb = 0, 

FTV2, = 0, FTV2b = 0 

where VI, ’ Vrb = 0, and  Va, . V2b = 0. One  and  only one  
of the two equat ions 

v3 ’ (v,, x vlb) =  0  (2.18) 

and  

v3 ’ (v2a x v26) = 0 (2.19) 

holds. T//VI, x Vlb if (2.18) is true, and  T//Vza x V2b if 
(2.19) is true. 

Proof: See Appendix A. 
From Theorem 1, we know that T can be  essentially deter- 

mined. Similarly, if we  apply ET, FT, GT  to Theorem 1, we 
know that U can also be  essentially determined. In a  word, we 
can determine unit vectors ?s  and  & such that $  x T = 0, and  
6, x u  =  0  y” at the top of a  letter denotes a  unit vector.) 

The  following theorem states the un iqueness of the solution 
for motion parameters from the intermediate parameters. The  
condit ion T #  0, U #  0, and  RTT # STU used in the 
theorem is called distinct locations condition. In Section V, 
we will see  that this condit ion turns out to be  a  necessary 
condit ion for essentially determining intermediate parameters 
by  (2.13). It is a  sufficient condit ion in the following theorem. 

Theorem 2: Given (E, F. G), the solution for R, T, S, U 
is unique, provided T #  0, U #  0, and  RTT # STU. 

Proof: From Theorem 1, we can determine ?s  and  OS 
such that T = .s1IITll$~, and  U = .52llU(l&, where ~1.~2 E 
{ -1,l). For four combinat ions of the values of sr and  ~2, we 
have  four sets of equations: 

E = SIJIUJIRI~ - s211T11’2’ $- 

(a, s2) : F = s1 IIUI(R2@ - .32llTll~~; (2.20) 
G  = sl I lUll&@ - s2117’ll~‘ss~ 

Premultiplying both sides of the first equat ion in (2.20) yields 

[R] / = slllu l~ [e] xR1e. 
Postmultiplying both sides by  8, gives 

[fs] /6s = slllUll[%] /I. (2.21) 

Applying the same operat ions to the second and  the third 
equat ions in (2.20) gives the other two equat ions similar to 
(2.21). Combining these three equat ions yields 

[c] x p” F& G8,] =  slllull [‘ph] /. (2.22) 

Since R is a  rotation matrix, J(ti(l =  ((z\(. W e  get llUjl from 
(2.22): 

Ilu ll = /I [$] x I~-lj~ [%] x [E& F& GB,] (1. (2.23) 
Considering the t ransposed version of E, F, G, similarly, we 
have  

[8,] x  [ETr: FT?s CT%] = -s2llTII [&I xS. (2.24) 

I\T(I is determined by  an  equat ion similar to (2.23). 
Equat ions (2.22) and  (2.24) both have  the form A = BR, 
rank(B) = 2 ([xl, h  as  a  rank 2  if z  #  0, which is shown 
in Appendix A). Therefore, rotation matrices R and  S are 
uniquely determined in (2.22) and  (2.24), respectively. In the 
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presence of noise, we solve for a rotation matrix R in the 
following 

rnp [IA - BRIJ. subject to : R is a rotation matrix. 

The solution of this problem is discussed in [2], [19], [8], [25] 
and is presented later with the algorithm. 

However, there exist four combinations for all the possible 
signs of (sr, ~2) in (2.20). The following lemma states that 
only one combination has a solution for rotation matrices R 
and S from (2.20). 

Fig. 4. Majority positive depths assumption. Majority of all the visible lines 
have their closest points in front of the camera. Only a minority of the visible 
lines have their closest points in back of the camera. 

Lemma 2: Assume T # 0, U # 0, and RTT # STU. Only 
one assignment for (sl,sz), ~1.~2 E (-1, l} has a solution 
for rotation matrices R and S from (2.20). 

Proof: See Appendix C. 
By substituting into (2.20) the four assignments for (~1, sz), 

we get a unique solution R and S and the assignment of 
(sr. sz), which is the one that satisfies (2.20). q 

On  the other hand, (E, F. G)  can only be essentially deter- 
mined, i.e., up to a scale factor. From (2.22)-(2.24) it is easy 
to see that the scale factor does not affect the solution of the 
rotation matrices R and S. However, the translation vector pair 
(T, U) is essentially determined, which implies that the ratio 
between lITI and l]Ull is e ermined. We can choose any sign d t 
for (E, F, G) and solve for the translation vector pair to get 
T, and U, such that (T.U) = a(T,,U,) with unknown N. 
The absolute value of a cannot be determined from monocular 
images. The sign of Q: will be determined next. 

Let v” be a unit vector that is parallel to xP and always 
points to the positive 2 direction, that is,;= i(lna x Z(l-ln~~ 
I, such that 2. v”> 0. Then, xP = f&g. 

To determine the sign for the translation vectors, first 
consider the motion equation (2.1). 

x1 = Rx0 + T. 

Multiplying both sides by -1, we get 

G. Structure and Sign of Translation Vectors 

From (2.4)-(2.6), we get 1 no = 0, 1 . R-‘nl = 0, and 
1. ,!T1n2 = 0. For each line, we solve for a unit vector fsuch 
that l//f in the following: 

-x1 = R(-x0) + (-T). (2.28) 

Equation (2.28) implies that when a point x0 is rotated by 
R and translated by T to a point xl, its minor image (with 
respect to the origin) -20 is rotated by R and translated by 
-T. The original line and the mirror image line produce the 
same images through the projection plane. Therefore, if T 
and U are the true translation vectors, -T and -U are the 
translation vectors of the mirror image. Obviously, if a point 
is located in front of the camera, its mirror image is at the 
back of the camera. Therefore, if we assume that all of the 
visible scene is in front of the camera, then the translation that 
corresponds to the structure located at back of the camera is 
not the correct one. As to the lines, what is the criterion for 
a line to be in front of the camera? We can assume that most 
lines in front of the camera have xp, which is the closest to 
the origin on the line, with a positive (depth) z  component. 
This assumption is called majority positive depths assumption 
(see Fig. 4). It is usually satisfied because most lines whose 
closest point xP has a negative depth are not visible through 
the camera lens. A few exceptional visible lines may have 
negative depth at xP. For example, when we look horizontally 
in a car that is running downhill, the two curb lines are visible, 
but xP of each of these two lines has negative z components 
since xP is at the back of the eyes. However, those lines with 
negative z components usually constitute a minority among 
all visible lines. 

subject to : P = 1. 
II II 

(2.25) 

If the rank of [no R-%1 S -‘nz] is no more than one, the 
line position cannot be recovered. 

For each line, let xP be a point on the line that is the closest 
to the origin. da ?? IIxP(l is the positive distance of the line to 
the origin. Since xP . I = 0, from (2.4) we have 

II~OII = II% x  Ill = ll”PlI Ml. (2.26) 

Although we use (2.4)-(2.6) to define the projection normals, 
the scale factor of those normals is immaterial since it will be 
canceled out later in (2.27). Using (2.10) and (2.26) yields 

IT. nil = l(Z(l-l ljno x R-h )I 

= bpll ll~oll-l(~~o x R-lnl(J 
Dividing both sides by IlnlJJ g ives the distance of the line to 
the origin 

do = JIxplJ = lb x  R-%,li-lIT .iil (2.27) 

Notice that du is proportional to JITJJ. When T, replaces for 
T in (2.W ll~pll is essentially determined. 

