Available online at www.sciencedirect.com

DATA &

ScienceDirect KNOWLEDGE
ENGINEERING

,-_ 2.
ELSEVIER Data & Knowledge Engineering 64 (2008) 662687

www.elsevier.com/locate/datak

Proof explanation for a nonmonotonic Semantic
Web rules language

Grigoris Antoniou **, Antonis Bikakis #, Nikos Dimaresis *, Manolis Genetzakis *,
Giannis Georgalis ?, Guido Governatori °, Efie Karouzaki 2, Nikolas Kazepis ?,
Dimitris Kosmadakis #, Manolis Kritsotakis #, Giannis Lilis ?,

Antonis Papadogiannakis *, Panagiotis Pediaditis *, Constantinos Terzakis *,
Rena Theodosaki , Dimitris Zeginis *

& Institute of Computer Science, FO.R.T.H., Vassilika Vouton, P.O. Box 1385, GR 71110 Heraklion, Greece
® School of ITEE, The University of Queensland, Australia

Accepted 17 October 2007
Available online 1 November 2007

Abstract

In this work, we present the design and implementation of a system for proof explanation in the Semantic Web, based
on defeasible reasoning. Trust is a vital feature for Semantic Web. If users (humans and agents) are to use and integrate
system answers, they must trust them. Thus, systems should be able to explain their actions, sources, and beliefs. Our sys-
tem produces automatically proof explanations using a popular logic programming system (XSB), by interpreting the out-
put from the proof’s trace and converting it into a meaningful representation. It also supports an XML representation for
agent communication, which is a common scenario in the Semantic Web. In this paper, we present the design and imple-
mentation of the system, a RuleML language extension for the representation of a proof explanation, and we give some
examples of the system. The system in essence implements a proof layer for nonmonotonic rules on the Semantic Web.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Defeasible reasoning; Nonmonotonic rule systems; Semantic Web proof layer; Proof explanation; RuleML

1. Introduction

The development of the Semantic Web proceeds in steps, each step building a layer on top of another. At
present, the highest layer that has reached sufficient maturity is the ontology layer in the form of the descrip-
tion logic-based language OWL [1]. The next step in the development of the Semantic Web will be the logic
and proof layers. The implementation of these two layers will allow the user to state any logical principles, and

* Corresponding author.
E-mail address: antoniou@ics.forth.gr (G. Antoniou).

0169-023X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2007.10.006

mailto:antoniou@ics.forth.gr

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 663

permit the computer to infer new knowledge by applying these principles on the existing data. Rule systems
appear to lie in the mainstream of such activities.

Many recent studies have focused on the integration of rules and ontologies, and various solutions have
been proposed. The Description Logic Programs is the approach followed in [2]; DLPs derive from the inter-
section of Description Logics and Horn Logic, and enable reasoning with available efficient LP inferencing
algorithms over large-scale DL ontologies. We also distinguish the approaches presented in [3,4], which study
the integration of Description Logics and Datalog rules. Two representative examples of rule languages for the
Semantic Web are TRIPLE [5] and SWRL [6]. They both provide a model for rules on the Semantic Web.
TRIPLE is based on F-Logic and provides support for RDFS and a subset of OWL Lite, while SWRL extends
OWL DL with Horn-style rules.

Different, but equally interesting research efforts, deal with the standardization of rules for the Semantic
Web. Works in this direction include (a) the RuleML Markup Initiative [7], whose ultimate goal is to develop
a canonical Web language for rules using XML markup, formal semantics, and efficient implementations; and
(b) the research conducted by the Rule Interchange Format (RIF) Working Group, which was recently
launched by W3C.

Moreover, rule systems can also be utilized in ontology languages. So, in general rule systems can play a
two-fold role in the Semantic Web initiative:

(a) they can serve as extensions of, or alternatives to, description logic-based ontology languages; and
(b) they can be used to develop declarative systems on top of (using) ontologies.

Apart from classical rules that lead to monotonic logical systems, recently researchers started to study sys-
tems capable of handling conflicts among rules and reasoning with partial information. Recently developed
nonmonotonic rule systems for the Semantic Web are:

(a) DR-Prolog [8] is a system that implements the entire framework of Defeasible Logic, and is thus able to
reason with: monotonic and nonmonotonic rules, preferences among rules, RDF data and RDFS ontol-
ogies. It is syntactically compatible with RuleML, and is implemented by transforming information into
Prolog.

(b) DR-DEVICE [9] is also a defeasible reasoning system for the Semantic Web. It is implemented in Jess,
and integrates well with RuleML and RDF.

(c) SweetJess [10] implements defeasible reasoning through the use of situated courteous logic programs. It
is implemented in Jess, and allows for procedural attachments, a feature not supported by any of the
above implementations.

(d) dlvhex [11]1is based on dil-programs, which realize a transparent integration of rules and ontologies using
answer-set semantics.

The upper levels of the Semantic Web have not been researched enough and contain critical issues, like
accessibility, trust and credibility. The next step in the architecture of the Semantic Web is the proof layer
and little has been written and done for this layer.

The main difference between a query posed to a “traditional”” database system and a Semantic Web system is
that the answer in the first case is returned from a given collection of data, while for the Semantic Web system
the answer is the result of a reasoning process. While in some cases the answer speaks for itself, in other cases
the user will not be confident in the answer unless she can trust the reasons why the answer has been produced.
In addition it is envisioned that the Semantic Web is a distributed system with disparate sources of information.
Thus, a Semantic Web answering system, to gain the trust of a user must be able, if required, to provide an
explanation or justification for an answer. Since the answer is the result of a reasoning process, the justification
can be given as a derivation of the conclusion with the sources of information for the various steps.

In this work, we describe a system for representing and exchanging explanations on the Semantic Web,
which uses Defeasible Logic as the underlying inference system. Defeasible Logic has been shown useful
for application areas such as legal reasoning [12], modelling of agents and agent societies [13], agent negoti-
ations [14], semantic brokering [15], and applications to the Semantic Web [8,9].

664 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

The paper is organised as follows. Section 2 presents the basics of Defeasible Logic, a nonmonotonic rules
system used as the underlying knowledge representation and reasoning method. Section 3 describes the meth-
ods used to extract a meaningful explanation from a proof trace. Section 4 outlines a graphical interface used
to present an explanation to the user. Section 5 describes the implementation of a multi-agent environment
allowing agents to request and receive answers and explanations. Explanations are exchanged in an XML lan-
guage, an extension of RuleML described in Section 6. Section 7 briefly discusses some potential use cases.
Finally, Section 8 discusses related work.

2. Use cases
In this section, we mention three examples where the agents make use of explanations in the Semantic Web:

— An agent can make use of an explanation during a e-commerce negotiation. For example, an agent that
represents a buyer can send a message to the agent that represents the online shop asking if the buyer owns
money to the shop. If the agent that represents the online shop answers positively, then the buyer’s agent
may ask for an explanation why he owns the money. Then the online shop’s agent will answer sending back
the full explanation. This exchange of proofs is crucial for large-scale success of automated e-commerce on
the Semantic Web.

— Another case where an agent can use an explanation is at a University System. For example an agent that
represents a student may ask for the student’s grades. Then for every lesson that the student failed to pass
the agent may ask for an explanation why he failed. The university’s agent then will respond with a full
explanation containing the midterms grade, the grade of the project, and the grade of the final exam.
The same may happen for the lessons that the student succeeded; in the latter case, the agents may ask
for an explanation about how the grades were extracted. Thus, proofs can enhance the interactive behavior
of web sites.

