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Abstract—This paper discusses estimating motion and structure
parameters from line correspondences of a rigid scene. We

present in this paper a

and structure parameters from line correspondences through
three monocular perspective views. The algorithm makes use of
redundancy in the data to improve the accuracy of the solutions.
The uniqueness of the solution is established, and necessary and
sufficient conditions for degenerate spatial line configurations
have been derived. Optimization has been employed to further
improve the accuracy of the estimates in the presence of noise.
Simulations have showed that the errors of the optimized esti-
mates are close to the theoretical lower error bound.
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1. INTRODUCTION

ROM MONOCULAR image sequences taken by a camera

undergoing motion relative to a scene, one generally
can determine the parameters of motion and structure of the
scene up to a scale factor. Conceptually, three steps may be
involved in motion and structure analysis, although practically,
a merge of these steps is possible. First, features are extracted
from images. Then, interframe correspondences between the
selected features are established. Finally, the motion and
structure are computed from these feature correspondences.
This paper is devoted mainly to the last step.

In order to focus on the major problems to be discussed,
we assume that the scene is rigid. This assumption is valid
for the cases where a camera moves in a static scene. If the
scene consists of individually moving rigid objects, the images
need to be segmented into regions where each corresponds to
a rigid part of the scene. This can be donc by, c.g., segmenting
displacement field based on the rigidity [7], [1]. The results of
this paper can then be applied to each of those rigid regions.
Such a segmentation is beyond the scope of this paper. It is
worth noting that a relatively wide field of view is very crucial
to the reliability of solutions in the presence of noise [23], [28].

Object points are a type of feature commonly used by
feature-based algorithms. The closed-form solutions to motion
and structure of the scene from feature points are available
[14], [22], [25], and the condition of the corresponding de-
generate spatial configurations is known [15]. In the category
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of optical flow-based methods, several methods for the corre-
sponding problem have been developed [30], [31], [24].

The choice of types of features depends on their availability
in the images and the reliability of their measurement. When
points are not available in large quantities, other features
such as lines or contours can be used [29], [12], [9], (6]
Since higher level features like lines, edges, and contours are
determined by a set of pixels, the redundancy in the edge
pixels make it possible to locate those features accurately in
image plane. In this paper, we discuss motion estimation based
on lines. In practice, one certainly may use different types of
features to obtain robust solutions. However, the study of the
use of single type of feature is very important, theoretically
and practically, to the general use of multiple types of features.
It provides insights into the roles of this type of feature in the
solutions that use multiple feature types. Our general approach
to using lines might also be useful to the use of other types of
features. The optimization to be discussed in this paper also
allows the use of multiple types of features.

The lines used in this study are straight lines without known
end points since the end points of an extracted line are very
unstable [4], [9], [16]. For example, the end points often do
not correspond to physical points and move as the view point
changes. Many factors such as lighting and surface reflection
often change the position of the end points when the view
point changes. However, the location and orientation of the
line can generally be determined reliably by a line fitting
along a sequence of edge points. In other words, long lines
are preferred since they provide more edge points to allow a
more accurate measurement of the line position.

From line correspondences through three perspective views,
Yen and Huang [29] and Liu and Huang [12] iteratively solve
a set of nonlinear equations for the motion parameters. A
different approach is reported by Mitiche et al. [17], where
the property of angular invariance between lines is used.
Faugeras et al. [9] approximate the nonlinear equations by
linear equations and use iterated extended Kalman filter to
estimate the motion parameters (the filter is also a nonlinear
iterative search method). These algorithms do not give a
closed-form solution to the problem.

Spetsakis and Aloimonos [21], and Liu and Huang [13]
recently developed linear algorithms for estimating motion
and structure parameters from line correspondences. The basic
strategies are similar to those of point-based linear algorithms.
First, a set of intermediatc parameters are estimated by solving
linear equations. Then, the motion parameters are solved from
those intermediate parameters. Although closed-form solutions
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are derived in those linear algorithms, many problems remain
to be solved. First, many spurious solutions are generated
by their algorithms. The number of spurious solutions is
so large that the computation is inefficient, and the correct
solutions are difficult to identify in the presence of noise. The
formulations of the algorithms also generate some degenerate
cases that may otherwise be avoided. Second, the question
of uniqueness was left unanswered. Do the algorithms give
a unique solution? What are the necessary and sufficient
conditions for the algorithm to give a unique solution? Third,
preliminary experiments have shown that the algorithms are
extremely sensitive to noise. Only results for noise-free data
were published. These problems are taken up in this paper. In
addition, we develop methods to obtain optimal solutions from
noise-corrupted lines. We also study the inherent stability of
using lines for motion analysis.

We first present a guideline of our approach to those
problems. A common characteristic of linear algorithms is
solving for a matrix of intermediate unknowns through linear
equations. Those intermediate unknowns are not independent.
In other words, there exist constraints on the variables of inter-
mediate unknowns, and there are more intermediate unknown
variables than the “independent” unknowns. The linear equa-
tions are solved without using those constraints (otherwise,
we are forced to solve nonlinear equations). The resulting
intermediate unknowns contain redundant information. One of
the objectives of our linear algorithm is to make good use
of such redundancy to improve the accuracy of the solutions
in the presence of noise. On the other hand, the problem to
be investigated here involves three image frames with line
features, and therefore, it is significantly more complicated
than a two-frame point-based problem. We derive compact
computational steps to avoid, as much as possible, degenerate
cases and spurious solutions that may otherwise be generated.
As a result, we are able to investigate the uniqueness of
solutions. Although our linear algorithm is designed to well
utilize the redundancy in the data, the solutions are not overall
optimal in the presence of noise. However, those solutions
can be used as an initial guess for further improvement
through optimization. Since the optimization is nonlinear, the
good initial guess provided by the solution of the linear
algorithm is very crucial to the correct convergence of the
optimization. Finally, we will compare the error variance
of our optimal solution with that of a theoretical lower
bound.

The remainder of this paper is organized as follows. The
linear algorithm is derived in the next section. Section III
is devoted to the problem of degeneracy and uniqueness.
Optimization is discussed in Section IV. Simulation results
are presented in Section V. Section VI presents concluding
remarks.

iI. SOLUTION AND ALGORITHM

This section presents a linear algorithm for motion and
structure estimation. The goal is to determine the relative
motion between the camera and the scene, as well as the
structure of the scene.
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Fig. 1. Motion and structure cannot be determined from lines in two images.

A. Why Two Views Are Not Sufficient

We first show that inherently, motion cannot be determined
from lines in just two images. To do this, it is more convenient
to consider the situation where a camera is moving in a static
scene. Let a camera system consist of a projection center
and an image plane. At each time instant, define a camera
system at the corresponding position along the trajectory of
motion associated with the corresponding image. The problem
to be investigated is equivalent to the following: Fixing the
first camera system at a known position and orientation, we
want to determine the position and orientation of the second
camera system and the 3-D positions of the lines from the
projections of lines in the two image planes (see Fig. 1).
We show that it is impossible. For each line in an image
plane, we define a 3-D plane called the projection plane of the
line, which passes through the projection center and the line.
For each line correspondence, two camera systems determine
two corresponding projection planes, whose intersection gives
the line in 3-D. Suppose that the second camera system is
arbitrarily perturbed away from the correct position with the
projection planes fixed with the camera system. Since any
two nonparallel 3-D planes intersect and the corresponding
intersection yields a line, every pair of projection planes
still intersects as long as the perturbation is not so large
that two corresponding projection planes become parallel (see
Fig. 1). In other words, the arbitrarily perturbed position of
the second camera system still gives a 3-D line configuration
that is consistent with the two images observed. Therefore,
the solution to the position and orientation of the camera is
arbitrary (at least in an open set including the correct one), as is
the corresponding 3-D line structure. If a third image is added,
it is possible to determine the position of the second and the
third camera systems as well as the 3-D position of the lines
because the intersection of three projection planes is generally
not a line. In the following, we discuss determining motion and
3-D line structure using line correspondences through three
images.

