Proof Explanation for the Semantic Web Using
Defeasible Logic
Project Report irCS 566

Nikos Dimaresis, Antonis Papadogiannakis, Dimitris Kodalas,
Rena Theodosaki, Giannis Lilis, Panagiotis Pediaditi&phis Kazepis,
Efie Karouzaki, Giannis Georgalis, Dimitris Zeginis,
Manolis Kritsotakis, Manolis Genetzakis, Constantinosz@kis

October 11, 2006

1 Abstract

In this work we present the desing and implementation of asyestem for proof
explanation in the Semantic Web, using defeasible logiasflis a vital feature for
Semantic Web. If users (humans and agents) are to use agdaietesystem an-
swers, they must trust them. Thus, systems should be abkplairetheir actions,
sources, and beliefs. Our system produces automaticaltyf pxplanations using
a popular logic programming system (XSB), by interpretihg butput from the
proof’s trace and convert it to a meaningfull representatib presents the expla-
nation of an answer for a user’s query back to him using a geapimterface, and
also it can use an XML representation for agent communicatiwat is a common
scenario in the Semantic Web. One of the main benefits of atiesyis that it sup-
ports explanations in defeasible logic for both positivd aagative answers in user
queries. In the remaining of this report we present the desigl implementation
of the system, a novel XML language for the represantatianpbof explanation,
and we give a variety of examples and use cases of our system.
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2 The Semantic Web Initiative

The aim of the Semantic Web initiative [1] is to advance tlaesbf the current
Web through the use of semantics. More specifically, it psepdo use semantic
annotations to describe the meaning of certain parts of Wiebmation. For exam-
ple, the Web site of a hotel could be suitably annotated tindisish between hotel
name, location, category, number of rooms, available sesvetc. Such metadata
could facilitate the automated processing of the infororatin the Web site, thus
making it accessible to machines and not primarily to hunsamgy as it is the case
today.

The development of the Semantic Web proceeds in steps, tgrbuiding a
layer on top of another. The layered design is shown in Figurehich is outlined
below.

e At the bottom layer we find XML [2], a language that lets onete/struc-
tured Web documents with a user-defined vocabulary. XML rsiqdarly
suitable for sending documents across the Web, thus supgp@yntactic
interoperability.

e RDF is a basic data model for writing simple statements ald¢eli objects
(resources). The RDF data model does not rely on XML, but RB$-dn
XML-based syntax. Therefore it is located on top of the XMiida

e RDF Schema provides modeling primitives for organizing Wbfects into
hierarchies. RDF Schema is based on RDF. RDF Schema canvibedvaes
a primitive language for writing ontologies.

e But there is a need for more powerful ontology languagesdkpand RDF
Schema and allow the representation of more complex rakdtiips between
Web objects. Ontology languages, such as OWL, are built®tojnof RDF
and RDF Schema.

e Thelogic layer is used to enhance the ontology languagledyrand to allow
writing application-specific declarative knowledge.

e The proof layer involves the actual deductive process, dsasdhe repre-
sentation of proofs in Web languages and proof validatiorkinally trust
will emerge through the use of digital signatures, and okiiveat of knowl-
edge, based on recommendations

¢ Finally trust will emerge by using digital signatures, atioes kind of know!-
edge, based on recommendations by agents we trust, or eatthgertifica-
tion agencies and consumer bodies.

For an easy yet comprehensive introduction to the Semardlz $&e [3].
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Figure 1: Layers of the Semantic Web

3 Rules on the Semantic Web

At present, the highest layer that has reached sufficientinibais the ontology
layer in the form of the description logic-based languagelO4}. The next step
in the development of the Semantic Web will be the logic ambplayers, and rule
systems appear to lie in the mainstream of such activitiesrebler, rule systems
can also be utilized in ontology languages. So, in genetalgystems can play a
twofold role in the Semantic Web initiative:

(a) they can serve as extensions of, or alternatives toyigésn logic-based
ontology languages; and

(b) they can be used to develop declarative systems on tasioif) ontologies.

Reasons why rule systems are expected to play a key role ifuitther develop-
ment of the Semantic Web include the following:

e Seen as subsets of predicate logic, monotonic rule systdors (ogic) and
description logics are orthogonal; thus they provide aoitil expressive
power to ontology languages.

¢ Efficient reasoning support exists to support rule langsage

¢ Rules are well known in practice, and are reasonably welbiratted in main-
stream information technology, such as knowledge bases, et

Apart from the classical rules that lead to monotonic lolggystems, recently re-
searchers started to study systems capable of handlingate@finong rules. Gen-
erally speaking, the main sources of such conflicts are:

e Default inheritance within ontologies.

Ontology merging, where knowledge from different sourcesombined.

Rules with exceptions as a natural representation of bssindes.

Reasoning with incomplete information.



4 Basics of Defeasible Logics

4.1 Basic Characteristics

Defeasible reasoning is a simple rule-based approachsomesy with incomplete
and inconsistent information. It can represent facts,siudand priorities among
rules. This reasoning family comprises defeasible logi¢shd Courteous Logic
Programs [6]. The main advantage of this approach is the c@iidn of two
desirable features: enhanced representational capeb#ilowing one to reason
with incomplete and contradictory information, coupledhwiow computational
complexity compared to mainstream nonmonotonic reasoriiig basic charac-
teristics of defeasible logics are:

e Defeasible logics are rule-based, without disjunction.

e Classical negation is used in the heads and bodies of rulés)dgation-
as-failure is not used in the object language (it can eaglgimulated, if
necessary [7]).

e Rules may support conflicting conclusions.

e The logics are skeptical in the sense that conflicting rutesat fire. Thus
consistency is preserved.

e Priorities on rules may be used to resolve some conflicts gmaes.

e The logics take a pragmatic view and have low computatiooaiexity.

4.2 Syntax

A defeasible theor is a triple F, R,>), whereF is a set of literals (callethcts,
R a finite set of rules, and- a superiority relation ofiR. In expressing the proof
theory we consider only propositional rules. Rules commagiriree variables are
interpreted as the set of their variable-free instances.

There are three kinds of rulestrict rulesare denoted byA — p and are
interpreted in the classical sense: whenever the premrgemdisputable (e.g.
facts) then so is the conclusion. An example of a strict raléProfessors are
faculty membefs Written formally:

professor(X) — faculty(X).

Inference from facts and strict rules only is calldeffinite inference Facts and
strict rules are intended to define relationships that afieiienal in nature. Thus
defeasible logics contain no mechanism for resolving isancies in definite
inference.

Defeasible rules are denoted byt = p, and can be defeated by contrary
evidence. An example of such a rule is



faculty(X) = tenured(X)

which reads as follows:Professors are typically tenuréd

Defeatersare denoted byl ~» p and are used to prevent some conclusions. In
other words, they are used to defeat some defeasible rulpsolducing evidence
to the contrary. An example is the rule

heavy(X) ~ = flies(X)

which reads as follows: If an animal is heavy then it may noable to fly”. The
main point is that the information that an animal is heavyossufficient evidence
to conclude that it doesn't fly. It is only evidence that thévaad maynot be able
to fly.

A superiority relation on R is an acyclic relationon R (that is, the transitive
closure of> is irreflexive). When-1 > r2, thenrl is calledsuperiorto r2, andr2
inferior to rl. This expresses that may override2. For example, given the rules

r: professor(X) = tenured(X)
r’: visiting(X) = —tenured(X)

which contradict one each other, no conclusive decisiorbeanade about whether
a visiting professor is tenured. But if we introduce a suprési relation > with r’
> 1, then we can indeed conclude that he/she cannot be tenured.

4.3 Proof Theory

A conclusionof a defeasible theor is a tagged literal. Conventionally there are
four tags, so a conclusion has one of the following four farms

e +Agq, which is intended to mean thqts definitely provable irD.

e -Aq, which is intended to mean that we have proved thistnot definitely
provable inD.

e +0q, which is intended to mean thqis defeasibly provable iD.

e -Jq, which is intended to mean that we have proved that q is needdily
provable in D.

Provability is based on the concept aderivation(or proof) in D = (F, R, >).
A derivation is a finite sequende = (P(1),...P(n)) of tagged literals constructed
by inference rules. There are four inference rules (comegimng to the four kinds
of conclusion) that specify how a derivation may be extende(l..i) denotes the
initial part of the sequenck of length i):



+A: We may appen®(i+1)= +Aq if either
geFor
ar € Rs[q] Va e A(r): +Aae P(1..i)

That means, to prove/Aq we need to establish a proof fqrusing facts and
strict rules only. This is a deduction in the classical sens® proofs for the
negation ofg need to be considered (in contrast to defeasible prowaliétow,
where opposing chains of reasoning must be taken into atcom).

—A: We may append(i+1)=-Aq if
g¢ F and
Vr € R[] Jae A(r): —Aae P(1..i)

To prove—Ag, that is, thatg is not definitely provableg must not be a fact.
In addition, we need to establish that every strict rule via¢iadq is known to be
inapplicable. Thus for every such ruléhere must be at least one antecedefur
which we have established thats not definitely provable{Aa).