— Finally an agent can ask for an explanation in the case that it is not permitted to access a system. For exam-
ple, an agent may try to access a system, but the system sends back a message telling that the agent does not
have the right permissions to access it. Then the agent may ask for an explanation about why it is not
authorized to access the system. An approach in this direction has been developed in the infrastructure
described in [16]. That study describes the development of a rule-based management system that provides
a mechanism for the exchange of rules and proofs for access control in the Web, in cases such as who owns
the copyright to a given piece of information, what privacy rules apply to an exchange of personal infor-
mation, etc.

In all these cases, the negotiation is made automatically without the user’s direct involvement. The agent
makes all the appropriate actions and presents only the result and the explanation to the user.

3. Basics of Defeasible Logic
3.1. Basic characteristics

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete and inconsistent infor-
mation. It represents facts, rules, and priorities among rules. This reasoning family comprises Defeasible Log-
ics [17] and Courteous Logic Programs [18]; the latter can be viewed as a special case of the former [19]. The
main advantage of this approach is the combination of two desirable features: enhanced representational
capabilities allowing one to reason with incomplete and contradictory information, coupled with low compu-
tational complexity compared to mainstream nonmonotonic reasoning. The basic characteristics of Defeasible
Logics are:

— Defeasible Logics are rule-based, without disjunction.
— Classical negation is used in the heads and bodies of rules, but negation-as-failure is not used in the object
language (it can easily be simulated, if necessary [19]).

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 665

— Rules may support conflicting conclusions.

— The logics are skeptical in the sense that conflicting rules do not fire. Thus, consistency is preserved.
— Priorities on rules may be used to resolve some conflicts among rules.

— The logics take a pragmatic view and have low computational complexity.

3.2. Syntax

A defeasible theory is a triple (F, R,>), where Fis a set of literals (called facts), R a finite set of rules, and > a
superiority relation on R. In expressing the proof theory we consider only propositional rules. Rules contain-
ing free variables are interpreted as the set of their variable-free instances.

There are three kinds of rules: Strict rules are denoted by 4 — p, where A4 is a finite set of literals and p is a
literal, and are interpreted in the classical sense: whenever the premises are indisputable (e.g. facts) then so is
the conclusion. An example of a strict rule is “Professors are faculty members”. Written formally:

professor(X) — faculty(X)

Inferences from facts and strict rules only are called definite inferences. Facts and strict rules are intended to
define relationships that are definitional in nature. Thus, Defeasible Logics contain no mechanism for resolv-
ing inconsistencies in definite inference.

Defeasible rules are denoted by 4 = p, and can be defeated by contrary evidence. An example of such a
rule is

professor(X) = tenured(X)

which reads as follows:“ Professors are typically tenured”’.
Defeaters are denoted by 4 ~~ p and are used to prevent some conclusions. In other words, they are used to
defeat some defeasible rules by producing evidence to the contrary. An example is the rule

assistant-professor (X) ~» — tenured (X)

which reads as follows: “Assistant professors may not be tenured”’. This means that the information that
someone is an assistant professor is not sufficient evidence to conclude that he is not tenured. It is only evi-
dence that he may not be tenured.

A superiority relation is an acyclic relation > on R (that is, the transitive closure of > is irreflexive). Given
two rules r1 and r2, if we have that 1 > r2, then we will say that r1 is superior to 12, and r2 inferior to r1. This
expresses that 71 may override 2. For example, given the rules

r: professor(X) = tenured(X)
¥ visiting (X)) = —tenured (X)
which contradict each other, no conclusive decision can be made about whether a visiting professor is tenured.

But if we introduce a superiority relation > with ' > r, then we can indeed conclude that he/she cannot be
tenured.

3.3. Proof theory
A conclusion of D is a tagged literal and can have one of the following four forms:
— +Agq, which is intended to mean that ¢ is definitely provable in D.
— —Ag, which is intended to mean that we have proved that ¢ is not definitely provable in D.
— +0gq, which is intended to mean that ¢ is defeasibly provable in D.

— —0q, which is intended to mean that we have proved that ¢ is not defeasibly provable in D.

If we are able to prove ¢ definitely, then ¢ is also defeasibly provable. This is a direct consequence of the
formal definition below. It resembles the situation in, say, default logic: a formula is sceptically provable from

666 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

a default theory 7= (W, D) (in the sense that it is included in each extension) if it is provable from the set of
facts W.

Provability is based on the concept of a derivation (or proof) in D = (F,R,>). A derivation is a finite
sequence P = (P(1),...,P(n)) of tagged literals constructed by inference rules. There are four inference rules
(corresponding to the four kinds of conclusion) that specify how a derivation may be extended. (P(1...7)
denotes the initial part of the sequence P of length i):

+ A: We may append P(i + 1) = +Agq if either
q € F or
Ir € Riq] Va € A(r): +AacP(l...i0)

That means, to prove +Ag we need to establish a proof for ¢ using facts and strict rules only. This is a deduc-
tion in the classical sense. No proofs for the negation of ¢ need to be considered (in contrast to defeasible prov-
ability below, where opposing chains of reasoning must be taken into account, too).

To prove —Ag, that is, that ¢ is not definitely provable, ¢ must not be a fact. In addition, we need to estab-
lish that every strict rule with head ¢ is known to be inapplicable. Thus, for every such rule r there must be at
least one antecedent a for which we have established that « is not definitely provable (—Aa):

—A: We may append P(i + 1) = —Aq if
q ¢ F and
Vr € Ri[q]3a € A(r) : —Aa € P(1...9)

It is worth noticing that this definition of nonprovability does not involve loop detection. Thus, if D consists of
the single rule p — p, we can see that p cannot be proven, but Defeasible Logic is unable to prove —Ap:

+0: We may append P(i + 1) = +0q if either
(1) +Aq € P(1...i) or
(2) (2.1) Ir € Ryql Va € A(r): + da € P(1...i) and
(2.2) = A~ g€ P(1...i) and
(2.3) Vs € R[~q] either
(2.3.1) Ja € A(s): —0a € P(1...i), or
(2.3.2) 3t € R,q] such that
Vae A(t): +0a € P(1...0)and t > s
Let us illustrate this definition. To show that ¢ is provable defeasibly we have two choices: (1) we show
that ¢ is already definitely provable; or (2) we need to argue using the defeasible part of D as well. In
particular, we require that there must be a strict or defeasible rule with head ¢ which can be applied
(2.1). But now we need to consider possible attacks, that is, reasoning chains in support of ~¢g. To be
more specific: to prove ¢ defeasibly we must show that ~g is not definitely provable (2.2). Also (2.3)
we must consider the set of all rules which are not known to be inapplicable and which have head
~q. Essentially each such rule s attacks the conclusion ¢. For ¢ to be provable, each such rule must
be counterattacked by a rule ¢ with head ¢ with the following properties: (i) ¢ must be applicable at this
point, and (ii) ¢+ must be stronger than s. Thus, each attack on the conclusion ¢ must be counterattacked
by a stronger rule.
The definition of the proof theory of Defeasible Logic is completed by the condition—0. It is nothing more
than a strong negation of the condition + 0:

—0: We may append P(i + 1) = —0q if
(1) —Ag € P(1...i) and
(2) (2.1) Vr € Ryjg] Fa € A(r): —0a € P(1...i) or
(22) +A~gq e P(1...0) or
(2.3) s € R[~q] such that

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 667

(2.3.1) Va € A(s): +0a € P(1...i) and
(2.3.2) Vt € Ry [q] either
Ja€ A(t): —0a € P(l...Q)ort # s

To prove that g is not defeasibly provable, we must first establish that it is not definitely provable. Then we
must establish that it cannot be proven using the defeasible part of the theory. There are three possibilities to
achieve this: either we have established that none of the (strict and defeasible) rules with head ¢ can be applied
(2.1); or ~q is definitely provable (2.2); or there must be an applicable rule r with head ~¢ such that no pos-
sibly applicable rule s with head ~¢q is superior to s (2.3).