B. Three Views

Let the coordinate system be fixed on the camera with the
origin coinciding with the projection center of the camera and
the z axis coinciding with the optical axis and pointing toward
the scene. Therefore, in this coordinate system, the camera
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is fixed, and the scene is moving. By the pin-hole camera
model, the image and the focal length can be scaled by any
positive common factor without changing the direction of the
projection lines. If we scale the image and focal length by the
reciprocal of the focal length, we obtain a normalized camera
model, in which the focal length is one, and the normalized
image size determines the field of view. Therefore, without
loss of generality, we consider the normalized camera model.
Visible objects are always located in front of the camera, i.e.,
z > 0. (z <1 can occur since the focal length is normalized.)
We introduce some notation to simplify the presentation. A
vector is regarded as both vector and column matrix. There-
fore, vector operations and matrix operations can be applied
to 3-D vectors with matrix operations taking precedence over
vector operations. // denotes “parallel” relationship. a//b if
and only if @ x b = 0. For a matrix A = [a;;], ||]| denotes
the Euclidean norm: ||[a;]||> = ;a5 [X], isa3x3
skew symmetric matrix determined by 3-D vector X such that
X xY = [X], Y holds for any 3-D vector Y [28].
Consider a coordinate system fixed on the camera. A line
passing through a point z, (to be specific, let z, be the point
on the line that is the closest to the origin) with direction [ at
time to can be expressed in the following parametric form:

To =z, + Kkl

where the subscript in zo means time ¢;, and %k is the
parameter. At another time instant ¢;, the line is moved from
to by a rotation represented by a rotation matrix R and a
translation represented by a translation vector T', that is, any
point at position z; at time ¢t; is related to its position z¢ at
times ¢y by

r ZRI()-f-T. (21)
The line equation at time ¢; is
ty: T = RI[) +T = (R:r:p —+ T) + kRI. (22)

It is easy to see that after motion, the line at time ¢; passes
through point Rz, + T with a direction RI. Similarly, at
another time instant ¢, the line is rotated by a rotation matrix
S and then translated by a vector U from time ¢o. The line
equation at to is

to: 3 =Sro+ U= (Sz,+U)+ kSl 2.3)

Notice that it is not necessary that ¢ty < ¢t; < ¢9 holds. The
order of the three time instants ¢y, 1, and ¢ can be arbitrary
(see Fig. 2).

C. Two Important Equations

We define the projection plane of a line as the plane that
passes through the line and the projection center and define
projection normal of a line as the normal of the projection
plane. Since the projection normal of a line is orthogonal to
the line and the position vector of any point on the line, it
is easy to get the projection normal at the three time instants
from (2.1)-(2.3):

to: mog=uz, x1 24

A
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Fig. 2. Motion and structure from lines in three images.
£ : — _ -1
1: n1=(Rzg,+T)x Rl=R((z, + R7'T) x1)

=R(no+ R7'T x 1) (255)
ta: my=(Sz, +U)x Sl=S((z, +S7'U) x1)

= S(ng+ S7'U x1). (2.6)
Equation (2.5) gives
R7lny =no+ R7IT x 1 .7

Using the vector identity @ x (bx¢) = (a-¢)b — (a-b)c
and (2.7) yields

ng X R7ny = ng x (R_lT X l)
(no - )R™'T — (ng - R'T)I
=—(no- R7'T)L

(2.8)

The last equation follows from the fact that ng - I = 0. Using
ng solved from (2.7) gives

ng-R7'T = (R 'ny - R'Tx1)-R'T

=R ny R =mn,-T. (2.9)
Equations (2.8) and (2.9) yield
ny X R7ny = —(ny - T)L. (2.10)
Similarly, we get
ng x S7iny = —(ny - U)L. (2.11)

D. A Geometrical View

These two equations, (2.10) and (2.11), can also be proved
geometrically as shown in the following: For each line, we
arbitrarily choose its direction from two possible alternative
ones and thus represent it by a vector I. Viewed along this
direction, the configuration can be shown in Fig. 3, where
the line vector I points towards the paper (a cross marks the
tail of the vector), and the point “O” denotes the projection
center of the camera. We first assume that the line does not go
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through the projection center “O.” From the original motion
equation (2.1), we have

R7'zy =zy+ R7'T.

This means that if the moved line is rotated back by R~!, the
resulting composite motion is a pure translation represented
by vector R™IT. This composite motion is shown in Fig. 3
(only the projection of R™!T onto the viewing plane can be
shown in the figure). Viewed from the direction employed
for Fig. 3, the vector R™!T can lie on either side of the
projection plane of the line (I the plane that passes “O” and
I, which is visible as a line in Fig. 3). In order to show
both cases, we let the corresponding vectors R™T (first
motion) and S~U (second motion) lie on different sides in
Fig. 3. The vector R 'n; is the projection normal of the
plane after the pure translation R™IT, and therefore, it is
orthogonal to the line that is translated by vector R™'T from
1. Because the composite motion is a translation, the vector
R~!n, is also orthogonal to [ as shown in Fig. 3. Therefore,
both R™'n, and ng are orthogonal to I : I//(no x R™'n,),
which gives the “alignment part” of (2.10). By definition in
(2.4), the length of ng, dp, is equal to the distance between
the line and the origin. In Fig. 3, there exist two congruent
right triangles determined by two equal angles 4’s and the
two equal hypotenuses with length dy. The corresponding
sides opposite to (3’s, respectively, should be equal: One side
is equal 1o ||ng x R~1ny||/|In1]), and the other is equal to
R~y - R7IT/|ny)| = maT/|ln1]|. This proves the “length
part” of (2.10). What remains to be established is the “sign
part.” As we mentioned above, the vector R™1T can lie on
either side of the projection plane of {: the side as in Fig. 3
or the side of S~'U shown in Fig. 3. In the former case,
ng X R~ 'n; has a direction opposite to I, and we have
n; - T > 0 because R~'n; and R™!T lie on the same side
of the projection plane of I and the angle between them is
an internal angle of the right triangle. n, - T = 0 holds
true if and only if T = 0, and so does ng x R~ !n; = 0.
This concludes the “sign part” of (2.10) for the former case.
For the latter case, the vector ny x R~!n; gets the same
direction as I, and n; - T < 0 because R~ 'n; and R™1T
are located on the different sides of the projection plane of
l, and the angle between them is an external angle of a right
triangle. Therefore, the “sign part” of (2.10) is always true for
both cases. Suppose the line I does go through the projection
center “O.” Then, ny = 0 according to the definition of
(2.4), and R™!T is orthogonal to R™'n; as can be seen from
Fig. 3. Thus, (2.10) still holds true since both sides vanish.
This completes the proof for (2.10). The proof for (2.11) is
analogous. Compared with the geometrical proof, the algebraic
derivation discussed earlier appears to be more rigorous but
less intuitive. From the geometrical proof, one can see what
properties are used to determine the solution.

E. Intermediate Parameters

Muitiplying both sides of (2.10) by ny - U and those of
(2.11) by ny - T yields

(ny - U)(no X R'l'nl) =(m -T)(no X S_an)

Fig. 3. Geometrical illustration of (2.10) and (2.11).

or
[ﬂo]xB =0

where B = (na-U)R™'n; — (n; - T)S7'ny. Letting R =
[Ry Ry R3] and S = [S; S» S3), B can be expressed as

nf (RIUT ~ TS’{)”Q anEng
B=|al (RUT ~TS])n> | £ | nfFn,
n] (RUT — TS] )no n!'Gn,y

where we define the intermediate parameters (E, F,G):

E=RUT -TST. F=RU"-TSt,

G =RsUT —TST. (2.12)
We have
ni En,
Inol, | nfFny | =0. (2.13)
ﬂTGﬂQ

Equation (2.13) is a vector equation involving motion pa-
rameters R, T, S, U, and observables ng, n{, and ns. As
can be seen, if we scale any of ng, ni, and ny in (2.13)
by a positive number, the equation still holds. Therefore,
ng, n;, and ny can be normalized to be unit vectors. The
three scalar equations in (2.13) are linear in the 9 x 3 = 27
components of the intermediate parameters (£, F, G). Since
rank([no],) = 2 for mg # 0, (2.13) has at most two
independent scalar equations. From each line correspondence
through three perspective views, we get a set of corresponding
projection normals: ng, n;, and ng. If we have at least 13
line correspondences through three views, we might have
26 independent scalar equations. If so, we can solve for the
intermediate parameters (E, F, G) up to a scale factor based
on (2.13). When a matrix is determined up to a scale factor, we
say that it is essentially determined. The condition to have 26
independent scalar equations (2.13) is discussed in the next
section.

In the subsequent analysis, it is assumed that the inter-
mediate parameters (E, F, G) are essentially determined. For
convenience, we solve for the normalized intermediate param-
eters (E,, Fy, Gs) with || E||* + || Fol|* + |Gs|I” = 1, such
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that
(Es, Fs,Gs) = a(E,F,G)

where « is an unknown scale factor. The motion parame-
ters are to be determined from the normalized intermediate
parameters.

It is easy to see from (2.12) that ||T)|*> + |JU|* is pro-
portional to ||E||* + ||F||* + ||G]|>. If the scene is scaled
with respect to the origin by a positive factor of k& and the
translations T and U are also scaled by k, we get the same
images. Therefore, ||T|° + ([U]|> cannot be determined from
the monocular images. For simplicity of notation, we drop
the subscript s and let ||E||® + ||F||* + [|G||* = 1, with the
understanding that (E, F, G) are known only up to a scale
factor. As shown later, the rotation matrices are independent
of this scale factor.

