
Towards Automatic Web Service Composition

using AI Planning Techniques

(first draft)

Joachim Peer

August 10, 2003

Abstract

This article discusses how artificial intelligence (AI) planning tech-
niques can be used to enable automatic composition of Web Services.
Particulary, the paper discusses how standard Web Service descriptions
can be annotated and converted into proper formats like PDDL to enable
reasoning with modern AI planning tools.

1 Introduction

In recent years, the internet has evolved from a media of merely static data
presentation to a media of interactive dynamic data and service offerings. To
assist the user in making decisions about product purchases and to keep the
user updated in the best possible way, intelligent adaptive systems – Personal
Information Management systems (PIMs) – are required, which are able handle
certain tasks on behalf of their users and deal with the complexity of the internet.

In this context, the concept of Web Services [??] looks promising, because it
present services in a more machine friendly manner than traditional Web sites
do; instead of graphical HTML, Web Services are built on the machine friendly
XML format. According to the success of Web Services, it is very likely that
PIMs will indeed primarily interact with XML based Web Services to arrange
transactions over the web [11].

The user of the PIM, however, will not be interested in managing the de-
tails of the Web Service interaction, (s)he won’t be interested in evaluating the
purpose of a Web Service by reading its documentation or studying its WSDL
description. The user will demand to be shielded off from the cumbersome as-
pects of Web Services, (s)he will want that these interactions are carried out
in a quiet and transparent way. Specifically, the user will concentrate more on
“what” needs to be done instead of “how” something needs to be done.

This clearly calls for more flexible and more independent applications than
today’s Web Service clients. An important part of flexibility and independence

1

is the agents’ ability to use Web Services which are not known to the agent
yet, and its ability to combine Web Services to achieve specific goals. Indeed,
it is very realistic that future intelligent agents will have to fulfill a certain task
by combining several Web Services, i.e. by constructing an individual workflow
and executing it. This is the main topic of this paper and the leading research
question is:

How can we describe Web Services to enable intelligent agents to automat-
ically retrieve and compose Web Services to achieve the goals specified by their
users?

Section 2 will recapitulate existing work on component and Web Service
retrieval. Section 3 will provide an overview of promising work in the field of AI
planning, which may be leveraged to compose Web Service executions. Section
4 will give a motivating example. It will show how information provided (or
hidden!) in WSDL descriptions, can – if converted into a proper format – be
used by AI planners to solve challenging problems of automatic Web Service
composition. After that motivation, the discrepances between WSDL and the
semiotic requirements of AI planning will be analyzed in more detail, and several
proposals to enrich and translate standard Web Service descriptions will be
discussed. The paper closes with a critical look on the problems left and on
future work.

2 Automated Service Retrieval

When discussing Web Services, existing work on software components needs to
be considered. A software component is a software element (a modular entity)
which fulfills the following criteria [18]:

1. It can be used by other software elements, its “clients”

2. It comes with an official usage description, which is needed to use the
component in the proper way

3. It is not tied to a specific client

It is easy to see that this definition perfectly applies to the concept of Web
Services. The connection between traditional work in the area of component
based Software Engineering and the new challenges of distributed computing was
established by the introduction of the term “Megaprogramming” by Wiederhold
et al. [29] in the early nineties. It is beneficial to recapitulate the core findings
of the work on software component description and retrieval, since it provides
well investigated concepts and offers insight into the theoretical underpinnings
of component – and Web Service – selection.

The motivation for research in software components was spawned by the
finding that the re-use of approved and tested pieces of software will lead to

2

a reduction in development costs and to an increase in quality. This intuitive
concepts seems confirmed by the success of programming principles built on
source code structuring and encapsulation like modular and object oriented
programming. By using these approaches it was possible to structure software
and source code; however, with the increasing amount of available pieces of
software another problem evolved: the efficient storage and retrieval of software.
Like all libraries, the new “software libraries” needed to be managed using
some kind of description schemata and indices. Since software libraries are fully
digital, another goal was to automate the process of component retrieval. For
these purposes, at least three different approaches can be identified:

• Component retrieval as text retrieval: text retrieval algorithm are applied
on textual descriptions and key words associated to software components.
This kind of reasoning is not suitable for our context, since it can not
guarantee sound reasoning.