The elements of a derivation P in D are called /ines of the derivation. We say that a tagged literal L is prov-
able in D = (F, R,>), denoted D L, iff there is a derivation in D such that L is a line of P. When D is obvious
from the context we write L.

It is instructive to consider the conditions +0 and —0 in the terminology of teams, borrowed from Gro-
sof [18]. At some stage there is a team A4 consisting of the applicable rules with head ¢, and a team B con-
sisting of the applicable rules with head ~¢q. These teams compete with one another. Team 4 wins iff every
rule in team B is overruled by a rule in team A; in that case we can prove +0¢q. Another case is that team B
wins, in which case we can prove +0 ~ ¢. But there are several intermediate cases, for example one in which
we can prove that neither ¢ nor ~¢g are provable. And there are cases where nothing can be proved (due to
loops).

Concepts of a model-theoretic semantics in [20], and argumentation semantics is discussed in [21].

3.4. Defeasible Logic metaprogram

In order to perform reasoning over a defeasible theory, we have adopted the approach proposed in [22,23].
This approach is based on a translation of a defeasible theory D into a logic metaprogram P(D), and describes
a framework for defining different versions of Defeasible Logics, following different intuitions. In particular,
this framework is based on two “parameters’:

(a) The metaprogram P(D).
(b) The negation semantics adopted to interpret the negation appearances within P(D).

For part (b), different semantics have been proposed and studied in the literature: the well-founded seman-
tics, answer set semantics, and the classical negation-as-failure operator of Prolog.

In this work, we use a similar metaprogram which fits better our needs for representing explanations. This
metaprogram consists of the following program clauses. The first two clauses define the class of rules used in a
defeasible theory:

supportive rule(Name,Head,Body):- strict(Name,Head,Body).
supportive_rule(Name,Head,Body):- defeasible (Name,Head,Body).

The following clauses define definite provability: a literal is definitely provable if it is a fact or is supported
by a strict rule, the premises of which are definitely provable:

definitely(X):- fact(X).

definitely(X):- strict(R,X,L),definitely provable(L).

definitely provable([X1|X2]):- definitely provable(X1l), definitely provable(X2).
definitely provable(X):- definitely(X).

definitely provable([]).

The next clauses define defeasible provability: a literal is defeasibly provable, either if it is definitely prov-
able, or if its complementary is not definitely provable, and the literal is supported by a defeasible rule, the
premises of which are defeasibly provable, and which is unblocked.

668 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

defeasibly(X):- definitely(X).

defeasibly(X):- negation(X,X1l), supportive_rule(R,X,L), defeasibly _provable (L),
unblocked(R,X), xsb_meta not(definitely(X1)).

defeasibly provable([X1|X2]):-defeasibly provable(X1l),defeasibly provable(X2).
defeasibly provable(X):- defeasibly (X).

defeasibly _provable([]).

A rule is unblocked when there is not an undefeated conflicting rule:

unblocked (R,X):- negation(X,X1), xsb_meta not(undefeated(X1l)).

A literal is undefeated when it is supported by a defeasible rule which in not blocked:
undefeated(X):- supportive_rule(S,X,L), xsb_meta not(blocked(S,X)).
A rule is blocked either if its premises are not defeasibly provable, or if it is defeated:

blocked (R,X):- supportive_rule(R,X,L), xsb_meta not(defeasibly provable(L)).
blocked(R,X):- supportive_rule(R,X,L), defeasibly provable (L), defeated(R,X).

A rule is defeated when there is a conflicting defeasible rule, which is superior and its premises are defeasibly
provable:

defeated(S,X):- negation(X,X1), supportive_rule(T,X1,V),
defeasibly _provable(V), sup(T,S).

We define the predicate negation to represent the negation of a predicate and evaluate the double negation
of a predicate to the predicate itself. Furthermore, we define the predicate xsb_meta_not in order to represent
the not predicate when executing a program in XSB trace.

Our system supports both positive and negative conclusions. Thus, it is able to give justification why a con-
clusion cannot be reached. We define when a literal is not definitely provable and when it is not defeasibly
provable. A literal is not definitely provable if it is not a fact and for every strict rule that supports it, its pre-
mises are not definitely provable. A literal is not defeasibly provable if it is not definitely provable and its com-
plementary is definitely provable or for every defeasible rule that supports it, either its premises are not
defeasibly provable, or it is not unblocked.

4. Explanation in Defeasible Logic
4.1. Search tree construction

The metaprogram works in conjunction with a Prolog system. In our prototype we use XSB Prolog. It was
chosen mainly because we were able to experiment with various LP semantics (usual Prolog not, and well-
founded semantics). However, it should be clear that the ideas and functionality of our system are orthogonal
to the selection of a particular Prolog system.

The foundation of the proof system lies in the Prolog metaprogram that implements Defeasible Logic, with
some additional constructs to facilitate the extraction of traces from XSB. We use the trace of the invocation
of the metaprogram to generate a Defeasible Logic search tree, that subsequently will be transformed into a
proof suitable to be presented to an end user.

The negation we use in conjunction with the metaprogram is the negation-as-failure of Prolog. Unfortu-
nately, the XSB trace information for well-founded semantics does not provide the information we would
require to produce meaningful explanations.

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 669

To enable the trace facility, the XSB process executes the command trace. After loading of the metapro-
gram and the defeasible theory, the system is ready to accept any queries which are forwarded unmodified
to the XSB process. During the evaluation of the given query/predicate the XSB trace system will print a mes-
sage each time a predicate is:

. initially entered (Call),

. successfully returned from (Exit),
. failed back into (Redo), and

. completely failed out of (Fail).

R NLUS T N R

The produced trace is incrementally parsed by the Java XSB invoker front-end and a tree whose nodes rep-
resent the traced predicates is constructed. Each node encapsulates all the information provided by the trace.
Namely:

— A string representation of the predicate’s name.

— The predicate’s arguments.

— Whether it was found to be true (Exit) or false (Fail).
— Whether it was failed back into (Redo).

In addition to the above, the traced predicate representation node has a Boolean attribute that encodes
whether the specific predicate is negated. That was necessary for overcoming the lack of trace information
for the not predicate (see next section).

One remark is due at this stage: Of course our work relies on the trace provided by the underlying logic
programming system (in our case XSB). If we had used an LP directly for knowledge representation, expla-
nations on the basis of LP would have been appropriate. However, here we use defeasible reasoning for
knowledge representation purposes (for reasons explained extensively in previous literature), thus explana-
tions must also be at the level of Defeasible Logics.

4.2. Search tree pruning: illustration

The pruning algorithm, that produces the final tree from the initial XSB trace, focuses on two major
points. Firstly, the XSB trace produces a tree with information not relevant for the generation of the
search tree. One reason for this is that we use a particular metaprogram to translate the Defeasible Logic
into logic programming. For the translation to be successful, we need some additional clauses which add
additional information to the XSB trace. Another reason derives from the way Prolog evaluates the
clauses, showing both successful and unsuccessful paths. Secondly, the tree produced by the XSB trace
is built according to the metaprogram structure but the final tree needs to be in a complete different form,
compliant with the XML schema described in Section 6. We will take a closer look at the details of these
issues.

A main issue of the pruning process was the way Prolog evaluates its rules. Specifically, upon rule evalu-
ation the XSB trace returns all paths followed whether they evaluate to true or false. According to the truth
value and the type of the root node, however, we may want to maintain only successful paths, only failed paths
or combinations of both. Suppose we have the following defeasibly theory, translated into logic programming
clauses as follows:

fact(a).

fact(e).
defeasible(rl,b,a).
defeasible(r2,b,e).
defeasible(r3,” (b),d).