F. Motion Parameters from Intermediate Parameters

let V; = T x R;, i = 1,2,3. From (2.12), we have
ETV, =0, FTV, = 0, and GTV3 = 0. If the ranks of
E, F,G are all equal to two, V; can be essentially determined
from (E, F,G). Then, the translation vector T' can be essen-
tially determined by T'- V,;, = 0, ¢ = 1,2,3. However the
ranks of E,F,G are not always equal to 2. The following
theorem enumerates all the possible cases.

Theorem 1: Assume T' # 0 and U # 0. Then, there exist
unit vectors V1, V5, and V3 such that

ETv, =0 (2.14)
FTv,=0 (2.15)
GTvy=0 (2.16)

and the ranks of E, F, and G fall into three cases.

Case 1: All of E,F,G have rank two. V; is then
essentially determined. Let
Then, rank(A) = 2, and T is essentially determined by
ATT = 0.

Case 2: Two of F, F, G have rank two, and the third has
rank one. Without loss of generality, let rank(E) = 1. Let
A = [V, V3] If rank(A) = 2, T is still essentially deter-
mined by ATT = 0. Otherwise, T is essentially determined
by T//(E; x V3) x Vy, where E; is any nonzero column
vector of E. (E; x V) x Vo # 0 is guaranteed.

Case 3: Only one of F, F, G has rank two, and the other
two matrices have rank one. Without loss of generality, let
rank(G) = 2. Then, there are two orthogonal solutions in
(2.14) and (2.15), respectively:

ETV,, =0,
FTV?a =0,

ETVy =0,
FTV, =0

where V1, - Vi, =0, and Vg, - V9, = 0. One and only one
of the two equations

V3 . (Vla X Vlb) =0 (2.18)

and

Vi - (V2a x V) =0 (2.19)
holds. T//V 14 X Vs if (2.18) is true, and T//V3, x Vap if
(2.19) is true.

Proof: See Appendix A.

From Theorem 1, we know that T can be essentially deter-
mined. Similarly, if we apply ET, F7,GT to Theorem 1, we
know that U can also be essentially determined. In a word, we
can determine unit Vectorsf‘S and 173 such thatf‘s xT = 0, and
U, x U = 0 (“°” at the top of a letter denotes a unit vector.)

The following theorem states the uniqueness of the solution
for motion parameters from the intermediate parameters. The
condition T # 0, U # 0, and RTT # STU used in the
theorem is called distinct locations condition. In Section V,
we will see that this condition turns out to be a necessary
condition for essentially determining intermediate parameters
by (2.13). It is a sufficient condition in the following theorem.

Theorem 2: Given (E, F, G), the solution for R, T, S, U
is unique, provided T # 0, U # 0, and RTT #£ STU.

Proof: From Theorem 1, we can determine f; and f’,
such that T = 51||Tl|f'5, and U = 32||U||ﬁs, where 51,52 €
{—1,1}. For four combinations of the values of s; and s;, we
have four sets of equations:

E = s, JUIROT — || T ST
F = ||U||R.O7 — 52| T||T: S5
G = s\ ||[U|RsOT — so||T|ToST

(81,82): (2.20)

Premultiplying both sides of the first equation in (2.20) yields
%] E=siul[t.] RO
X X

Postmultiplying both sides by U, gives

1] B0 = s Ul[E:] R (2:21)
Applying the same operations to the second and the third
equations in (2.20) gives the other two equations similar to
(2.21). Combining these three equations yields

(%] [p6. FE. GO =s(Ul[k] R @2
Since R is a rotation matrix, ||Rz|| = ||z||. We get |U]| from
(2.22):

i) = “ ] XH_l '[T] [0, Fo, ct]| 2

Considering the transposed version of E, F, G, similarly, we
have

[&]X[ETTS FT1f, GTﬁ]z—szuTn[&]XS. 2.24)

|T|| is determined by an equation similar to (2.23).
Equations (2.22) and (2.24) both have the form A = BR,
rank(B) = 2 ([z],, has a rank 2 if £ # 0, which is shown
in Appendix A). Therefore, rotation matrices R and S are
uniquely determined in (2.22) and (2.24), respectively. In the
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presence of noise, we solve for a rotation matrix R in the
following

mI%n [|A - BR||, subject to : R is a rotation matrix.
The solution of this problem is discussed in [2], [19], [8], [25]
and is presented later with the algorithm.

However, there exist four combinations for all the possible
signs of (s1,s2) in (2.20). The following lemma states that
only one combination has a solution for rotation matrices R
and S from (2.20).

Lemma 2: Assume T # 0, U # 0, and R*T # STU. Only
one assignment for (s1,s2), $1.82 € {—1,1} has a solution
for rotation matrices R and S from (2.20).

Proof: See Appendix C.

By substituting into (2.20) the four assignments for (s1, s2),
we get a unique solution R and S and the assignment of
(s1, 82), which is the one that satisfies (2.20). O

On the other hand, (¥, F. G) can only be essentially deter-
mined, i.e., up to a scale factor. From (2.22)—+2.24), it is easy
to see that the scale factor does not affect the solution of the
rotation matrices R and S. However, the translation vector pair
(T, U) is essentially determined, which implies that the ratio
between ||T|| and ||U|| is determined. We can choose any sign
for (E, F,G) and solve for the translation vector pair to get
T, and U, such that (T,U) = a(T,,U,) with unknown c.
The absolute value of v cannot be determined from monocular
images. The sign of a will be determined next.

G. Structure and Sign of Translation Vectors

From (2.4)-(2.6), we get I -mng = 0, - R™'ny = 0, and
{-S~ny = 0. For each line, we solve for a unit vector Fsuch
that {//Fin the following:

mtiJnH[no R 'ny S—InlefH.

subject to - Uf’” =1. (2.25)
If the rank of [no R™'n, S_anJ is no more than one, the
line position cannot be recovered.

For each line, let z,, be a point on the line that is the closest
to the origin. dp £ ||z, | is the positive distance of the line to
the origin. Since z,, - { = 0, from (2.4), we have

ol = llp x U] = {2l 12]]- (220)

Although we use (2.4)—(2.6) to define the projection normals,
the scale factor of those normals is immaterial since it will be
canceled out later in (2.27). Using (2.10) and (2.26) yields

IT - na| = 1] |lno x R™m |
= |impll H"'OHAH"O x R™'nyl].

Dividing both sides by ||n;|| gives the distance of the line to
the origin

do = 1z, = [fo x ™%,

Notice that dy is proportional to ||T||. When T', replaces for
T in (2.27), ||z,|| is essentially determined.

-1
\T Sy ) 227)
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Minority

Fig. 4. Majority positive depths assumption. Majority of all the visible lines
have their closest points in front of the camera. Only a minority of the visible
lines have their closest points in back of the camera.

Let v be a unit vector that is parallel to z, and always
points to the positive Z direction, that is,v= +£|ng x U 'ngx
I, such that Z - 9> 0. Then, 7, = +dov.

To determine the sign for the translation vectors, first
consider the motion equation (2.1).

r = R.’EO + T.
Multiplying both sides by —1, we get

—z, = R(~zo) + (-T). (2.28)

Equation (2.28) implies that when a point zg is rotated by
R and translated by T to a point z,, its minor image (with
respect to the origin) —z¢ is rotated by R and translated by
—T. The original line and the mirror image line produce the
same images through the projection plane. Therefore, if T
and U are the true translation vectors, —T and —U are the
translation vectors of the mirror image. Obviously, if a point
is located in front of the camera, its mirror image is at the
back of the camera. Therefore, if we assume that all of the
visible scene is in front of the camera, then the translation that
corresponds to the structure Jocated at back of the camera is
not the correct one. As to the lines, what is the criterion for
a line to be in front of the camera? We can assume that most
lines in front of the camera have z,, which is the closest to
the origin on the line, with a positive (depth) 2z component.
This assumption is called majority positive depths assumption
(see Fig. 4). It is usually satisfied because most lines whose
closest point z,, has a negative depth are not visible through
the camera lens. A few exceptional visible lines may have
negative depth at x,,. For example, when we look horizontally
in a car that is running downhill, the two curb lines are visible,
but z, of each of these two lines has negative z components
since z,, is at the back of the eyes. However, those lines with
negative » components usually constitute a minority among
all visible lines.

Let T, = sT, where s € {1,—1} is unknown. Assume a
line at time to with z,,, which is the point closest to the origin.
At time £, its new position vector should be orthogonal to the

new projection normal
n - (R.’Ep + T) =n;- (RII) + STS) =0. (229)

Assume that z, has a positive z component at time %o,
z, = ||z,|[v. From (2.29), we have

n1 - (|lz | RS + sTs) =0. (2.30)
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Note that (2.30) cannot hold for both s = 1 and s = —1
unless n; - T, = 0, which is rare. In a word, if z, has a
positive z component, the correct sign for s satisfies (2.30),
and the incorrect one generally does not. If £, has a negative
z component, we have z, = —||z,||9, which yields

n - (~limlIRS + 5T) = 0. 2.31)
In other words, a point with a negative z component satisfies
(2.30) if the sign for s is reversed.

