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1 Abstract

In this work we present the desing and implementation of a newsystem for proof
explanation in the Semantic Web, using defeasible logic. Trust is a vital feature for
Semantic Web. If users (humans and agents) are to use and integrate system an-
swers, they must trust them. Thus, systems should be able to explain their actions,
sources, and beliefs. Our system produces automatically proof explanations using
a popular logic programming system (XSB), by interpreting the output from the
proof’s trace and convert it to a meaningfull representation. It presents the expla-
nation of an answer for a user’s query back to him using a graphical interface, and
also it can use an XML representation for agent communication, that is a common
scenario in the Semantic Web. One of the main benefits of our system is that it sup-
ports explanations in defeasible logic for both positive and negative answers in user
queries. In the remaining of this report we present the design and implementation
of the system, a novel XML language for the represantation ofa proof explanation,
and we give a variety of examples and use cases of our system.
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2 The Semantic Web Initiative

The aim of the Semantic Web initiative [1] is to advance the state of the current
Web through the use of semantics. More specifically, it proposes to use semantic
annotations to describe the meaning of certain parts of Web information. For exam-
ple, the Web site of a hotel could be suitably annotated to distinguish between hotel
name, location, category, number of rooms, available services etc. Such metadata
could facilitate the automated processing of the information on the Web site, thus
making it accessible to machines and not primarily to human users, as it is the case
today.

The development of the Semantic Web proceeds in steps, each step building a
layer on top of another. The layered design is shown in Figure1, which is outlined
below.

• At the bottom layer we find XML [2], a language that lets one write struc-
tured Web documents with a user-defined vocabulary. XML is particularly
suitable for sending documents across the Web, thus supporting syntactic
interoperability.

• RDF is a basic data model for writing simple statements aboutWeb objects
(resources). The RDF data model does not rely on XML, but RDF has an
XML-based syntax. Therefore it is located on top of the XML layer.

• RDF Schema provides modeling primitives for organizing Webobjects into
hierarchies. RDF Schema is based on RDF. RDF Schema can be viewed as
a primitive language for writing ontologies.

• But there is a need for more powerful ontology languages thatexpand RDF
Schema and allow the representation of more complex relationships between
Web objects. Ontology languages, such as OWL, are built on the top of RDF
and RDF Schema.

• The logic layer is used to enhance the ontology language further, and to allow
writing application-specific declarative knowledge.

• The proof layer involves the actual deductive process, as well as the repre-
sentation of proofs in Web languages and proof validation. oFinally trust
will emerge through the use of digital signatures, and otherkind of knowl-
edge, based on recommendations

• Finally trust will emerge by using digital signatures, and other kind of knowl-
edge, based on recommendations by agents we trust, or ratingand certifica-
tion agencies and consumer bodies.

For an easy yet comprehensive introduction to the Semantic Web see [3].
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Figure 1: Layers of the Semantic Web

3 Rules on the Semantic Web

At present, the highest layer that has reached sufficient maturity is the ontology
layer in the form of the description logic-based language OWL [4]. The next step
in the development of the Semantic Web will be the logic and proof layers, and rule
systems appear to lie in the mainstream of such activities. Moreover, rule systems
can also be utilized in ontology languages. So, in general rule systems can play a
twofold role in the Semantic Web initiative:

(a) they can serve as extensions of, or alternatives to, description logic-based
ontology languages; and

(b) they can be used to develop declarative systems on top of (using) ontologies.

Reasons why rule systems are expected to play a key role in thefurther develop-
ment of the Semantic Web include the following:

• Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and
description logics are orthogonal; thus they provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule languages.

• Rules are well known in practice, and are reasonably well integrated in main-
stream information technology, such as knowledge bases, etc.

Apart from the classical rules that lead to monotonic logical systems, recently re-
searchers started to study systems capable of handling conflicts among rules. Gen-
erally speaking, the main sources of such conflicts are:

• Default inheritance within ontologies.

• Ontology merging, where knowledge from different sources is combined.

• Rules with exceptions as a natural representation of business rules.

• Reasoning with incomplete information.
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4 Basics of Defeasible Logics

4.1 Basic Characteristics

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete
and inconsistent information. It can represent facts, rules, and priorities among
rules. This reasoning family comprises defeasible logics [5] and Courteous Logic
Programs [6]. The main advantage of this approach is the combination of two
desirable features: enhanced representational capabilities allowing one to reason
with incomplete and contradictory information, coupled with low computational
complexity compared to mainstream nonmonotonic reasoning. The basic charac-
teristics of defeasible logics are:

• Defeasible logics are rule-based, without disjunction.

• Classical negation is used in the heads and bodies of rules, but negation-
as-failure is not used in the object language (it can easily be simulated, if
necessary [7]).

• Rules may support conflicting conclusions.

• The logics are skeptical in the sense that conflicting rules do not fire. Thus
consistency is preserved.

• Priorities on rules may be used to resolve some conflicts among rules.

• The logics take a pragmatic view and have low computational complexity.

4.2 Syntax

A defeasible theoryD is a triple (F, R,>), whereF is a set of literals (calledfacts),
R a finite set of rules, and> a superiority relation onR. In expressing the proof
theory we consider only propositional rules. Rules containing free variables are
interpreted as the set of their variable-free instances.

There are three kinds of rules:Strict rulesare denoted byA → p and are
interpreted in the classical sense: whenever the premises are indisputable (e.g.
facts) then so is the conclusion. An example of a strict rule is “Professors are
faculty members”. Written formally:

professor(X) → faculty(X).

Inference from facts and strict rules only is calleddefinite inference. Facts and
strict rules are intended to define relationships that are definitional in nature. Thus
defeasible logics contain no mechanism for resolving inconsistencies in definite
inference.

Defeasible rules are denoted byA ⇒ p, and can be defeated by contrary
evidence. An example of such a rule is
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faculty(X) ⇒ tenured(X)

which reads as follows: “Professors are typically tenured”.
Defeatersare denoted byA p and are used to prevent some conclusions. In

other words, they are used to defeat some defeasible rules byproducing evidence
to the contrary. An example is the rule

heavy(X)  ¬flies(X)

which reads as follows: If an animal is heavy then it may not beable to fly”. The
main point is that the information that an animal is heavy is not sufficient evidence
to conclude that it doesn’t fly. It is only evidence that the animal maynot be able
to fly.

A superiority relation on R is an acyclic relation> on R (that is, the transitive
closure of> is irreflexive). Whenr1 > r2, thenr1 is calledsuperiorto r2, andr2
inferior to r1. This expresses thatr1 may overrider2. For example, given the rules

r : professor(X) ⇒ tenured(X)

r′ : visiting(X) ⇒ ¬tenured(X)

which contradict one each other, no conclusive decision canbe made about whether
a visiting professor is tenured. But if we introduce a superiority relation> with r’
> r, then we can indeed conclude that he/she cannot be tenured.

4.3 Proof Theory

A conclusionof a defeasible theoryD is a tagged literal. Conventionally there are
four tags, so a conclusion has one of the following four forms:

• +∆q, which is intended to mean thatq is definitely provable inD.

• -∆q, which is intended to mean that we have proved thatq is not definitely
provable inD.

• +∂q, which is intended to mean thatq is defeasibly provable inD.

• -∂q, which is intended to mean that we have proved that q is not defeasibly
provable in D.

Provability is based on the concept of aderivation(or proof) in D = (F,R,>).
A derivation is a finite sequenceP = (P(1),...,P(n)) of tagged literals constructed
by inference rules. There are four inference rules (corresponding to the four kinds
of conclusion) that specify how a derivation may be extended. (P(1..i) denotes the
initial part of the sequenceP of length i):
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+∆: We may appendP(i+1)= +∆q if either
q∈ F or

∃r ∈ Rs[q] ∀a∈ A(r): +∆a ǫ P(1..i)

That means, to prove +∆q we need to establish a proof forq using facts and
strict rules only. This is a deduction in the classical sense. No proofs for the
negation ofq need to be considered (in contrast to defeasible provability below,
where opposing chains of reasoning must be taken into account, too).

−∆: We may appendP(i+1)= -∆q if
q /∈ F and

∀r ∈ Rs[q] ∃a∈ A(r): −∆a∈ P(1..i)

To prove−∆q, that is, thatq is not definitely provable,q must not be a fact.
In addition, we need to establish that every strict rule withheadq is known to be
inapplicable. Thus for every such ruler there must be at least one antecedenta for
which we have established thata is not definitely provable (−∆a).

Defeasible provability requires consideration of chains of reasoning for the
complementary literal, and possible resolution using the superiority relation. Thus
the inference rules for defeasible provability are more complicated than those for
definite provability.