670 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

If we issue a query about the defeasible provability of literal b, XSB trace fails at first to prove that b is
definitely provable and then finds a defeasible rule and proves that its premises are defeasible provable. It pro-
duces a search tree, which begins with the following lines:

Proof
defeasibly(b) : True

definitely(b) :False
fact(b) :False
strict(_h144,b,_h148) :False

negation(b,~ (b)) :True

supportive_rule(rl,b,a):True
strict(_h155,b,_h157) :False
defeasible(r1l,b,a):True

defeasibly_provable(a) :True
defeasibly(a) : True

definitely(a):True
fact(a): True

In this type of proof, we are only interested in successful paths and the pruning algorithm removes the
subtree with the false goal to prove that b is definitely provable and the false predicate to find a strict
supportive rule for b. It also prunes the metaprogram additional negation clause. The complementary lit-
eral is used in next parts of the proof. The corresponding final pruned subtree for this query has the fol-
lowing form:

Proof
defeasibly(b) :True

supportive_rule(rl,b,a) :True
defeasible(rl,b,a) :True

defeasibly_provable(a) : True
defeasibly(a) : True

definitely(a) :True
fact(a) :True

Suppose we have the following defeasibly theory:

fact(a).
defeasible(rl,b,a).
defeasible(r2,” (b),a).

If we issue a query about the defeasible provability of literal b, XSB fails to prove it; at first it fails to prove
that b is definitely provable. It produces a search tree, which begins with the following lines:

Proof
defeasibly(b) :False
definitely(b) :False
fact(b) :False
strict(_h144,b,_h148) :False

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 671

In this proof, we are interested in unsuccessful paths and the pruning algorithm keeps the initial search tree.
Thus, the pruned tree remains the same in the first lines.

The other heuristic rules deal with the recursive structure of Prolog lists and the XSB’s caching technique
which shows only the first time the whole execution tree for a predicate, during trace execution of a goal. Our
pruning algorithm keeps a copy of the initial trace so as to reconstruct the subtree for a predicate whenever it
is required.

Using these heuristic techniques, we end up with a version of the search tree that is intuitive and readable.
In other words, the tree is very close to an explanation derived by the use of pure Defeasible Logic.

4.3. Search tree pruning: the methods

1. Pruning Definitely. When the atom of a query can be proved definitely it is either a fact, in which case
we simply locate the fact clause, or there is at least one strict rule having the atom as its head and a
body that is definitely provable. Thus, we locate the first such rule along with the definite proof of its
body. An example of an initial search tree produced by XSB and the corresponding pruned subtree is
the following:

Proof
definitely(b): True
fact(b): False
strict(rl, b, a): True
definitely_provable(a): True
definitely(a): True
fact(a): True

Proof
definitely(b): True
strict(rl, b, a): True
definitely_provable(a): True
definitely(a): True
fact(a): True

2. Pruning Not Definitely. When the atom of a query cannot be proved definitely, it is not a fact and there is no
strict rule supporting the atom that its body can be definitely proved. Therefore, we locate the failed ‘fact’
clause as well as all the aforementioned strict rules along with the proof that their bodies are not definitely
provable. An example of an initial search tree produced by XSB and the corresponding pruning subtree is
the following:

Proof
definitely(b): False
fact(b): False
strict(r2, b, d): True
definitely_provable(d): False
definitely(d): False
fact(d): False
strict(_h175, d, _h179): False
strict(_h134, b, _h138): False

Proof
definitely(b): False
fact(b): False
strict(r2, b, d): True
definitely_provable(d): False
definitely(d): False
fact(d): False
strict(_h175, d, _h179): False

3. Pruning Defeasibly. When the atom of a query can be proved defeasibly, it is either definitely provable, in
which case we just locate that proof, or there is at least one supportive rule that triggers and is not blocked
by any other rule. In the latter case, we locate the first such rule along with the proof of its body as well as
the proof that all attacking rules are blocked (either not firing, or defeated). Here we also need to check that
the negation of the atom is not definitely provable and we locate that proof as well. An example of an initial
search tree produced by XSB and the corresponding pruned subtree is the following (the underlined ele-
ments are pruned from the initial search tree):

672 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

Proof
defeasibly(b): True
definitely(b): False
fact(b): False
strict(_h144, b, _h148): False
negation(b, “(b)): True
supportive_rule(rl, b, a): True
strict(_h155, b, _h157): False
defeasible(rl, b, a): True
defeasibly_provable(a): True
defeasibly(a): True
definitely(a): True
fact(a): True
unblocked(rl, b): True
negation(b, “(b)): True
Not supportive_rule(_h286, ~(b), _h288): False
supportive_rule(r2, “(b), a): True
strict(_h286, ~(b), _h288): False
defeasible(r2, ~(b), a): True
negation(b, _h267): False
negation(b, ~(b)): True
Not undefeated(~(b)): True
undefeated("(b)): False

supportive_rule(r2, “(b), a): True
strict(_h566, ~(b), _h564): False
defeasible(r2, ~(b), a): True
Not blocked(r2, ~(b)): False
blocked(r2, ~(b)): True
supportive_rule(r2, “(b), a): True
strict(r2, ~“(b), _h886): False
defeasible(r2, ~(b), a): True
Not defeasibly_provable(a): False
defeasibly_provable(a): True
supportive_rule(r2, ~(b), _h886): False
defeasible(r2, ~(b), _h886): False
supportive_rule(r2, ~(b), a): True
strict(r2, “(b), _h886): False
defeasible(r2, ~(b), a): True
defeasibly_provable(a): True
defeated(r2, ~“(b)): True
negation(~(b), b): True
supportive_rule(rl, b, a): True
strict(_h969, b, _h971): False
defeasible(rl, b, a): True
defeasibly_provable(a): True
sup(rl, r2): True
supportive_rule(_h566, ~(b), _h564): False
defeasible(_h566, ~(b), _h564): False
Not definitely(”(b)): True
definitely(~(b)): False
fact(“(b)): False
strict(_h590, ~(b), _h594): False

4. Pruning Not Defeasibly. When the atom of a query cannot be proved defeasibly, it cannot be proved
definitely and either there is a triggering not blocked rule supporting the negation of the atom or there
is no triggering supportive rule that is not blocked or the negation of the atom can be definitely
proved. An example of an initial search tree produced by XSB and the corresponding pruned subtree
is the following:

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 673

Proof
defeasibly(b): False
definitely(b): False
fact(b): False
strict(_h144, b, _h148): False
negation(b, “(b)): True
supportive_rule(rl, b, a): True
strict(_h155, b, _h157): False
defeasible(rl, b, a): True
defeasibly_provable(a): True
defeasibly(a): True
definitely(a): True
fact(a): True
unblocked(rl, b): False
negation(b, “(b)): True

Not supportive_rule(_h286, ~(b), _h288): False
supportive_rule(r2, “(b), a): True
strict(_h286, ~(b), _h288): False
defeasible(r2, “(b), a): True
negation(b, _h267): False
negation(b, “(b)): True
Not undefeated("(b)): False
undefeated("(b)): True
supportive_rule(r2, “(b), a): True
strict(_h566, ~(b), _hb564): False
defeasible(r2, ~(b), a): True
Not blocked(r2, ~(b)): True
blocked(r2, ~(b)): False
supportive_rule(r2, “(b), a): True
strict(r2, “(b), _h886): False
defeasible(r2, ~(b), a): True
Not defeasibly_provable(a): False
defeasibly_provable(a): True
supportive_rule(r2, “(b), _h886): False
defeasible(r2, ~(b), _h886): False
supportive_rule(r2, “(b), a): True
strict(r2, ~“(b), _h886): False
defeasible(r2, ~(b), a): True
defeasibly_provable(a): True
defeated(r2, ~(b)): False
negation(~(b), b): True
supportive_rule(rl, b, a): True
strict(_h969, b, _h971): False
defeasible(rl, b, a): True
defeasibly_provable(a): True
sup(rl, r2): False
defeasibly_provable(a): False
supportive_rule(_h969, b, _h971): False
defeasible(_h969, b, _h971): False
negation(~(b), _h952): False
defeasibly_provable(a): False
supportive_rule(r2, ~(b), _h886): False
defeasible(r2, ~(b), _h886): False
negation(b, _h267): False
defeasibly_provable(a): False
supportive_rule(_h155, b, _h157): False
defeasible(_h155, b, _h157): False
negation(b, _h136): False