We determine the sign s in the following way. For each line,
if s = 1 satisfies (2.30), a vote is added to the set POS, and if
s = —1 satisfies (2.30), a vote is added to the set NEG. After
voting by all lines, if POS has more votes than NEG, s = 1
supports the majority positive depths assumption. Therefore,
we let s =1 and T = +T,. All the lines that voted for POS
should have x, = +|z,|[v since they are majority, and the
results are consistent with (2.30). For all the lines that voted

for NEG should have z, = —||z,||vsince they are minority,
and the results are consistent with (2.31).
Otherwise, POS has less votes. This means that s = —1

supports the majority positive depths assumption. Therefore
—1,and T = —T,. All the lines that voted for POS
should have z, = —||z,||v since they are minority, and the
results are consistent with (2.31). All the lines that voted for
NEG should have z, = ||z,||v since they are majority, and
again, the results are consistent with (2.30). Thus, the sign of
T and the locations of the lines can be determined based on
the majority positive depths assumption.

The motion from ¢, to ¢» can be analyzed in a similar way.

s =

H. In the Presence of Noise

Since short lines in the images are generally not as reliably
determined as long lines, less weight should be assigned to the
short lines in (2.13) when solving for E, F, G. Let the length
of the lines in the images at time ¢; be [;, : = 0,1, 2. A simple
weight for the line can be

(Gt +h) 7 (232)

Since only two of the three scalar equations in (2.13) are
independent, any row of [no], could be zero vector, which
results in a trivial 0 = 0 equations. To ensure that none of
the two independent equations is missed, we can use all three
equations of (2.13). (This is useful in the presence of noise.)
These three equations are scaled by the weight in (2.32) in
the system of linear equations formed by combining (2.13) for
all the lines.

Since a noise-corrupted matrix almost has a full rank, the
conditions on the rank of the matrices should then be modified
accordingly. A discussion of the sensitivity of the eigenvectors
to the perturbation of the matrix can be found in [25]. A rough
measurement for the error of the eigenvector associated with
the smallest eigenvalue A; is (A} — /\2)_1, where Ao is the
second smallest eigenvalue. The solution of V; i = 1,2,3 in
(2.14)—(2.16) is the eigenvector of EET, FFT, GGT, respec-
tively, associated with the smallest eigenvalue. The reliability
of those solutions is roughly proportional to the difference
between the smallest and the second smallest eigenvalues.

Case 1 and Case 2 in Theorem 1 can be combined by using
a weighted A in (2.17). Let the three column vectors of A be
weighted by the difference of the two smallest eigenvalues of
EET, FFT and GG7, respectively. For example, if rank(E)
is close to one, the corresponding weight in A is close to zero,
which is Case 2.

In determining the distance dy, the motion from ¢ to ¢; and
that from ¢, to #2 can both be used to enhance the robustness.

Obviously, the simple weighting schemes discussed in this
subsection are ad hoc. More complete weighting methods
will be discussed in Section V. The objective here is to use
simple weighting while still keeping the algorithm linear. In
our simulation, we observed considerable improvements by
using the simple weighting schemes discussed above.

1. Algorithm

Now, we are ready to present the algorithm. In the algo-
rithm, e denotes a small positive threshold to accommodate
noise. Without noise, £ should be zero. With noise, ¢ can be
estimated by the error estimation approach in [25] or deter-
mined empirically. Though € should be different in different
parts of the algorithm, a single £ will be used for the simplicity
of notation.

1) Solving for (E. F,G) Up to a Scale Factor: Given n line
correspondences through three views. Let the unit projection
normal at time t; be n;, ¢ = 0,1.2. Solve for (E, F,G) in
the following

2
nfEn,

T
ny Fno
nfGn,

(Eml'i_nc) Z weight||[ng] x (2.33)

lines
subject to [|E||* + ||F||* + [|G|I* = 1, where the weight for
each line is given in (2.32). (2.33) can be written in the form

myin [|1Dyl| subject to : ||y|| =1 (2.34)
where D is a 3n by 27 matrix determined from projection
normals, and y is a 27-dimensional unit vector. The solution
for unit vector y is the unit eigenvector of DT D associated
with the smallest eigenvalue.

2) Determining unit vectors T, and U, such that T/ /T,
and U//U: Let H, 2 [hey heo hes), Fy 2 [hyy hgo hya),
and H, 2 [hg1 hg2 hys] be orthogonal matrices such that

HTEETH, = diag(Xe1, Ae2. Aes).
H{FFTHy = diag(Af1, A p2. M),
HIGGTH, = diag(Ag1. Ag2. Ag3).
Case 1: The median of the set C' = {Aco, Af2, Aga} is
larger than e.

Let A = [()\P2 = Ae1)het (’\f? - )‘fl)hfl (’\92 - )‘gl)hgl]-
a) If the second smallest eigenvalue of AT A is larger

than e(rank(A) > 2),T, is determined up to a scale factor by

AT, T.

/\el S /\82 S /\63
Ar1 S A2 < g
/\gl S )‘92 S /\g3-

=1. (2.35)

. subject to : ‘

min
T

b) Otherwise (rank(A) ~ 1), determine the smallest
number in set C. If A, is the smallest in set C, then
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T.//(Ei x hy1) x hyi, where E; is a nonzero column vec-
tor of E. If Ao or Agy is the smallest in C, T, is determined
by a similar equation (circularly rotating ¢, f, g and E, F', G).

Case 2: The median of the set C = {A.2. Ag2, Aga} is not
larger than ¢. Determine the maximum of the set C'. Without
loss of generality, assume Ago is the maximum:

hel X he?
T, = if [hg1 - (hei X he2)| < |hgy - (hy1 X hy2)]
hf1 x hyy  otherwise

Replacing E, F, G by ET, FT, GT, similarly determine

3) Determining R and S: Let
Gn=[T] [E6. FO. GO.]
Gs=[0.] [E"% FTTL. ¢

and U]l = [|Grll/V2, IT|| = [|Gsll/V2. Then, let Gg —
HUH_lGR, and Gg — HTH*IGS. Solve for R,, R,,, S, and
S, in the following:

c-t] 1

min
RP

~Gr- [&] Ra

X

min
R,

(2.36)

os-[0].5

min

min
P S

n

ofo] s

(2.37)

subject to that R,, R., S,, and S,, are rotation matrices.
Both (2.36) and (2.37) have the form (noticing ||D — CR|| =
|&TCT - DT

ngn ||RC — DJ|. subject to : R is a rotation matrix

(2.38)

where C = [Cy C» C3], D = [D1 Dy Ds]. The solution of
(2.38) is as follows:
Define a 4x4 matrix B by

3
B=Y Bl'B
i=1

where

&:{ 0

(C; - D))"
D, - C; '

ID; +Ci,
Let ¢ = (qo.ql,qQ,qg)T be the unit eigenvector of B asso-

ciated with the smallest eigenvalue. The solution of rotation
matrix R in (2.38) is found at the bottom of this page.
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Substituting four assignments
(1,1,R,.Sp), (1.1, R,.Sp)
(1,1, R,.S,), (-1,—-1,R,,Sy)
for ($¢. 84, R, S) in
E = sV RO ~ 5| TITS)
F = s/||U|ROT — s,||T| 1.8, (2.39)

G = sellU|\ROT — 5. ||T|T.S5

the assignment best satisfying (2.39), in the Euclidean norm
sense, gives the correct assignment for (s¢, sy, R, S). Then

T=s|\T|T.. U =s,|U0|U.

4) Determining Structure fand z,: For each line, solve for
the direction of the line represented by a vector Cin the
following:

min

‘[‘no R~ 'n, S’ln‘z]f“

subject to : HIO“ =1

Then
|T - ;U %
O T r]) 2 x 5]
and
S:i%?ii
o 1]

where the sign is such that the third component of v is
nonnegative.

Let POS and NEG be empty sets. For each line ¢, do the
following: If

lnl . (doR’lg-}— T)) + ’11:2 i (ng‘l())+ U)]
<[n1~Qmﬁﬁ—1j|+¢n2-0msé—tg‘
i is added into the set POS. Otherwise, i is added to the set

NEG.
Finally, if ||POS|| > ||NEG)||, for each line i

xp:{aﬁo if i € POS
—dgv otherwise.
Otherwise, if ||POS|| < ||[NEG]||

T — T, U~ -U.
For each line ¢

o = { —dov if i€ POS
P dov  otherwise.

B+E -6 -0
2(g2q1 + qo93)
2(q3q1 — qoq2)

R=

2(q192 — qogs)
B-G e -4
2(q3q2 + qoq1)

2(q1q3 + q042)
g@?—%m)
B-a -3 +d
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III. DEGENERACY

In the last section, it is established by Theorem 2 that as
long as T # 0, U # 0 and TTR # U”S, the solution of
motion parameters from the intermediate parameters (E, F, G)
is unique. The fact that (E, F, G) can only be determined up
to a scale factor does not affect the solution of the rotation
matrices R and S. The direction of the translation and the
structure of the lines can be determined based on the majority
positive depths assumption. Therefore, the translation and the
closest points on the lines are determined up to a positive
scale factor.