Defeasible provability requires consideration of chaifigeasoning for the
complementary literal, and possible resolution using tigedority relation. Thus
the inference rules for defeasible provability are more glicated than those for
definite provability.

+0: We may appendP(i+1) = +0q if either
(1) +Aqe P(1..i) or
(2) (2.1Qr € Rydq) Va e A(r): +0a € P(1..i) and
(2.2)—-A ~qe P(1..i) and
(2.3)s € R[~q] either

(2.3.1Ha € A(9): —0ac P(1..i) or
(2.3.2Ht € Ryq[q] such that

Va e A(t): +0a e P(1..i) andt > s

Let us illustrate this definition. To show thqis provable defeasibly we have
two choices: (1) We show thatis already definitely provable; or (2) we need to
argue using the defeasible part@fas well. In particular, we require that there
must be a strict or defeasible rule with hegarhich can be applied (2.1). But now
we need to consider possible attacks, that is, reasoningschasupport of~q.

To be more specific: to provgdefeasibly we must show thatq is not definitely
provable (2.2). Also (2.3) we must consider the set of aéswhich are not known

to be inapplicable and which have head. Essentially each such rugeattacks

the conclusiorg . Forqto be provable, each such rule must be counterattacked by
a rulet with headq with the following properties: (i} must be applicable at this
point, and (ii)t must be stronger thas Thus each attack on the conclusipmust

be counterattacked by a stronger rule.

The definition of the proof theory of defeasible logic is cdeted by the infer-
ence rule-9. Itis a strong negation of the inference rulé [2].



—0: We may appen®(i+1) = —9q if
(1) —Aqe P(1..i) and
(2) (2.1)r € Rsglq] Ja € A(r): —da e P(1..i)or
(2.2)+A ~qe P(1..i)or
(2.3Hs € R[~(] such that
(2.3.1)a e A(s): +0a < P(1..i) and
(2.3.2)t € Rgq[q] either
Jdae A(t): —0ac P(l.i)ort ¥ s

To prove thatq is not defeasibly provable, we must first establish that it is
not definitely provable. Then we must establish that it catnegoroven using the
defeasible part of the theory. There are three possilsilibeachieve this: either we
have established that none of the (strict and defeasible$ with heady can be
applied (2.1); or~q s definitely provable (2.2); or there must be an applicable r
r with head~q such that no possibly applicable ridevith head~qis superior to
s(2.3).

A more detailed definition of the proof theory is found in [BYmodel theoretic
semantics is found in [8], and argumentation semanticssisudsed in [4].
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4.4 Reasoning Systems

Recent system implementations, capable of reasoning wetioionic rules, non-
monotonic rules, priorities, RDF [9] data and RDF Schemd f#@ologies, are
DR-Prolog [11] and DR-DEVICE [12]. DR-Prolog is a defeasilbbasoning sys-
tem for reasoning on the Web. Its main characteristics @& éaflowing:

e Its user interface is compatible with RuleML, the main stddzation effort
for rules on the Semantic Web.

e It is based on Prolog. The core of the system consists of astgied
translation of defeasible knowledge into logic programdarmVell-Founded
Semantics.

e The main focus is on flexibility. Strict and defeasible rudesl priorities are
part of the interface and the implementation.

e The system can reason with rules and ontological knowled@tewin RDF
Schema (RDFS) or OWL.

DR-DEVICE is also a defeasible reasoning system for reagoon the Web. Its
main characteristics are the following:

e lIts user interface is compatible with RuleML

e It is based on a CLIPS-based implementation of deductivesrul'he core
of the system consists of a translation of defeasible knidgdento a set of
deductive rules, including derived and aggregate ateut

5 The Proof Layer

The next subjects in the development of the Semantic Welst &ipen becoming
a global database, are the issues of accessibility, trastrdibility. These upper
levels have not been researched enough and these are thehaklehges for the
Semantic Web. The next step in the architecture of the Secridfeb is the proof
layer. Little has been written and done for this layer, bug g#xpected to become
very important in the near future.

Because not all the data sources will be considered equeigble, when the
users (humans and computer agents) receive an answer fremangc Web ap-
plication, they need to know the data sources that were usédh& sources’ re-
liability. Thus it is necessary for the users to be able tduata an answer for its
trustworthiness. The solution is to providgplanationdor the derivation history,
which is the series of inference steps that can be retraceéxplanation will trace
an answer back to a given set of facts and the inference raés u

Users, in order to trust an answer which receive from an egipdin, they may
need to inspect the whole deductive proof trace that was tesddrive implicit
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information. Usually proof traces are too long and complee more suitable in
understanding for expert logicians. So it is better to redie explanation from
the proof traces to a more understandable form for the uBerthermore, because
all the facts that are contained in a proof could be assignedsburce, users need
to retrieve some information about the sources in orderust tihem. Perhaps
applications that rate sources about their authoritatigsrcould be developed to
help for this reason. Finally, applications need to be dgped that provide to users
a user interface that give them the ability to ask questioialsraquest explanations
in answers and present them the proofs and the correspoexiatgnations.

In this project we implement a defeasible reasoning systamefasoning on
the Web, which provides the additional capability of presgnexplanations to
users for the answers to their queries.

6 Explanation Use Cases

In this section, we mention two examples where the explandti the Semantic
Web is used.

6.1 Use Case: Online Shop and E-commerce

Suppose an agent, which represents an online shop, sendb’toagent a message
that he owns30 Euros. Last week he purchased a DVD from the online shop, that
costs30 Euros. The item was delivered to his address and Bob’s ageshatified

that Bob must pay the item’s price. Then Bob ask his agenighson why he owes
that cost and the shop’s agent respond with an explanatibichvis the following
sequence of facts and rules:

o purchase(Customer, Item), price(Item, Cost), delivered(Item, Customer)
— owes(Customer, Price)
This is a rule from the shops terms and conditions

e purchase(Bob, DV D) The Web log of Bob’s purchase
e price(Item,Cost) The price of the DVD in the online shop

e delivered(Item,Customer) Delivery proof of DVD to Bob with a courier
number

12



6.2 Use Case: University Graduate

Suppose Jim is a student in a university. His agent asks tiet aj the univer-
sity’s secretary, if Jim is able to graduate from the depantinthat he attends. The
secretary gives him a negative answer and the student tedussgent to receive
an explanation about the reason he cannot graduate. Thetasgts agent gives as
an explanation the following sequence of facts and rules:

e completed_units(Student), passed_optional lessons(Student),
undergraduate_thesis(Student) — graduate(Student)
This is a rule from the department’s program studies

e —passed_optional_lessons(Jim) The list with the lessons that Jim has passed,
where is referred that he has not passed the required nunhlogtional
lessons in order to graduate

Then Jim makes a follow up question to retrieve a further axaion about the
number of optional lessons that he has passed and the mtequingber in order to
graduate.

e passed(Student, X), optional(X), passed(Student,Y"), optional(Y'), passed(Student, Z),
optional(Z),notSame(X,Y), notSame(Y, Z),notSame(X, Z)
— passed_optional lessons(Student)
This is a rule from the department’s program studies. A studrist pass at
least three different optional lessons. We prefer to usprbeicatenotSame
instead of expressing inequality in logical terms.

e passed(Jim,CS110) optional(CS110) Jim has passed tlomaliitsson with
the code CS110

e passed(Jim,CS231) optional(CS231) Jim has passed tlomalliésson with
the code CS231. So Jim has only passed two optional lessons.

7 Extension of RuleML for Explanation Representation

The need for a formal, XML based, representation of an explan in the Se-
mantic Web led us to design an extension of the Rule Markuguage (RuleML)
[13]. RuleML is an XML based language that supports ruleesgntation for the
Semantic Web. In this section, we describe in detail thegtesi a new XML
schema, extension of RuleML, for explanation represeoriati defeasible logic
and in the next section we give some instructive exampleg. cbmplete schema
specification is given in Appendix A.

7.1 Atoms, Facts and Rule Representation

In our XML schema, we use a similar syntax to RuleML in ordergpresent
FactsandRules Specifically, we use thAtomelement which refers to an atomic

13



formula, and it consists of two elements, an operator elérf@p) and either a
Variable element\{ar ) or an Individual constant elemenn( ), preceded option-
ally by a not statement (in case we represent a negatival)itérigure 2 shows the
declaration of a typical Atom.
<Atom>
<Not>
<Op> rich </Op>
<Ind> Bob </Ind>

</Not>
</Atom>

Figure 2: Declaration of an Atom

Similarly to RuleML, aFactis consisted by an Atom that comprise a certain
knowledge. The last primitive entity of our schem&isles In defeasible logic, we
distinguish two kinds of RulesStrict Rulesand Defeasible Rulesln our schema
we also note with a different element these two kind of ruBsth kinds consists
of two parts, theHead element which is constituted of an Atom element, and the
Body element which is constituted of a number of Atom elementguireé 3 shows
a typical example of a Defeasible Rule.