• Retrieval by source code analysis: this approach builds on pioneering work
by Hoare, who provided means to analyze the semantics of software by
investigating its source code. However, white box based approach is in
contradiction to the black box approach embraced in the area of Web
Services, i.e. there is no source code available for most Web Services.

• The approach of “deductive retrieval” (also called “reuse by contract”, or
“design by contract”) can be placed between these two extreme variants.
These symbolic (non-stochastic) approaches follow the black box principle.

Of these three basic approaches, the approach of symbolic description of
components is most attractive, because it opens the possibility of – at least
theoretical – sound deductive reasoning. The commonly accepted basic concept
behind the symbolic approach of (deductive) retrieval is the concept of the
Abstract Data Type (ADT). In many cases, algebraic description style is used
to denote ADTs, e.g. Larch [30], ASL [31] or the Maude syntax [4]. The
signature Σ of an abstract datatype is commonly denoted by Σ = (S, F), that
is a pair consisting of a set S of sorts and a set F of operations. Further, the
semantics of an ADT are specified by a set E of logical axioms, describing the
properties of the datatype and its operations.

Based on these concepts, interface descriptions can be specified for software
components. In virtually all approaches of component retrieval, these descrip-
tions consist of logical statements about the inputs and outputs of a component
C and logical expressions denoting its axioms E. Some approaches treat these
axioms E as sets of pre-conditions Pre and post-conditions Post, resembling a
Hoare Triple Pre{C}Post [13]. A pre-condition specifies the state of the world
which is required for a successful execution of the operation provided by C. A
post-condition specifies some facts about the world which can be expected to
be valid (true) after the service operation has finished its execution regularly.
A component specification P can be denoted as an expression in predicate logic
as follows:

3

∀x : DP ∃z : RP IP (x) ⇒ OP (x, z) (1)

With DP and RP denoting the input domain respectively output domain of
a component’s operation and IP and OP denoting the pre- respectively post-
condition of the operation [21]. This can be denoted using an abbreviated
syntax by integrating the statements about pre- and post-conditions with the
statements about input and output types [8]:

(preQ ⇒ preC) ∧ (postC ⇒ postQ) (2)

With Q being some specification of a certain desired functionality and C
being a software component to be evaluated. If the condition is true for a
specification Q and some given component C, we can assume that C will match
the specification Q. We can state that the component C can be “plugged in”
for all components satisfying Q, hence this condition is also called “plug in
match” [32]. Beside this rather restrictive type of matching, other more relaxed
condition types have been investigated, e.g. by Zaremski and Wing in [32].

Since the specifiation of the components (and their operations) in an com-
ponent library L is generally specified in first order logic, automatic first order
theorem provers can be used to test whether a certain component C ∈ L sat-
isfies a certain component specification Q or not. This intuitive approach was
proposed on many occasions, and has been re-invented several times since, but
there is a serious problem with this approach: with increasing library size |L|,
an exponential growth in response time must be considered [7] [8]. In response
to this problem, strategies were sought to minimize this fundamental problem
of deductive component retrieval, so that the negative impact of first order rea-
soner’s runtime behavior does not lead to unacceptable response times. In the
last decade, several noteworthy approaches have been proposed in this matter:

• Load reduction by early elemination of unsuccessful candidates. Experi-
ments [7] have shown that the response time of retrieval systems improves
remarkably, if only those components, which are satisfying the given spec-
ification are forwarded to the theorem prover, and those which do not
satisfy these specifications are eliminated in the process early. For in-
stance, the NORA/HAMMR system [8] uses a configurable chain of fil-
ters to select unsuccessful candidates instead of feeding them into the
FOL prover. This reduces the number of unsuccesful and time consum-
ing proof attempts to be made by the theorem prover. Among the filters
implemented in NORA/HAMMR are a filter of rejection by contradic-
tion (using an automatic model generator) and a filter using rejecting by
simplification [8].