+∂: We may appendP(i+1) = +∂q if either
(1) +∆q∈ P(1..i) or

(2) (2.1)∃r ∈ Rsd[q] ∀a∈ A(r): +∂a∈ P(1..i) and
(2.2)−∆ ∼q∈ P(1..i) and

(2.3)∀s∈ R[∼q] either
(2.3.1)∃a ∈ A(s): −∂a∈ P(1..i) or

(2.3.2)∃t ∈ Rsd[q] such that
∀a∈ A(t): +∂a∈ P(1..i) andt > s

Let us illustrate this definition. To show thatq is provable defeasibly we have
two choices: (1) We show thatq is already definitely provable; or (2) we need to
argue using the defeasible part ofD as well. In particular, we require that there
must be a strict or defeasible rule with headq which can be applied (2.1). But now
we need to consider possible attacks, that is, reasoning chains in support of∼q.
To be more specific: to proveq defeasibly we must show that∼q is not definitely
provable (2.2). Also (2.3) we must consider the set of all rules which are not known
to be inapplicable and which have head∼q. Essentially each such rules attacks
the conclusionq . Forq to be provable, each such rule must be counterattacked by
a rule t with headq with the following properties: (i)t must be applicable at this
point, and (ii)t must be stronger thans. Thus each attack on the conclusionq must
be counterattacked by a stronger rule.

The definition of the proof theory of defeasible logic is completed by the infer-
ence rule−∂. It is a strong negation of the inference rule+∂ [2].
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−∂: We may appendP(i+1) = −∂q if
(1) −∆q∈ P(1..i) and

(2) (2.1)∀r ∈ Rsd[q] ∃a∈ A(r): −∂a∈ P(1..i)or
(2.2)+∆ ∼q∈ P(1..i) or
(2.3)∃s∈ R[∼q] such that

(2.3.1)∀a ∈ A(s): +∂a∈ P(1..i) and
(2.3.2)∀t ∈ Rsd[q] either

∃a∈ A(t): −∂a∈ P(1..i) or t 6> s

To prove thatq is not defeasibly provable, we must first establish that it is
not definitely provable. Then we must establish that it cannot be proven using the
defeasible part of the theory. There are three possibilities to achieve this: either we
have established that none of the (strict and defeasible) rules with headq can be
applied (2.1); or∼q is definitely provable (2.2); or there must be an applicable rule
r with head∼q such that no possibly applicable rules with head∼q is superior to
s (2.3).

A more detailed definition of the proof theory is found in [5].A model theoretic
semantics is found in [8], and argumentation semantics is discussed in [4].
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4.4 Reasoning Systems

Recent system implementations, capable of reasoning with monotonic rules, non-
monotonic rules, priorities, RDF [9] data and RDF Schema [10] ontologies, are
DR-Prolog [11] and DR-DEVICE [12]. DR-Prolog is a defeasible reasoning sys-
tem for reasoning on the Web. Its main characteristics are the following:

• Its user interface is compatible with RuleML, the main standardization effort
for rules on the Semantic Web.

• It is based on Prolog. The core of the system consists of a well-studied
translation of defeasible knowledge into logic programs under Well-Founded
Semantics.

• The main focus is on flexibility. Strict and defeasible rulesand priorities are
part of the interface and the implementation.

• The system can reason with rules and ontological knowledge written in RDF
Schema (RDFS) or OWL.

DR-DEVICE is also a defeasible reasoning system for reasoning on the Web. Its
main characteristics are the following:

• Its user interface is compatible with RuleML

• It is based on a CLIPS-based implementation of deductive rules. The core
of the system consists of a translation of defeasible knowledge into a set of
deductive rules, including derived and aggregate attributes.

5 The Proof Layer

The next subjects in the development of the Semantic Web, apart from becoming
a global database, are the issues of accessibility, trust and credibility. These upper
levels have not been researched enough and these are the nextchallenges for the
Semantic Web. The next step in the architecture of the Semantic Web is the proof
layer. Little has been written and done for this layer, but itis expected to become
very important in the near future.

Because not all the data sources will be considered equally reliable, when the
users (humans and computer agents) receive an answer from a Semantic Web ap-
plication, they need to know the data sources that were used and the sources’ re-
liability. Thus it is necessary for the users to be able to evaluate an answer for its
trustworthiness. The solution is to provideexplanationsfor the derivation history,
which is the series of inference steps that can be retraced. An explanation will trace
an answer back to a given set of facts and the inference rules used.

Users, in order to trust an answer which receive from an application, they may
need to inspect the whole deductive proof trace that was usedto derive implicit
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information. Usually proof traces are too long and complex and more suitable in
understanding for expert logicians. So it is better to reduce the explanation from
the proof traces to a more understandable form for the users.Furthermore, because
all the facts that are contained in a proof could be assigned to a source, users need
to retrieve some information about the sources in order to trust them. Perhaps
applications that rate sources about their authoritativeness could be developed to
help for this reason. Finally, applications need to be developed that provide to users
a user interface that give them the ability to ask questions and request explanations
in answers and present them the proofs and the correspondingexplanations.

In this project we implement a defeasible reasoning system for reasoning on
the Web, which provides the additional capability of presenting explanations to
users for the answers to their queries.

6 Explanation Use Cases

In this section, we mention two examples where the explanation in the Semantic
Web is used.

6.1 Use Case: Online Shop and E-commerce

Suppose an agent, which represents an online shop, sends to Bob’s agent a message
that he owns30 Euros. Last week he purchased a DVD from the online shop, that
costs30 Euros. The item was delivered to his address and Bob’s agent was notified
that Bob must pay the item’s price. Then Bob ask his agent the reason why he owes
that cost and the shop’s agent respond with an explanation, which is the following
sequence of facts and rules:

• purchase(Customer, Item), price(Item,Cost), delivered(Item,Customer)
→ owes(Customer, Price)
This is a rule from the shops terms and conditions

• purchase(Bob,DV D) The Web log of Bob’s purchase

• price(Item,Cost) The price of the DVD in the online shop

• delivered(Item,Customer) Delivery proof of DVD to Bob with a courier
number
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6.2 Use Case: University Graduate

Suppose Jim is a student in a university. His agent asks the agent of the univer-
sity’s secretary, if Jim is able to graduate from the department that he attends. The
secretary gives him a negative answer and the student requests his agent to receive
an explanation about the reason he cannot graduate. The secretary’s agent gives as
an explanation the following sequence of facts and rules:

• completed units(Student), passed optional lessons(Student),
undergraduate thesis(Student) → graduate(Student)
This is a rule from the department’s program studies

• ¬passed optional lessons(Jim) The list with the lessons that Jim has passed,
where is referred that he has not passed the required number of optional
lessons in order to graduate

Then Jim makes a follow up question to retrieve a further explanation about the
number of optional lessons that he has passed and the required number in order to
graduate.

• passed(Student,X), optional(X), passed(Student, Y ), optional(Y ), passed(Student, Z),
optional(Z), notSame(X,Y ), notSame(Y,Z), notSame(X,Z)
→ passed optional lessons(Student)
This is a rule from the department’s program studies. A student must pass at
least three different optional lessons. We prefer to use thepredicatenotSame
instead of expressing inequality in logical terms.

• passed(Jim,CS110) optional(CS110) Jim has passed the optional lesson with
the code CS110

• passed(Jim,CS231) optional(CS231) Jim has passed the optional lesson with
the code CS231. So Jim has only passed two optional lessons.

7 Extension of RuleML for Explanation Representation

The need for a formal, XML based, representation of an explanation in the Se-
mantic Web led us to design an extension of the Rule Markup Language (RuleML)
[13]. RuleML is an XML based language that supports rule representation for the
Semantic Web. In this section, we describe in detail the design of a new XML
schema, extension of RuleML, for explanation representation in defeasible logic
and in the next section we give some instructive examples. The complete schema
specification is given in Appendix A.

7.1 Atoms, Facts and Rule Representation

In our XML schema, we use a similar syntax to RuleML in order torepresent
FactsandRules. Specifically, we use theAtomelement which refers to an atomic
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formula, and it consists of two elements, an operator element (Op) and either a
Variable element (Var ) or an Individual constant element (Ind ), preceded option-
ally by a not statement (in case we represent a negative literal). Figure 2 shows the
declaration of a typical Atom.

<Atom>
<Not>

<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>

Figure 2: Declaration of an Atom

Similarly to RuleML, aFact is consisted by an Atom that comprise a certain
knowledge. The last primitive entity of our schema isRules. In defeasible logic, we
distinguish two kinds of Rules:Strict RulesandDefeasible Rules. In our schema
we also note with a different element these two kind of rules.Both kinds consists
of two parts, theHead element which is constituted of an Atom element, and the
Body element which is constituted of a number of Atom elements. Figure 3 shows
a typical example of a Defeasible Rule.