<Head>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>
</Atom>
</Body>
</Defeasible_rule>

Figure 3: Declaration of a Defeasible Rule

7.2 Definitely Provable Explanations

The simplest proof explanation is in case of a definitely plbe Atom. For that
proof, we first have to denote the Atom, and then give Diedinite Proof

that explains why it is definitely provable. This explanatican come out in two
ways: either a simpl€&act for that Atom, or give &trict Rule with Head

this Atom andBody an Atom that should be also proved definitely with the same
way. If theBody consists of multiple Atoms, then we state the definite prtavab
explanation for every atom of the Body. Figure 4 shows thectiire of a definite
proof explanation.

14



<Definitely_provable>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
<Definite_Proof>
<Strict_rule Label="r1">
<Head>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>
</Atom>
</Body>
</Strict_rule>
<Definitely_provable>
<Definite_Proof>

<Fact>
<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>
</Atom>
</Fact>

</Definite_Proof>

</Definitely_provable>
</Definite_Proof>
</Definitely_provable>

Figure 4: Example of a typical Definite Proof Explanation

7.3 Defeasibly Provable Explanations

A defeasibly provable explanation arises from the deféasilgic specification. If
an Atom is definitely provable, then it is also defeasiblyvatae. Thit is the first,
simple, explanation for a defeasible provable Atom, thabigered by the previous
section about definitely provable explanations.

Else, we denote the Atom and we have to a giiedeasible Proof A
Defeasible Proof consists of four steps: First, we poilledeasible Rule
with Head the specified Atom. In the second step, we explain whyBbdy of
that rule is defeasible provable (if it consists of many Asptien a separate proof
is given for every one of them). The third step is to show thatriegation of this
Atom is not definitely provable (see section 7.4). Finaliythe fourth step, we
have to show that all the rules with head the negation of ttemAthat we prove
(attacks) can be defeated. We call these attack rulBsoaked . We characterize
an attack rule aBlocked in two cases:

e When they cannot fire, so we must prove that their body is nfetadéle
provable (in case of multiple Atoms it is enough to show thay@ne of
them is not defeasible provable). For not defeasible pievakplanation,
look at the section 7.5 below.

15



e When the rule is defeated by a superiority relation. Everhéf body of
the rule is provable (the rule fires), an other rule with hese Atom that
we prove and fires should be declared as superior to the atibekin our
scheme, we just need to declare the rule that is superioretattack rule,
and in case that this rule is different than the rule we firstiuess supportive,
we also add the defeasible provable explanations for itg.bod

So, for every attack rule we createBédocked tag with the explanation of why
the rule is defeated (one of the above two cases). Figurevisstie structure of a
definite proof explanation.

<Defeasibly_provable>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
<Defeasible_Proof>
<Defeasible_rule Label="r1"> . . . </Defeasible_rule>
<Defeasible_provable>
<Atom>
<Op> wins_lotto </Op>
<Ind> Bob </Ind>
</Atom>
<Defeasible_Proof> . . . </Defeasible_Proof>
</Defasible_provable>
<Not_Definitely_provable>

<Atom>
<Not>
<Op> rich </Op>
<Ind> Bob </Ind>
</Not>
</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>
</Not_Definitely_provable>
<Blocked>
<Defeasible_rule Label="r3">
<Head>
<Atom>
<Not>
<Op> rich </Op>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
<Superior>

<Defeasible_rule Label="r1"/>
</Superior>

</Blocked>
<Blocked>
<Defeasible_rule Label="r4"> . . . </Defeasible_rule>
<Not_Defeasibly_provable> . . . </Not_Defeasibly_provab
</Blocked>

</Defeasible_Proof>
</Defeasible_provable>

Figure 5: Example of a typical Defeasible Proof Explanation
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7.4 Not Definitely Provable Explanations

The next case is the explanation of an Atom that is not defyri@vable. Accord-
ing to our XML schema, we first denote the Atom that is not dedlgiprovable and
then we give thé&on Definitely Proof . TheNon Definitely Proof
consists of all the strict rules with head equal to the negadf the non provable
Atom, with an explanation of why they cannot fire. InsBl®cked tags, we in-
clude each strict rule with a Non Definitely Provable exptamafor their body.
Figure 6 demonstrates an example of a non definitely provatgnation.

<Not_Definitely_provable>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
<Not_Definite_Proof>
<Strict_rule Label="r3">

<Head>
<Atom>
<Not>
<Op> rich </Op>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<Op> owns_money </Op>
<Ind> Bob </Ind>
</Atom>
</Body>

</Strict_rule>
<Not_Definitely_provable>

<Atom>
<Op> owns_money </Op>
<Ind> Bob </Ind>
</Atom>

<Not_Definite_Proof> </Not_Definite_Proof>
</Not_Definitely_provable>
</Not_Definite_Proof>
</Not_Definitely_provable>

Figure 6: Example of a Non Definitely Provable Explanation

7.5 Not Defeasibly Provable Explanations

At last, we describe the case when an Atom cannot be defgegwmibled. For a
Non Defeasible Proof , firstly we have to prove that this Atom is not defi-
nitely provable (as described in the previous section).tNe& need to support our
explanation with one of the following three cases:

¢ All the rules with head the specified Atom does not fire. Fot tzese, we
include insideBlocked tags every defeasible rule with head this Atom and
also a not defeasibly provable explanation for their body.
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e The negation of this Atom is definitely provable.

e We denote arule with head the negation of the specified Atatrigbindefeated
That means that there is no attack rule that can defeat itwv&embody in-
sideUndefeated tags the defeasible rule that is undefeated, the defeasible
provable explanation for the body of that rule and finallyrgvattack rule
(with head the Atom that we prove, that is not defeasible giote) is de-
noted insideBlocked tags either adlot Superior  rule compared with
the undefeated rule, or its body as non defeasible provable.

Figure 7 shows an example of a hon defeasible provable extiban

<Not_Defeasibly_provable>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
<Not_Defeasible_Proof>
<Not_Definitely_provable>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
<Not_Definite_Proof> . . . </Not_Definite_Proof>
</Not_Definitely_provable>
<Undefeated>
<Defeasible_rule Label="r4">
<Head>
<Atom>
<Not>
<Op> rich </Op>
<Ind> Bob </Ind>
</Not>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
<Defeasibly_provable> . . . </Defeasibly_provable>
<Blocked>
<Not_Superior>

<Head>
<Atom>
<Op> rich </Op>
<Ind> Bob </Ind>
</Atom>
</Head>
<Body> . . . </Body>
</Defeasible_rule>
</Not_Superior>
</Blocked>
</Undefeated>
</Not_Defeasible_Proof>
</Not_Defeasibly_provable>

Figure 7: Example of a Non Defeasible Provable Explanation
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8 Some Concrete Examples

In this section, we present some examples of explanatioreseptation in our
XML schema using defeasible logic reasoning.

8.1 Examplel: Lunch Time

First, we demonstrate a simple example using the followirest

fact(hungry(isidoros)).
fact(empty_kitchen(isidoros)).
defeasible(rl,order_pizza(X),[hungry(X),empty_kitch en(X)]).

The answer to the questiatefeasibly(ordempizza(isidoros)js TRUE The ex-
planation to that answer, according to our XML scheme, istgivelow:

<Defeasibly_provable>
<Atom>
<Op> order_pizza </Op>
<Ind> isidoros </Ind>
</Atom>
<Defeasible_Proof>
<Defeasible_rule Label="r1">

<Head>
<Atom>
<Op> order_pizza </Op>
<Ind> isidoros </Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op> hungry </Op>
<Ind> isidoros </Ind>
</Atom>
<Atom>
<Op> empty_kitchen </Op>
<Ind> isidoros </Ind>
</Atom>
</Body>

</Defeasible_rule>

<Defeasibly_provable>
<Definitely_provable>
<Atom>
<Op> hungry </Op>
<Ind> isidoros </Ind>
</Atom>
<Definite_Proof>
<Fact>
<Atom>
<Op> hungry </Op>
<Ind> isidoros </Ind>
</Atom>
</Fact>
</Definite_Proof>
</Definitely_provable>
</Defeasibly_provable>
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<Defeasibly_provable>
<Definitely_provable>
<Atom>
<Op> empty_kitchen </Op>
<Ind> isidoros </Ind>
</Atom>
<Definite_Proof>
<Fact>
<Atom>
<Op> empty_kitchen </Op>
<Ind> isidoros </Ind>
</Atom>
</Fact>
</Definite_Proof>
</Definitely_provable>
</Defeasibly_provable>

<Not_Definitely_provable>
<Atom>
<Not>
<Op> order_pizza </Op>
<Ind> isidoros </Ind>
</Not>
</Atom>
<Not_Definite_Proof>
</Not_Definite_Proof>
</Not_Definitely_provable>

</Defeasible_Proof>
</Defeasibly_provable>

8.2 Example3: Marine Biology

In this example, we have the following rule set:

strict(rl,cephalopod(X),[nautilus(X)]).
strict(r2,mollusc(X),[cephalopod(X)]).
defeasible(r3,shell(X),[nautilus(X)]).
defeasible(r4,”(shell(X)),[cephalopod(X)]).
defeasible(r5,shell(X),[mollusc(X)]).
fact(nautilus(nancy)).

sup(r5,r4)

If we askdefeasibly(shell(nancy)jhe answer iF RUE The literalshell(nancy)
is defeasibly provable. We present below the explanatigoraing to our scheme,
that our system generates for this example.