Let T,T = sT, where s E { 1, -1) is unknown. Assume a 
line at time to with xP, which is the point closest to the origin. 
At time tr, its new position vector should be orthogonal to the 
new projection normal 

n~+k,+T)=nl+?z,+sT,)=O. (2.29) 

Assume that xP has a positive z component at time to, 
xp = Ilxpll~ From (2.29), we have 

nl ((lx,l(RI; + ST,) = 0. (2.30) 
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Note that (2.30) cannot  hold for both s =  1  and  s =  -1 
unless nr . T, = 0, which is rare. In a  word, if zP has  a  
positive z component ,  the correct sign for s satisfies (2.30) 
and  the incorrect one  general ly does  not. If xp  has  a  negat ive 
z component ,  we have  xP = -]]x,]$, which yields 

(2.31) 

In other words, a  point with a  negat ive z component  satisfies 
(2.30) if the sign for s is reversed. 

W e  determine the sign s in the following way. For each  line, 
ifs =  1  satisfies (2.30) a  vote is added  to the set POS, and  if 
s  =  -1 satisfies (2.30), a  vote is added  to the set NEG. After 
voting by  all lines, if POS has more votes than NEG, s = 1  
supports the majority positive depths assumption. Therefore, 
we let s =  1  and  T = +T,. All the lines that voted for POS 
should have  xP = +]]xp]$since they are majority, and  the 
results are consistent with (2.30). For all the lines that voted 
for NEG should have  xP = -]]x,]]gsince they are minority, 
and  the results are consistent with (2.31). 

Otherwise, POS has less votes. This means  that s =  -1 
supports the majority positive depths assumption. Therefore 
s =  -1, and  T = -T,. All the lines that voted for POS 
should have  xP = -]]x,]]g since they are minority, and  the 
results are consistent with (2.31). All the lines that voted for 
NEG should have  xP = ]]xr,]]Gsince they are majority, and  
again, the results are consistent with (2.30). Thus, the sign of 
T and  the locations of the lines can be  determined based  on  
the majority positive depths assumption. 

The  motion from te to t2 can be  analyzed in a  similar way. 

H. In the Presence of Noise 

Since short lines in the images are general ly not as  reliably 
determined as  long lines, less weight should be  assigned to the 
short lines in (2.13) when  solving for E. F. G. Let the length 
of the lines in the images at time ti be  li, %  = 0.1.2. A simple 
weight for the line can be  

(1,l + 111 + 1,l) -l. (2.32) 

Since only two of the three scalar equat ions in (2.13) are 
independent,  any  row of [nalX could be  zero vector, which 
results in a  trivial 0  =  0  equations. To  ensure that none  of 
the two independent  equat ions is missed, we can use all three 
equat ions of (2.13). (This is useful in the presence of noise.) 
These three equat ions are scaled by  the weight in (2.32) in 
the system of linear equat ions formed by combining (2.13) for 
all the lines. 

Since a  noise-corrupted matrix almost has  a  full rank, the 
condit ions on  the rank of the matrices should then be  modif ied 
accordingly. A discussion of the sensitivity of the eigenvectors 
to the perturbation of the matrix can  be  found in [25]. A rough 
measurement  for the error of the eigenvector associated with 
the smallest e igenvalue Xr is (Xl - X2)-‘, where X2 is the 
second smallest eigenvalue. The  solution of V, i = 1: 2.3 in 
(2.14)-(2.16) is the eigenvector of EET, FFT, GGT, respec- 
tively, associated with the smallest eigenvalue. The  reliability 
of those solutions is roughly proport ional to the difference 
between the smallest and  the second smallest eigenvalues. 

Case 1  and  Case 2  in Theorem 1  can be  combined by  using 
a  weighted A in (2.17). Let the three column vectors of A be  
weighted by  the difference of the two smallest e igenvalues of 
EET, FFT, and  GGT, respectively. For example, if rank(E) 
is close to one,  the corresponding weight in A is close to zero, 
which is Case 2. 

In determining the distance rta, the motion from to to tl and  
that from to to t2 can both be  used to enhance  the robustness. 

Obviously, the simple weighting schemes discussed in this 
subsect ion are ad  hoc. More complete weighting methods 
will be  discussed in Section V. The  objective here is to use  
simple weighting while still keeping the algorithm linear. In 
our  simulation, we observed considerable improvements by  
using the simple weighting schemes discussed above.  

I. Algorithm 

Now, we are ready to present the algorithm. In the algo- 
rithm, E denotes a  small positive threshold to accommodate 
noise. W ithout noise, E should be  zero. W ith noise, E can be  
estimated by  the error estimation approach in [25] or deter- 
mined empirically. Though  E should be  different in different 
parts of the algorithm, a  single E will be  used  for the simplicity 
of notation. 

1) Solving for (E. F, G) Up to a Scale Factor: Given n  line 
cor respondences through three views. Let the unit projection 
normal at time t; be  n,, i =  0.1.2. Solve for (E. F. G) in 
the following 

min c weight i![na] x [ $i:] I[ 
(E.FG lines 

(2.33) 

subject to lIElIz + llF/12 + /]G]]’ = 1, where the weight for 
each  line is given in (2.32). (2.33) can be  written in the form 

II-$, IIW  subject to : l/y]] =  1  (2.34) 

where D is a  371  by  27  matrix determined from projection 
normals, and  y is a  27-dimensional unit vector. The  solution 
for unit vector y is the unit eigenvector of DTD associated 
with the smallest eigenvalue. 

2) Determining unit vectors e. and 0, such that T//f7 
and U/l&: Let H, 4 [h,l he2 he3], Ff ~5  [hfl hf2 hf3], 
and  Hg g [hgl hg2 hya] be  orthogonal matrices such that 

H,?EETH, = diag(X,i, Xe2. X,3). x,1 I &2 L Xe3 

HfrFFTHf = diag(/\fi. Xf2. X,3), Xfl L Xf2 I Xf3 

HTGGTHg = diag(X,r, Xg2, Xgs). x,1 I kg2 L kJ3. 

Case 1: The  median of the set C = {X,X. Xf2. Xg2} is 
larger than e. 

Let A = [(X,2 - X,l)h,l (X f2 - Xfl)hfl (&Jz - ~,l)~,ll. 
a) If the second smallest e igenvalue of ATA is larger 

than ~(mak(A) > 2), ?’ is determined up  to a  scale factor by  

subject to : f< =  1. 
!I /I 

(2.35) 

b) Otherwise (ran&(A) = l), determine the smallest 
number  in set C. If Xe2 is the smallest in set C, then 



WENG rr al.: MOTION AND STRUCTURE FROM LINE CORRESPONDENCES 325 

% /I(& x hfl) x  hfl> where E, is a  nonzero column vec- 
tor of E. If Xf2 or A,:, is the smallest in C,?s is determined 
by  a  similar equat ion (circularly rotating c, S, ,9 and  E, F, G). 

Case 2: The  median of the set C = {Xe2. XQ. Xg2} is not 
larger than E. Determine the maximum of the set C. W ithout 
loss of generality, assume X92 is the maximum: 

1  

he1  x he2  
f3 =  if Ih,l (h,l x  hc2)l <  Ih,l (hfl x  hp)l 

hfl x  h.o otherwise 

Replacing E, F, G by ET, FT, GT, similarly determine 
6. 