<Defeasible_rule Label="r1">
<Head>

<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
</Head>
<Body>

<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>

</Atom>
</Body>

</Defeasible_rule>

Figure 3: Declaration of a Defeasible Rule

7.2 Definitely Provable Explanations

The simplest proof explanation is in case of a definitely provable Atom. For that
proof, we first have to denote the Atom, and then give theDefinite Proof
that explains why it is definitely provable. This explanation can come out in two
ways: either a simpleFact for that Atom, or give aStrict Rule with Head
this Atom andBody an Atom that should be also proved definitely with the same
way. If theBody consists of multiple Atoms, then we state the definite provable
explanation for every atom of the Body. Figure 4 shows the structure of a definite
proof explanation.

14



<Definitely_provable>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
<Definite_Proof>

<Strict_rule Label="r1">
<Head>

<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
</Head>
<Body>

<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>

</Atom>
</Body>

</Strict_rule>
<Definitely_provable>

<Definite_Proof>
<Fact>

<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>

</Atom>
</Fact>

</Definite_Proof>
</Definitely_provable>

</Definite_Proof>
</Definitely_provable>

Figure 4: Example of a typical Definite Proof Explanation

7.3 Defeasibly Provable Explanations

A defeasibly provable explanation arises from the defeasible logic specification. If
an Atom is definitely provable, then it is also defeasibly provable. Thit is the first,
simple, explanation for a defeasible provable Atom, that iscovered by the previous
section about definitely provable explanations.

Else, we denote the Atom and we have to a give aDefeasible Proof . A
Defeasible Proof consists of four steps: First, we point aDefeasible Rule
with Head the specified Atom. In the second step, we explain why theBody of
that rule is defeasible provable (if it consists of many Atoms, then a separate proof
is given for every one of them). The third step is to show that the negation of this
Atom is not definitely provable (see section 7.4). Finally, in the fourth step, we
have to show that all the rules with head the negation of the Atom that we prove
(attacks) can be defeated. We call these attack rules asBlocked . We characterize
an attack rule asBlocked in two cases:

• When they cannot fire, so we must prove that their body is not defeasible
provable (in case of multiple Atoms it is enough to show that only one of
them is not defeasible provable). For not defeasible provable explanation,
look at the section 7.5 below.
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• When the rule is defeated by a superiority relation. Even if the body of
the rule is provable (the rule fires), an other rule with head the Atom that
we prove and fires should be declared as superior to the attackrule. In our
scheme, we just need to declare the rule that is superior to the attack rule,
and in case that this rule is different than the rule we first used as supportive,
we also add the defeasible provable explanations for its body.

So, for every attack rule we create aBlocked tag with the explanation of why
the rule is defeated (one of the above two cases). Figure 5 shows the structure of a
definite proof explanation.

<Defeasibly_provable>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
<Defeasible_Proof>

<Defeasible_rule Label="r1"> . . . </Defeasible_rule>
<Defeasible_provable>

<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>

</Atom>
<Defeasible_Proof> . . . </Defeasible_Proof>

</Defasible_provable>
<Not_Definitely_provable>

<Atom>
<Not>

<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>

</Not_Definitely_provable>
<Blocked>

<Defeasible_rule Label="r3">
<Head>

<Atom>
<Not>

<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>

</Head>
<Body> . . . </Body>

</Defeasible_rule>
<Superior>

<Defeasible_rule Label="r1"/>
</Superior>

</Blocked>
<Blocked>

<Defeasible_rule Label="r4"> . . . </Defeasible_rule>
<Not_Defeasibly_provable> . . . </Not_Defeasibly_provab le>

</Blocked>
</Defeasible_Proof>

</Defeasible_provable>

Figure 5: Example of a typical Defeasible Proof Explanation
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7.4 Not Definitely Provable Explanations

The next case is the explanation of an Atom that is not definitely provable. Accord-
ing to our XML schema, we first denote the Atom that is not definitely provable and
then we give theNon Definitely Proof . TheNon Definitely Proof
consists of all the strict rules with head equal to the negation of the non provable
Atom, with an explanation of why they cannot fire. InsideBlocked tags, we in-
clude each strict rule with a Non Definitely Provable explanation for their body.
Figure 6 demonstrates an example of a non definitely provableexplanation.

<Not_Definitely_provable>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
<Not_Definite_Proof>

<Strict_rule Label="r3">
<Head>

<Atom>
<Not>

<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>

</Head>
<Body>

<Atom>
<Op> owns_money </Op>
<Ind> Bob </Ind>

</Atom>
</Body>

</Strict_rule>
<Not_Definitely_provable>

<Atom>
<Op> owns_money </Op>
<Ind> Bob </Ind>

</Atom>
<Not_Definite_Proof> </Not_Definite_Proof>

</Not_Definitely_provable>
</Not_Definite_Proof>

</Not_Definitely_provable>

Figure 6: Example of a Non Definitely Provable Explanation

7.5 Not Defeasibly Provable Explanations

At last, we describe the case when an Atom cannot be defeasibly proved. For a
Non Defeasible Proof , firstly we have to prove that this Atom is not defi-
nitely provable (as described in the previous section). Next, we need to support our
explanation with one of the following three cases:

• All the rules with head the specified Atom does not fire. For that case, we
include insideBlocked tags every defeasible rule with head this Atom and
also a not defeasibly provable explanation for their body.
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• The negation of this Atom is definitely provable.

• We denote a rule with head the negation of the specified Atom that isUndefeated .
That means that there is no attack rule that can defeat it. So,we embody in-
sideUndefeated tags the defeasible rule that is undefeated, the defeasible
provable explanation for the body of that rule and finally every attack rule
(with head the Atom that we prove, that is not defeasible provable) is de-
noted insideBlocked tags either asNot Superior rule compared with
the undefeated rule, or its body as non defeasible provable.

Figure 7 shows an example of a non defeasible provable explanation.

<Not_Defeasibly_provable>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
<Not_Defeasible_Proof>

<Not_Definitely_provable>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>

</Not_Definitely_provable>
<Undefeated>

<Defeasible_rule Label="r4">
<Head>

<Atom>
<Not>

<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>

</Head>
<Body> . . . </Body>

</Defeasible_rule>
<Defeasibly_provable> . . . </Defeasibly_provable>
<Blocked>

<Not_Superior>
<Defeasible_rule Label="r1">

<Head>
<Atom>

<Op> rich </Op>
<Ind> Bob </Ind>

</Atom>
</Head>
<Body> . . . </Body>

</Defeasible_rule>
</Not_Superior>

</Blocked>
</Undefeated>

</Not_Defeasible_Proof>
</Not_Defeasibly_provable>

Figure 7: Example of a Non Defeasible Provable Explanation
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8 Some Concrete Examples

In this section, we present some examples of explanation representation in our
XML schema using defeasible logic reasoning.

8.1 Example1: Lunch Time

First, we demonstrate a simple example using the following rules:

fact(hungry(isidoros)).
fact(empty_kitchen(isidoros)).
defeasible(r1,order_pizza(X),[hungry(X),empty_kitch en(X)]).

The answer to the questiondefeasibly(orderpizza(isidoros))is TRUE. The ex-
planation to that answer, according to our XML scheme, is given below:

1 <Defeasibly_provable>
2 <Atom>
3 <Op> order_pizza </Op>
4 <Ind> isidoros </Ind>
5 </Atom>
6 <Defeasible_Proof>
7 <Defeasible_rule Label="r1">
8 <Head>
9 <Atom>

10 <Op> order_pizza </Op>
11 <Ind> isidoros </Ind>
12 </Atom>
13 </Head>
14 <Body>
15 <Atom>
16 <Op> hungry </Op>
17 <Ind> isidoros </Ind>
18 </Atom>
19

20 <Atom>
21 <Op> empty_kitchen </Op>
22 <Ind> isidoros </Ind>
23 </Atom>
24 </Body>
25 </Defeasible_rule>
26

27 <Defeasibly_provable>
28 <Definitely_provable>
29 <Atom>
30 <Op> hungry </Op>
31 <Ind> isidoros </Ind>
32 </Atom>
33 <Definite_Proof>
34 <Fact>
35 <Atom>
36 <Op> hungry </Op>
37 <Ind> isidoros </Ind>
38 </Atom>
39 </Fact>
40 </Definite_Proof>
41 </Definitely_provable>
42 </Defeasibly_provable>
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43

44 <Defeasibly_provable>
45 <Definitely_provable>
46 <Atom>
47 <Op> empty_kitchen </Op>
48 <Ind> isidoros </Ind>
49 </Atom>
50 <Definite_Proof>
51 <Fact>
52 <Atom>
53 <Op> empty_kitchen </Op>
54 <Ind> isidoros </Ind>
55 </Atom>
56 </Fact>
57 </Definite_Proof>
58 </Definitely_provable>
59 </Defeasibly_provable>
60

61 <Not_Definitely_provable>
62 <Atom>
63 <Not>
64 <Op> order_pizza </Op>
65 <Ind> isidoros </Ind>
66 </Not>
67 </Atom>
68 <Not_Definite_Proof>
69 </Not_Definite_Proof>
70 </Not_Definitely_provable>
71

72 </Defeasible_Proof>
73 </Defeasibly_provable>

8.2 Example3: Marine Biology

In this example, we have the following rule set:

strict(r1,cephalopod(X),[nautilus(X)]).
strict(r2,mollusc(X),[cephalopod(X)]).
defeasible(r3,shell(X),[nautilus(X)]).
defeasible(r4,˜(shell(X)),[cephalopod(X)]).
defeasible(r5,shell(X),[mollusc(X)]).
fact(nautilus(nancy)).
sup(r5,r4)

If we askdefeasibly(shell(nancy)), the answer isTRUE. The literalshell(nancy)
is defeasibly provable. We present below the explanation according to our scheme,
that our system generates for this example.