First, let us see what the condition

T £0. U +#0. TTR£AUTS (3.1
means. For a more intuitive interpretation, we consider the
case where the scene is stationary and the camera is moving.
x; in (2.1) is the position of the point at time ¢; in a coordinate
system fixed on the camera. If the scene is stationary, the point
g is fixed, and the transformation that transforms z; to zg
corresponds to the motion of the camera. From (2.1) we have

zo=R ‘'z, — RTT. (3.2)
Therefore, the motion of the camera is a rotation R~! followed
by a translation —R~!T. Since the projection center of the
camera at time ¢ is at the origin and the rotation is about the
origin, the position of the projection center at time ¢; is at
O, = —RTT. Similarly the position of the projection center
at time ¢ is at Q3 = —STU. Thus, the condition in (3.1) is
equivalent to the condition

0, #£0. 0, #0, 01 # 0. 3.3)
That is to say that any two positions of the projection center
of the camera do not coincide, or in other words, the transla-
tion between any two views does not vanish. Therefore, the
condition in (3.1) or (3.3) is called distinct locations condition.

The intermediate parameters (E, F, G) are essentially de-
termined by (2.34) or equivalently by (2.13) if and only if the
rank of D is not under 26. If (E,F,G) are not essentially
determined by (2.13), we say that degeneracy occurs. The
degenerarcy condition can be tested by calculating the rank of
D. However, in the presence of noise, the rank of D is mostly
full. The method of error estimation in [25] can be used to
access the accuracy of the intermediate parameters and the
final motion parameters. If the estimated error in the solution
is large, we say that degeneracy or near degeneracy occurs.

The following theorem gives the necessary and sufficient
conditions for degeneracy in terms of 3-D line configurations
at time #¢ and the motion parameters.

Theorem 3: (E,F.G) is not essentially determined by
(2.13) or equivalently, rank(D) < 26 in (2.34) if and only if
there exist no trivial parameters (F, 17“, G) such that

((zp nufmup 0,) x 1)
wx«% >t>n@>ogw>=0 (34
((zp — 01) x HTG((zp ~ 02) x 1)

is satisfied for all lines £ = x, + &l at time to. (E, F, é) is
trivial if and only if
(B.F.G)=a(P-Q, R~ QF.Ps-Qf) (35
for some real number «, where P; and (J; are matrices with
the sth column being O, and Oy, respectively, and the other
columns are zero vectors.
Proof: See Appendix E.

It can be seen that the degeneracy depends on two factors:
one is the motion parameters, and the other is the configuration
of 3-D lines. We have the following corollary:

Corollary 1: If the distinct locations condition is not satis-
fied, the intermediate parameters are not essentially determined
by (2.13).

Proof: See Appendix F.

Therefore, if the distinct locations condition is not satisfied
(E, F,G) cannot be essentially determined by (2.13) regard-
less of the structure of the lines. If the distinct locations
condition is satisfied and (2.13) is still degenerate, we say
the line configuration is degenerate. The following corollary
gives an example of degenerate line configurations.

Corollary 2: If the directions of lines are coplanar, the line
configuration is degenerate.

Proof: Let all the lines be orthogonal to a vector v. First,
we want to prove [I], [v], [I], = 0. In fact, it is easy to verify
the identity

[z], [yl = (z-y)I —yz"

Then, it follows that

M, [, 1, =0l —ol"[l], = —v0" =0.
Then, letting £ = F=G-= [v],, the second column vector
on the left-hand side of (3.4) vanishes. In fact

(2 — O1) x DT [v], ((z, - 02) x 1)
= (g, — 01)" [1], [v] ,[0] (02 — z,) = 0.

In other words, (3.4) is satisfied for nontrivial (E,F, G).
Therefore, the configuration is degenerate. a

If all the lines lie in a plane, the direction of liens must
be coplanar (they are orthogonal to the normal of the plane).
Therefore, a planar scene is a degenerate case. Obviously, the
case of coplanar directions is more general since lines do not
have to be in a plane.

For lines whose matrix [no R~ ln, S’lnz] in (2.25) has
rank no more than one, the line position cannot be recovered.
We neglect this line. This happens if and only if the line lies
in the plane determined by the origin and O; and O».

From Theorems 2 and 3 and the majority positive depths
assumption, we come to the conclusion that if the distinct
locations condition is satisfied and the line structure is not
degenerate, the motion parameters and the structure of the line
can be uniquely determined (up to a scale factor for translation
and line distances).

Another form of necessary and sufficient condition is pre-
sented in the following theorem.
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Theorem 4: Assume 13 line correspondences at time %o,
with the ith line being represented by & = x,; +; (xp; is the
point closest to the origin) and the normal to the projection
plane that passes through the line and the projection center
Oy, being fgs, k= 1,2, ¢ =1,2...13. Then, (E, F, G) is not
essentially determined in (2.13), or equivalently, rank(D) <
26 in (2.34), if and only if there exist no a;, b;, ¢ =
1,2,3,...,13, not all of which are zeroes, such that

13
D (@i + bdi)ioig; = 0
i=1

(3.6)

where the concatenation of two vectors, like pq, denotes
a tensor out product. For m-dimensional vector p and n-
dimensional vector g, pg has mn components, which are
products of all the possible combinations between one element
in p and one in gq.

Proof: See Appendix G.

Before we end this section, two points should be emphasized
here: 1) The fact that the linear algorithm cannot give a
unique solution under degenerate line configurations dose
not mean that no algorithms can solve the problem under
these configurations. Other algorithms, e.g., some nonlinear
algorithms, might still be able to reach a correct solution
under these configurations. However, as we mentioned, the
uniqueness of solution by a nonlinear algorithm is unknown,
and the correct convergence of a nonlinear algorithm is not
guaranteed; 2) we do not assume any a priori knowledge of
the scene other than rigidity. However, if we know some
additional information, some of the degenerate configurations
can be solved. For example, if we know that the scene is
planar, the intersection of those coplanar lines gives feature
points (no matter whether the lines meet at those points or not),
and the planar point-based algorithm can be used to solve the
problem.

IV. OPTIMIZATION

The closed-form solution discussed above makes use of the
least squares criterion in several steps. However, the solution is
not overall optimum. The first reason is that in solving (2.33),
we have neglected the dependency among the components of
the intermediate parameters (F, F, G). As defined in (2.12),
(F,F,G) has only 12 degrees of freedom (six for each
motion), but a free (E, F, G) has 27 degrees of freedom. Some
of the dependency has been taken into account in the later
steps of the linear algorithm, as in (2.35)—(2.37), but this later
recovery is not as effective as imposing the dependency in the
first place. The second reason is that for the linear algorithm,
we do not consider noise distributions or different amounts
of noise in different components of the data. This results in
a suboptimal solution in the presence of noise, although the
solution is analytical. Qur objective in this section is to obtain
“the best possible” estimates from the noise corrupted data.

A. Lines from Pixels

An image line consists of edge points. The image position
of the line is typically determined from those edge points by
a line fitting algorithm. Since lines are used as primitives, it is

natural and efficient to consider the parameters of lines as the
variables of observations. The representation of lines should
be such that the error arising from the line finding process
can be naturally modeled. In most line finding processes, the
sequence of edge points is indexed along one of the two pixel
coordinate directions. Which direction is used for indexing
depends on which dimension has a longer projection from the
line segment. Mathematically, such a line in the (u,v) image
plane is commouly represented by

v=au+b 4.1)

or

u=av+b 4.2)

where a and b are parameters of the line. For each line, the
selection of (4.1) or (4.2) is such that |a) < 1 (a 1-b flag for
each line indicates which is used). The variable u in (4.1) and
v in (4.2) can be considered as the image coordinates of edge
pixels (see Fig. 5). While the variable on the right-hand side
runs from the first pixel location to the last, all the line pixels
are enumerated. In any case, using least squares fitting to these
edge pixels, a line parameter vector a £ (a, b)T is “observed.”
Certainly, it is not appropriate to assume that the parameters
here are equally reliable. We need to evaluate the covariance
matrix of the error in the line parameter vector. Suppose that
the edge pixel (u;,v;) in a line is corrupted by noise in v
direction in the case of (4.1):

v; = au; + b+ &y, (4.3)
or in u direction in the case of (4.2):
U; = av; + b+ by,. “4.4)

This agrees with common methods to determine a line: An
edge point on a line is indexed along a pixel row or column
(see Fig. 5). If a least squares fitting is employed to edge
points, for (4.3) we have

Aa=V+§ (4.5)
where
T
A= “11 “12 . “1" (4.6)
V = (vy,v9,---,vy), and ¢ is the corresponding noise vector.