• Load reduction by classification: Penix and Alexander [21] have proposed
a heuristic approach called “feature based classification”, which involves
metrics to calculate the probability of a given component turning out to
match a given component specification. These metrics are based on so

4

called “features”, that are abstract relations between inputs and outputs
of a component’s operation. In a preparation step, the features of the com-
ponents of a library can be determined and then compared to the number
and type of features established for a given specification. The smaller the
intersection of the feature sets of a component C and a specification Q,
the little the chance of C satisfying Q.

• Reduction of the complexity of the underlying logical language: as suc-
cessfully demonstrated in several areas of logic (e.g. logic programming,
description logics), reduction of expressivity in logics can lead to signifi-
cant improvements of their algorithmic properties. However, this requires
careful balance between the expressivity necessary to provide meaningful
descriptions in a certain domain and algorithmic tractability of a logical
calculus.

An approach of deductive retrieval in the realm of Web Services is LARKS
[25]. It allows for the description of operations by means of inputs, outputs, pre-
conditions and effects, using terminological languages for signature specification
and a rule language to denote pre-conditions and effects. Similar to LARKS is
our SWS matchmaker, which was described in [20]. In contrast to LARKS, it is
built on top of WSDL and it uses a slightly different (more restricted) language
to express pre- and post-conditions. These approaches enable automatic service
retrieval, but they do not support automatic service composition. This problem
will be discussed in the following section.

3 Automated Service Composition

As in service retrieval, it makes sense to hark back to existing work carried out
by other disciplines of (computer) science. Constructing a process – a plan – to
attain a certain goal, i.e to get a certain task done, is a complex problem which
has been investigated extensively by research in Artifical Intelligence (AI). Rus-
sel and Norvig characterize the problem of planning as follows [23]: “Planning
can be interpreted as a kind of problem solving, where an agent uses its beliefs
about available actions and their consequences, in order to identify a solution
over an abstract set of possible plans”.

A classical planning problem has the following inputs:

1. a description of the initial state of the world, denoted in some formal
language

2. a description of the desired goal, denoted in some formal languages

3. a description of the possible actions which may be executed (a domain
theory), again in some formal language

Some interesting AI approaches to planning are:

5

• Situation Calculus - a calculus of action logic [22], was developed to de-
scribe dynamic changes in the world. In Situation Calculus, it is assumed
that all dynamical changes of the world are due to the execution of actions.
Every situation is defined by a world history, that is a sequence of actions.
The state of the world is described by functions and relations (fluents) rel-
ativized to a situation s e.g. f(x, s). The constant s0 describes the initial
situation, that is a situation where no actions have occured yet. A state
do(putDown(A), do(walk(L), do(pickUp(A), s0))) describes the situation
created by the execution of a sequence [pickUp(A), walk(L), putDown(A)].

Golog [16] is a high-level logic programming language for the specification
and execution of complex actions in dynamic domains. Golog builds on
top of the situation calculus by providing a set of extra-logical constructs
for assembling primitive actions (defined in Situation Calculus) into com-
plex actions that collectively comprise a program. The application of
Situation Calculus and Golog in the area of Web Services was suggested
by S. McIlraith and T. Son in [17].

• Hierarchical Task Networks (HTNs) [6] - HTN planning is a method of
planning by task decomposition. Contrary to other concepts of planning,
the central concept of HTNs are not states, but tasks. An HTN based
planning system decomposes the desired task into a set of sub-tasks, and
these tasks into another set of sub-tasks (and so forth), until the resulting
set of tasks consists only of atomic (primitive) tasks, which can be exe-
cuted directly by invoking some atomic operations. During each round
of task decomposition, it is tested whether certain given conditions are
violated (e.g. exceeding a certain amount of financial resources) or not.
The planning problem is successfully solved, if the desired complex task
is decomposed into a set of primitive tasks without violating any of the
given conditions. An approach of using HTN planning in the realm of Web
Services was proposed by J. Hendler et al. [12], facilitating the planning
system SHOP2.