<Defeasibly_provable>
<Atom>
<Op>shell</Op>
<Ind>nancy</Ind>
</Atom>
<Defeasible_Proof>
<Defeasible_rule Label="r3">
<Head>
<Atom>
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<Op>shell</Op>
<Ind>nancy</Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
</Defeasible_rule>
<Defeasibly_provable>
<Definitely_provable>
<Atom>
<Op>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
<Definite_Proof>
<Fact>
<Atom>
<Op>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
</Fact>
</Definite_Proof>
</Definitely_provable>
</Defeasibly_provable>
<Not_Definitely_provable>

<Atom>
<Not>
<Op>shell</Op>
<Ind>nancy</Ind>
</Not>
</Atom>

<Not_Definite_Proof></Not_Definite_Proof>
</Not_Definitely_provable>
<Blocked>
<Defeasible_rule Label="r4">
<Head>
<Atom>
<Not>
<Op>shell</Op>
<Ind>nancy</Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<Op>cephalopod</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
</Defeasible_rule>
<Superior>
<Defeasible_rule Label="r5">
<Head>
<Atom>
<Op>shell</Op>
<Ind>nancy</Ind>
</Atom>
</Head>
<Body>
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72 <Atom>

73 <Op>mollusc</Op>
74 <Ind>nancy</Ind>
75 </Atom>
76 </Body>
77 </Defeasible_rule>
78 <Defeasibly_provable>
79 <Definitely_provable>
80 <Atom>
81 <Op>mollusc</Op>
82 <Ind>nancy</Ind>
83 </Atom>
84 <Definite_Proof>
85 <Strict_rule Label="r2">
86 <Head>
87 <Atom>
88 <Op>mollusc</Op>
89 <Ind>nancy</Ind>
90 </Atom>
91 </Head>
92 <Body>
93 <Atom>
94 <Op>cephalopod</Op>
95 <Ind>nancy</Ind>
96 </Atom>
97 </Body>
98 </Strict_rule>
99 <Definitely_provable>
100 <Atom>
101 <Op>cephalopod</Op>
102 <Ind>nancy</Ind>
103 </Atom>
104 <Definite_Proof>
105 <Strict_rule Label="r1">
106 <Head>
107 <Atom>
108 <Op>cephalopod</Op>
109 <Ind>nancy</Ind>
110 </Atom>
111 </Head>
112 <Body>
113 <Atom>
114 <Op>nautilus</Op>
115 <Ind>nancy</Ind>
116 </Atom>
117 </Body>
118 </Strict_rule>
119 <Definitely_provable>
120 <Atom>
121 <Op>nautilus</Op>
122 <Ind>nancy</Ind>
123 </Atom>
124 <Definite_Proof>
125 <Fact>
126 <Atom>
127 <Op>nautilus</Op>
128 <Ind>nancy</Ind>
129 </Atom>
130 </Fact>
131 </Definite_Proof>
132 </Definitely_provable>
133 </Definite_Proof>
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</Definitely_provable>

</Definite_Proof>

</Definitely_provable>
</Defeasibly_provable>
</Superior>
</Blocked>
</Defeasible_Proof>
</Defeasibly_provable>

Sincedefeasibly(shell(nancy)$ TRUE the answer to the questioot defeasibly( (shell(nancy)))
will be FALSE, because the litera(shell(nancy))is not defeasibly provable. The
explanation for this negative answer is given below:

<Not_Defeasibly_provable>
<Atom>
<Not>
<Op>shell</Op>
<Ind>nancy</Ind>
</Not>
</Atom>
<Not_Defeasibly_Proof>
<Not_Definitely_provable>
<Atom>
<Not>
<Op>shell</Op>
<Ind>nancy</Ind>
</Not>
</Atom>
<Not_Definite_Proof></Not_Definite_Proof>
</Not_Definitely_provable>
<Blocked>
<Defeasible_rule Label="r4">
<Head>
<Atom>
<Not>
<Op>shell</Op>
<Ind>nancy</Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<Op>cephalopod</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
</Defeasible_rule>
<Superior>
<Defeasible_rule Label="r5">
<Head>
<Atom>
<Op>shell</Op>
<Ind>nancy</Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op>mollusc</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
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</Defeasible_rule>
<Defeasibly_provable>
<Definitely_provable>
<Atom>
<Op>mollusc</Op>
<Ind>nancy</Ind>
</Atom>
<Definite_Proof>
<Strict_rule Label="r2">
<Head>
<Atom>
<Op>mollusc</Op>
<Ind>nancy</Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op>cephalopod</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
</Strict_rule>
<Definitely_provable>
<Atom>
<Op>cephalopod</Op>
<Ind>nancy</Ind>
</Atom>
<Definite_Proof>
<Strict_rule Label="r1">
<Head>
<Atom>
<Op>cephalopod</Op>
<Ind>nancy</Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
</Body>
</Strict_rule>
<Definitely_provable>
<Atom>
<Op>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
<Definite_Proof>
<Fact>
<Atom>
<Op=>nautilus</Op>
<Ind>nancy</Ind>
</Atom>
</Fact>
</Definite_Proof>
</Definitely_provable>
</Definite_Proof>
</Definitely_provable>
</Definite_Proof>
</Definitely_provable>
</Defeasibly_provable>
</Superior>
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</Blocked>
</Not_Defeasibly_Proof>
</Not_Defeasibly_provable>

8.3 Example4: Criminality

Using the following rule set, we answer the questigfeasibly( (hasGun(a)))

defeasible(r3,”(hasGun(X)),[pacifist(X)]).
defeasible(r4,hasGun(X),[livesInChicago(X)]).
defeasible(r2,”(pacifist(X)),[republican(X)]).
defeasible(r1,pacifist(X),[quaker(X)]).
fact(quaker(a)).

fact(republican(a)).

fact(livesInChicago(a)).

sup(r3,r4).

The answer i§ALSE, because the literal (hasGun(a)) cannot defeasibly proved

<Not_Defeasibly>
<Atom>
<Not>
<Op>hasGun</Op>
<Ind>a</Ind>
</Not>
</Atom>
<Not_Defeasibly_Proof>
<Not_Definitely_provable>
<Atom>
<Not>
<Op>hasGun</Op>
<Ind>a</Ind>
</Not>
</Atom>
<Not_Definite_Proof></Not_Definite_Proof>
</Not_Definitely_provable>

<Blocked>
<Defeasible_rule Label="r3">
<Head>
<Atom>
<Not>
<Op>hasGun</Op>
<Ind>a</Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<Op>pacifist</Op>
<Ind>a</Ind>
</Atom>
</Body>

</Defeasible_rule>
<Not_Defeasibly_provable>
<Atom>
<Op>pacifist</Op>
<Ind>a</Ind>
</Atom>
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<Not_Defeasibly_Proof>
<Not_Definitely_provable>
<Atom>
<Op>pacifist</Op>
<Ind>a</Ind>
</Atom>
<Not_Definite_Proof></Not_Definite_Proof>
</Not_Definitely_provable>
<Undefeated>
<Defeasible_rule Label="r2">
<Head>
<Atom>
<Not>
<Op>pacifist</Op>
<Ind>a</Ind>
</Not>
</Atom>
</Head>
<Body>
<Atom>
<Op>republican</Op>
<Ind>a</Ind>
</Atom>
</Body>
</Defeasible_rule>
<Defeasibly_provable>
<Definitely_provable>
<Atom>
<Op>republican</Op>
<Ind>a</Ind>
</Atom>
<Definite_Proof>
<Fact>
<Atom>
<Op>republican</Op>
<Ind>a</Ind>
</Atom>
</Fact>
</Definite_Proof>
</Definitely_provable>
</Defeasibly_provable>
<Blocked>
<Not_Superior>
<Defeasible_rule Label="r1">
<Head>
<Atom>
<Op> pacifist </Op>
<Ind> a </Ind>
</Atom>
</Head>
<Body>
<Atom>
<Op> quaker </Op>
<Ind> nikos </Ind>
</Atom>
</Body>
</Defeasible_rule>
</Not_Superior>
</Blocked>
</Undefeated>
</Not_Defeasibly_Proof>
</Not_Defeasibly_provable>
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102 </Blocked>
103 </Not_Defeasibly_Proof>
104 </Not_Defeasibly_provable>

9 Proof tree construction

The foundation of the proof system lies in the prolog metg@am that implements
the rules and reflects the traits of defeasible logic, andtridee facility of the

XSB implementation of prolog which is used for extractinfpimation about the
runtime behavior of the metaprogram. Thus, the trace prexdiby the invocation
of the prolog metaprogram with the defeasible logic progeaninput, is used for
constructing a proof tree which is subsequently used by ystes in order to
formulate a sensible proof.