3) Determining R and S: Let 

GR = [R] x  [E& F& G&] 

Gs = [&lx [ET” FTTs  G’?,] 

and  IlUll =  I\GRII/& (ITI( = llGsll/d. Then, let GR + 

((UII-lG~, and  Gs c //TII-‘Gs. Solve for R,, R,,, S,, and  
S, in the following: 

m~~lG~-- [~]x~p~~ 1ni~Ii-G~ - [RIx~nI) 

(2.36) 

Then 

Substituting four assignments 

(1.1, Rp. S,), (-1.1, R,, S,) 
(1.1. Rp. S,), (-1. -1. R,, S,) 

for (st. sUr R, S) in 

the assignment best satisfying (2.39), in the Eucl idean norm 
sense,  gives the correct assignment for (st. 5,. R, S). Then  

T = st\lTll$. u = %llUll8s 

4) Determining Structure fand xP: For each  line, solve for 
the direction of the line represented by  a  vector Pin the 
following: 

R-h1 S-‘n2]f 
I! 

subject to : f =  1. 
II /I 

I I T. ii1 i I 
u 7g do = 

x R-%,/l + 2j/& x S-422)1 

m$llc, - [tt~],Sp~~ ":"'~~-Gs - [t?s]xS,ti'I and  &XP 
v”=i- 

&Xf 
(2.37) II II 

subject to that R,, R,, S,, and  S, are rotation matrices. where the sign is such that the third component  of v” is 

Both (2.36) and  (2.37) have  the form (noticing (ID - CR(I = nonnegative. 
(/RTCT - DTj(): 

Let POS and  NEG be  empty sets. For each  line i, do  the 
following: If 

mjn J(RC - DJ(. subject to : R is a  rotation matrix 

(2.38) 
/nl . (doRu”+ T) 1 + In2 . (doSv”+ U) / 

where C = [C1 Cx Cs], D = [Ol D2 031. The solution of 
< In1 . (doRuO- T) 1 + /TQ (doSu”- U) / 

(2.38) is as  follows: i is added  into the set POS. Otherwise, i is added  to the set 
Define a  424  matrix B by  NEG. 

B=-&?~& 
Finally, if JIPOSJI > )INEGI/, for each  line i 

d$  if %  E POS 
2=1 xp = 

{ -dog otherwise. 
where 

(C; - D;)T 1 
Otherwise, if IIPOSJ) < lINEGIl 

[Di+C;], T+--T. UC-U. 

Let q  =  (40. (11. Q. Q)~ be  the unit eigenvector of B asso- For each  line ,i 

ciated with the smallest eigenvalue. The  solution of rotation 
matrix R in (2.38) is found at the bottom of this page.  

902 + 9: - 9; - 932 q9192 - 9093) 2((11(13 + 9092) 
R= qmq1 + rloQ3) 9; - 9: + 9; - 9; qq243 - 9091) 

2(93(11 - 40921 2(9392 + 9091) 4; - 4: - 9; + 9: 

1 
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III. DEGENERACY 

In the last section, it is establ ished by  Theorem 2  that as  
long as  T #  0, U #  0  and  TTR #  UTS, the solution of 
motion parameters from the intermediate parameters (E: F. G) 
is unique. The  fact that (E, F, G) can only be  determined up  
to a  scale factor does  not affect the solution of the rotation 
matrices R and  S. The  direction of the translation and  the 
structure of the lines can be  determined based  on  the majority 
positive depths assumption. Therefore, the translation and  the 
closest points on  the lines are determined up  to a  positive 
scale factor. 

First, let us  see what the condit ion 

T#O. u # 0. TTR # UTS (3.1) 

means.  For a  more intuitive interpretation, we consider the 
case where the scene is stationary and  the camera is moving. 
z1  in (2.1) is the position of the point at time tr in a  coordinate 
system fixed on  the camera. If the scene is stationary, the point 
x0  is fixed, and  the transformation that transforms 51  to 20  
corresponds to the motion of the camera. From (2.1) we have  

x0 = R-‘q - RTT. (3.2) 

Therefore, the motion of the camera is a  rotation R-l fol lowed 
by a  translation -R-lT. Since the projection center of the 
camera at time to is at the origin and  the rotation is about  the 
origin, the position of the projection center at time tl is at 
Or =  -RTT. Similarly the position of the projection center 
at time tz is at 02  = -STU. Thus, the condit ion in (3.1) is 
equivalent to the condit ion 

01  #  0. 02 # 0. 01 # 02. (3.3) 

That is to say that any  two posit ions of the projection center 
of the camera do  not coincide, or in other words, the transla- 
tion between any  two views does  not vanish. Therefore, the 
condit ion in (3.1) or (3.3) is called distinct locations condition. 

The intermediate parameters (E. F7 G) are essentially de-  
termined by  (2.34) or equivalently by  (2.13) if and  only if the 
rank of D is not under  26. If (E, F, G) are not essentially 
determined by  (2.13) we say that degeneracy  occurs. The  
degenerarcy condit ion can be  tested by  calculating the rank of 
D. However,  in the presence of noise, the rank of D is mostly 
full. The  method of error estimation in [25] can  be  used to 
access the accuracy of the intermediate parameters and  the 
final motion parameters. If the estimated error in the solution 
is large, we say that degeneracy  or near  degeneracy  occurs. 

The  following theorem gives the necessary and  sufficient 
condit ions for degeneracy  in terms of 3-D line configurations 
at time to and  the motion parameters. 

Theorem 3: (E; F: G) is not essentially determined by  
(2.13) or equivalently, rawk(D) < 26  in (2.34) if and  only if 
there exist no  trivial parameters (Z?, F7  G) such that 

((xp - 01) x qTJ%, - 02) x 1) 

((2, - 01)  x qTF((xp - 02)  x I) =  0  (3.4) 
((xp - 01)  x qTG((x, - 6,) x 1) 1 

is satisfied for all l ines z =  xP + ICI at time to. (J!?, F, G) is 
trivial if and  only if 

(E?, p;, 6) = cx(Pl - Q:, P2 - Q;. Ps - Q;) (3.5) 

for some real number  (Y, where Pi and  Qz are matrices with 
the ith column being Or and  02, respectively, and  the other 
columns are zero vectors. 

Proof: See Appendix E. 
It can  be  seen that the degeneracy  depends  on  two factors: 

one  is the motion parameters, and  the other is the configuration 
of 3-D lines. W e  have  the following corollary: 

Corollary 1: If the distinct locations condit ion is not satis- 
fied, the intermediate parameters are not essentially determined 
by  (2.13). 

Proof: See Appendix F. 
Therefore, if the distinct locations condit ion is not satisfied 

(E. F, G) cannot  be  essentially determined by  (2.13) regard- 
less of the structure of the lines. If the distinct locations 
condit ion is satisfied and  (2.13) is still degenerate,  we say 
the line configuration is degenerate.  The  following corollary 
gives an  example of degenerate line configurations. 

Corollary 2: If the directions of lines are coplanar, the line 
configuration is degenerate.  

Proof: Let all the lines be  orthogonal to a  vector w. First, 
we want to prove [I] x  [v] x [Z] x =  0. In fact, it is easy to verify 
the identity 

Then,  it follows that 

[I] x  [w] x [I] x  =  01  - wZT[Z] x =  -wOT = 0. 