• Graphplan, introduced by Blum and Furst in [2] and [3]: The conceptual
model of Graphplan is intuitive and leads to very good performance in
planning. In Graphplan, the planning problem is modeled by a graph.
This planning graph consists of two types of nodes, namely action nodes
and condition nodes. These nodes are arranged in layers, a layer consist-
ing of action nodes followed by a layer of condition nodes, and so forth.
Edges connect proposition nodes to the action nodes (at the next level)
whose pre-conditions mention those propositions, and edges connect ac-
tion nodes to subsequent propositions made true by the actions effects.
Central to Graphplan’s efficiency is inference regarding a binary mutual
exclusion relation (“mutex”) between nodes and proposition at the same
level. Mutex relations help to identify potential plans by excluding im-
possible plans early. The process of generating potential plans is called
“graph expansion”. Graph expansion is repeated until a constellation is

6

found where a plan could be generated (i.e. necessary proposition are
present and mutex relations are absent in one layer). This is a necessary
(but insufficient) condition for plan existence, so Graphplan performs so-
lution extraction, i.e. a backward chaining search to test if a plan exists
in the current planning graph. While the early Graphplan algorithm as
presented in [2] was restricted to propositional expressions to model the
world (and the pre-conditions and post-conditions of actions), successor
concepts implemented in IPP [??] or SGP [??] support modelling using
predicate logic, using universal and partially even existential quantifiers.

An approach of using Graphplan for Web Service composition is presented
later in this paper. We will use BLACKBOX [15], a sophisticated Graph-
plan based reasoner with a hybride architecture, to illustrate AI based
automatic Web Service composition.

• Another important school of planning are “Constraint Satisfaction Prob-
lems” (CSP) and “Constraint Programming” [9]. The problem solving
methods of CSP are integrated into many planning algorithms (e.g. the
identification of mutex relations in Graphplan’s can be formulated as
CSP). There are several approaches which use Constrain Programming
as the primary tool for plan generation, e.g. MOLGEN [24].

The desired output of a planning problem is a structure (e.g. a sequence
or iteration) of actions, which can be executed in order to achieve the desired
goal or state of the world, respectively. A formal language to denote planning
problems is D. Mc Dermott’s “Planning Domain Definition Language” (PDDL)
[10], which provides an unified syntax to express planning problems of different
kinds.

PDDL covers a wide range of different ways to encode planning domains
and planning problems. It can serve as an umbrella for similar yet different
approaches of AI planning. Since many AI planning problem solver accept
PDDL as input data, it may be fruitful to try to formulate information about
Web Services and agent’s beliefs and desires in PDDL, in order to use existing
planners to solve the problem.

According to this approach, the Web Service composition process can be
depicted as follows:

As shown in Fig. 1, a planning process starts with a particular desire (goal)
of an agent. The agent uses its knowledge (belief) to evaluate Web Services
which might be useful to achieve the particular goal of the agent. The problem
solving process consists of two main components:

1. formalizing the agent’s desire, i.e. converting it to a feasible PDDL prob-
lem description

2. formalizing the available Web Services, i.e. converting the Web Service-
(and, to some extent, Process-) Descriptions into PDDL domain descrip-
tions. Of course, this includes the necessity to filter out those services
which are unlikely to contribute to the agent’s goal.

7

Figure 1: Process of Service Composition as planning problem

4 From Web Service Descriptions to PDDL - an
Example

We start by presenting an example scenario: an agent wants to gather news
from a Chinese news feed but it wants to receive the news in English, not in
Chinese. While this scenario is rather simple, it can be used to illustrate some
of the challenges associated with automatic service retrieval and composition.