The method chosen for communicating the runtime trace nmébion of the
metaprogram from the XSB execution environment to the Jawva-£nd, on which
the proof system along with its graphical and agent-basexfates was imple-
mented, was the invocation of the XSB executable from in$liae Java code.
Through the use of Javaxecmethod it was possible on one hand to send com-
mands to the XSB interpreter that was running as a standgdmtess and on the
other hand to receive the output that was produced as an.effec

Thus, at the initialization step, the XSB process invokezoeites the XSB ap-
plication through theexecmethod of the JavaRuntimesingleton and enables the
trace facility by sending the following commands to the riagrprocess:

trace. / * enable trace mode */
debug_ctl(prompt, off). / * turn off trace prompt * [

Then, in order to load the defeasible logic metaprogramdod8B interpreter,
provided that the metaprogram is contained in &neh metaprogram.Ffile, the
following command is sent:

[amb_metaprogram.P].

After the successful loading of the metaprogram, the sysemady to accept
the defeasible logic based program which constitutes thaprmagrams database.
This is achieved by executing the XSB load file command on@nagith the
programs filename as a parameter:

[defeasible_logic_program.P].
Subsequently, the system is ready to accept any queriedwahicforwarded

unmodified to the XSB process. During the evaluation of themguery/predicate
the XSB trace system will print a message each time a predisat
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Initially entered Call),
Successfully returned fronkxit),

Failed back intoRedo), and

P w0 b P

Completely failed out ofHail).

The produced trace is incrementally parsed by the Java X@&&en front-end
and a tree whose nodes represent the traced predicatesstsucted. Each node
encapsulates all the information that is provided by theetréamely:

e A string representation of the predicates name
e The predicates arguments
e Whether it was found to be tru&xit) or false ail)

e Whether it was failed back intdredo)

In addition to the above, the traced predicate representatide has a Boolean
attribute that encodes whether the specific predicate stedgThat was necessary
for overcoming the lack of trace information for thetpredicate (see next section).

10 Proof Tree Pruning

The pruning algorithm utilized to produce the final tree frima initial XSB trace
focuses on two major points. Firstly, the XSB trace productse with redundant
information that needs to be removed from the final tree. @ason for this is that
we use a particular metaprogram in order to simulate the d3éje Logic over
Prolog. For the simulation to be successful, we need somiticadd rules which
add unwanted information to the XSB trace. Another reasorttfe redundant
information is the way prolog evaluates the rules showinity Isaccessful and un-
successful paths. Secondly, the tree produced by the X$B isebuilt according
to the metaprogram structure but the final tree needs to beamplete different
form compliant with the previously mentioned XML schemahie remainder of
the document we will take a closer look to the details of tHeseissues.

In order for the metaprogram to be able to represent the ioegat the pred-
icates and evaluate the double negation of a predicate tprdticate itself, we
needed to add an extra ruleggation:

negation("(X),X):- !.
negation(X,”(X)).

This rule, of course, provides no necessary informationHerproof but solves
a simple technicality. Therefore, it is cutoff by the prumiprocess. Furthermore,
another extra rule added in the metaprogram wak metanot:
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xsb_meta_not(X):- not(X).

In Prolog, thenot predicate does not maintain the negation property (i.e. in
the trace ohot(a) we get information about the state @but not for its inverse -
which is what we actually want). To overcome this problem,aslded this extra
rule using it as semantic information while constructing parsing the XSB trace
and building the proof tree.

A main issue of the pruning process was the way Prolog eedu rules.
Specifically, upon rule evaluation the XSB trace returngaths followed whether
they evaluate térue or false According to the truth value and the type of the root
node, however, we may want to maintain only successful pathlg failed paths
or combinations of them. For example, the ridapportiverule’

supportive_rule(Name, Head, Body) :- strict(fName, Head, B ody).
supportive_rule(Name,Head,Body):- defeasible(Name,He ad, Body).

evaluates tostrict' or ‘ defeasiblg meaning that a supportive rule can be either
a strict rule or a defeasible rule. I$upportiverule’ evaluates to false, then we
would want to show that botlstrict and ‘defeasibleevaluated to false. On the
other hand, if it evaluates to true, then we only want to kéepone that evaluated
to true (or the first of the two in case of both evaluating t@}ru

As earlier mentioned, the tree produced by the XSB tracetignne desired
form. The techniques already shown do not suffice for thippse. The unavoid-
able complexity of the metaprogram produces complicatetuanintuitive proof
trees. Our goal is to bring this tree to a form compatible tt thictated by the
XML schema. In order to do this, we traverse the tree recelgiin a depth-first
manner applying the following heuristic rules to produce final tree.

1. Pruning Definitely When the atom of a query can be proved definitely it is
either a fact, in which case we simply locate the fact rulghere is at least
one strict rule having the atom as its head and is definitedyaile, so we
locate the first such rule along with the definite proof of islfa [Figure 8]

2. Pruning Not Definitely When the atom of a query cannot be proved defi-
nitely, it is not a fact and there is no strict rule supportthg atom that its
body can be definitely proved. Therefore, we locate the dailact’ rule
as well as all the aforementioned strict rules along withpgreof that their
bodies are not definitely provable. [Figure 9]

3. Pruning Defeasibly When the atom of a query can be proved defeasibly, it
is either definitely provable, in which case we just locag firoof, or there
is at least one supportive rule that triggers and is not ldddky any other
rule. In the latter case, we locate the first such rule alortp thie proof of
its body as well as the proof that all attacking rules are kddc(either not
firing, or defeated). Here we also need to check that the imegaft the atom
is not definitely provable and we locate that proof as weligfiFes 10, 11]
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4. Pruning Not DefeasiblyWhen the atom of a query cannot be proved defea-
sibly, it cant be proved definitely and either there is a &igggy not blocked
rule supporting the negation of the atom or there is no triggesupportive
rule that is not blocked or the negation of the atom can be itidfirproved.

In any case, we locate the necessary proof sub trees. [FitRire

5. Pruning Lists In Prolog, lists have a recursive structure (i.e. a list ip@a-c
catenation of an object with the remaining list) and thisctire is inherited
by the proof tree. To remedy this case we flatten the lists ioglesdepth
sequence of atoms. [Figure 13]

6. Handling missing proofs XSB uses a caching technique in order to avoid
reevaluating already evaluated expressions. Effectitiely means that the
first time we encounter a predicate; XSB provides the resoitgawith the
proof execution tree in the trace. If it comes across the qaedicate again,
it uses the cached value and doesnt show the whole execrgmnlh some
cases, the aforementioned pruning techniques may prurieghevaluation
of the predicate and at some point where we actually want theigate to
be maintained we are left with the cached version. This isceatable, so
we are forced to keep a copy of the initial trace so as to recayssibly
pruned predicate evaluation subtree. [Figure 14]

Using these heuristic techniques, we end up with a versiaheproof tree
that is intuitive and readable. In other words, the tree iy wbose to an expla-
nation derived by the use of pure Defeasible Logic. Howether, drawback is
that these heuristics are fully dependent on the metaproghay changes in the
metaprogram would necessitate changes in the pruning ingpiation. It would
be interesting to consider the possibility of automating phocess of implement-
ing the heuristic pruning, based on the metaprogram, bsitetkéeeds the aims of

the current study.

10.1 Examples of the proof tree pruning

@; HYS56 - Knowledge Management
R

_4 Proof
=4 definitely(b): True
® strict{r, b, a): True
=4 definitely_provable(a): True

=4 definitely(a): True
® fact(a): True

_4 Proof
= _4 definitely(b): True
@ strict(r1, b, a): True
=4 definitely_provable(a): True

Prune

= definitely(a): True

@ HYS56 - Knowledge Management
WL

EBX

@ fact(a): True

(
l

Load Rules

Prune

Addrule...

Load Rules

|
J
)
]

Add rules from file....

Add rule...

definitely(b).

Add rules from file. ..

J
|
|
I

definitely(b).

ifact(a).
strict(rl, b, a).

act(a).
strict(rl, b, a).

Figure 8: The marked rule is pruned
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= Proof tree trace

= Proof tree trace

A Proof 4 Proof
=23 definiely(b): False =4 definkely(b): False >
® fact(b): Fake HYSS6 - Knowledge Management ® Fact(b): False J HYSS6 - Knowledge Management
® strict(r2, b, d): True ® stict(r2, b, d): True
=4 definitely False =24 definiely, False
52y definely(d): False e, ] PR Fakse fue J
@ fact(d): False Load Rules | ® fact(d): False Load Rules ]
@ strict( h175, d, : ® strict(_h175, d, _h179): False
SHH_h134, b, h138): Fake ke, pdne ]
Add rules from fie... Add rules from fie.. |
definitely(b). definitely(b). |
act(a). act(a).
strict(r], c, a). strict(rl, c, a).
strict(r2, b, d). strict(r2, b, d).