Then,  letting fi =  F  = G  = [v] x, the second column vector 
on  the left-hand side of (3.4) vanishes. In fact 

((XP - 01) x z)Tbl, ((XP - 02) x I) 

In other words, (3.4) is satisfied for nontrivial (8: F, G). 
Therefore, the configuration is degenerate.  0  

If all the lines lie in a  plane, the direction of liens must 
be  coplanar (they are orthogonal to the normal of the plane). 
Therefore, a  planar scene is a  degenerate case. Obviously, the 
case of coplanar directions is more general  since lines do  not 
have  to be  in a  plane. 

For lines whose matrix [no R-‘nl S-1n2] in (2.25) has  
rank no  more than one,  the line position cannot  be  recovered. 
W e  neglect this line. This happens  if and  only if the line lies 
in the plane determined by  the origin and  Or and  Oz. 

From Theorems 2  and  3  and  the majority positive depths 
assumption, we come to the conclusion that if the distinct 
locations condit ion is satisfied and  the line structure is not 
degenerate,  the motion parameters and  the structure of the line 
can be  uniquely determined (up to a  scale factor for translation 
and  line distances). 

Another form of necessary and  sufficient condit ion is pre- 
sented in the following theorem. 
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Theorem 4: Assume 13  line cor respondences at time to, 
with the ith line being represented by  5  = xPz + 1, (xPl is the 
point closest to the origin) and  the normal to the projection 
plane that passes through the line and  the projection center 
01, being ski, Ic =  1.2, i =  1,2 . 13. Then,  (E, F. G) is not 
essentially determined in (2.13) or equivalently, rndc(D) < 
26  in (2.34) if and  only if there exist no  ni, b;, i =  
1.2.3,. ,13, not all of which are zeroes, such that 

13 

c (%xpz + bzk)s2zfi3~ = 0 (3.6) 
i=l 

where the concatenat ion of two vectors, like pq, denotes 
a  tensor out product. For m-dimensional vector p and  R- 
dimensional vector q, pq  has  ‘rnn components,  which are 
products of all the possible combinat ions between one  element 
in p and  one  in q. 

Proof: See Appendix G. 
Before we end  this section, two points should be  emphasized 

here: 1) The  fact that the linear algorithm cannot  give a  
unique solution under  degenerate line configurations dose  
not mean  that no  algorithms can solve the problem under  
these configurations. Other algorithms, e.g., some nonl inear 
algorithms, might still be  able to reach a  correct solution 
under  these configurations. However,  as  we mentioned, the 
un iqueness of solution by  a  nonl inear algorithm is unknown,  
and  the correct convergence of a  nonl inear algorithm is not 
guaranteed;  2) we do  not assume any  a priori knowledge of 
the scene other than rigidity. However,  if we  know some 
additional information, some of the degenerate configurations 
can be  solved. For example, if we  know that the scene is 
planar, the intersection of those coplanar lines gives feature 
points (no matter whether the lines meet at those points or not), 
and  the planar point-based algorithm can be  used to solve the 
problem. 

IV. OPTIMIZATION 

The closed-form solution discussed above  makes use  of the 
least squares criterion in several steps. However,  the solution is 
not overall optimum. The  first reason is that in solving (2.33), 
we have  neglected the dependency  among  the components  of 
the intermediate parameters (E, F. G). As def ined in (2.12), 
(E, F, G) has only 12  degrees of f reedom (six for each  
motion), but a  free (E, F, G) has 27  degrees of f reedom. Some 
of the dependency  has  been  taken into account  in the later 
steps of the linear algorithm, as  in (2.35)-(2.37), but this later 
recovery is not as  effective as  imposing the dependency  in the 
first place. The  second reason is that for the linear algorithm, 
we do  not consider noise distributions or different amounts  
of noise in different components  of the data. This results in 
a  suboptimal solution in the presence of noise, a l though the 
solution is analytical. Our  objective in this section is to obtain 
“the best possible” estimates from the noise corrupted data. 

This agrees with common methods to determine a  line: An 
edge  point on  a  line is indexed along a  pixel row or column 
(see Fig. 5). If a  least squares fitting is employed to edge  
points, for (4.3) we have  

Aa=V+6 (4.5) 

where 
T 

A4 = “1’ “12 .” 
. . 

“; 1 . (4.6) 

v = (u1.212:” , II,), and  6  is the corresponding noise vector. 
Similar results can  be  obtained for (4.4). 

To  give an  optimal solution we use Gauss-Markov theorem: 
Suppose 

y= Am+6 Y (4.7) 

where S, is a  random vector with zero mean,  ES, =  0  and  
covar iance matrix 

ry =  lE6&. (4.8) 
A. Lines from Pixels 

An image line consists of edge  points. The  image position 
of the line is typically determined from those edge  points by  
a  line fitting algorithm. Since lines are used  as  primitives, it is 

natural and  efficient to consider the parameters of lines as  the 
variables of observations. The  representat ion of lines should 
be  such that the error arising from the line finding process 
can be  naturally modeled. In most line finding processes, the 
sequence of edge  points is indexed along one  of the two pixel 
coordinate directions. Which direction is used  for indexing 
depends  on  which dimension has  a  longer projection from the 
line segment.  Mathematically, such a  line in the (u,u) image 
plane is commonly represented by  

PI =  uu  + b  (4.1) 

or 

u=nw+tl (4.2) 

where a  and  b are parameters of the line. For each  line, the 
selection of (4.1) or (4.2) is such that InI 5  1  (a l-b flag for 
each  line indicates which is used).  The  variable ‘u. in (4.1) and  
w in (4.2) can  be  considered as  the image coordinates of edge  
pixels (see Fig. 5). While the variable on  the r ight-hand side 
runs from the first pixel location to the last, all the line pixels 
are enumerated.  In any  case, using least squares fitting to these 
edge  pixels, a  line parameter vector a  5  (a, b)T is “observed.” 
Certainly, it is not appropriate to assume that the parameters 
here are equally reliable. W e  need  to evaluate the covar iance 
matrix of the error in the line parameter vector. Suppose that 
the edge  pixel (u;. 71;) in a  line is corrupted by  noise in u  
direction in the case of (4.1): 

vi = uu, + b + 6,, 

or in u  direction in the case of (4.2): 

u;=uu;+b+Su,. 

(4.3) 

(4.4) 

The  unbiased, linear minimum variance estimator of m that 
minimizes IEllti - m112  is 

ti =  (ATrT;lA)-lATr;l~ (4.9) 
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with error covar iance matrix 

rTiZ k qti - m)(h - m)T = (AT;Q-‘. (4.10) 

If, in addition, 15, is normally distributed, the linear unbiased 
minimum variance estimator of m is the minimum variance 
estimator among  all the unbiased estimators (absolute best and  
not limited in a  class of l inear estimators). For proofs, see, 
e.g., [ill, PO], [lo]. 