1 <Defeasibly_provable>
2 <Atom>
3 <Op>shell</Op>
4 <Ind>nancy</Ind>
5 </Atom>
6 <Defeasible_Proof>
7 <Defeasible_rule Label="r3">
8 <Head>
9 <Atom>
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10 <Op>shell</Op>
11 <Ind>nancy</Ind>
12 </Atom>
13 </Head>
14 <Body>
15 <Atom>
16 <Op>nautilus</Op>
17 <Ind>nancy</Ind>
18 </Atom>
19 </Body>
20 </Defeasible_rule>
21 <Defeasibly_provable>
22 <Definitely_provable>
23 <Atom>
24 <Op>nautilus</Op>
25 <Ind>nancy</Ind>
26 </Atom>
27 <Definite_Proof>
28 <Fact>
29 <Atom>
30 <Op>nautilus</Op>
31 <Ind>nancy</Ind>
32 </Atom>
33 </Fact>
34 </Definite_Proof>
35 </Definitely_provable>
36 </Defeasibly_provable>
37 <Not_Definitely_provable>
38 <Atom>
39 <Not>
40 <Op>shell</Op>
41 <Ind>nancy</Ind>
42 </Not>
43 </Atom>
44 <Not_Definite_Proof></Not_Definite_Proof>
45 </Not_Definitely_provable>
46 <Blocked>
47 <Defeasible_rule Label="r4">
48 <Head>
49 <Atom>
50 <Not>
51 <Op>shell</Op>
52 <Ind>nancy</Ind>
53 </Not>
54 </Atom>
55 </Head>
56 <Body>
57 <Atom>
58 <Op>cephalopod</Op>
59 <Ind>nancy</Ind>
60 </Atom>
61 </Body>
62 </Defeasible_rule>
63 <Superior>
64 <Defeasible_rule Label="r5">
65 <Head>
66 <Atom>
67 <Op>shell</Op>
68 <Ind>nancy</Ind>
69 </Atom>
70 </Head>
71 <Body>
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72 <Atom>
73 <Op>mollusc</Op>
74 <Ind>nancy</Ind>
75 </Atom>
76 </Body>
77 </Defeasible_rule>
78 <Defeasibly_provable>
79 <Definitely_provable>
80 <Atom>
81 <Op>mollusc</Op>
82 <Ind>nancy</Ind>
83 </Atom>
84 <Definite_Proof>
85 <Strict_rule Label="r2">
86 <Head>
87 <Atom>
88 <Op>mollusc</Op>
89 <Ind>nancy</Ind>
90 </Atom>
91 </Head>
92 <Body>
93 <Atom>
94 <Op>cephalopod</Op>
95 <Ind>nancy</Ind>
96 </Atom>
97 </Body>
98 </Strict_rule>
99 <Definitely_provable>

100 <Atom>
101 <Op>cephalopod</Op>
102 <Ind>nancy</Ind>
103 </Atom>
104 <Definite_Proof>
105 <Strict_rule Label="r1">
106 <Head>
107 <Atom>
108 <Op>cephalopod</Op>
109 <Ind>nancy</Ind>
110 </Atom>
111 </Head>
112 <Body>
113 <Atom>
114 <Op>nautilus</Op>
115 <Ind>nancy</Ind>
116 </Atom>
117 </Body>
118 </Strict_rule>
119 <Definitely_provable>
120 <Atom>
121 <Op>nautilus</Op>
122 <Ind>nancy</Ind>
123 </Atom>
124 <Definite_Proof>
125 <Fact>
126 <Atom>
127 <Op>nautilus</Op>
128 <Ind>nancy</Ind>
129 </Atom>
130 </Fact>
131 </Definite_Proof>
132 </Definitely_provable>
133 </Definite_Proof>
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134 </Definitely_provable>
135 </Definite_Proof>
136 </Definitely_provable>
137 </Defeasibly_provable>
138 </Superior>
139 </Blocked>
140 </Defeasible_Proof>
141 </Defeasibly_provable>

Sincedefeasibly(shell(nancy))isTRUE, the answer to the questionnot defeasibly( (shell(nancy)))
will be FALSE, because the literal(shell(nancy))is not defeasibly provable. The
explanation for this negative answer is given below:

1 <Not_Defeasibly_provable>
2 <Atom>
3 <Not>
4 <Op>shell</Op>
5 <Ind>nancy</Ind>
6 </Not>
7 </Atom>
8 <Not_Defeasibly_Proof>
9 <Not_Definitely_provable>

10 <Atom>
11 <Not>
12 <Op>shell</Op>
13 <Ind>nancy</Ind>
14 </Not>
15 </Atom>
16 <Not_Definite_Proof></Not_Definite_Proof>
17 </Not_Definitely_provable>
18 <Blocked>
19 <Defeasible_rule Label="r4">
20 <Head>
21 <Atom>
22 <Not>
23 <Op>shell</Op>
24 <Ind>nancy</Ind>
25 </Not>
26 </Atom>
27 </Head>
28 <Body>
29 <Atom>
30 <Op>cephalopod</Op>
31 <Ind>nancy</Ind>
32 </Atom>
33 </Body>
34 </Defeasible_rule>
35 <Superior>
36 <Defeasible_rule Label="r5">
37 <Head>
38 <Atom>
39 <Op>shell</Op>
40 <Ind>nancy</Ind>
41 </Atom>
42 </Head>
43 <Body>
44 <Atom>
45 <Op>mollusc</Op>
46 <Ind>nancy</Ind>
47 </Atom>
48 </Body>
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49 </Defeasible_rule>
50 <Defeasibly_provable>
51 <Definitely_provable>
52 <Atom>
53 <Op>mollusc</Op>
54 <Ind>nancy</Ind>
55 </Atom>
56 <Definite_Proof>
57 <Strict_rule Label="r2">
58 <Head>
59 <Atom>
60 <Op>mollusc</Op>
61 <Ind>nancy</Ind>
62 </Atom>
63 </Head>
64 <Body>
65 <Atom>
66 <Op>cephalopod</Op>
67 <Ind>nancy</Ind>
68 </Atom>
69 </Body>
70 </Strict_rule>
71 <Definitely_provable>
72 <Atom>
73 <Op>cephalopod</Op>
74 <Ind>nancy</Ind>
75 </Atom>
76 <Definite_Proof>
77 <Strict_rule Label="r1">
78 <Head>
79 <Atom>
80 <Op>cephalopod</Op>
81 <Ind>nancy</Ind>
82 </Atom>
83 </Head>
84 <Body>
85 <Atom>
86 <Op>nautilus</Op>
87 <Ind>nancy</Ind>
88 </Atom>
89 </Body>
90 </Strict_rule>
91 <Definitely_provable>
92 <Atom>
93 <Op>nautilus</Op>
94 <Ind>nancy</Ind>
95 </Atom>
96 <Definite_Proof>
97 <Fact>
98 <Atom>
99 <Op>nautilus</Op>

100 <Ind>nancy</Ind>
101 </Atom>
102 </Fact>
103 </Definite_Proof>
104 </Definitely_provable>
105 </Definite_Proof>
106 </Definitely_provable>
107 </Definite_Proof>
108 </Definitely_provable>
109 </Defeasibly_provable>
110 </Superior>
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111 </Blocked>
112 </Not_Defeasibly_Proof>
113 </Not_Defeasibly_provable>

8.3 Example4: Criminality

Using the following rule set, we answer the questiondefeasibly( (hasGun(a))):

defeasible(r3,˜(hasGun(X)),[pacifist(X)]).
defeasible(r4,hasGun(X),[livesInChicago(X)]).
defeasible(r2,˜(pacifist(X)),[republican(X)]).
defeasible(r1,pacifist(X),[quaker(X)]).
fact(quaker(a)).
fact(republican(a)).
fact(livesInChicago(a)).
sup(r3,r4).