Similar results can be obtained for (4.4).
To give an optimal solution we use Gauss-Markov theorem:
Suppose

y=Am+§, 4.7)

where 8, is a random vector with zero mean, £, = 0 and
covariance matrix
_ T
ry = Eﬁyﬁy . (4.8)
The unbiased, linear minimum variance estimator of m that
minimizes E|ji — m||® is

= (ATT, 1 4) AT, Yy (4.9)
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u=av+b /

v=au+b /

A

| 1/

Fig. 5. Line fitting and line equations.

with error covariance matrix

Ty 2 E(—m)(m —m)’ = (47T;'4)"".  (4.10)
If, in addition, &, is normally distributed, the linear unbiased
minimum variance estimator of m is the minimum variance
estimator among all the unbiased estimators (absolute best and
not limited in a class of linear estimators). For proofs, see,
e.g., [11], [20], [10].

To estimate our line parameter vector a using this result,
we need to know the covariance matrix of § in (4.5). The
component of § is the error of the detected edge pixel location
in the direction orthogonal to that of the index variable. As an
approximation, we assume that this type of error is unbiased
and uncorrelated. Although this assumption is not exactly true
even in the case of digitization error, we expect the correlation
is not so significant that the accuracy of estimates derived from
this assumption is not considerably degraded. We will return
to this point in the discussion of our simulation, in which we
will see that the accuracy of the estimates does not change
much if the actual (correlated) digitization noise is replaced
by uncorrelated noise. Using the condition I', = o1 and the
Gauss-Markov theorem, the minimum variance estimator of
a is

a* = (ATA4) ATV (@.11)

where the covariance matrix of the error of a* is given by

Zuf PR -
1

lzui n

:

Ta- = o%(AT4)7 =42 (4.12)

B. Optimal Solution

Now, we discuss how to determine the unknown motion
parameter vector m from the lines that are determined by the
least squares fitting. Let a@;; be the observed line parameter
vector of the ith line in jth image frame and a;;(m) be the cor-
responding computed line parameter vector from the motion
parameter m (the structure z can be optimally determined from

m and be suppressed from aj;(m,x)). A nonlinear extension

of the Gauss-Markov theorem leads to minimizing
3

S5 (a5 - aii(m)Tg! (af; — aij(m)).

i=1j=1

(4.13)

In other words, we want to minimize the discrepancies between
the measured observables and the inferred observables. Such
an objective function can be directly extend to the use of other
types of features. According to the Gauss-Markov theorem,
the discrepancies to be minimized should be weighted by the
inverse of the covariance matrix of the expected errors in.the
corresponding measurements. For example, if lines and points
are used as matching features, the objective function to be
minimized is the sum of the weighted line discrepancies shown
in (4.13) and the weighted point discrepancies discussed in
[26].

The minimization of nonlinear function (4.13) can be solved
iteratively from a good initial guess. The closed-form solution
of the linear algorithm discussed above can be used as an
initial guess solution for the nonlinear optimization here.

C. How Accurate It Can Possibly Be

With a solution based on noise-corrupted data, an important
question to ask is how close the error is from the minimum
error allowed by the information in the data. Since the noise
in the data is random, this question should be investigated
in terms of statistics. There exist theoretical bounds for the
covariance matrix of any estimator. The Cramér-Rao bound
is one of them.

1) Cramér-Rao Bound [5], [18]: Suppose m is a parameter
of probability density p(y,m). f is an estimator of m based

. A T _ 8lnp(z,m)
on measurement y with Er = b(m). Let 27 = =52,
Define

F =Ezz". (4.14)

The matrix F' is called the Fisher information matrix. Let
Ob(m)

o (4.15)

Then

E(m — b(m))(m — b(m))” > BF'BT (4.16)

where inequality means that the difference of two sides is
nonnegative definite. F' is the pseudo-inverse of F.

Letting B = I, the Cramér-Rao bound provides a lower
bound for the expected errors of any unbiased estimator.
Therefore, we can compare the expected errors with that of
a “best possible” unbiased estimator using the Cramér-Rao
bound. The evaluation of the Cramér-Rao bound requires noise
distribution. With Gaussian noise, the Cramér-Rao bound takes
a simpler form.

For the problem investigated here, m consists of the in-
dependent motion parameters (three in R, three in S, five in
the normalized (unit) version of (T, U). The structure  can be
estimated from the motion parameter vector m by the methods
in step 4) of the algorithm presented in the previous section.
The observation vector y is a vector that consists a vectors
a’s in (4.5) for every line in every image. Therefore, y is a
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6n-dimensional vector for n line correspondences (n lines in
each image). Given any motion parameter vector m, we can
compute its corresponding structure = and the vector yq(m).
Suppose the observation vector is given by additive Gaussian
noise: y = yo(m) + §, where § is a Gaussian noise vector
with a zero mean and a block diagonal covariance matrix C
with each 2 by 2 block given by (4.12). Then, p(y,m) is a
6n-dimensional distribution with mean gy,(m) and the same
block diagonal covariance matrix C. The Cramér-Rao bound
for any unbiased estimator gives

E(n — m)(ra —m)" > ((aygfnm)>c<0ygfn’")>T> —1,

(4.17)

For further discussion, see, e.g., [3], [27].

V. SIMULATIONS

Simulations have been performed to demonstrate correct-
ness of the algorithm as well as sensitivity of the solution to
noise.

A. Setup

The focal length of the camera is one unit, and the image
is an s x s square. Lines are generated randomly for time
to. The centers of the lines are uniformly distributed between
depths 5 and 15. The orientation of the lines are uniformly
distributed over all directions. The length of the lines is
uniformly distributed in [4s, 8s], and only the visible part of
the lines are used for line fitting. (Usually, a line following
procedure will detect connected edge points along the line.
However, a small portion of missing edge points does not
significantly degrade the accuracy of the measured line.) The
lines are moved to another position at time ¢; by a rotation
represented by matrix R and then a translation represented by
translation vector 7T'. Similarly, at time ¢, the lines are moved
from to by a rotation and then a translation represented by S
and U, respectively.

The lines at each time are projected onto the image plane,
and the edge points are corrupted by digitization noise: For a
256 x 256 image, there are 256 x 256 pixels, and the image
coordinates of edge points have 256 evenly spaced levels for
» and v coordinates, respectively. The real image coordinates
of edge points are rounded off to the closest levels. Different
resolution may be used to simulate a different amount of noise.
To take into account common line finding processes, the line
position is determined by a least squares fitting to the visible
edge points (pixel centers) of the line. As we discussed, the
relatively higher accuracy of the line position obtained by such
a line fitting is one of the main advantages for using lines as
matching primitives.

As we know, the error of a detected line may arise from
many different sources, and the statistical nature of the error
depends very much on the line detector that is actually used.
The simulated noise here is not meant to indicate what will
actually happen in practice since the wide variety of line
detectors makes such an attempt impossible and unnecessary.
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An exhaustive or complex noise model may contain many
noise parameters (e.g., bias and correlation), whose values
are difficult to select and evaluate in terms of their practical
applicability. The noise model here is meant to be simple
enough so that the performance of the algorithms can be
examined and evaluated in a clear way.

The errors shown in the following are all relative errors.
The relative error of a matrix (vector is a column matrix) is
defined by the Euclidean norm (square root of the sum of
squared elements) of the error matrix (difference between the
estimated one and the true one) divided by the Euclidean norm
of the true matrix.

B. Linear Algorithm

In noise-free cases, the errors in the solution given by the
algorithm are mainly caused by computer round-off errors.
Sun workstations with double precision were used for the
simulations. The relative errors in the solution were of the
order of 10710 if edge points were not rounded off to pixel
centers.

In the presence of noise, the errors in the solutions depend
on the configuration of the lines. To show the general sensitiv-
ity to the noise, the errors are averaged through 100 random
trials, where each trial has the same motion but a different
set of randomly generated lines. The noise is simulated by
the pixel round-off error with different image resolutions.
Simulations of our line-based algorithm and the results of error
estimation discussed in [25] and [28] showed that the errors in
the solutions are roughly proportional to the amount of noise
in the image plane. For example, if the noise in image plane is
doubled, the errors in solutions are also doubled. For the data
shown here, the image resolution used is 256 x 256.