To estimate our  line parameter vector a  using this result, 
we need  to know the covar iance matrix of 6  in (4.5). The  
component  of S is the error of the detected edge  pixel location 
in the direction orthogonal to that of the index variable. As an  
approximation, we assume that this type of error is unbiased 
and  uncorrelated. Although this assumption is not exactly true 
even  in the case of digitization error, we expect  the correlation 
is not so  significant that the accuracy of estimates der ived from 
this assumption is not considerably degraded.  W e  will return 
to this point in the discussion of our  simulation, in which we 
will see  that the accuracy of the estimates does  not change  
much if the actual (correlated) digitization noise is replaced 
by  uncorrelated noise. Using the condit ion rY = a21  and  the 
Gauss-Markov theorem, the minimum variance estimator of 
a  is 

a* =  (A~A)-~A’v (4.11) 

where the covar iance matrix of the error of a* is given by  

ra* =  a2(ATA)-’ = a2  (4.12) 

B. Optimal Solution 
Now, we discuss how to determine the unknown motion 

parameter vector m from the lines that are determined by  the 
least squares fitting. Let $j be  the observed line parameter 
vector of the ith line in jth Image frame and  ai3 (m) be  the cor- 
responding computed line parameter vector from the motion 
parameter m (the structure 2  can be  optimally determined from 
m and  be  suppressed from aFj (m? z)). A nonl inear extension 

of the Gauss-Markov theorem leads to minimizing 

(4.13) 
i=l j=l 

In other words, we want to minimize the discrepancies between 
the measured observables and  the inferred observables. Such 
an  objective function can be  directly extend to the use  of other 
types of features. According to the Gauss-Markov theorem, 
the discrepancies to be  minimized should be  weighted by  the 
inverse of the covar iance matrix of the expected errors in the 
corresponding measurements.  For example, if l ines and  points 
are used  as  matching features, the objective function to be  
minimized is the sum of the weighted line discrepancies shown 
in (4.13) and  the weighted point discrepancies discussed in 
Pd. 

The minimization of nonl inear function (4.13) can be  solved 
iteratively from a  good  initial guess.  The  closed-form solution 
of the linear algorithm discussed above  can be  used as  an  
initial guess  solution for the nonl inear optimization here. 

C. How Accurate It Can  Possibly Be 
W ith a  solution based  on  noise-corrupted data, an  important 

quest ion to ask is how close the error is from the minimum 
error al lowed by the information in the data. Since the noise 
in the data is random, this quest ion should be  investigated 
in terms of statistics. There exist theoretical bounds  for the 
covar iance matrix of any  estimator. The  CramCr-Rao bound  
is one  of them. 

1) Cram&-Rao Bound [5], [18]: Suppose m is a  parameter 
of probability density p(y,m). ti is an  estimator of m based  
on  measurement  y with E& = b(m). Let z?  = w. 
Define 

F = EzzT. (4.14) 

The  matrix F  is called the Fisher information matrix. Let 

B = ah(m) 
dm’ 

(4.15) 

Then  

E(rb - b(m))(Gz - l~(rn))~ 2  BF+BT (4.16) 

where inequality means  that the difference of two sides is 
nonnegat ive definite. F+ is the pseudo- inverse of F. 

Letting B = I, the Cram&-Rao bound  provides a  lower 
bound  for the expected errors of any  unbiased estimator. 
Therefore, we can compare the expected errors with that of 
a  “best possible” unbiased estimator using the Cram&-Rao 
bound.  The  evaluation of the Cram&-Rao bound  requires noise 
distribution. W ith Gaussian noise, the Cram&-Rao bound  takes 
a  simpler form. 

For the problem investigated here, m consists of the in- 
dependent  motion parameters (three in R, three in S, five in 
the normalized (unit) version of (T, U). The  structure z can be  
estimated from the motion parameter vector m by the methods 
in step 4) of the algorithm presented in the previous section. 
The  observat ion vector y is a  vector that consists a  vectors 
a’s in (4.5) for every line in every image. Therefore, y is a  
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6n-dimensional vector for n  line cor respondences (n lines in 
each  image). Given any  motion parameter vector m, we can 
compute its corresponding structure z and  the vector ye(m). 
Suppose the observat ion vector is given by  additive Gaussian 
noise: y =  y”(m) + 6, where S is a  Gaussian noise vector 
with a  zero mean  and  a  block diagonal covar iance matrix C 
with each  2  by  2  block given by  (4.12). Then,  p(y.m) is a  
6n-dimensional distribution with mean  yu(m) and  the same 
block diagonal covar iance matrix C. The  Cramer-Rao bound  
for any  unbiased estimator gives 

E(ti - m)(h - m)T 2  ((?9)c(~)T)-1. 

(4.17) 

For further discussion, see, e.g., [3), [27]. 

V. SIMULATIONS 

Simulations have  been  performed to demonstrate correct- 
ness of the algorithm as well as  sensitivity of the solution to 
noise. 

A. Setup 

The focal length of the camera is one  unit, and  the image 
is an  s x s square.  Lines are generated randomly for time 
to. The  centers of the lines are uniformly distributed between 
depths 5  and  15. The  orientation of the lines are uniformly 
distributed over all directions. The  length of the lines is 
uniformly distributed in [4s, 8~1, and  only the visible part of 
the lines are used  for line fitting. (Usually, a  line following 
procedure will detect connected edge  points a long the line. 
However,  a  small port ion of missing edge  points does  not 
significantly degrade the accuracy of the measured line.) The  
lines are moved to another position at time ti by  a  rotation 
represented by  matrix R and  then a  translation represented by  
translation vector T. Similarly, at time ta, the lines are moved 
from to by  a  rotation and  then a  translation represented by  S 
and  U, respectively. 

The  lines at each  time are projected onto the image plane, 
and  the edge  points are corrupted by  digitization noise: For a  
256  x 256  image, there are 256  x 256  pixels, and  the image 
coordinates of edge  points have  256  evenly spaced levels for 
u  and  ‘u  coordinates, respectively. The  real image coordinates 
of edge  points are rounded off to the closest levels. Different 
resolution may be  used to simulate a  different amount  of noise. 
To  take into account  common line finding processes, the line 
position is determined by  a  least squares fitting to the visible 
edge  points (pixel centers) of the line. As we discussed, the 
relatively higher accuracy of the line position obtained by  such 
a  line fitting is one  of the main advantages for using lines as  
matching primitives. 

As we know, the error of a  detected line may arise from 
many  different sources, and  the statistical nature of the error 
depends  very much on  the line detector that is actually used.  
The  simulated noise here is not meant  to indicate what will 
actually happen  in practice since the wide variety of line 
detectors makes such an  attempt impossible and  unnecessary.  

An exhaust ive or complex noise model  may contain many  
noise parameters (e.g., bias and  correlation), whose values 
are difficult to select and  evaluate in terms of their practical 
applicability. The  noise model  here is meant  to be  simple 
enough  so that the performance of the algorithms can be  
examined and  evaluated in a  clear way. 

The  errors shown in the following are all relative errors. 
The  relative error of a  matrix (vector is a  column matrix) is 
def ined by  the Eucl idean norm (square root of the sum of 
squared elements) of the error matrix (difference between the 
estimated one  and  the true one)  divided by  the Eucl idean norm 
of the true matrix. 

B. Linear Algorithm 

In noise-free cases, the errors in the solution given by  the 
algorithm are mainly caused by  computer  round-off errors. 
Sun workstations with double precision were used  for the 
simulations. The  relative errors in the solution were of the 
order of 10-i’ if edge  points were not rounded off to pixel 
centers. 