674 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

5. Pruning Lists. In Prolog, lists have a recursive structure (i.e. a list is a concatenation of an object with the
remaining list) and this structure is inherited by the search tree. To remedy this case we flatten the lists to a
single depth sequence of atoms. An example of an initial search tree produced by XSB and the correspond-
ing pruned subtree is the following:

Proof
defeasibly(c): True
definitely(c): True
fact(c): False
strict(rl, c, [a, bl): True
definitely_provable([a, b]): True
definitely_provable(a): True
definitely(a): True
fact(a): True
definitely_provable([b]l): True
definitely_provable(b): True
definitely(b): True
fact(b): True
definitely_provable([]): True
definitely([]): False
fact([]): False
strict(_h301, [], _h305): False

6. Handling missing proofs. XSB uses a caching technique in order to avoid reevaluating already evaluated
expressions. Effectively, this means that the first time it encounters a predicate, XSB provides the result
along with the proof execution tree in the trace. If it comes across the same predicate again, it uses the
cached value and does not show the whole execution tree. In some cases, the afore-mentioned pruning
techniques may prune the first evaluation of the predicate and at some point where we actually want
the predicate to be maintained we are left with the cached version. This is not desirable, so we are
forced to keep a copy of the initial trace so as to recover a possibly pruned predicate evaluation sub-
tree. An example of an initial search tree produced by XSB and the corresponding pruned subtree is
the following:

Proof
defeasibly(d): True
definitely(d): True
fact(d): False
strict(z3, d, [b, c]): True
definitely_provable([b, c]): True
definitely_provable(b): True
definitely(b): True
fact(b): False
strict(rl, b, a): True
definitely_provable(a): True
definitely(a): True
fact(a): True
definitely_provable([c]): True
definitely_provable(c): True
definitely(c): True
fact(c): False
strict(r2, c, b): True
definitely_provable(b): True
definitely_provable([]): True
definitely([]): False

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—687 675

5. Graphical user interface to the proof system

The graphical user interface Fig. 1 to the proof system, offers an intuitive way to interact with the under-
lying system and visualize the requested proofs. The proofs are rendered as a tree structure in which each node
represents a single predicate. A tree node may have child nodes that represent the simpler, lower level, pred-
icates that are triggered by the evaluation of the parent predicate. Thus, the leaf nodes represent the lowest
level predicates of the proof system, which correspond to the basic atoms of a defeasible theory (facts, rules
and superiority relations) which cannot be further explained. Additionally, if an atom has additional metadata
attached to its definition, such as references for the fact and rule predicates, those are displayed as a tooltip to
the corresponding tree node. This is an optional reference to a Web address that indicates the origin of the
atom.

The interaction with the graphical user interface is broken down to three or four steps, depending on
whether it is desirable to prune the resulting search tree in order to eliminate the artifacts of the meta-program
and simplify its structure (see Section 2) or not. Thus, to extract a proof, the following steps must be carried
out:

1. The Defeasible Logic rules must be added to the system. Rules can be added by pressing either the Add Rule
or Add rules from file button at the right part of the interface. The Add Rule button presents a text entry
dialog where a single rule may be typed by the user. Besides that, pressing the Add rules from file button
allows the user to select a file that contains multiple rules separated by newlines. The added rules are always
visible at the bottom part of the graphical user interface.

2. As soon as the rules are loaded, the system is ready to be queried by the user. By typing a ‘query’ at the text
entry field at the right part of the screen, just below the buttons, and pressing enter, the underlying proof
system is invoked with the supplied input and the resulting proof is visualized to the tree view at the left part
of the interface.

3. By pressing the Prune button the system executes the pruning algorithms described in the previous section
to eliminate redundant information and metaprogram artifacts and thus bring the visualized search tree to
a more human friendly form.

6. Agent interface to the proof system

The system makes use of two kinds of agents, the ‘Agent’ which issues queries and the ‘Main Agent’ which
is responsible to answer the queries. Both agents are based on JADE (Java Agent DEvelopment Frame-
work)[24]. JADE simplifies the implementation of multi-agent systems through a middle-ware that complies
with the FIPA specifications. The agent platform can be distributed across machines and the configuration can
be controlled via a remote GUI. The configuration can be even changed at run-time by moving agents from
one machine to another, as and when required.

Fig. 2 shows the process followed by the Main Agent in order to answer a query.

l £ Proof tree trace g@@

£ Proof tree trace

4 Proof 4 Praof
= definitely(b): T = definkely(b): True
_J Y556 - Knowledge Management 4 . mi::érl) b“;): Trua HYSS6 - Knowledge Management
g strck(rD, b, a): True =Y definitely_provable(a): True
=4 definitely_provable(a): True = definitely(a): True
- definkely{a): True ‘[Prune | ® fact{a): True bl]
® fact{a): True [Load Rules J Load Rules]
| Addrue...] Add re...]
|
| Add rules From e . | Add rules from fil...]
|| definteh). definiteh(b).
act(a). act(a).
strict(rl, b, a). strict(rl, b, a).

Fig. 1. Graphical user interface to the proof system, before and after pruning a proof.

676

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

XML
Writter
h
8) Pruned result 9 XML proof
3) Predicate 2) Predicate ’ 1) Question
XSB Invoker Main Agent
> » Agent »
4) result 5) result tree 10) answer or
trace t proof

6) result tree 7) Pruned result

Pruner

Fig. 2. The system architecture.

All the above steps are illustrated next:

L.

An agent issues a query to the Main Agent. The query is of the form:predicate: : (proof/answer)The pred-
icate is a valid Prolog predicate, while the value in the parenthesis indicates the form of the answer that
the Main Agent is expected to return. The ‘answer’ value is used to request for a single true/false answer
to the agent’s query, while the ‘proof” value is used to request for the answer along with its proof expla-
nation. Two examples of queries follow below:

defeasibly(rich(antonis)):..proof

defeasibly(rich(antonis)). .answer

. Main Agent sends the Predicate to the Invoker. After receiving a query from an agent, the Main Agent

has to execute the predicate. For this reason it extracts the predicate from the query and sends it to the
Invoker who is responsible for the communication with the XSB (Prolog engine).

. Invoker executes the Predicate. The Invoker receives the predicate from the Main Agent and sends it to

XSB.

. XSB returns the result trace. The XSB executes the predicate and then returns the full trace of the result

to the Invoker.

. Invoker returns the result tree to Main Agent. The Invoker receives the trace from the XSB and creates an

internal tree representation of it. The result tree is then sent back to the Main Agent.

. Main Agent sends the result tree to the Pruner. The Main Agent after receiving the result tree from the

Invoker sends it to the Pruner in order to prune the tree. There exist two kinds of pruning. One is used
when the agent that issued the query wants to have the answer only. In that case the tree is pruned and
the remaining is just the answer (true or false). The other type of pruning is used when the agent that
issued the query also wants to have the proof. In that case, the branches of the tree that are not needed
are pruned, so the remaining is a pruned tree containing only the branches that are needed.