Since the errors in the solutions are very sensitive to the field
of view, we show the results using two image sizes s = 1
and s = 0.7 (note: focal length is 1). The results of s = 1
are shown in Fig. 6. The motion parameters are as follows:
R corresponds to a rotation about axis (1, 1, 1) by an angle
of 6°, and S corresponds to a rotation about axis (0, 1, —1)
by an angle of 5°. T = (2,-2,2), and U = (—1,2-2).
Fig. 6(a) shows the average relative errors of the intermediate
parameters (E, F,G), R, and T, versus the number of line
correspondences. The average relative errors of S, and U are
virtually the same as those of R and T and are omitted. We
can see that with a minimal 13 lines, the errors are relatively
large. With a minimal number of line correspondences, no
overdetermination is available in the set of equations of (2.13).
Therefore, the intermediate parameters cannot be determined
accurately. Furthermore, some short lines in the images may
give very unreliable projection normals. After a few lines
are added to the minimally required 13, the errors decrease
significantly. (It seems that far more than 13 pairs of lines
can be matched from real world images [9], [16]. We may
expect that overdetermination over 13 line correspondences is
generally available in practice.) The location of a line can be
specified by the direction of the line (#}, the projection plane
passing through the line and the origin (seen by the camera
as an observable), and the distance from the line to the origin
(llzp1])- Fig. 6(b) shows the average errors of the recovered
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direction of lines £and those of recovered relative errors of the
distance from the line to the origin.

Fig. 7 shows the relative errors for s = 0.7. The rotation
parameters are the same as those for s = 1 in Fig. 6. The trans-
lations are modified accordingly to account for the reduced
field of view: T = (1.5,-1.5,2), and U = (-1,1.5,-2).
(The errors in the estimates of motion 2 are very similar
to the corresponding ones of motion 1, and therefore, the
corresponding plots are omitted from Figs. 7 to 9.) As can
be seen, the errors in this case are considerably larger than the
corresponding errors with a larger field of view (Fig. 6).

As indicated in our simulation, the error in the solution is
roughly inversely proportional to the magnitude of the trans-
lations. Therefore, as translation vanishes the error increases
quickly. The shape of such an increase is very similar to that
of the point-based algorithm (see, e.g., Fig. 10 in [28]).

C. Algorithm with Optimization

We next present the results with optimization. In actual im-
plementation, to obtain a better initial solution for minimizing
(4.13), we first minimize the equation error of (2.33) starting
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from the solution of the linear algorithm. Then, the resulting
parameters are used as an initial guess solution to minimize
(4.13). The errors of the final optimal solutions are shown
in Fig. 8 together with those of the initial guesses shown in
Fig. 6. Very significant improvements over those of the linear
algorithm are achieved. The results of minimizing equation
errors in (2.33) and those of minimizing (4.13) are shown in
Fig. 9. As can be seen, although minimizing equation errors
of (2.33) is not as good as minimizing (4.13), the difference
is not very large. Therefore, when an exact optimal solution is
not necessary, minimizing the simpler expression (2.33) may
suffice.

D. Compared with the Bound

In Fig. 10, the Cramér-Rao lower bound is shown together
with the actual errors. The setup and the motion parameters
are the same as those in Fig. 6, and zero mean, uncorrelated
Gaussian noise with a variance equal to that of digitization
noise of 256 x 256 images is added to edge points. The error
bounds are very close to the actual errors, except for the small
number of line correspondences. With a small number of lines,
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the errors in the initial guesses are relatively large (see Figs. 5
and 6), and therefore, the true optimal solutions cannot always
be reliably obtained. However, as shown in Fig. 10, with a few
extra lines in addition to a minimal 13, the linear algorithm
followed by optimization essentially reached the Cramér-Rao
lower bound, which is the lower error bound of a best possible
unbiased estimator.

A point is worth mentioning here. The noise added in
Fig. 10 is uncorrelated Gaussian noise, whereas in Figs. 6
to 9, the noise is actual spatial digitization noise, which is
not exactly uncorrelated. In (4.11), we have assumed that
the digitization noise is uncorrelated, which will potentially
degrade the performance. However, a comparison between
Figs. 8 and 10 for the improved results tells us that the
corresponding errors are very similar. This seems to indicate
that the assumption that the digitization noise is uncorrelated
does not significantly affect the performance of the algorithm.

VI. CONCLUSIONS AND DISCUSSIONS

A new linear algorithm is presented for estimating motion
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Fig. 9. Minimizing equation error (2.33) versus minimizing variance (4.13)
versus number of line correspondences. 100 random trials: (a) Motion param-
eters of motion 1; (b) structure.

and structure parameters from line correspondences. Relatively
compact computational schemes are derived in order to avoid,
as much as possible, spurious solutions and degenerate cases
and to make use of the redundancy in the data. The uniqueness
of the solution has been established. As long as the coefficient
matrix of the linear equations (2.34) is not degenerate, the
algorithm gives a unique solution to the motion parameters.
Some necessary and sufficient conditions for the lines to result
in a degenerate coefficient matrix are presented.

An approach to optimal estimation of motion and structure
from line correspondences has also been introduced. The
reliability of each measured line is represented by an error
covariance matrix, which is utilized for an optimal solution.
In order to reliably reach the global minimal point of the
nonlinear objective function, the closed-form solution is used
as an initial guess solution.

From the results of our simulations, it appears that the
accuracy of the solutions by our optimal line-based algorithm
is close to that of the corresponding optimal point-based
algorithm [26], with the same amount of image plane noise, the
same number of line or point correspondences, and a similar
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amount of motion. A line-to-line correspondence provides only
one component of the image plane displacement (along the
normal to the line), whereas a point-to-point correspondence
provides both components. Therefore, in some sense, line-to-
line correspondences contain less information than point-to-
point correspondences. How can one expect the line-based
algorithm to perform as well as point-based algorithms? The
key is that a line-based algorithm can use the redundancy
in the edge points to obtain more accurate measurement of
line positions. In other words, a line fitting step used in our
algorithm is very important for line-based algorithms.

Since the accuracy of the optimal solutions is close to the
Cramér-Rao lower error bound for any unbiased estimator,
the obtained performance appears to leave little improvement
beyond.

APPENDIX A

Proof of Theorem 1: If R;/T, Lemma 2 presented
in Appendix B concludes that rank(F) < 1. Otherwise,
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ETV, =0, where V; = Ry x T # 0. Thus, rank(E) < 2.
Similarly rank(F) < 2, and rank(G) < 2.

Case 1: Since the ranks of E, F, G are all equal to
2, from Lemma 2, T is not parallel to any column vectors of
R, and U is not parallel to any column vectors of S. Thus,
V.//T x R;, i = 1,2,3. rank(A) = 2 if rank(M) = 2,
where

M = [Tx R, Tx R, Tx R;;} - (A1)

[7] R
X
and T'= ||T||"'T. We prove that rank(M) = 2. In fact, let
the unit vectors T f‘g and f} be such that Q = [TQQ Qg} is
an orthonormal 3 x 3 matrix. G = RTQ is also orthonormal.
Post-multiplying the two sides of (A.1) by G, we get

MG = [T]XRcz [TLQ: {0 Px By Tsz}

We see that the second and the third columns of MG are
orthonormal from the definition of Q. Therefore, rank(M) =
rank(MG) = 2.

Case 2: We need to prove that if rank(A) < 1, T
is essentially determined by T'//(E; X V2) x V3, and it is
true that (E; x V) x Vo # 0. Since V;//T x R;, i = 2.3,
rank(A) < 1 implies

0:(TXRQ}X(TXR3)2(<TXR2)'R3)T—UR3

where the last equation follows by using the identity a X
(bxc) = (a-c)b— (a-b)e. Thus, (T x R2) - R3 = 0, ie.,
T, Ry, Rs are coplanar. Therefore

T R =0 (A2)

and V5 //T x Ry//R;. Thus, Vy = £R. Since rank(E) < 1
and T'- Ry = 0, we get S1//U from Lemma 1. Let U = kS,
for some real number k. We have B = (kR; — T)S] and
E; = l(kR; — T) for some real number [ # 0 since §; # 0.
Therefore, using (A.2) yields

l((le - T) X R]) X Rl
= —l(T X Rl) X R1 =|T.

T # 0and! # 0 give (E; x Vo) x Vo # 0.
Case 3: From Lemma 1, we have

T//Ry or

1

(E7 X VQ) X VQ

T//R, (A.3)

and

U//S, or UJ/S. (A4)

Since R; and Ry are orthogonal vectors, as are S; and
S2, (A.3) and (A.4) give only two possible combinations:
1)T//Ry and U//S9; 2) T//Ry and U//S>.

For 1); letting T' = kRy, (k #0), and U = 1S, (I #0)
yields

E=R(U-kS)T
and

F=(lRy,—T)S} = (IR, — kR,)S?
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which gives
Viex Vip//Ra (A5)
and

Voo X Vo //(IRy — ERy).

On the other hand, V3//T x R3 = kRy x Ry = kRo.
Therefore
V3 . (Vla X Vlb) =0
Vi (Vaa x V) #0.
Equation (A.5) gives
T//Rl//Vla X Vlb-
For 2), similarly, we have
Vi (Viex Vi) #0
V3 . (Vga X VQb) =0
and
T//Rz//Vza X ng.
O

APPENDIX B

Lemma 1: Let Ry, S, T, and U be nonzero vectors, and
E=RU" -TST.