In the presence of noise, the errors in the solutions depend  
on  the configuration of the lines. To  show the general  sensitiv- 
ity to the noise, the errors are averaged through 100  random 
trials, where each  trial has  the same motion but a  different 
set of randomly generated lines. The  noise is simulated by  
the pixel round-off error with different image resolutions. 
Simulations of our  l ine-based algorithm and  the results of error 
estimation discussed in [25] and  [28] showed that the errors in 
the solutions are roughly proport ional to the amount  of noise 
in the image plane. For example, if the noise in image plane is 
doubled, the errors in solutions are also doubled. For the data 
shown here, the image resolution used  is 256  x 256. 

Since the errors in the solutions are very sensitive to the field 
of view, we show the results using two image sizes s =  1  
and  s =  0.7 (note: focal length is 1). The  results of s =  1  
are shown in Fig. 6. The  motion parameters are as  follows: 
R corresponds to a  rotation about  axis (1, 1, 1) by  an  angle 
of 6”) and  S corresponds to a  rotation about  axis (0, 1, -1) 
by  an  angle of 5’. T = (2. -2,2), and  U = (-1.2 - 2). 
Fig. 6(a) shows the average relative errors of the intermediate 
parameters (E: F, G), R, and  T, versus the number  of line 
correspondences.  The  average relative errors of S, and  U are 
virtually the same as those of R and  T and  are omitted. W e  
can see that with a  minimal 13  lines, the errors are relatively 
large. W ith a  minimal number  of line correspondences,  no  
overdetermination is available in the set of equat ions of (2.13). 
Therefore, the intermediate parameters cannot  be  determined 
accurately. Furthermore, some short lines in the images may 
give very unreliable projection normals. After a  few lines 
are added  to the minimally required 13, the errors decrease 
significantly. (It seems that far more than 13  pairs of lines 
can be  matched from real world images [9], [16]. W e  may 
expect  that overdetermination over 13  line cor respondences is 
general ly available in practice.) The  location of a  line can be  
specif ied by  the direction of the line (f), the projection plane 
passing through the line and  the origin (seen by  the camera 
as  an  observable),  and  the distance from the line to the origin 
(I/40. Fig. 6(b) h  s ows the average errors of the recovered 
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Fig. 6. Average relative errors of for s = 1 (image size: ., x .s) through 100 
random trials: (a) Motion parameters of motion 1; (b) structure. 

direction of lines fand those of recovered relative errors of the 
distance from the line to the origin. 

Fig. 7 shows the relative errors for s  = 0.7. The rotation 
parameters are the same as those for s  = 1 in Fig. 6. The trans- 
lations are modified accordingly to account for the reduced 
field of view: T = (1.5,-1.5,2), and U = (-1,1.5,-2). 
(The errors in the estimates of motion 2 are very similar 
to the corresponding ones of motion 1, and therefore, the 
corresponding plots are omitted from Figs. 7 to 9.) As can 
be seen, the errors in this case are considerably larger than the 
corresponding errors with a larger field of view (Fig. 6). 

As indicated in our simulation, the error in the solution is 
roughly inversely proportional to the magnitude of the trans- 
lations. Therefore, as translation vanishes the error increases 
quickly. The shape of such an increase is very similar to that 
of the point-based algorithm (see, e.g., Fig. 10 in [28]). 

C. Algorithm with Optimization 
We next present the results with optimization. In actual im- 

plementation, to obtain a better initial solution for minimizing 
(4.13) we first minimize the equation error of (2.33) starting 

Relative Errors of Motion 1 (s=O.7) 
055 1. I 1 t 

\ 
0.50 \, 

2 035 
0 
z 030 
al 
3 025 

a" 020 

___ (E,F, G) 
T 
R 

‘... \ L -. 
-.-.__ _ L--- 

------_---._- ____ 
I ” I I I L I I 

12 14 16 18 20 22 24 26 26 30 

Number of line correspondences 

040 

e 
g 035 

go30 
.z 

$i 0.25 

020 

(4 

Relative Errors of Structure (s=O.7) 

12 14 16 18 20 22 24 26 26 30 

Number of line correspondences 

(b) 
Fig. 7. Average relative errors of for s = 0.i’ (image size: s x s) through 

100 random trials: (a) Motion parameters of motion 1; (b) structure. 

from the solution of the linear algorithm. Then, the resulting 
parameters are used as an initial guess solution to minimize 
(4.13). The errors of the final optimal solutions are shown 
in Fig. 8 together with those of the initial guesses shown in 
Fig. 6. Very significant improvements over those of the linear 
algorithm are achieved. The results of minimizing equation 
errors in (2.33) and those of minimizing (4.13) are shown in 
Fig. 9. As can be seen, although minimizing equation errors 
of (2.33) is not as good as minimizing (4.13) the difference 
is not very large. Therefore, when an exact optimal solution is 
not necessary, minimizing the simpler expression (2.33) may 
suffice. 

D. Compared with the Bound 

In Fig. 10, the Cramer-Rao lower bound is shown together 
with the actual errors. The setup and the motion parameters 
are the same as those in Fig. 6, and zero mean, uncorrelated 
Gaussian noise with a variance equal to that of digitization 
noise of 256 x 256 images is added to edge points. The error 
bounds are very close to the actual errors, except for the small 
number of line correspondences. With a small number of lines, 
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Fig. 8. Improvement of optimization over the linear algorithm versus num- 
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motion 1; (b) structure 

the errors in the initial guesses are relatively large (see Figs. 5  
and  6) and  therefore, the true optimal solutions cannot  always 
be  reliably obtained. However,  as  shown in Fig. 10, with a  few 
extra lines in addit ion to a  minimal 13, the linear algorithm 
followed by optimization essentially reached the Cramer-Rao 
lower bound,  which is the lower error bound  of a  best possible 
unbiased estimator. 

A point is worth mentioning here. The  noise added  in 
Fig. 10  is uncorrelated Gaussian noise, whereas in Figs. 6  
to 9, the noise is actual spatial digitization noise, which is 
not exactly uncorrelated. In (4.11) we have  assumed that 
the digitization noise is uncorrelated, which will potentially 
degrade the performance. However,  a  compar ison between 
Figs. 8  and  10  for the improved results tells us  that the 
corresponding errors are very similar. This seems to indicate 
that the assumption that the digitization noise is uncorrelated 
does  not significantly affect the performance of the algorithm. 

VI. CONCLUSIONS AND DISCUSSIONS 

A new linear algorithm is presented for estimating motion 
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Fig. 9. Minimizing equat ion error (2.33) versus minimizing variance (4.13) 
versus number  of l ine correspondences. 100  random trials: (a) Motion param- 
eters of motion 1; (b) structure. 

and  structure parameters from line correspondences.  Relatively 
compact  computat ional schemes are der ived in order to avoid, 
as  much as possible, spur ious solutions and  degenerate cases 
and  to make use of the redundancy in the data. The  uniqueness 
of the solution has  been  established. As long as  the coefficient 
matrix of the linear equat ions (2.34) is not degenerate,  the 
algorithm gives a  unique solution to the motion parameters. 
Some necessary and  sufficient condit ions for the lines to result 
in a  degenerate coefficient matrix are presented. 

An approach to optimal estimation of motion and  structure 
from line cor respondences has  also been  introduced. The  
reliability of each  measured line is represented by  an  error 
covar iance matrix, which is utilized for an  optimal solution. 
In order to reliably reach the global minimal point of the 
nonl inear objective function, the closed-form solution is used  
as  an  initial guess  solution. 