The answer isFALSE, because the literal (hasGun(a)) cannot defeasibly proved.

1 <Not_Defeasibly>
2 <Atom>
3 <Not>
4 <Op>hasGun</Op>
5 <Ind>a</Ind>
6 </Not>
7 </Atom>
8 <Not_Defeasibly_Proof>
9 <Not_Definitely_provable>

10 <Atom>
11 <Not>
12 <Op>hasGun</Op>
13 <Ind>a</Ind>
14 </Not>
15 </Atom>
16 <Not_Definite_Proof></Not_Definite_Proof>
17 </Not_Definitely_provable>
18 <Blocked>
19 <Defeasible_rule Label="r3">
20 <Head>
21 <Atom>
22 <Not>
23 <Op>hasGun</Op>
24 <Ind>a</Ind>
25 </Not>
26 </Atom>
27 </Head>
28 <Body>
29 <Atom>
30 <Op>pacifist</Op>
31 <Ind>a</Ind>
32 </Atom>
33 </Body>
34 </Defeasible_rule>
35 <Not_Defeasibly_provable>
36 <Atom>
37 <Op>pacifist</Op>
38 <Ind>a</Ind>
39 </Atom>
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40 <Not_Defeasibly_Proof>
41 <Not_Definitely_provable>
42 <Atom>
43 <Op>pacifist</Op>
44 <Ind>a</Ind>
45 </Atom>
46 <Not_Definite_Proof></Not_Definite_Proof>
47 </Not_Definitely_provable>
48 <Undefeated>
49 <Defeasible_rule Label="r2">
50 <Head>
51 <Atom>
52 <Not>
53 <Op>pacifist</Op>
54 <Ind>a</Ind>
55 </Not>
56 </Atom>
57 </Head>
58 <Body>
59 <Atom>
60 <Op>republican</Op>
61 <Ind>a</Ind>
62 </Atom>
63 </Body>
64 </Defeasible_rule>
65 <Defeasibly_provable>
66 <Definitely_provable>
67 <Atom>
68 <Op>republican</Op>
69 <Ind>a</Ind>
70 </Atom>
71 <Definite_Proof>
72 <Fact>
73 <Atom>
74 <Op>republican</Op>
75 <Ind>a</Ind>
76 </Atom>
77 </Fact>
78 </Definite_Proof>
79 </Definitely_provable>
80 </Defeasibly_provable>
81 <Blocked>
82 <Not_Superior>
83 <Defeasible_rule Label="r1">
84 <Head>
85 <Atom>
86 <Op> pacifist </Op>
87 <Ind> a </Ind>
88 </Atom>
89 </Head>
90 <Body>
91 <Atom>
92 <Op> quaker </Op>
93 <Ind> nikos </Ind>
94 </Atom>
95 </Body>
96 </Defeasible_rule>
97 </Not_Superior>
98 </Blocked>
99 </Undefeated>

100 </Not_Defeasibly_Proof>
101 </Not_Defeasibly_provable>
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102 </Blocked>
103 </Not_Defeasibly_Proof>
104 </Not_Defeasibly_provable>

9 Proof tree construction

The foundation of the proof system lies in the prolog metaprogram that implements
the rules and reflects the traits of defeasible logic, and thetrace facility of the
XSB implementation of prolog which is used for extracting information about the
runtime behavior of the metaprogram. Thus, the trace produced by the invocation
of the prolog metaprogram with the defeasible logic programas input, is used for
constructing a proof tree which is subsequently used by the system in order to
formulate a sensible proof.

The method chosen for communicating the runtime trace information of the
metaprogram from the XSB execution environment to the Java front-end, on which
the proof system along with its graphical and agent-based interfaces was imple-
mented, was the invocation of the XSB executable from insidethe Java code.
Through the use of Javasexecmethod it was possible on one hand to send com-
mands to the XSB interpreter that was running as a stand-alone process and on the
other hand to receive the output that was produced as an effect.

Thus, at the initialization step, the XSB process invoker executes the XSB ap-
plication through theexecmethod of the JavasRuntimesingleton and enables the
trace facility by sending the following commands to the running process:

trace. / * enable trace mode * /
debug_ctl(prompt, off). / * turn off trace prompt * /

Then, in order to load the defeasible logic metaprogram to the XSB interpreter,
provided that the metaprogram is contained in theambmetaprogram.Pfile, the
following command is sent:

[amb_metaprogram.P].

After the successful loading of the metaprogram, the systemis ready to accept
the defeasible logic based program which constitutes the metaprograms database.
This is achieved by executing the XSB load file command once again with the
programs filename as a parameter:

[defeasible_logic_program.P].

Subsequently, the system is ready to accept any queries which are forwarded
unmodified to the XSB process. During the evaluation of the given query/predicate
the XSB trace system will print a message each time a predicate is:
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1. Initially entered (Call),

2. Successfully returned from (Exit ),

3. Failed back into (Redo), and

4. Completely failed out of (Fail).

The produced trace is incrementally parsed by the Java XSB invoker front-end
and a tree whose nodes represent the traced predicates is constructed. Each node
encapsulates all the information that is provided by the trace. Namely:

• A string representation of the predicates name

• The predicates arguments

• Whether it was found to be true (Exit ) or false (Fail)

• Whether it was failed back into (Redo)

In addition to the above, the traced predicate representation node has a Boolean
attribute that encodes whether the specific predicate is negated. That was necessary
for overcoming the lack of trace information for thenotpredicate (see next section).

10 Proof Tree Pruning

The pruning algorithm utilized to produce the final tree fromthe initial XSB trace
focuses on two major points. Firstly, the XSB trace producesa tree with redundant
information that needs to be removed from the final tree. One reason for this is that
we use a particular metaprogram in order to simulate the Defeasible Logic over
Prolog. For the simulation to be successful, we need some additional rules which
add unwanted information to the XSB trace. Another reason for the redundant
information is the way prolog evaluates the rules showing both successful and un-
successful paths. Secondly, the tree produced by the XSB trace is built according
to the metaprogram structure but the final tree needs to be in acomplete different
form compliant with the previously mentioned XML schema. Inthe remainder of
the document we will take a closer look to the details of thesetwo issues.

In order for the metaprogram to be able to represent the negation of the pred-
icates and evaluate the double negation of a predicate to thepredicate itself, we
needed to add an extra rule, ‘negation’:

negation(˜(X),X):- !.
negation(X,˜(X)).

This rule, of course, provides no necessary information forthe proof but solves
a simple technicality. Therefore, it is cutoff by the pruning process. Furthermore,
another extra rule added in the metaprogram was ‘xsb metanot’:
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xsb_meta_not(X):- not(X).

In Prolog, thenot predicate does not maintain the negation property (i.e. in
the trace ofnot(a) we get information about the state ofa but not for its inverse -
which is what we actually want). To overcome this problem, weadded this extra
rule using it as semantic information while constructing and parsing the XSB trace
and building the proof tree.

A main issue of the pruning process was the way Prolog evaluates its rules.
Specifically, upon rule evaluation the XSB trace returns allpaths followed whether
they evaluate totrue or false. According to the truth value and the type of the root
node, however, we may want to maintain only successful paths, only failed paths
or combinations of them. For example, the rule ‘supportiverule’:

supportive_rule(Name, Head, Body) :- strict(Name, Head, B ody).
supportive_rule(Name,Head,Body):- defeasible(Name,He ad, Body).

evaluates to ‘strict’ or ‘ defeasible’, meaning that a supportive rule can be either
a strict rule or a defeasible rule. If ‘supportiverule’ evaluates to false, then we
would want to show that both ‘strict’ and ‘defeasible’ evaluated to false. On the
other hand, if it evaluates to true, then we only want to keep the one that evaluated
to true (or the first of the two in case of both evaluating to true).

As earlier mentioned, the tree produced by the XSB trace is not in the desired
form. The techniques already shown do not suffice for this purpose. The unavoid-
able complexity of the metaprogram produces complicated and unintuitive proof
trees. Our goal is to bring this tree to a form compatible to that dictated by the
XML schema. In order to do this, we traverse the tree recursively in a depth-first
manner applying the following heuristic rules to produce the final tree.