. Pruner returns the pruned result. The pruned result is sent back to the Main Agent.
. Main Agent sends the pruned result to the XML writer. This step is used only when the agent that issued

the query wants the proof. In this step the pruned result (proof) is sent to the XML writer in order to
create an XML representation of the proof.

. XML writer returns the XML Proof. The XML writer creates an XML representation of the proof,

according to the XML schema, and sends it back to the Main Agent.

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 677

10. Main Agent returns Answer or Proof. Finally the Main Agent sends back to the agent that issued the
query a string that contains the answer (true, false) or the proof accordingly to what he asked. The for-
mat of the string that is sent follows one of the three patterns:

— ANSWER(true—false) e.g ANSWERtrue This pattern is used when the Main Agent wants to send
only the answer. In this case it sends the string ‘ANSWER’ followed by the string representation
of the answer (i.e. ‘true’ or ‘false’). There is no space between the two words.

— PROOF:(proof string) This pattern is used when the Main Agent wants to send the proof. In this case
it sends the string ‘PROOF:’ followed by the string representation of the proof (written in XML)

— ERROR:(error message) e.g. ERROR:invalid mode This pattern is used when an error occurs during
the process. In this case the Main Agent sends the string ‘ERROR:’ followed by the string that con-
tains the error message.

7. Extension of RuleML for explanation representation

The need for a formal, XML based, representation of an explanation in the Semantic Web led us to design
an extension of the Rule Markup Language (RuleML) [13]. RuleML is an XML based language that supports
rule representation for the Semantic Web. In this section, we describe in detail the design of a new XML
schema, extension of RuleML, for explanation representation in Defeasible Logic and in the next section
we give some instructive examples.

7.1. Atoms, facts and rule representation

In our XML schema, we use a similar syntax to RuleML in order to represent Facts and Rules. Spe-
cifically, we use the Arom element which refers to an atomic formula, and it consists of two elements, an
operator element (Op) and either a Variable element (Var) or an Individual constant element (Ind), pre-
ceded optionally by a not statement (in case we represent a negative literal). Fig. 3 shows the declaration
of a typical Atom.

Similarly to RuleML, a Fact consists an Atom that comprises a certain knowledge. The last primitive entity
of our schema is Rules. In Defeasible Logic, we distinguish two types of Rules: Strict Rules and Defeasible
Rules. In our schema we define two different elements for these two types of rules. Both elements consist of
two parts, the Head element which is constituted of an Atom element, and the Body element which is con-
stituted of a number of Atom elements. Fig. 4 shows a typical example of a Defeasible Rule.

7.2. Definitely provable explanations

The simplest proof explanation is the case of a definitely provable Atom. For that proof, we first have to
denote the Atom, and then give the Definite Proof that explains why it is definitely provable. This expla-
nation can come out in two ways: either a simple Fact for that Atom, or a Strict Rule with this Atom as
its Head and an Atom that should be also proved definitely with the same way as its Body. If the Body con-
sists of multiple Atoms, then we state the definite provable explanation for every atom of the Body. Fig. 5
shows the structure of a definite proof explanation.

<Atom>
<Not>
<0p> rich </0p>
<Ind> Bob </Ind>
</Not>
</Atom>

Fig. 3. Declaration of an Atom.

678 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

<Defeasible_rule Label="r1">

<Head>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body>
<Atom>
<0p> wins_lotto </0p>
<Ind> Bob </Ind>
</Atom>
</Body>

</Defeasible_rule>

Fig. 4. Declaration of a defeasible rule.

<Definitely_provable>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
<Definite_Proof>
<Strict_rule Label="r1">
<Head>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body>
<Atom>
<0p> wins_lotto </0p>
<Ind> Bob </Ind>
</Atom>
</Body>
</Strict_rule>
<Definitely_provable>
<Definite_Proof>

<Fact>
<Atom>
<0p> wins_lotto </0p>
<Ind> Bob </Ind>
</Atom>
</Fact>

</Definite_Proof>
</Definitely_provable>
</Definite_Proof>
</Definitely_provable>

Fig. 5. Example of a typical definite proof explanation.

7.3. Defeasibly provable explanations

A defeasibly provable explanation arises from the Defeasible Logic specification. If an Atom is definitely
provable, then it is also defeasibly provable. This is the first, simple, explanation for a defeasible provable
Atom, that is covered by the previous section about definitely provable explanations.

Else, we denote the Atom and we have to a give a Defeasible Proof. A Defeasible Proof consists of
four steps: First, we point a Defeasible Rule with the specified Atom as its Head. In the second step,

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—687 679

we explain why the Body of that rule is defeasible provable (if it consists of many Atoms, then a separate
proof is given for every one of them). The third step is to show that the negation of this Atom is not definitely
provable (see Section 7.4). Finally, in the fourth step, we show that all rules with the negation of the Atom in
their head (attacking rules) can be defeated. We call these attacking rules as Blocked. We characterize
attacking rules as Blocked in two cases:

— When they cannot fire, so we must prove that their body is not defeasible provable (in case of multiple
Atoms it is enough to show that only one of them is not defeasible provable). For not defeasible provable
explanation, look at the Section 7.5 below.

<Defeasibly_provable>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
<Defeasible_Proof>
<Defeasible_rule Label="r1"> . . . </Defeasible_rule>
<Defeasible_provable>
<Atom>
<0p> wins_lotto </Op>
<Ind> Bob </Ind>
</Atom>
<Defeasible_Proof> . . . </Defeasible_Proof>
</Defasible_provable>
<Not_Definitely_provable>
<Atom>
<Not>
<0p> rich </0p>
<Ind> Bob </Ind>
</Not>
</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>
</Not_Definitely_provable>
<Blocked>
<Defeasible_rule Label="r3">
<Head>
<Atom>
<Not>
<0p> rich </0p>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
<Superior>
<Defeasible_rule Label="r1"/>
</Superior>
</Blocked>
<Blocked>
<Defeasible_rule Label="r4"> . . . </Defeasible_rule>
<Not_Defeasibly_provable> . . . </Not_Defeasibly_provable>
</Blocked>
</Defeasible_Proof>
</Defeasible_provable>

Fig. 6. Example of a typical defeasible proof explanation.

680 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

— When the rule is defeated by a superior rule. Even if the body of the rule is provable (the rule fires), another
rule with the specified Atom as its head fires and is declared as superior to the attacking rule. In our scheme,
we just need to declare the rule that is superior to the attacking rule, and in case that this rule is different
than the rule we first used as supportive, we also add the defeasible provable explanations for its body.

So, for every attacking rule we create a Blocked tag with the explanation of why the rule is defeated (one
of the above two cases). Fig. 6 shows the structure of a definite proof explanation.

7.4. Not definitely provable explanations

The next case is the explanation of an Atom that is not definitely provable. According to our XML schema,
we first denote the Atom that is not definitely provable and then we give the NonDefinitely Proof. The
NonDefinitely Proof consists of all the strict rules with head equal to the negation of the nonprovable
Atom, with an explanation of why they cannot fire. Inside Blocked tags, we include each strict rule with
a NonDefinitely Provable explanation for their body. Fig. 7 demonstrates an example of a nondefinitely prov-
able explanation.