From the results of our  simulations, it appears  that the 
accuracy of the solutions by  our  optimal l ine-based algorithm 
is close to that of the corresponding optimal point-based 
algorithm [26], with the same amount  of image plane noise, the 
same number  of line or point correspondences,  and  a  similar 
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Fig. 10. Actual errors, Cram&-Rao bound for Gaussian noise versus number  
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amount  of motion. A line-to-line cor respondence provides only 
one  component  of the image plane displacement (along the 
normal to the line), whereas a  point-to-point cor respondence 
provides both components.  Therefore, in some sense,  line-to- 
line cor respondences contain less information than point-to- 
point correspondences.  How can one  expect  the l ine-based 
algorithm to perform as well as  point-based algorithms? The  
key is that a  l ine-based algorithm can use the redundancy 
in the edge  points to obtain more accurate measurement  of 
line positions. In other words, a  line fitting step used in our  
algorithm is very important for l ine-based algorithms. 

Since the accuracy of the optimal solutions is close to the 
Cram&-Rao lower error bound  for any  unbiased estimator, 
the obtained performance appears  to leave little improvement 
beyond.  

APPENDIX A 
Proof of Theorem 1: If RI/T, Lemma 2  presented 

in Appendix B concludes that ra&(E) 5  1. Otherwise, 

ETVl = 0, where VI = RI x T #  0. Thus, runk(E) 5 2. 
Similarly rnnlc(F) <  2, and  ra7tlc(G) <  2. 

Case 1: Since the ranks of E, F, G  are all equal  to 
2, from Lemma 2, T is not parallel to any  column vectors of 
R, and  U is not parallel to any  column vectors of S. Thus, 
Vi//T x  R;, i = 1,2.3. nxn,k(A) = 2 if rank(M) = 2, 
where 

M  = [px RI ?‘x Rz rfx RJ] = [?] J? 64.1) 

and  ?= IITI(-lT. W e  prove that rr~&(M) = 2. In fact, let 
the unit vectors2 ?z, and  ?a  be  such that Q  = [9&p $a] is 
an  orthonormal 3  x 3  matrix. G  = RTQ is also orthonormal. 
Post-multiplying the two sides of (A.l) by  G, we get 

MC:= [P]*RG= [?],Q= [o ++px$, IPI~&]. 

W e  see that the second and  the third columns of M G  are 
orthonormal from the definition of Q. Therefore, rank(M) = 
runk(MG) = 2. 

Case 2: W e  need  to prove that if rank(A) < 1, T 
is essentially determined by  T//(E; x Vp) x Vz, and  it is 
true that (Ei x  V2) x  V2 #  0. Since Vi//T x  Ri, i = 2.3, 
ran&(A) 5  1  implies 

0  =  (T x R2) x (T x  R3) = ((T x  R2). R3)T - OR3 

where the last equat ion follows by using the identity a  x 
(b x c) =  (a. c)b - (a. b)c. Thus, (T x  Rz) . R3 = 0, i.e., 
T. R2, R3 are coplanar. Therefore 

T.Rl=O (A.4 

and  Vz//T x Rp//Rl. Thus, V2 = fR. Since rank(E) 5 1 
and  T. RI = 0, we get Sl//U from Lemma 1. Let U = kS1 
for some real number  Ic. W e  have  E = (kR1 - T)ST and  
E; = I(kR1 - T) for some real number  1  #  0  since S1 #  0. 
Therefore, using (A.2) yields 

(E, x  V,) x  Vz = l((kR1 -T) x  RI) x  RI 

= -l(T x  RI) x  RI = LT. 

T  #  0  and  1  #  0  give (E; x  V2) x  VZ # 0. 
Case 3: From Lemma 1, we have  

TIIK or T/l& 
and  

(A.3) 

u//s1 or U/l&. (A4 

Since RI and  Rz are orthogonal vectors, as  are S1 and  
Sz, (A.3) and  (A.4) give only two possible combinations: 
1) T//RI and  U//Sz; 2) T//R2 and  U//S2. 

For 1); letting T = kRl, (k #  0), and  U = lS2, (1 # 0) 
yields 

E = R1(U - ICS# 

and  

F = (lRz - T)S; = (lRz - kRl)S; 
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which gives 

and 

V2a x Va//(l& - k&l. 

On the other hand, Vs//T x  R3 = kR1 x R3 
Therefore 

v3 ’ (via x Vlb) = 0 

v3 (VZu x V2b) # 0. 

Equation (AS) gives 

TIlR1llV1a x Vlb. 

For 2) similarly, we have 

V3’(Vla x Vlb) #o 
v3. (v,, x v2b) = 0 

and 

TllRzllV2a X v26. 

APPENDIX B 

APPENDIX C 

(A.3 
Proof of Lemma 2: Since there exists at least one 

set of solutions, i.e., the true one, we prove that solutions 
for two combinations of (sr, ~2) yield contradiction. Assume 
(Sl.. sz) = (.Gl, &) is the correct assignment, which gives the 
solutions 

kR2 
(R. S) = (Rp. S,) (A.71 

Lemma 1: Let RI, S1, T, and U be nonzero vectors, and 

E = RIUT - TSF. 

whcih correspond to 

T = SIIjT((?p u = i#Jl\&. Gw 

Reversing the sign for s1 yields R,, in (2.22) and reversing 
the sign for .sa yields S, in (2.24). From (2.22) we have 

[?s] R, = - [“I Rn. x  x  
From Lemma 3 presented in Appendix D, we have 

R, = R(T. 7r)Rp G4.9) 

where R(T. rr) is the rotation matrix representing the rotation 
about vector T by an angle X. Similarly, we have 

s,, = S(U.7r)Sr1. (A. 10) 

0 We first prove that it is impossible that for both (&I > Sz), 
there exist solutions. Otherwise, from the first equation in 
(2.20), we have 

Then 
1) If rank(E) = 0, then RI/IT and S1//U. 
2) If rank(E) = 1, then RI//T or Si J/U. 
3) If RI//T, or U//Sr, then rank(E) < 1. 

Proof: rank(E) = 0 implies RIUT = TST, the con- 
clusion of 1) immediately follows. 

2) rank(E) = 1 implies that there exist two nonzero 
vectors a and b such that 

E = RIUT -TST =abT. (A.6) 

Let b, bl, b2 be nonzero vectors, and they are mutually 
orthogonal. Post-multiplying both sides of (A.6) by bl and 
b2 yields 

R1(U.bl)-T(S1.bl) =o 

R1(U. b2) - T(S1 b2) = 0. 

If RI x  T # 0, we have 

u - bl = U b2 = S1 bl = S2 . b2 = 0 

which implies U//b and Sl//b and therefore, U//S1. 
3) Let RI//T. There exists a number k such that T = 

kR1. Thus, E = RI (U - ~SI)~, which implies mn,k(E) 5 
1. Similarly, the case S1//U can be proved. 0 

and 

E = -S1(IU((R,,&t: - S,(lTllf$ 

where the subscripts denote the corresponding columns of the 
rotation matrix. Subtracting both sides yields 

IIulIR&l,T = -llWL16~. 

Since U # 0, we get 

From the remaining two equations of (2.20) we get the similar 
results for the other two columns of the rotation matrices R, 
and S,,. Therefore 

R, = -R,. 