1. Pruning Definitely When the atom of a query can be proved definitely it is
either a fact, in which case we simply locate the fact rule, orthere is at least
one strict rule having the atom as its head and is definitely provable, so we
locate the first such rule along with the definite proof of its body. [Figure 8]

2. Pruning Not Definitely When the atom of a query cannot be proved defi-
nitely, it is not a fact and there is no strict rule supportingthe atom that its
body can be definitely proved. Therefore, we locate the failed ‘fact’ rule
as well as all the aforementioned strict rules along with theproof that their
bodies are not definitely provable. [Figure 9]

3. Pruning DefeasiblyWhen the atom of a query can be proved defeasibly, it
is either definitely provable, in which case we just locate that proof, or there
is at least one supportive rule that triggers and is not blocked by any other
rule. In the latter case, we locate the first such rule along with the proof of
its body as well as the proof that all attacking rules are blocked (either not
firing, or defeated). Here we also need to check that the negation of the atom
is not definitely provable and we locate that proof as well. [Figures 10, 11]
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4. Pruning Not DefeasiblyWhen the atom of a query cannot be proved defea-
sibly, it cant be proved definitely and either there is a triggering not blocked
rule supporting the negation of the atom or there is no triggering supportive
rule that is not blocked or the negation of the atom can be definitely proved.
In any case, we locate the necessary proof sub trees. [Figure12]

5. Pruning Lists In Prolog, lists have a recursive structure (i.e. a list is a con-
catenation of an object with the remaining list) and this structure is inherited
by the proof tree. To remedy this case we flatten the lists to a single depth
sequence of atoms. [Figure 13]

6. Handling missing proofs XSB uses a caching technique in order to avoid
reevaluating already evaluated expressions. Effectively, this means that the
first time we encounter a predicate; XSB provides the result along with the
proof execution tree in the trace. If it comes across the samepredicate again,
it uses the cached value and doesnt show the whole execution tree. In some
cases, the aforementioned pruning techniques may prune thefirst evaluation
of the predicate and at some point where we actually want the predicate to
be maintained we are left with the cached version. This is unacceptable, so
we are forced to keep a copy of the initial trace so as to recover a possibly
pruned predicate evaluation subtree. [Figure 14]

Using these heuristic techniques, we end up with a version ofthe proof tree
that is intuitive and readable. In other words, the tree is very close to an expla-
nation derived by the use of pure Defeasible Logic. However,the drawback is
that these heuristics are fully dependent on the metaprogram. Any changes in the
metaprogram would necessitate changes in the pruning implementation. It would
be interesting to consider the possibility of automating the process of implement-
ing the heuristic pruning, based on the metaprogram, but this exceeds the aims of
the current study.

10.1 Examples of the proof tree pruning

Figure 8: The marked rule is pruned
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Figure 9: The marked rule is pruned

Figure 10: The colored segments correspond to the respective pruned and unpruned
versions of the tree
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Figure 11: The colored segments correspond to the respective pruned and unpruned
versions of the tree

Figure 12: The colored segments correspond to the respective pruned and unpruned
versions of the tree. In the unpruned tree, we show all rules that actually fail due
to the unblocked attacking rule, whereas in the pruned tree,we just show that rule
and the fact that it cannot be defeated
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Figure 13: The list pruning can be seen in the colored segments, corresponding
respectively to the pruned and unpruned versions. The unpruned tree shows the
recursive nature of the Prolog list (a list in prolog is the head element and the
remaining sublist), whereas in the pruned tree we simply present the list elements

Figure 14: The handling of the missing proof can be seen in thecolored segments,
corresponding respectively to the pruned and unpruned versions. We simply clone
the specific proof (red) where needed (green)
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11 Graphical user interface to the proof system

The graphical user interface to the proof system, offers an intuitive way to interact
with the underlying system and visualize the requested proofs. The proofs are
rendered as a tree structure in which each node represents a single predicate. A
tree node may have child nodes that represent the simpler, lower level, predicates
that are triggered by the evaluation of the parent predicate. Thus, the leaf nodes
represent the lowest level, indivisible predicates of the proof system. Additionally,
if a predicate has additional metadata attached to its definition, such as references
for the fact predicates, those are displayed as a tooltip to the corresponding tree
node.

The interaction with the graphical user interface is brokendown to three or four
steps, depending on whether it is desirable to prune the resulting proof tree in order
to eliminate the artifacts of the meta-program and simplifyits structure (see section
2) or not. Thus, in order to extract a proof, the following steps must be carried out:

1. The Defeasible logic rules must be added to the system. Rules can be added
by pressing either theAdd Ruleor Add rulesfrom file button at the right part
of the interface. TheAdd Rulebutton presents a text entry dialog where a
single rule may be typed by the user. By pressing theOK button the ad-
dition of the given rule is confirmed. Besides that, pressingthe Add rules
from file button allows the user to select a file that contains multiple rules
separated by newlines. Those are subsequently added to the system as soon
as the file selection is confirmed. The added rules are always visible at the
bottom part of the graphical user interface. In any case, a given rule may
be prefixed by a string enclosed in square brackets. The givenstring is
then associated with the corresponding rule by the system. This is espe-
cially useful for adding references to the supplied facts asthose references
are displayed as a tooltip when the mouse pointer is over the proof node
of the visualization tree that represents the fact. For example the predicate
[http://en.wikipedia.org/wiki/Irony] fact(hasnew buildings(csd))will have
the stringhttp://en.wikipedia.org/wiki/Ironyattached to it.

2. In order to make the system aware of the added rules, those must be explicitly
loaded. The rules that were previously added are loaded by pressing theLoad
rulesbutton at the right part of the graphical user interface.

3. As soon as the rules are loaded, the system is ready to be queried by the user.
By typing a ‘question’ at the text entry field at the right partof the screen,
just below the buttons, and pressing enter, the underlying proof system is
invoked with the supplied input and the resulting proof is visualized to the
tree view at the left part of the interface.

4. By pressing thePrunebutton the system runs the algorithms described in
the previous section to eliminate redundant information and metaprogram
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artifacts and thus bring the visualized proof tree to a more human friendly
form.

12 Agent interface to the proof system

12.1 Architecture

The system makes use of two kinds of agents, the ‘Agent’ whichasks questions and
the ‘Main Agent’ which is responsible to answer the questions asked. Both agents
are based on JADE (Java Agent DEvelopment Framework) which is a software
Framework fully implemented in Java language. JADE simplifies the implemen-
tation of multi-agent systems through a middle-ware that complies with the FIPA
specifications. The agent platform can be distributed across machines (which not
even need to share the same OS) and the configuration can be controlled via a re-
mote GUI. The configuration can be even changed at run-time bymoving agents
from one machine to another one, as and when required. JADE iscompletely im-
plemented in Java language and the minimal system requirement is the version 1.4
of JAVA (the run time environment or the JDK).

Figure 15 shows the process followed by the Main Agent in order to answer a
question.

Figure 15: The system architecture

All the above steps are illustrated at the next paragraphs.

1. An agent asks a Question to the Main Agent.The question is of the form:
predicate::(proof — answer)
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The predicate must be a valid Prolog predicate, after the predicate must exist
two colons (::) and then the word ‘proof’, if the agent wants to take the proof
of the predicate, or the word ‘answer’ if the agent wants justthe answer to
the predicate (true or false). Two examples of questions follow below:
defeasibly(rich(antonis))::proof
defeasibly(rich(antonis))::answer

2. Main Agent sends the Predicate to the Invoker.After receiving a question
from an agent, the Main Agent has to execute the predicate. For this reason
it extracts the predicate from the question and sends it to the Invoker who is
responsible for the communication with the XSB (prolog engine).

3. Invoker executes the Predicate .The Invoker receives the predicate from
the MainAgent and sends it to the XSB.

4. XSB returns the result trace. The XSB executes the predicate and then
returns the full trace of the result to the Invoker.

5. Invoker returns the result tree to Main Agent. The Invoker receives the
trace from the XSB and creates an internal tree representation of it. The
result tree is then sent back to the Main Agent.

6. Main Agent sends the result tree to the Pruner. The Main Agent after
receiving the result tree from the Invoker sends it to the Pruner in order to
prune the tree. There exist two ‘kind’ of pruning. One is usedwhen the
agent that asked the question wants only the result. In that case the tree is
pruned and the remaining is just the answer (true or false). The other ‘kind’
of pruning is used when the agent that asked the question wants the proof.
In that case, the brunches of the tree that are not needed are pruned, so the
remaining is a pruned tree only with brunches that are needed.

7. Pruner returns the pruned result. The pruned result is sent back to the
Main Agent.

8. Main Agent sends the pruned result to the XML writer. This step is used
only when the agent that asked the question wants the proof. In this step the
pruned result (proof) is sent to the XML writer in order to create an XML
representation of the proof.

9. XML writer returns the XML Proof. The XML writer creates an XML
representation of the proof, according to the XML schema, and sends it back
to the Main Agent.

10. Main Agents returns Answer or Proof. Finally the Main Agent sends back
to the agent that asked the question a string that contains the answer (true,
false) or the proof accordingly to what he asked. The format of the string
that is sent follows one of the three patterns:
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• ANSWER(true — false) e.g ANSWERtrue This pattern is used when
the Main Agent wants to sent only the answer. In this case it sends the
string ‘ANSWER’ followed by the string representation of the answer
(i.e. ‘true’ or ‘false’). There is no space between the two words.