The scenario domain consists of two Web Services. One WSDL file (cf. List-
ing 1) describes the Chinese news Web Service. Additionally to the Standard
WSDL description, it contains a XLANG extension, which defines some “be-
havioral patterns” (i.e. an usage description) of the Web Service. Languages
like XLANG, WSFL, BPEL4WS or even DAML-S can be used to represent
such usage descriptions, and it is necessary that intelligent agents are able to
interpret this information correctly to avoid errors.

<definitions

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

targetNamespace="http://sws.mcm.unisg.ch/ws/newsfeed.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl">

<message name="LoginData">

<part name="username" type="xsd:string" />

<part name="password" type="xsd:string"/>

</message>

<message name="RegisterData">

8

<part name="first_name" type="xsd:string"/>

<part name="last_name" type="xsd:string"/>

<part name="email" type="xsd:string"/>

</message>

<message name="SessionKey"

<part name="digikey" type="xsd:string"/>

</message>

<message name="newsFeed"

<part name="dailyNews" type="xsd:string"/>

</message>

<portType name="newsFeedPT">

<!-- user needs to register to obtain login data -->

<operation name="op_Register">

<input message="RegisterData"/>

<output message="LoginData"/>

</operation>

<-- user needs to log in to obtain session key -->

<operation name="op_login">

<input message="LoginData"/>

<output message="SessionKey"/>

</operation>

<-- user needs to send a message to activate key -->

<operation name="op_activate">

<input message="SessionKey"/>

</operation>

<-- with an activated sessionID, daily news can be retrieved -->

<operation name="op_deliverNewsFeed">

<input message="SessionID"/>

<output message="dailyNews"/>

</operation>

</portType>

<binding name="NewsFeedSOAPBinding">

<!-- details omitted -->

</binding>

<service name="NewsFeedService">

<port name="NewsfeedPort"

binding = "NewsFeedSOAPBinding">

<soap:address location="http://sws.mcm.unisg.ch/ws/newsfeed"/>

</port>

<xlang:behavior>

<xlang:body>

<xlang:sequence>

<xlang:action operation="op_login" port="NewsfeedPort" />

<xlang:action operation="op_activate" port="NewsfeedPort" />

<xlang:action operation="op_deliverNewsFeed" port="NewsfeedPort" />

</xlang:sequence>

9

</xlang:body>

</xlang:behavior>

</service>

</definitions>

Listing 1 - Description of a Chinese news source, including a XLANG-based
usage description

The following listing presents the WSDL description of a simple Web Service
for text translations from Chinese to English:

<definitions

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

xmlns="http://schemas.xmlsoap.org/wsdl">

<message name="Textdata"

<part name="textcontent" type="xsd:string"/>

</message>

<portType name="ChineseEnglishTranslatorPT">

<!-- translates chinese text and returns english translation -->

<operation name="op_Translate">

<input message="Textdata"/>

<output message="Textdata"/>

</operation>

</portType>

</definitions>

Listing 2 - Description of a Web Service for linguistic translations

In the following Listing 3, we show how the knowledge about the Web Ser-
vices presented above would be encoded in an AI problem description language
like PDDL. The reader will notice that much of the information from the two
WSDL documents listed above can be found in this description, albeit inte-
grated and in a different shape. The reader will also notice that much of the
information presented in the PDDL document can not be found in the original
WSDL descriptions, such as information about the pre-conditions and effects of
the service operations.