This is a contradiction because R., and R, are both rotation 
matrices whose determinants are equal to one. 

Similarly ( S1 . 5,) cannot both have solutions. 
The only other possible assignment that has a solution is 

(-.+I.-,i.2). s  pp u ose it has a solution. For i = 1,2.3, the 
equations of (2.20) give 

and 

E = -.&llU((R&.. + .42(lTII~s:;. 
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These two equat ions yield 

hltUlj(%i +Rni)@ = hllTll~(S,‘, +Szi). (All) 

From (A.9)-(A.ll), we  have  

II~II(q$) ++pim = l lvqqq ++$jT. 
(A.12) 

Since 

?jTR($r> =k 

premultiplying both sides of (A.12) byF and  post-multiplying 
the result by  0s  give 

~~Illqlmp, = 292llTIIS,T,~ 
where i =  1,2,3. Therefore 

2i,llUll~TRp = 2S,llTll~S,. (A.13) 

Since R and  S are rotation matrices, from (A.13) we have  
l/T]] =  IlUll. Then,  (A.3.16), (A.7), and  (A.8) yield 

TTR=UTS. 

This is a  contradiction to RTT # STU. 0 

APPENDIX D 

Lemma 3: For any  T # 0 

PMP = -PI& (A.14) 

yields the relation 

R, =R(T,r)R, (AX) 

where R(T, rr) is the rotation matrix represent ing the rotation 
about  vector T by angle T. 

Proof: Let?= IITII-lT, and  the matrix 
a  r ight-handed orthonormal matrix. Equat ion 

R,r[?] = -R;[?] . (A.16) 
x x 

Since rank f 
01  1  

=  ?  = 0, the columns of 
x x 

and  p  span the 3-D space R3. Since T1 and  ?z are 
x 

both orthogonal to 2  they can be  represented by  the linear 
combinat ion of the columns of Y? [ 

From (A.16), we have  
lx:Ti = [?lxYi,i= 1,2. 

RpTifi = R;[?lxYi = -R;[?] Y; = -R;$ 
x 

i =  1,2. Therefore 

RnR;[? ?I &] = [X -rf, -fi] (A.17) 

where X must be  equal  to?since the left-hand side is a  rotation 
matrix. Since 

(A.17) and  (A.18) give 

R,R,T = R(+). 

This yields (A.15) immediately. ci 

APPENDIX E 

Proof of Theorem 3: From (2.5) and  (2.6) we have  

nl = R(nO -01 x I) (A.18) 
122 = S(n, - 02 XI). (A.19) 

Substituting (A.18) and  (A.19) into (2.13) yields (3.4), where 
we define 

(E,F.G)=(R~ES~R~FS.R~GS) 

= (Pl - Q5P2 - Q;. P3 - Q;). (A.20) 

The  last equat ion in (A.20) follows from (2.12) using the fact 
that R and  S are orthonormal. 

-(E, F, G) in (2.12) satisfies (2.13). From (A.20), trivial 
(E, p, 6) satisfies (3.4). From (A.20) (3.4) has  only the trivial 
solution if and  only if (2.13) essentially determines (E, F, G). 
0 

APPENDIX F  

Proof of Corollary: If 01  = 0, let (E,E;, G) =  
( VIT, VzT, V3T), where Vi is a  matrix with the ‘Lth column 
being an  arbitrary vector vi, and  the other columns are zeroes. 
Equat ion (3.4) becomes [n] Xn[wr 212  rralTna = 0, which 
holds since [n] xn  = 0. This means  that (3.4) has  nontrivial 
solutions. Similarly, if 02  = 0  (3.4) has  nontrivial solutions. 
Finally, if Or =  02, then irl =  fia. As long as  E, p. G  are 
antisymmetrical matrices, (3.4) holds since (v)~Mv = 0  holds 
for any  symmetrical matrix M. Therefore, (3.4) has  nontrivial 
solutions. 0  

APPENDIX G 

Proof of Theorem 4: Obviously, the normal to a  p lane 
passing through the line and  01, is equal  to (a - Or) x I, 
k  =  1.2. Equat ion (3.4) can  be  rewritten as  

(iqTEii2 
[n], (iil)TFii2 = 0. [ 1  (A.21) 

(iqT&i2 

Equation (A.21) has  at most two independent  scalar equat ions 
since rank([n],) = 2  for n  #  0. W e  need  to exclude 
one  equat ion that is a  linear combinat ion of other two. Let 
a  =  (al> a2, a3jT, and  alazaa = 0. The  condit ion alazas = 0  
implies that at least one  of the elements of a  is zero. Assuming 
n  = (nlrmn3JT, multiplying ai to the ith scalar equat ion 
of (A.21) gives 

-n3al(iil)TFii2 +n2al(iil)TGii2 =0 

n3a2(iil)TEii2 + nla2(iil)TGi2 = 0 

-npa3(fil)*Eii2 +  nlag(iil)TFiiz =  0. (A.22) 
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The above  equat ion holds for every line. Now, we append  one  
more subscript i to denote the corresponding values for the 
ith line. rank(D) < 26  if and  only if the 26  rows of D are 
linearly independent.  Considering the coefficients of elements 
of J!?: pt C? in (A.22), rank(D) < 26  if and  only if 

13 

C (n3ia2i - n2;a3;)iil;+& = 0 
t=l 

13 

C (nlia3i - n3iali)iil&i =  0  
i==l 

fJ (n2iali - nl;a2;)iil;i&; = 0 (A.23) 
t=l 

where aliaaiaai =  0  to make sure at most two equat ions of 
(A.21) are used.  Equat ion (A.23) can be  rewritten using tensor 
notation 

13 

C( a, x  ni)nlin2i = 0. (A.24) 
1=1 

Since ni = xpi x Ii, i =  1: 2,. . ,13, we will prove that for 
any  projection normal n, the following holds 

1  
a x nla = (al, a2, a3)T, alazag = 0 

1 
= {wlw n = 0} 

= {axp + bZ(n = xp x I, any a. b} (A.25) 

where xP is the position vector of the point on  the line that 
is the closest to the origin, and  Z is the direction of the line. 
Then,  (3.6) is equivalent to (A.24), which is equivalent to 
(3.4). Therefore, (3.4) has  only trivial solutions if and  only if 
(3.6) holds. 

What  remains to be  proved is (A.2.5). The  last equat ion 
is trivial since n, xP and  Z are orthogonal to one  another.  
It is clear that {a x  nlo = (a1,a2,a3)T,a1a2a3 = 0} is a  
subset  of {wlw n = O}. Now, we prove the reverse. Let s 
be  orthogonal to n. Define b  = s x n. Obviously, b  x n is 
al igned with s. If b has a  zero component ,  a = lib gives 
ax n  = s for some real number  k. Otherwise, b = (bl , b2, b~)~ 
has no  zero components.  Noticing that n  is not a  zero vector, 
without loss of generality, assume its jth element is not zero 
n.j #  0. Then,  let a = njb - bin. a is a  vector whose jth 
component  is zero, and  a  is not al igned with n  (since bj # 0 
and  nj #  0). a is a  linear combinat ion of b and  n; therefore, 
a is orthogonal to s. ka x n = s for some real number  k. 
Therefore, s is in the subset  of the left-hand side of (A.25).0 
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