• PROOF:(proof string) This pattern is used when the Main Agent
wants to sent the proof. In this case it sends the string ‘PROOF:’ fol-
lowed by the string representation of the proof (written in XML)

• ERROR:(error message)e.g. ERROR:invalid mode This pattern is
used when an error occurs during the process. In this case theMain
Agent sends the string ‘ERROR:’ followed by the string that contains
the error message.

Two kinds of agents that communicate with the Main Agent havebeen created.
One uses a file to read the questions to be asked and the other gets the questions
from the user through a Graphical User Interface. These two kinds of agents will
be described at the next paragraphs.
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12.2 Visual Agent

The visual agent uses a GUI in order to get the questions from the user and send
them to the ‘Main Agent’. First of all, the user must enter thename of the Respon-
der Agent (called ‘Main Agent’), in other words the name of the agent that is going
to answer the question. If the name is not entered an error message will appear
(Figure 16).

Figure 16: Error message if Responder Agent is not entered
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After entering the name of the ‘Main Agent’ the user must enter the question
and chose the type of answer he wants. The question must be a valid Prolog pred-
icate (e.g. defeasibly(rich(antonis)) ). The user can ask for two different types of
answer, he can ask just for the answer of the question (true, false), or for the proof
of the question. The choice is made though the appropriate radio button. If the
question is not entered an error message will appear (Figure17).

Figure 17: Error message if the question is not entered
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If the user chooses to see just the answer of the question, it will appear at the
‘Output’ area as show at the Figure 18. The answer will be trueor false.

Figure 18: The answer to a question
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If the user chooses to see the proof of the question, it will appear at the ‘Re-
ceived’ area as show at the Figure 19. The proof is visualizedas a tree model.
The tree model contains two kind of nodes, the intermediate nodes and the final
nodes. The intermediate nodes are represented as folders which can be expanded
and show their children nodes. Each intermediate node has the name of a tag used
at the XML schema. The final nodes (they can not be more expanded) are repre-
sented as files and have a description of their content. The final nodes are also tags
of the XML schema.

Figure 19: The proof of a question
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Finally an error may occur while computing the result. In this case the Main
Agent sends an error message to the agent that asked the question. The error mes-
sage is displayed at the ‘Output’ area (Figure 20). Many kindof error may occur:

• If the predicate of the question is not defined at the knowledge base of the
Main Agent.

• If the question is not syntactically correct (e.g parenthesis missing).

• If the type of answer asked is not valid (proof or answer). This type of error
can not occur at the visual agent because this choice is made through a radio
button.

• If an exception occurs while computing the result.

Figure 20: Error messages occur while computing the result
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12.3 Command Line Agent

The main goal of the ‘Command Line Agent (CLAgent)’ to make questions to the
main Agent and wait for a response, which is an answer or a proof.

12.3.1 Operation of the CLAgent

When the agent starts, it reads, in a random way, the questions it has to make from
a configuration file calledagent.conf. The format of the question is the same as at
the visual agent, e.g.fact ( winslotto ( antonis ) )::proof or answer.The Figure
21 shows a sample configuration file of the Agent.

Figure 21: Sample configuration file

Then it sends the questions that it has read from the file, to the main Agent. The
Figure 22 shows an example communication of the main Agent and the Command
Line Agent.

Figure 22: Communication of the main Agent and the CLAgent

After the main Agent receives the questions from the Agent, then it replies to
the CLAgent, sending back the answers or proofs (Figure 23).
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Figure 23: Main Agent sends the answer or proof

The kind of errors that can be produced is the same as at the visual Agent. They
have the same functionality because the main Agent is the same in the two cases.

Finally the CLAgent keeps a log file called ‘nameof agent log’, which con-
tains all the answers and proofs that it has received from themain Agent. An
example of the log file is shown in figure 24.

12.4 Agent Use Cases

In this section we mention three examples where the agents make use of the expla-
nation in the Semantic Web.

• An agent can make use of an explanation during a negotiation at E-commerce.
For example an agent that represents a buyer can send a message to the agent
that represents the online shop asking if the buyer owns money to the shop.
If the agent that represent the online shop answers positively then the buyers
agent can ask for an explanation why he owns the money. Then the online
shops agent will answer sending back the full explanation.

• An other case where an agent can use an explanation is at a University Sys-
tem. For example an agent that represents a student may ask for the students
grades. Then for every lesson that the student failed to passthe agent may
ask for an explanation why he failed. The universitys agent then will re-
spond with a full explanation containing for example the midterms grade the
grade of the project and the grade of the final exam. The same can happen
for the lessons that the student succeeded where the agents can ask for an
explanation how the graded has been extracted.
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Figure 24: Log file of the CLAgent

• Finally an agent can ask for an explanation when it not authorised to ac-
cess a system. For example an agent may try to access a system but the
system sends back a message telling that the agent does not have the right
permissions to access it. Then the agent can ask for an explanation why he is
not authorised to access the system. An approach in this direction has been
developed in the infrastructure in [20]. In this paper is described the develop-
ment of a rule-based management system that provides a mechanism for the
exchange of rules and proofs for access control in the Web, incases such as
who owns the copyright to a given piece of information, what privacy rules
apply to an exchange of personal information etc.

At all the above cases the negotiation is made automaticallywithout the users
mediation. The agent makes all the appropriate actions and presents only the result
- explanation to the user.
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13 Relative Work

There are many areas where work has been centered around explanation in reason-
ing systems. Rule-based expert systems have been very successful in applications
of AI, and from the beginning, their designers and users havenoted the need for
explanations in their recommendations. In expert systems like MYCIN [14] and
Explainable Expert System[15], a simple trace of the program execution / rule fir-
ing appears to provide a sufficient basis on which to build an explanation facility
and they generate explanations in a language understandable to its users.

Work has also been done in explaining the reasoning indescription logics
[16,17], which is a knowledge representation language. It was developed a logical
infrastructure for separating pieces of logical proofs andautomatically generating
follow-up questions based on the logical format.

13.1 Inference Web

Nowadays, import work in this area is done by the research group of theInference
Web[18]. The Inference Web (IW) is a Semantic Web based knowledge prove-
nance infrastructure that supports interoperable explanations of sources, assump-
tions, learned information, and answers as an enabler for trust. It supports:

• Provenance - if users (humans and agents) are to use and integrate data from
unknown, uncertain, or multiple sources, they need provenance metadata for
evaluation

• Interoperability - more systems are using varied sources and multiple infor-
mation manipulation engines, thus increasing interoperability requirements

• Explanation/Justification - if information has been manipulated (i.e., by sound
deduction or by heuristic processes), information manipulation trace infor-
mation should be available

• Trust - if some sources are more trustworthy than others, trust ratings are
desired

The Inference Web consists of the following main components:

• Proof Markup Language(PML [19]) is an OWL-based specification for doc-
uments representing both proofs and proof meta information. Proofs are
specified in PML and are interoperable. Proof fragments as well as entire
proofs may be combined and interchanged. So PML provides theInference
Web ’s support for distributed proofs.

• IWBaseis an infrastructure within the Inference Web framework forproof
meta information. It is a distributed repository of PML documents describ-
ing provenance information about proof elements such as sources, inference
engines and inference rules. By providing meta informationfor sources,
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the Inference Web supports knowledge provenance. It also supports reason-
ing information, which is provided by the PML documents and the IWBase,
which supports meta information about inference engines along with their
primitive inference rules.

• IWExplainer is a tool for abstracting proofs into more understandable for-
mats. It supports various strategies to explain answers including the visual-
ization of abstracted proof, presentation of provenance information, etc.

• IWBrowsercan display both proofs and explanations in number of proof
styles and sentence formats.

Beyond just explaining a single system, Inference Web attempts to provide a
way of combining and presenting proofs that are available. It does not take one
stance on the form of the explanation since it allows deductive engines to dump
single or multiple explanations of any deduction in the deductive language of their
choice. It provides the user with flexibility in viewing fragments of single or multi-
ple explanations in multiple formats. IW simple requires inference rule registration
and PML format. It does not limit itself to only extracting deductive engines. It
provides a proof theoretic foundation on which to build and present its explana-
tions, but any question answering system may be registered in the Inference Web
and thus explained. So, in order to use the Inference Web infrastructure, a question
answering system must register in the IWBase its inference engine along with its
supported inference rules, using the PML specification format. The IW supports
proof generation service that facilitates the creation of PML proofs by inference
engines.

Inference Web was originally aimed at explaining answers from theorem provers
that encode a set of declaratively specified inference rules. Theorem provers like
Stanford’s JTP reasoner and SRI’s SNARK reasoner have been registered and they
produce PML proofs. Prototype implementations of SemanticWeb agents that are
based on the JTP theorem prover are supported by the IW. Future work includes
the registration of more question answering systems from different areas, like query
planners and extractors.