Then
1) If rank(E) = 0, then Ry //T and S,//U.
2) If rank(E) = 1, then R, //T or S,//U.
3) If R//T, or U//Sy, then rank(E) < 1.
Proof: rank(E) = 0 implies RyU”T = TS}, the con-
clusion of 1) immediately follows.
2) rank(E) = 1 implies that there exist two nonzero
vectors @ and b such that
E=RU" -TS] =ab". (A.6)
Let b, by, by be nonzero vectors, and they are mutually
orthogonal. Post-multiplying both sides of (A.6) by b; and
by yields

Rl(Ub1> —T(Sl bl) =

0
Ry(U - by) = T(S; - by) = 0.

If Ry x T # 0, we have
U-by=U-by=8, by =8 by=0

which implies U//b and S1//b and therefore, U//S,.

3) Let R, //T. There exists a number & such that T' =
kR;. Thus, E = Ry(U — k'Sl)T, which implies rank(E) <
1. Similarly, the case S;//U can be proved. O
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APPENDIX C

Proof of Lemma 2: Since there exists at least one
set of solutions, i.e., the true one, we prove that solutions
for two combinations of (s1,s2) yield contradiction. Assume
(s1,82) = (81, 42) is the correct assignment, which gives the
solutions

(R.S) = (R,.5,) (A7)

whcih correspond to

T =4|TIT. U =s|U).. (A.8)

Reversing the sign for s; yields R, in (2.22), and reversing
the sign for sy yields S, in (2.24). From (2.22), we have

] 5= [r]
X X
From Lemma 3 presented in Appendix D, we have

R, = R(T.™)R, (A9)

where R(T, ) is the rotation matrix representing the rotation
about vector T" by an angle 7. Similarly, we have

Sp = S(U.7)S,. (A.10)

We first prove that it is impossible that for both (£31,52),
there exist solutions. Otherwise, from the first equation in
(2.20), we have

E = i |U\R, 0T — 3| TIT. S5,

pl
and

E =~ ||U|[R] — 55T .57,

pl

where the subscripts denote the corresponding columns of the
rotation matrix. Subtracting both sides yields

U R8T = —||U|| RO
Since U # 0, we get
Rpl =—-R..

From the remaining two equations of (2.20), we get the similar
results for the other two columns of the rotation matrices R,
and S,,. Therefore

R, = —R,.

This is a contradiction because R, and R, are both rotation
matrices whose determinants are equal to one.

Similarly ($1,+$2) cannot both have solutions.

The only other possible assignment that has a solution is
(—$1.—82). Suppose it has a solution. For ¢ = 1,2.3, the
equations of (2.20) give

E = sillU|IR, O] - 8| TIT.S7,
and

E =~ |UIR.DT + so| T S7

ni*
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These two equations yield

51IUI(Rpi + Rai)UT = 32| T\ T (S5 + ST:). (A1)

From (A.9)—(A.11), we have
WOl(R{ET) + 1) R8T = \TIR(S(O7) + 1),
(A.12)

TTR(Ex) =1,

premultiplying both sides of (A.12) byﬁr and post-multiplying
the result by U, give

251 U TT Ry = 25| TS5 T,
where ¢ = 1,2, 3. Therefore
23, U1 Ry = 252||T|1O7 S, (A.13)

Since R and S are rotation matrices, from (A.13), we have
||T|| = ||UJ|. Then, (A.3.16), (A.7), and (A.8) yield

T'"R=UTS.
This is a contradiction to RTT # STU. O

APPENDIX D
Lemma 3: For any 7' # 0

(7] By = [T Rn (A.14)

yields the relation

R, = R(T,™)R, (A.15)

where R(T,w) is the rotation matrix representing the rotation
about vector T by angle .

Proof: LetT= ||T||”'T, and the matrix IT T f‘z] form

a right-handed orthonormal matrix. Equation (A.14) gives

RT [T] =Rl [T] ) (A.16)

Since mnk([f‘] x) = 2, and [ﬂ XT: 0, the columns of

[T’] and T span the 3-D space R3. Since T and Ty are
X

both orthogonal to T} they can be represented by the linear
combination of the columns of [T] T = [T] Y., :=1,2.
From (A.16), we have * *

R = R [T] ¥:=-RI[T] Y= -RIT.
1 = 1,2. Therefore

R.RY [T M 7"2] = [X _ﬁ —Trz] (A17)
where X must be equal toT'since the left-hand side is a rotation
matrix. Since

[T 4 —TZ] =R(T,7r) [T f TQ] (A.18)

(A.17) and (A.18) give
R.RY = R(7).
This yields (A.15) immediately. a
APPENDIX E

Proof of Theorem 3: From (2.5) and (2.6), we have

n = R(‘ﬂo *01 X l)
g = S(no — 02 X l)

(A.18)
(A.19)

Substituting (A.18) and (A.19) into (2.13) yields (3.4), where
we define

(£.F.G) = (RES, RTFS, RTG5)
= (A~ Q. P~ Q7. P~ QJ).

The last equation in (A.20) follows from (2.12) using the fact
that R and S are orthonormal.

(E,F,G) in (2.12) satisfies (2.13). From (A.20), trivial
(E, F, G) satisfies (3.4). From (A.20), (3.4) has only the trivial
solution if and only if (2.13) essentially determines (E, F, ).
O

(A.20)

APPENDIX F

Proof of Corollary: If O, = 0, let (E,F.G) =
(VE,VE, V), where V; is a matrix with the ith column
being an arbitrary vector v;, and the other columns are zeroes.
Equation (3.4) becomes [n] n[v; v, vg]Tn2 = 0, which
holds since [n], n = 0. This means that (3.4) has nontrivial
solutions. Similarly, if O, = O (3.4) has nontrivial solutions.
Finally, if Oy = Oy, then f,; = no. As long as E.F,G are
antisymmetrical matrices, (3.4) holds since (v)TMv = 0 holds
for any symmetrical matrix M. Therefore, (3.4) has nontrivial
solutions. O

APPENDIX G

Proof of Theorem 4: Obviously, the normal to a plane
passing through the line and Oy is equal to (z, — O1) x I,
k = 1,2. Equation (3.4) can be rewritten as

(71)" Eny
[n]x (i"l)TIfﬁ'Z
(71)" Gy

=0. (A21)

Equation (A.21) has at most two independent scalar equations
since rank([n],) = 2 for n # 0. We need to exclude
one equation that is a linear combination of other two. Let
a = (ay,as, (13)T, and ajasas = 0. The condition a1asaz = 0
implies that at least one of the elements of a is zero. Assuming
n = (n1,n,n3)", multiplying a; to the ith scalar equation
of (A.21) gives

—ﬂgal(ﬁl)TFﬁz + nzal(ﬁl)Téﬁg =0
ngag(ﬁl)TEﬁz + n,laz(ﬁl)Téﬁz =0

—ngas(iy)T Efg + nyas(iy)  Fita = 0. (A22)
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The above equation holds for every line. Now, we append one
more subscript ¢ to denote the corresponding values for the
ith line. rank(D) < 26 if and only if the 26 rows of D are
linearly independent. Considering the coefficients of elements
of E,F,G in (A.22), rank(D) < 26 if and only if
13
Z (n3iags — ngiaz) Mg = 0
i=1
13
Z (n1iazi — naiar)fufa; = 0
i=1
13
z (naian — nyag)Ryfg; = 0

=1

(A23)

where aj;a2;a3; = 0 to make sure at most two equations of
(A.21) are used. Equation (A.23) can be rewritten using tensor
notation

13

Z (ai X n,')nun% =0.

i=1

(A24)

Since n; = zp; X I;, i = 1,2,---,13, we will prove that for
any projection normal n, the following holds

{a. X nja = (al,az,as)T
={vlv-n=0}
= {az, + blln =z, x I, any a,b}

, 410203 = 0}

(A.25)

where z,, is the position vector of the point on the line that
is the closest to the origin, and { is the direction of the line.
Then, (3.6) is equivalent to (A.24), which is equivalent to
(3.4). Therefore, (3.4) has only trivial solutions if and only if
(3.6) holds.

What remains to be proved is (A.25). The last equation
is trivial since m, z, and I are orthogonal to one another.
It is clear that {a X nja = (al,ag,ag)T,alagag =0} isa
subset of {v|v-n =0}. Now, we prove the reverse. Let s
be orthogonal to n. Define 6 = s x n. Obviously, b x n is
aligned with s. If b has a zero component, a = kb gives
axn = s for some real number k. Otherwise, b = (b1, b, bg)T
has no zero components. Noticing that n is not a zero vector,
without loss of generality, assume its jth element is not zero
nj # 0. Then, let a = n;b — byn. a is a vector whose jth
component is zero, and a is not aligned with n (since b; # 0
and n; # 0). a is a linear combination of b and n; therefore,
a is orthogonal to s. ka x n = s for some real number k.
Therefore, s is in the subset of the left-hand side of (A.25).0
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