7.5. Not defeasibly provable explanations

Finally, we describe the case when an Atom cannot be defeasibly proved. For a NonDefeasible Proof,
firstly we have to prove that this Atom is not definitely provable (as described in the previous section). Next,
we need to support our explanation with one of the following three cases:

<Not_Definitely_provable>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
<Not_Definite_Proof>
<Strict_rule Label="r3">

<Head>
<Atom>
<Not>
<0p> rich </0p>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<0p> owns_money </0p>
<Ind> Bob </Ind>
</Atom>
</Body>

</Strict_rule>
<Not_Definitely_provable>

<Atom>
<0p> owns_money </0p>
<Ind> Bob </Ind>
</Atom>

<Not_Definite_Proof> </Not_Definite_Proof>
</Not_Definitely_provable>
</Not_Definite_Proof>
</Not_Definitely_provable>

Fig. 7. Example of a nondefinitely provable explanation.

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 681

— All rules with the specified Atom as their head do not fire. For that case, we include inside Blocked tags
every supportive defeasible rule, and also a not defeasibly provable explanation for their body.

— The negation of this Atom is definitely provable.

— We denote a rule with the negation of the specified Atom as its head, which is Unde feated. That means
that there is no attacking rule that can defeat it. So, we embody inside Unde feated tags the defeasible rule
that is undefeated, the defeasible provable explanation for the body of that rule and finally every attacking
rule that supports the specified Atom is denoted inside Blocked tags either as Not Superior rule com-
pared with the undefeated rule, or its body as non defeasible provable.

Fig. 8 shows an example of a nondefeasible provable explanation.

<Not_Defeasibly_provable>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
<Not_Defeasible_Proof>
<Not_Definitely_provable>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>
</Not_Definitely_provable>
<Undefeated>
<Defeasible_rule Label="r4">
<Head>
<Atom>
<Not>
<0p> rich </0p>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
<Defeasibly_provable> . . . </Defeasibly_provable>
<Blocked>
<Not_Superior>
<Defeasible_rule Label="ri1">
<Head>
<Atom>
<0p> rich </0p>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
</Not_Superior>
</Blocked>
</Undefeated>
</Not_Defeasible_Proof>
</Not_Defeasibly_provable>

Fig. 8. Example of a nondefeasible provable explanation.

682 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687

8. Related work

Besides teaching logic [25], not much work has been centered around explanation in reasoning systems so
far. Rule-based expert systems have been very successful in applications of Al, and from the beginning, their
designers and users have noted the need for explanations in their recommendations. In expert systems like [26]
and Explainable Expert System [27], a simple trace of the program execution/rule firing appears to provide a
sufficient basis on which to build an explanation facility and they generate explanations in a language under-
standable to its users.

Work has also been done in explaining the reasoning in description logics [28,29]. This research presents a
logical infrastructure for separating pieces of logical proofs and automatically generating follow-up queries
based on the logical format.

8.1. Inference web

The most prominent work on proofs in the Semantic Web context is Inference Web [30]. The Inference Web
(IW) is a Semantic Web based knowledge provenance infrastructure that supports interoperable explanations
of sources, assumptions, learned information, and answers as an enabler for trust. It supports provenance, by
providing proof metadata about sources, and explanation, by providing manipulation trace information. It
also supports trust, by rating the sources about their trustworthiness.

The Inference Web consists of the following main components:

— Proof Markup Language (PML [31]) is an OWL-based specification for documents representing both proofs
and proof meta information. Proofs are specified in PML and are interoperable.

— IWBase is an infrastructure within the Inference Web framework for proof meta information. It is a dis-
tributed repository of PML documents describing provenance information about proof elements such as
sources, inference engines and inference rules.

— IWExplainer is a tool for abstracting proofs into more understandable formats.

— IWBrowser can display both proofs and explanations in number of proof styles and sentence formats.

IW simply requires inference rule registration and PML format. It does not limit itself to only extracting
deductive engines. It provides a proof theoretic foundation on which to build and present its explanations,
but any question answering system may be registered in the Inference Web and thus explained. So, in order
to use the Inference Web infrastructure, a query answering system must register in the IWBase its inference
engine along with its supported inference rules, using the PML specification format. The IW supports a proof
generation service that facilitates the creation of PML proofs by inference engines.

It is an interesting and open issue how our implemented proof system could be registered in the Inference
Web, so as to produce PML proofs. This would possibly require the registration of our inference engine, that
is a Defeasible Logic reasoner, along with the corresponding inference rules, which are used in the Defeasible
Logic proof theory and the explanations produced by our proof system.

Extra work needs to be done in Inference Web in order to support why-not questions. Current IW infra-
structure cannot support explanations in negative answers about predicates. This is the case that corresponds
to our system’s explanations when an atom is not definitely or defeasibly provable.

9. Conclusion and future work

We presented a new system that aims to increase the trust of the users for the Semantic Web applications.
The system automatically generates an explanation for every answer to user’s queries, in a formal and useful
representation. It can be used by individual users who want to get a more detailed explanation from a reason-
ing system in the Semantic Web, in a more human readable way. Also, an explanation could be fed into a
proof checker to verify the validity of a conclusion; this is important in a multi-agent setting.

Our reasoning system is based on Defeasible Logic (a nonmonotonic rule system) and we used the related
implemented meta-program and XSB as the reasoning engine. We developed a pruning algorithm that reads

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—687 683

the XSB trace and removes the redundant information in order to formulate a sensible proof. Furthermore, the
system can be used by agents, a common feature of many applications in the Semantic Web. Another contribu-
tion of our work is a RuleML extension for a formal representation of an explanation using Defeasible Logic.
Additionally, we provide a web style representation for the facts, that is an optional reference to a URL. We
expect that our system can be used by multiple applications, mainly in e-commerce and agent-based applications.

There are interesting ways of extending this work. The explanation can be improved to become more intu-
itive and human-friendly, to suit users unfamiliar with logic. Also, what-if and how-to queries could be sup-
ported. The XML Schema should be made fully compatible with the latest version of RuleML. Finally,
integration with the Inference Web infrastructure will be explored.

Acknowledgement

This work was partially supported by the REWERSE Network of Excellence.
References