Figure 9: The marked rule is pruned
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versions of the tree
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and the fact that it cannot be defeated
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Figure 13: The list pruning can be seen in the colored se@nentresponding
respectively to the pruned and unpruned versions. The vegrtree shows the
recursive nature of the Prolog list (a list in prolog is theatheelement and the
remaining sublist), whereas in the pruned tree we simplggmethe list elements

— =
£ Proof tree frace (9=
¢ Proof lree trace

mer = B
1§ defemsiiyidy: True 3 Proct
S S e HYSS5 - kncwleds Managesiont = ngdvf l:‘:(drlnzr
® foctid): Foise - = Ly defitold) True
& gteictir3, d, b, cl): Trew b g ® shrictird, d, [b, <) True HYS56 - Enowiedge Managemort:
514 defiribely_provabieh, cJ): Trus 3 efriy_provabie(ln, <] True b o
= | LT L - = 3 deftely_provabie(b): T
=4 defritsly_privablelb): Tris _—
. bl Trim 5 defirkshb); Trus
Prune ® stratisd, b, s Troe
: ;:f:‘: F:H; T = g debritely_provabls(s): Trus H Prore ‘
1, b, & True definkal{a); 1
=y defrately_provablela): True e [:::";;)7“:
=g definkshal; True \oad Rules = 4 defritely_provable(c): True Losd fiudes.
@ factin): True = _ydefirhetylch True
= defiely_provabellly True ® stnctr2, ¢, bl Tron
=24 definkely_provatie(c); Trus Sk =8 defrly_piovabis(Y T
-0y defikeic): Trum S 8 definbeih: Trus A nda,.
® factich: Fase ® sticird, b, ) True
® stz o bkl g dfrtely_provabls{al: Trus
“definisly_prowatiedb): TS ckdrules from .., = 4 definkarln) Tron Add s from fie...
S defrEE Tt ® istlia) T
=y debriesh[]): Fakse
o fact(l): Fabe defamsbiyid) defeasibly(d)
® stri{_fm, (] _hare): Fake
fact{a). fact{a}.
strict(rl, b, a). strict(rl, b, a).
strict{r2, e, b). strict(r2, c, b).
strict(td, d, [b, c]). striet(ed, d, [b, el).

Figure 14: The handling of the missing proof can be seen icttered segments,
corresponding respectively to the pruned and unprunedoveis\We simply clone

the specific proof (red) where needed (green)
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11 Graphical user interface to the proof system

The graphical user interface to the proof system, offersiauitive way to interact
with the underlying system and visualize the requestedfpro@he proofs are
rendered as a tree structure in which each node represeingle gredicate. A
tree node may have child nodes that represent the simplegr level, predicates
that are triggered by the evaluation of the parent predicéteis, the leaf nodes
represent the lowest level, indivisible predicates of tteopsystem. Additionally,
if a predicate has additional metadata attached to its tiefinisuch as references
for the fact predicates, those are displayed as a tooltip to the comelépg tree
node.

The interaction with the graphical user interface is bro#tewn to three or four
steps, depending on whether it is desirable to prune thétiresproof tree in order
to eliminate the artifacts of the meta-program and simpl#fstructure (see section
2) or not. Thus, in order to extract a proof, the followingpstenust be carried out:

1. The Defeasible logic rules must be added to the systenesRaln be added
by pressing either th&dd Ruleor Add rulesfrom file button at the right part
of the interface. Thédd Rulebutton presents a text entry dialog where a
single rule may be typed by the user. By pressing @€ button the ad-
dition of the given rule is confirmed. Besides that, pressimgAdd rules
from file button allows the user to select a file that containstigie rules
separated by newlines. Those are subsequently added tgstieensas soon
as the file selection is confirmed. The added rules are alwiayderat the
bottom part of the graphical user interface. In any caseyengiule may
be prefixed by a string enclosed in square brackets. The gitrarg is
then associated with the corresponding rule by the systehis i$ espe-
cially useful for adding references to the supplied factthase references
are displayed as a tooltip when the mouse pointer is over ithef mode
of the visualization tree that represents the fact. For @tarthe predicate
[http://en.wikipedia.org/wiki/lrony] fact(hasiew buildings(csd))will have
the stringhttp://en.wikipedia.org/wiki/lronyattached to it.

2. Inorder to make the system aware of the added rules, thasem explicitly
loaded. The rules that were previously added are loadeddsging thé.oad
rules button at the right part of the graphical user interface.

3. Assoon as the rules are loaded, the system is ready to Hedjbg the user.
By typing a ‘question’ at the text entry field at the right pafithe screen,
just below the buttons, and pressing enter, the underlynogfpsystem is
invoked with the supplied input and the resulting proof isudlized to the
tree view at the left part of the interface.

4. By pressing thd’rune button the system runs the algorithms described in
the previous section to eliminate redundant informatiod aretaprogram
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artifacts and thus bring the visualized proof tree to a mam@dmn friendly
form.

12 Agent interface to the proof system

12.1 Architecture

The system makes use of two kinds of agents, the ‘Agent’ wasis questions and
the ‘Main Agent’ which is responsible to answer the questiasked. Both agents
are based on JADE (Java Agent DEvelopment Framework) wisich Software
Framework fully implemented in Java language. JADE singdifihe implemen-
tation of multi-agent systems through a middle-ware thatgges with the FIPA
specifications. The agent platform can be distributed acmwechines (which not
even need to share the same OS) and the configuration can toellednvia a re-
mote GUI. The configuration can be even changed at run-timmadwing agents
from one machine to another one, as and when required. JAD&hipletely im-
plemented in Java language and the minimal system requitdmthe version 1.4
of JAVA (the run time environment or the JDK).

Figure 15 shows the process followed by the Main Agent in ord@nswer a
question.

XML
Writter
ry
8) Pruned result 9 VL proof
3) Predicate 2% Predicate ’ 1y Question
XSB Invoker Main Agent
> »  Agent *
4 result 53 result tree 10) answer or
trace 1 proof
6) result tree Ty Pruned result
¥
Pruner

Figure 15: The system architecture

All the above steps are illustrated at the next paragraphs.

1. An agent asks a Question to the Main AgentThe question is of the form:
predicate::(proof — answer)
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10.

The predicate must be a valid Prolog predicate, after theigage must exist
two colons (::) and then the word ‘proof’, if the agent wamts$ake the proof
of the predicate, or the word ‘answer’ if the agent wants fhstanswer to
the predicate (true or false). Two examples of questiorievidbelow:
defeasibly(rich(antonis))::proof

defeasibly(rich(antonis))::answer

. Main Agent sends the Predicate to the InvokerAfter receiving a question

from an agent, the Main Agent has to execute the predicatethForeason
it extracts the predicate from the question and sends itedrivoker who is
responsible for the communication with the XSB (prolog eeyi

. Invoker executes the Predicate .The Invoker receives the predicate from

the MainAgent and sends it to the XSB.

. XSB returns the result trace. The XSB executes the predicate and then

returns the full trace of the result to the Invoker.

. Invoker returns the result tree to Main Agent. The Invoker receives the

trace from the XSB and creates an internal tree representafiit. The
result tree is then sent back to the Main Agent.

. Main Agent sends the result tree to the Pruner. The Main Agent after

receiving the result tree from the Invoker sends it to thenBrun order to
prune the tree. There exist two ‘kind’ of pruning. One is usdten the

agent that asked the question wants only the result. In Hesd the tree is
pruned and the remaining is just the answer (true or falseg. cther ‘kind’

of pruning is used when the agent that asked the questiorsvilaaiproof.

In that case, the brunches of the tree that are not neededuaredy so the
remaining is a pruned tree only with brunches that are needed

. Pruner returns the pruned result. The pruned result is sent back to the

Main Agent.

. Main Agent sends the pruned result to the XML writer. This step is used

only when the agent that asked the question wants the prottid step the
pruned result (proof) is sent to the XML writer in order to ate an XML
representation of the proof.

. XML writer returns the XML Proof. The XML writer creates an XML

representation of the proof, according to the XML schemd,samds it back
to the Main Agent.

Main Agents returns Answer or Proof. Finally the Main Agent sends back
to the agent that asked the question a string that contagnartbwer (true,
false) or the proof accordingly to what he asked. The fornfidhe string
that is sent follows one of the three patterns:
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e ANSWER(true — false) e.g ANSWERtrue This pattern is used when
the Main Agent wants to sent only the answer. In this caseniiséhe
string ‘ANSWER’ followed by the string representation oéthnswer
(i.e. ‘true’ or ‘false’). There is no space between the twade

e PROOF:(proof string) This pattern is used when the Main Agent
wants to sent the proof. In this case it sends the string ‘PROOI-
lowed by the string representation of the proof (written W)

e ERROR:(error message)e.g. ERROR:invalid mode This pattern is
used when an error occurs during the process. In this cadeldire
Agent sends the string ‘ERROR:’ followed by the string thantains
the error message.

Two kinds of agents that communicate with the Main Agent Haaen created.
One uses a file to read the questions to be asked and the othghge&uestions
from the user through a Graphical User Interface. These inaskof agents will
be described at the next paragraphs.
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12.2 Visual Agent

The visual agent uses a GUI in order to get the questions frenuser and send
them to the ‘Main Agent'. First of all, the user must enter tiz@ne of the Respon-
der Agent (called ‘Main Agent’), in other words the name a #igent that is going
to answer the question. If the name is not entered an errosageswill appear

(Figure 16).