It is an interesting and open issue if our implemented proof system could be
registered in the Inference Web, so as to produce PML proofs.This would possibly
require the registration of our inference engine, that is a defeasible logic reasoner,
along with the corresponding inference rules, which are used in the defeasible logic
proof theory and the explanations that produced by our proofsystem.

Extra work needs to be done in Inference Web in order to support why-not
questions. Current IW infrastructure can not support explanations in negative an-
swers about predicates. This is the case that corresponds toour system ’s explana-
tions when an atom is not definitely or defeasibly provable.
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14 Conclusions and Future Work

This work resulted to a new system that aims to increase the trust of the users for
the Semantic Web applications. We created a system that automatically generate
an explanation for every answer to the users questions, in a formal and useful rep-
resentation. This system can be used by individual users that want to get a more
detailed explanation from a reasoning system in the Semantic Web, in a more hu-
man readable way. Our reasoning system was based on defeasible logic and we
used the relative implemented meta-program, where XSB was used as the reason-
ing engine. We developed a pruning algorithm that reads the XSB’s trace and
removes the redundant information in order to formulate a sensible proof. Further-
more, the system can be used by agents that is common in many applications in
the Semantic Web. An other contribution of our work is a new XML language for
a formal representation of an explanation using defeasiblelogic. Additionally, we
provide a web style representation for the facts, that is an optional reference to a
URL. We expect that our system can be used by multiple applications, mainly in
E-commerce and agent-based applications.

Besides the current implementation, there is much future work that can be
done. Also, much improvement can be achieved for a more humanfriendly pre-
sentation of a logical explanation (without assuming any knowledge for the under-
lying logical system). Our XML-based language for explanation representation is
not fully compatible with RuleML (e.g an extention of RuleML’s specification has
been developed for situated courteous logic programs ). This is a possible extension
of our XML schema. Finally, our system could be integrated tothe Inference Web
framework, by registering our inference engine and inference rules and converting
our representation in the PML format.

References

[1] T. Berners-Lee (1999). Weaving the Web. Harper 1999.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler (2000). Extensible
Markup Language (XML) 1.0 (Second Edition) W3C Recommendation, Oc-
tober 2000. Available at: http://www.w3.org/TR/2000/RECxml- 20001006.
G. Antoniou and F. van

[3] G. Antoniou and F. van Harmelen (2004). A Semantic Web Primer. MIT Press
2004.

[4] D.L. McGuinness , F. van Harmelen (2004). OWL Web Ontology Lan-
guage Overview W3C Recommendation, February 2004. Available at:
http://www.w3.org/TR/owl-features/.

48



[5] G. Antoniou, D. Billington, G. Governatori and M.J. Maher (2001). Repre-
sentation results for defeasible logic. ACM Transactions on Computational
Logic 2, 2 (2001): 255 287.

[6] B. N. Grosof (1997). Prioritized conflict handing for logic programs. In Proc.
of the 1997 International Symposium on Logic Programming, 197-211.

[7] G. Antoniou, M. J. Maher and D. Billington (2000). Defeasible Logic versus
Logic Programming without Negation as Failure. Journal of Logic Program-
ming 41,1 (2000): 45 57. M.J. Maher (2002).

[8] A Model-Theoretic Semantics for Defeasible Logic, Proc. Workshop on Para-
consistent Computational Logic, 67 - 80, 2002.

[9] D. Beckett (2004). RDF/XML Syntax Specification, W3C Recommendation,
February 2004. Available at: http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

[10] D. Brickley, R.V. Guha (2004). RDF Vocabulary Description Language
1.0: RDF Schema W3C Recommendation, February 2004. Available at:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[11] Antonis Bikakis, Grigoris Antoniou: DR-Prolog: A System for Reasoning
with Rules and Ontologies on the Semantic Web. AAAI 2005: 1594-1595

[12] Nick Bassiliades, Grigoris Antoniou, Ioannis P. Vlahavas: DR-DEVICE: A
Defeasible Logic System for the Semantic Web. PPSWR 2004: 134-148

[13] RuleML. The Rule Markup Language Initiative. www.ruleml.org

[14] E. Shortliffe. Computer-based Medical Consultations: MYCIN. Elsevier,
1976.

[15] W. Swartout, C. Paris, and J. Moore. Design for explainable expert systems.
IEEE Expert, 6(3):58–647, 1991.

[16] Deborah L. McGuinness and Alex Borgida. Explaining Subsumption in De-
scription Logics, in Proceedings of the 1995 InternationalJoint Conference
on Artificial Intelligence , August 1995.

[17] Deborah L. McGuinness. Explaining Reasoning in Description Logics, Rut-
gers University Thesis, New Brunswick, 1996.

[18] Inference Web. Semantic Web Infrastructure for provenance and justification.
http://iw.stanford.edu/2.0/

[19] Paulo Pinheiro da Silva, Deborah L. McGuinness and Richard Fikes. A Proof
Markup Language for Semantic Web Services. Information Systems. Volume
31, Issues 4-5, June-July 2006, Pages 381-395. Previous version, technical
report, Knowledge Systems Laboratory, Stanford University.

49



A XML Schema for Explanation Representation

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSch ema">

<xsd:element name = "Definitely_provable" >
<xsd:complexType>

<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Definite_Proof" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Atom">

<xsd:complexType>
<xsd:choice>

<xsd:sequence>
<xsd:element name= "Op"/>
<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">

<xsd:element name= "Var" minOccurs = "0"/>
<xsd:element name ="Ind" minOccurs = "0"/>

</xsd:sequence>
</xsd:sequence>
<xsd:sequence>

<xsd:element name="Not">
<xsd:complexType>

<xsd:sequence>
<xsd:element name= "Op"/>
<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">

<xsd:element name= "Var" minOccurs = "0"/>
<xsd:element name ="Ind" minOccurs = "0"/>

</xsd:sequence>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>
<xsd:element name = "Definite_Proof">

<xsd:complexType>
<xsd:choice>

<xsd:sequence>
<xsd:element ref= "Strict_rule"/>
<xsd:element ref= "Definitely_provable" minOccurs="0" m axOccurs="unbounded"/>

</xsd:sequence>
<xsd:element ref= "Fact"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Strict_rule">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Head"/>
<xsd:element ref= "Body"/>

</xsd:sequence>
<xsd:attribute name = "Label" type = "xsd:string" use="req uired"/>

</xsd:complexType>
</xsd:element>
<xsd:element name= "Head">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Atom"/>
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</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name= "Body">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Atom" minOccurs="0" maxOccurs="unbou nded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name= "Fact">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Atom"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name = "Defeasibly_provable" >
<xsd:complexType>

<xsd:choice>
<xsd:element ref="Definitely_provable"/>
<xsd:sequence>

<xsd:element ref = "Atom" />
<xsd:element ref = "Defeasible_Proof" />

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>
<xsd:element name = "Defeasible_Proof">

<xsd:complexType>
<xsd:sequence>

<xsd:choice>
<xsd:element ref= "Strict_rule"/>
<xsd:element ref= "Defeasible_rule"/>

</xsd:choice>
<xsd:element ref="Defeasibly_provable" minOccurs="0" m axOccurs="unbounded"/>
<xsd:element ref="Not_Definitely_provable"/>
<xsd:element ref="Blocked" minOccurs="0" maxOccurs="un bounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name = "Defeasible_rule">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref= "Head"/>
<xsd:element ref= "Body"/>

</xsd:sequence>
<xsd:attribute name = "Label" type ="xsd:string" use="opt ional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "Blocked">

<xsd:complexType>
<xsd:choice>
<xsd:sequence>

<xsd:element ref="Defeasible_rule"/>
<xsd:choice>

<xsd:element ref="Superior"/>
<xsd:element ref="Not_Defeasibly_provable" />

</xsd:choice>
</xsd:sequence>

<xsd:sequence>
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<xsd:element ref="Strict_rule"/>
<xsd:element ref= "Not_Definitely_provable"/>

</xsd:sequence>
<xsd:element name="Not_Superior">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Defeasible_rule"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Superior">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Defeasible_rule"/>
<xsd:element ref="Defeasibly_provable" minOccurs="0" m axOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name = "Not_Definitely_provable">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Definite_Proof" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Not_Definite_Proof">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Defeasibly_provable">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Defeasibly_Proof" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Not_Defeasibly_Proof">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Not_Definitely_provable"/>
<xsd:choice>

<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>
<xsd:element ref="Definitely_provable"/>
<xsd:element ref="Undefeated"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="Undefeated">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Defeasible_rule"/>
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<xsd:element ref="Defeasibly_provable" minOccurs="0" m axOccurs="unbounded"/>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>
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