[1] D.L. McGuinness, F. van Harmelen, OWL Web Ontology Language Overview W3C Recommendation, 2004, http://www.w3.org/
TR/owl-features/.
[2] B.N. Grosof, 1. Horrocks, R. Volz, S. Decker, Description logic programs: combining logic programs with description logic, in:
WWW, 2003, pp. 48-57.
[3] A.Y. Levy, M.C. Rousset, Combining Horn rules and description logics in CARIN, Artif. Intell. 104 (1-2) (1998) 165-209.
[4] R. Rosati, On the decidability and complexity of integrating ontologies and rules, WSJ 3 (1) (2005) 41-60.
[5] M. Sintek, S. Decker, TRIPLE — a query, inference, and transformation language for the Semantic Web, in: International Semantic
Web Conference, 2002, pp. 364-378.
[6] I. Horrocks, P.F. Patel-Schneider, A proposal for an OWL Rules Language, in: WWW’04: Proceedings of the 13th International
Conference on WorldWideWeb, ACM Press, New York, NY, USA, 2004, pp. 723-731.
[7]1 RuleML: The RuleML Initiative website, 2006, http://www.ruleml.org/.
[8] G. Antoniou, A. Bikakis, DR-Prolog: a system for defeasible reasoning with rules and ontologies on the Semantic Web, IEEE Trans.
Know. Data Eng. 19 (2) (2007) 233-245.
[9] N. Bassiliades, N. Antonioux, [.P. Vlahavas, DR-DEVICE: a Defeasible Logic system for the Semantic Web, in: PPSWR, 2004, pp.
134-148.
[10] B.N. Grosof, M.D. Gandhe, T.W. Finin, SweetJess: translating DAMLRuleML to JESS, in: RuleML, 2002.
[11] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, dlvhex: a system for integrating multiple semantics in an answer-set programming
framework, in: WLP, 2006, pp. 206-210.
[12] G. Governatori, A. Rotolo, G. Sartor, Temporalised normative positions in defeasible logic, in: ICAIL’05: Proceedings of the 10th
International Conference on Artificial intelligence and Law, ACM Press, New York, NY, USA, 2005, pp. 25-34.
[13] G. Governatori, A. Rotolo, Defeasible Logic: agency, intention and obligation, in: DEON, 2004, pp. 114-128.
[14] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori, DR-NEGOTIATE - a system for automated agent negotiation with
Defeasible Logic-based strategies, in: EEE’05: Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05), Washington, DC, USA, IEEE Computer Society, 2005, pp. 44-49.
[15] G. Antoniou, T. Skylogiannis, A. Bikakis, M. Doerr, N. Bassiliades, DR-BROKERING: a semantic brokering system, Know. Based
Syst. 20 (1) (2007) 61-72.
[16] Daniel J. Weitzner, Jim Hendler, Tim Berners-Lee, Dan Connolly, Creating a policy-aware web: discretionary, rule-based access for
the world wide web, Web and Information Security, IRM Press, 2005.
[17] G. Antoniou, D. Billington, G. Governatori, M.J. Maher, Representation results for defeasible logic, ACM Trans. Comput. Logic 2
(2) (2001) 255-287.
[18] B.N. Grosof, Prioritized conflict handing for logic programs, in: ILPS’97: Proceedings of the 1997 International Symposium on Logic
Programming, MIT Press, Cambridge, MA, USA, 1997, pp. 197-211.
[19] G. Antoniou, M.J. Maher, D. Billington, Defeasible Logic versus logic programming without negation as failure, J. Log. Program. 42
(1) (2000) 47-57.
[20] M.J. Maher, A model-theoretic semantics for Defeasible Logic, in: Paraconsistent Computational Logic, 2002, pp. 67-80.
[21] G. Governatori, M.J. Maher, G. Antoniou, D. Billington, Argumentation semantics for Defeasible Logic, J. Log. Comput. 14 (5)
(2004) 675-702.
[22] G. Antoniou, D. Billington, G. Governatori, M.J. Maher, Embedding defeasible logic into logic programming, Theory Pract. Log.
Program. 6 (6) (2006) 703-735.
[23] M.J. Maher, A. Rock, G. Antoniou, D. Billington, T. Miller, Efficient defeasible reasoning systems, Int. J. Artif. Intell. Tool 10 (4)
(2001) 483-501.
[24] JADE: Java Agent Development Framework, 2006, http://jade.tilab.com/.
[25]1 J. Barwise, J. Etchemendy, The language of first-order logic, Center for the Study of Language and Information, 1993.
[26] E. Shortliffe, Computer-based Medical Consultations: MYCIN, American Elsevier, New York, 1976.

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.ruleml.org/
http://jade.tilab.com/

684 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662-687

[27] W. Swartout, C. Paris, J. Moore, Explanations in knowledge systems: design for explainable expert systems, IEEE Expert: Intell. Syst.
Appl. 06 (3) (1991) 58-64.

[28] D.L. McGuinness, A. Borgida, Explaining subsumption in description logics, in: IJCAI (1), 1995, pp. 816-821.

[29] D. McGuinness, Explaining reasoning in Description Logics, Ph.D. Thesis, New Brunswick, NJ, 1996.

[30] D.L. McGuinness, P.P. da Silva, Explaining answers from the Semantic Web: the Inference Web approach, J. Web Sem. 1 (4) (2004)
397-413.

[31] P.P. da Silva, D.L. McGuinness, R. Fikes, A proof markup language for Semantic Web services, Inform. Syst. 31 (4) (2006) 381-395.

Grigoris Antoniou is Professor of Computer Science at the University of Crete, Greece, and Head of the Infor-
mation Systems Laboratory at FO.R.T.H., the top-rated Greek Research Institute involved in many European
projects. Before joining FO.R.T.H., he held professorial positions at Griffith University, Australia, and the
University of Bremen, Germany.

His research interests lie in knowledge representation and reasoning, and its applications to the Semantic Web, e-
commerce, digital preservation and ambient intelligence. He has published over 150 technical papers in scientific
journals and conferences. He is author of three books with prestigious international publishers (Addison-Wesley
and MIT Press); his book “A Semantic Web Primer” is the standard textbook in this area.He participates in a
number of research projects; among them the European projects REWERSE (reasoning on the web) and
CASPAR (digital preservation).In 2006, he was elected ECCAI Fellow, joining the prestigious list of the top
European researchers in artificial intelligence.

Antonis Bikakis is a doctoral student at the Computer Science Department of the University of Crete, and member
of the Information Systems Laboratory at the FO.R.T.H. Research Institute. He holds a M.Sc. in Computer
Science from the University of Crete and a degree in Electrical and Computer Engineering from the Aristotle
University of Thessaloniki.

His main interests lie in the area of Knowledge Representation and Nonmonotonic Reasoning. His current
research activities concern the study of algorithms for collaborative reasoning in distributed systems, and the
development of context-aware applications for ambient environments. He has published a number of scientific
journal and conference papers on Defeasible Reasoning and its application to Reasoning on the Semantic Web,
and on Ambient Computing Systems.

Nikos Dimaresis is a postgraduate student at the Computer Science Department of the University of Crete.

Manolis Genetzakis is a postgraduate student at the Computer Science Department of the University of Crete.

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662—-687 685

Giannis Georgalis is a postgraduate student at the Computer Science Department of the University of Crete.

Guido Governatori received his Ph.D. in Computer Science and Law at the University of Bologna in 1997. Since
then he has held academic and research positions at Imperial College, Griffith University and Queensland Uni-
versity of Technology, The University of Queensland and NICTA. He has published over 120 scientific papers in
logic, artificial intelligence, database and information systems. He was the guest editor for a few special issues on
Contract Architectures and Languages. His current research interests include modal and nonclassical logics,
defeasible reasoning and its application to normative reasoning and e-commerce, agent systems, business process
modelling for regulatory compliance. He is a member of the editorial board of Artificial Intelligence and Law, and
the leader of several Australian research projects.

Efie Karouzaki is a postgraduate student at the Computer Science Department of the University of Crete.

Nikolas Kazepis is a postgraduate student at the Computer Science Department of the University of Crete.

Dimitris Kosmadakis is a postgraduate student at the Computer Science Department of the University of Crete.

686 G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662-687

Manolis Kritsotakis is a postgraduate student at the Computer Science Department of the University of Crete.

Giannis Lilis is a postgraduate student at the Computer Science Department of the University of Crete.

Antonis Papadogiannakis is a postgraduate student at the Computer Science Department of the University of

Crete.

Panagiotis Pediaditis is a postgraduate student at the Computer Science Department of the University of Crete.

G. Antoniou et al. | Data & Knowledge Engineering 64 (2008) 662-687 687

Constantinos Terzakis is a postgraduate student at the Computer Science Department of the University of Crete.

Rena Theodosaki is a postgraduate student at the Computer Science Department of the University of Crete.

Dimitris Zeginis is a postgraduate student at the Computer Science Department of the University of Crete.

	Proof explanation for a nonmonotonic Semantic Web rules language
	Introduction
	Use cases
	Basics of Defeasible Logic
	Basic characteristics
	Syntax
	Proof theory
	Defeasible Logic metaprogram

	Explanation in Defeasible Logic
	Search tree construction
	Search tree pruning: illustration
	Search tree pruning: the methods

	Graphical user interface to the proof system
	Agent interface to the proof system
	Extension of RuleML for explanation representation
	Atoms, facts and rule representation
	Definitely provable explanations
	Defeasibly provable explanations
	Not definitely provable explanations
	Not defeasibly provable explanations

	Related work
	Inference web

	Conclusion and future work
	Acknowledgement
	References