.=, Talk Agent
Responder Agent
~Recehased

,i\l Please enter a Responder Agent

Question | | & proof © answer

| cClearSent || sendMessage |

—Onrtp

Figure 16: Error message if Responder Agent is not entered
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After entering the name of the ‘Main Agent’ the user must ethie question
and chose the type of answer he wants. The question must lhie #xalog pred-
icate (e.g. defeasibly(rich(antonis)) ). The user can askwo different types of
answer, he can ask just for the answer of the question (iis=)f or for the proof
of the question. The choice is made though the appropriae tautton. If the
guestion is not entered an error message will appear (Figjdye

Fesponder Agent mai
& Péivage eler a Gamstion
Qumrﬂrrn| : = arpal O anseer
| Cioar S| | Send Message
~Cutpu
‘l
| |

Figure 17: Error message if the question is not entered
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If the user chooses to see just the answer of the questioiil] dppear at the
‘Output’ area as show at the Figure 18. The answer will be eanfalse.

Talk Agent |_l'_|r§|[3_| -

Responder Agent |majn
Recened

Question -Elefeastblv(_rithl[antu:nms]] | © proof & answer

Clear Sent IlL Send Message |

- Output

Sending question to agent"main™ defeasiblyirich{antonis))
ANSWE m

1-\\___‘

Figure 18: The answer to a question
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If the user chooses to see the proof of the question, it wipkeap at the ‘Re-
ceived’ area as show at the Figure 19. The proof is visualiazed tree model.
The tree model contains two kind of nodes, the intermediatdes and the final
nodes. The intermediate nodes are represented as foldars g&n be expanded
and show their children nodes. Each intermediate node lkasame of a tag used
at the XML schema. The final nodes (they can not be more expdrate repre-
sented as files and have a description of their content. Therfoudes are also tags
of the XML schema.

Aespomdar fyjent main
rReCehed — )
= =
7 ] Proal:
1] ﬂ Defaasiby_provahle: ncharfares
& 7 Deteasibia_Pioof
T j Diefasgibia_nila "Label = "1
[} Head Ak antonis
D Body wins_lota amionis
I's :DE!‘?&ﬁiL'p'.' prosable. wing_ oo anlonis
¥ ] Defaasitia_Fronf
& o] Detinitely_Provabie: wins_joflo anlonis
& [ Definie_Praot i
[} Fact “Provabie” = "lrue” wins_kotle’ anbonis
# - Blocked: *Labni* =¥
% [ Defessibba_puls: "Label ="1"
[ Head rich ankonis
[ Body. wine_lotte: ardonts
o= [ Suipaniar
& 7 Blockad: "Lakel = (4"
T j Mes_Lanndely_Frovabia: fakd neh ansores 3
% (27 Met_Definite_Procd
D Facl *Paovafin® = "Gilse® Mot i nch ardoris 5
D E.Ir_ui_'. ‘F'_ruv:!bin."=':[.1_|:-|." hu! !I.u'il:ll.drl.l.:\.'ll!lﬂ 1 :|
Cuestion jpafeasbvinchianmnsi | # prood. 7 answar
Clear Send | Senil Messap !

Cnrpart |
.EEI Iﬂlrlf.l Gueslion loagen "main®! deteasibisdchlantonis I
| AREWER; frun
!E“E"I'l-'.llr-ﬂ guesion 1o agan  "main™ defeasibitdchizntonish

Figure 19: The proof of a question
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Finally an error may occur while computing the result. Irstbase the Main
Agent sends an error message to the agent that asked theogua$te error mes-
sage is displayed at the ‘Output’ area (Figure 20). Many kiherror may occur:

o If the predicate of the question is not defined at the knovédeloigse of the
Main Agent.

o If the question is not syntactically correct (e.g parernithasssing).

o If the type of answer asked is not valid (proof or answer).sTipe of error
can not occur at the visual agent because this choice is rhemlegh a radio
button.

e If an exception occurs while computing the result.

= Talk Agent
Resporier Agedt |main

Rocueived

Question |absolulalyichianlonis % proaf 7 answer

Clear Sent Seml Message |
Ot

Sending question fo aganl "main®; absolutsly(richiantonis)) [«
ERROR:x=h PredicateException: Invalid predicate trace line: ++Error[£3B8Runtimer] |

Undefined pradicsle: absolutzhif &
Sending guesiian lo agent "main’; absolutelyirichianioni=) I—
ERROR Question is not synlaclically carresct! |'!

Figure 20: Error messages occur while computing the result
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12.3 Command Line Agent

The main goal of the ‘Command Line Agent (CLAgent)’ to makestfions to the
main Agent and wait for a response, which is an answer or &.proo

12.3.1 Operation of the CLAgent

When the agent starts, it reads, in a random way, the questibas to make from

a configuration file calledagent.conf The format of the question is the same as at
the visual agent, e.gfact ( winslotto ( antonis ) )::proof or answerThe Figure

21 shows a sample configuration file of the Agent.

F,{, agent.conf (-~ workspace\ProofSysteni) - G¥IMI1
File ‘Edit: Tools Svnkax Buffers Window Help

OEDE | 9@ iaa emendds
1 fact{wins lotto{antonis))::answer

2 defeasible({r3,c,[b])::proof
3 fact({a)::proof

Figure 21: Sample configuration file

Then it sends the questions that it has read from the filegtahin Agent. The
Figure 22 shows an example communication of the main Agehtf@Command
Line Agent.

31 Ieuk 2005 &:05:05 pp jade.core.Buntime beginContainer
THMF ! —— e e e e e
Thiz is JADEZ .4 - revision 5874 of 2006/03/09 14:13:11
downloaded in Open Source, under LGPL restrictions;
at http://jade.tvilab.com’
31 Towk 2006 65:05:06 up jade.core.BaseService 1nit
INFEO: Service jade.core.management.igentManagement initialized
==hgent main:aiting for the mESSage. ..
——Agent test: Sending message. ...
——Agent test: Sending meISage....
——Agent test: Sending message....
~xAgent main:Received message from agent testPfHacker:1099/JADE
Content of The message: defeasihle{r3,c,rb1]::uraoﬂ

Figure 22: Communication of the main Agent and the CLAgent

After the main Agent receives the questions from the Agémn it replies to
the CLAgent, sending back the answers or proofs (Figure 23).
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—~Agent mwain:Creating Reply to agent testfHacker:l1093/JADE
—-ALgent test: Received message from agent mainfHacker: 1099/ JLDE
Content of The message: PROOF:<?xml]l wersion="1.0" encoding="UTF-8"2>
=Proof>
<Fact Provable="false">
<Atom>
<0pra</ Op>
</ Arom
</ Facc>
“{Proof>

—»Agent main:Received message from agent testfHacker:1039/7JADE
Content of The message: fact(wins lotto{antonis))::ansver
—rAgent wain:Creating HBeply to agent test@Hacker:1099/JLDE
——Agent test: Received message from agent mainfHacker: 1099/ JADE
Content of The message: ANSWERfalse

ALgent test: Terminating

Figure 23: Main Agent sends the answer or proof

The kind of errors that can be produced is the same as at i ¥igent. They
have the same functionality because the main Agent is the sathe two cases.

Finally the CLAgent keeps a log file calleddameof_agentlog’, which con-
tains all the answers and proofs that it has received frormth Agent. An
example of the log file is shown in figure 24.

12.4 Agent Use Cases

In this section we mention three examples where the agerks os of the expla-
nation in the Semantic Web.

e An agent can make use of an explanation during a negotiatircammerce.
For example an agent that represents a buyer can send a mastagagent
that represents the online shop asking if the buyer owns yntanae shop.
If the agent that represent the online shop answers pdgitiven the buyers
agent can ask for an explanation why he owns the money. Tleearnine
shops agent will answer sending back the full explanation.

e An other case where an agent can use an explanation is at arkibi\Sys-
tem. For example an agent that represents a student mayrabk &tudents
grades. Then for every lesson that the student failed to thasagent may
ask for an explanation why he failed. The universitys aghattwill re-
spond with a full explanation containing for example the teichs grade the
grade of the project and the grade of the final exam. The sambaagpen
for the lessons that the student succeeded where the agentsk for an
explanation how the graded has been extracted.
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DelBEARAEESe ¥l == R vV &6

| it 1] it
2 AGENT LOG FILE

% QUERIES:
1.defeasible(r3,c,[b])::prooF
2.fFact(a proof
3.fact({wins lotto(antonis))::answer

i ANSWERS - PRODFS:
1.PROOF : on="1.8" encoding="UTF-8"%>

{Defeasible rule Label="r3"3|
<Head>
Lhtom:
<0p3
</ntom>
</He
<Body>
<Atom>
<0p>b</0p>
£ n tom:
</Body>
Feasible rule>
</Proof>

2 .PROOF: <?xnl version="1.8" encoding="UTF-8"7>
{Proof>
<Fact Provable="false'>
<Atom>
<0p>a</0p>
o>

3.ANSMER: false
Figure 24: Log file of the CLAgent

e Finally an agent can ask for an explanation when it not aigbdrto ac-
cess a system. For example an agent may try to access a systéhe b
system sends back a message telling that the agent doesvedthlearight
permissions to access it. Then the agent can ask for an extjganvhy he is
not authorised to access the system. An approach in thistidinehas been
developed in the infrastructure in [20]. In this paper isaiig®d the develop-
ment of a rule-based management system that provides a mgchfor the
exchange of rules and proofs for access control in the Wetases such as
who owns the copyright to a given piece of information, whatgzry rules
apply to an exchange of personal information etc.

At all the above cases the negotiation is made automatieathout the users
mediation. The agent makes all the appropriate actions @sgpts only the result
- explanation to the user.
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13 Relative Work

There are many areas where work has been centered arouadaikmh in reason-
ing systems. Rule-based expert systems have been verssidda applications
of Al, and from the beginning, their designers and users mated the need for
explanations in their recommendations. In expert systékesMYCIN [14] and
Explainable Expert Systefh5], a simple trace of the program execution / rule fir-
ing appears to provide a sufficient basis on which to build xpiamation facility
and they generate explanations in a language understanideitd users.

Work has also been done in explaining the reasoningescription logics
[16,17], which is a knowledge representation language akt developed a logical
infrastructure for separating pieces of logical proofs antbmatically generating
follow-up questions based on the logical format.

13.1 Inference Web

Nowadays, import work in this area is done by the researchpyod thelnference
Web[18]. The Inference Web (IW) is a Semantic Web based knovdeutgve-
nance infrastructure that supports interoperable exptamgof sources, assump-
tions, learned information, and answers as an enableruUst. tit supports:

e Provenance - if users (humans and agents) are to use andtetdgta from
unknown, uncertain, or multiple sources, they need pravemanetadata for
evaluation

¢ Interoperability - more systems are using varied sourcdshautiple infor-
mation manipulation engines, thus increasing interopksabequirements

e Explanation/Justification - if information has been mataged (i.e., by sound
deduction or by heuristic processes), information maaitiah trace infor-
mation should be available

e Trust - if some sources are more trustworthy than otherst tatings are
desired

The Inference Web consists of the following main components

e Proof Markup LanguagéPML [19]) is an OWL-based specification for doc-
uments representing both proofs and proof meta informatiBroofs are
specified in PML and are interoperable. Proof fragments dsageentire
proofs may be combined and interchanged. So PML providemtaeence
Web ’s support for distributed proofs.

e IWBaseis an infrastructure within the Inference Web framework pooof
meta information. It is a distributed repository of PML doments describ-
ing provenance information about proof elements such assspinference
engines and inference rules. By providing meta informafmmsources,
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the Inference Web supports knowledge provenance. It algoosts reason-
ing information, which is provided by the PML documents anel WBase,
which supports meta information about inference enginesgaith their
primitive inference rules.

e IWEXxplaineris a tool for abstracting proofs into more understandabie fo
mats. It supports various strategies to explain answehsdimg the visual-
ization of abstracted proof, presentation of provenanfanmation, etc.

e IWBrowsercan display both proofs and explanations in number of proof
styles and sentence formats.

Beyond just explaining a single system, Inference Web gitero provide a
way of combining and presenting proofs that are availabledoés not take one
stance on the form of the explanation since it allows dedeatngines to dump
single or multiple explanations of any deduction in the detie language of their
choice. It provides the user with flexibility in viewing fragents of single or multi-
ple explanations in multiple formats. IW simple requirefeence rule registration
and PML format. It does not limit itself to only extractingdiective engines. It
provides a proof theoretic foundation on which to build amdspnt its explana-
tions, but any question answering system may be registardteilnference Web
and thus explained. So, in order to use the Inference Wedsitnércture, a question
answering system must register in the IWBase its inferengine along with its
supported inference rules, using the PML specification &rnihe IW supports
proof generation service that facilitates the creation MLFproofs by inference
engines.

Inference Web was originally aimed at explaining answensftheorem provers
that encode a set of declaratively specified inference .rulegorem provers like
Stanford’s JTP reasoner and SRI's SNARK reasoner have legestared and they
produce PML proofs. Prototype implementations of Semaftb agents that are
based on the JTP theorem prover are supported by the IW.eFwiork includes
the registration of more question answering systems fréf@rdnt areas, like query
planners and extractors.

It is an interesting and open issue if our implemented prgefesn could be
registered in the Inference Web, so as to produce PML prddiis. would possibly
require the registration of our inference engine, that isfeakible logic reasoner,
along with the corresponding inference rules, which ard usthe defeasible logic
proof theory and the explanations that produced by our pgstem.

Extra work needs to be done in Inference Web in order to supploy-not
questions. Current IW infrastructure can not support exgiians in negative an-
swers about predicates. This is the case that correspomds system ’s explana-
tions when an atom is not definitely or defeasibly provable.
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14 Conclusions and Future Work

This work resulted to a new system that aims to increase tis¢ of the users for
the Semantic Web applications. We created a system thamatitally generate
an explanation for every answer to the users questions,amaal and useful rep-
resentation. This system can be used by individual usetsathat to get a more
detailed explanation from a reasoning system in the Sem#eb, in a more hu-
man readable way. Our reasoning system was based on défdagiic and we
used the relative implemented meta-program, where XSB wad as the reason-
ing engine. We developed a pruning algorithm that reads t88'Xtrace and
removes the redundant information in order to formulatensitée proof. Further-
more, the system can be used by agents that is common in mahgagipns in
the Semantic Web. An other contribution of our work is a newIXlsinguage for
a formal representation of an explanation using defeakiglie. Additionally, we
provide a web style representation for the facts, that isgdiomal reference to a
URL. We expect that our system can be used by multiple aggits, mainly in
E-commerce and agent-based applications.

Besides the current implementation, there is much futurekwioat can be
done. Also, much improvement can be achieved for a more hdrieandly pre-
sentation of a logical explanation (without assuming angviedge for the under-
lying logical system). Our XML-based language for explémarepresentation is
not fully compatible with RuleML (e.g an extention of RuleNi_specification has
been developed for situated courteous logic programs ¥ i$lai possible extension
of our XML schema. Finally, our system could be integrateth®Inference Web
framework, by registering our inference engine and infeeemiles and converting
our representation in the PML format.
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A XML Schema for Explanation Representation

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSch

<xsd:element name = "Definitely_provable" >

<xsd:complexType>

<xsd:sequence>
<xsd:element ref

<xsd:element ref
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Atom">

<xsd:complexType>

<xsd:choice>
<xsd:sequence>

"Atom" />
"Definite_Proof" />

<xsd:element name= "Var" minOccurs =
<xsd:element name ="Ind" minOccurs =

</xsd:sequence>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="Not">
<xsd:complexType>

ema">

<xsd:element name= "Op"/>
<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">
"0/

"0"/>

<xsd:sequence>
<xsd:element name= "Op"/>
<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">

<xsd:element name= "Var" minOccurs = "0"/>
= ">

<xsd:element name ="Ind" minOccurs

</xsd:sequence>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Definite_Proof">

<xsd:complexType>

<xsd:choice>
<xsd:sequence>
<xsd:element ref=

<xsd:element ref=
</xsd:sequence>
<xsd:element ref= "Fact"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element name = "Strict_rule">
<xsd:complexType>
<xsd:sequence>

"Strict_rule"/>
"Definitely_provable" minOccurs="0" m

<xsd:element ref= "Head"/>

<xsd:element ref= "Body"/>

</xsd:sequence>
<xsd:attribute name = "Label"

</xsd:complexType>

</xsd:element>
<xsd:element name= "Head">
<xsd:complexType>
<xsd:sequence>

type = "xsd:string" use="req

<xsd:element ref= "Atom"/>
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</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name= "Body">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref= "Atom" minOccurs="0" maxOccurs="unbou

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name= "Fact">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Atom"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Defeasibly_provable" >
<xsd:complexType>
<xsd:choice>
<xsd:element ref="Definitely_provable"/>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Defeasible_Proof" />
</xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name = "Defeasible_Proof">
<xsd:complexType>
<xsd:sequence>
<xsd:choice>
<xsd:element ref= "Strict_rule"/>
<xsd:element ref= "Defeasible_rule"/>
</xsd:choice>

<xsd:element ref="Defeasibly_provable" minOccurs="0" m

<xsd:element ref="Not_Definitely_provable"/>

<xsd:element ref="Blocked" minOccurs="0" maxOccurs="un

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = "Defeasible_rule">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref= "Head"/>
<xsd:element ref= "Body"/>
</xsd:sequence>
<xsd:attribute name = "Label" type ="xsd:string" use="opt
</xsd:complexType>
</xsd:element>
<xsd:element name = "Blocked">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
<xsd:choice>
<xsd:element ref="Superior"/>
<xsd:element ref="Not_Defeasibly_provable" />
</xsd:choice>
</xsd:sequence>
<xsd:sequence>
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<xsd:element ref="Strict_rule"/>
<xsd:element ref= "Not_Definitely_provable"/>
</xsd:sequence>
<xsd:element name="Not_Superior">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name = "Superior">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
<xsd:element ref="Defeasibly_provable" minOccurs="0" m axOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Definitely_provable">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Definite_Proof" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = "Not_Definite_Proof">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Defeasibly_provable">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Defeasibly_Proof" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = "Not_Defeasibly_Proof">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Not_Definitely_provable"/>
<xsd:choice>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>
<xsd:element ref="Definitely_provable"/>
<xsd:element ref="Undefeated"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Undefeated">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Defeasible_rule"/>
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<xsd:element ref="Defeasibly_provable" minOccurs="0" m axOccurs="unbounded"/>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="un bounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

53