(define (domain newsfeed)

(:requirements :strips :typing)

(:types NEWSTEXT)

(:constants firstname lastname email s1username s1password s1sessionid)

(:predicates (know ?x) (language ?x ?y))

(:action S1REGISTER

:precondition

(and (know firstname) (know lastname) (know email))

:effect

(and (know s1username) (know s1password)))

10

(:action S1LOGIN

:precondition

(and (know s1username) (know s1password))

:effect

(know s1sessionid))

(:action S1ACTIVATE

:precondition

(know s1sessionid)

:effect

(cancall(op_delrivernewsfeed)))

(:action S1DELIVERNEWSFEED

:parameters(?n - NEWSTEXT)

:precondition

(and (cancall(op_delrivernewsfeed)) (know s1sessionid))

:effect

(and (not (know s1sessionid)) (know ?n) (language ?n chinese)))

(:action S2TRANSLATETEXT

:parameters(?n - NEWSTEXT)

:precondition

(and (know ?n) (language ?n chinese))

:effect

(and (language ?n english))))

Listing 3 - Web Service information encoded as PDDL domain description

Listing 4 shows the description of the software agents’s problem in PDDL.
The document specifies the state of the world (including the current knowledge
of the agent) and specifies a goal, in terms of predicates that should become
true after Web Service (or process) execution.

(define (problem wantenglishnewsfeed)

(:domain newsfeed)

(:objects

newsitem - NEWSTEXT)

(:init

(know firstname)

(know lastname)

(know email)

(know s1username)

(know s1password))

(:goal

(and (know newsitem) (language newsitem english))))

Listing 4 - PDDL problem description

If an agent manages to create a domain description as shown in Listing 3
and a problem description as shown in Listing 4, it can feed this information

11

into a PDDL compatible AI plan generator, to test whether it is possible to
achieve the goal by invoking some of the available Web Services.

In case of the Graphlan based planner BLACKBOX [15], the solution found
is presented as sequence of Web Service operations whose correct execution will
lead to the achievement of the specified goal. In case of our example, the output
of BLACKBOX looks as follows:

Begin plan
1 (s1login)
2 (s1activate)
3 (s1delivernewsfeed newsitem)
4 (s2translatetext newsitem)
End plan

Total elapsed time: 0.05 seconds
Time in milliseconds: 48

Listing 5 - Solution computed by BLACKBOX

5 How to annotate and transform WSDL

Unfortunately, PDDL based domain specifications as shown in Listing 2, can not
be directly derived from standard WSDL descriptions. Instead, it is necessary
to overcome the limitations of WSDL and to enrich the syntactical WSDL inter-
face specification with semantic information, to obtain a meaningful component
specification.

The semantic annotation of WSDL documents was subject to extensive work,
e.g. [26], [19], [20]. We will briefly rehash the cornerstones of semantic descrip-
tion of WSDL documents.

5.1 Describing Pre-conditions and Post-conditions

Interface Description Languages (IDLs) like WSDL are – per definition – re-
stricted to describe software components solely in terms of input and output
signatures. It is easy to see that this kind of description is not well suited for
automatic Web Service retrieval. For instance, the signature of an operation
to add two Integer numbers is equivalent to the signature of an operation to
multiply the numbers, that is: Integer, Integer → Integer

To gather information about the intended semantics of an operation, the
relationship between inputs and outputs needs to be described. In services with
side effects (= real world consequences) the relationship between the state of
the world before and after the service execution needs to be established.

This semantic information is usually captured in pre-condition and post-
condition statements. The rationale behind the explicit formulation of pre-
and post-conditions is to give software agents the opportunity to compare the
semantics of desired operations with the semantics of provided operations.

12

The meaning of pre- and post-conditions was sketched in Sect. 2. A descrip-
tion of their meaning in context of Web Service operations is given below:

• A pre-condition defines requirements needed to be fulfilled by the user,
in order to make a service execution possible and potentially useful. If
the pre-condition is not fulfilled, the user (software agent) may still try to
invoke the service, but it can be expected that problems will occur during
service execution. For example, if a pre-condition formulates the existence
of a valid user name and password, a service invocation in absence of these
user credentials will result in an error message.

• A post-condition defines requirements that need to be fulfilled by the
service, in order to successfully terminate the service execution. Post-
conditions can be interpreted as declarative specifications of service oper-
ations, describing the consequences of the actions performed by the service.
The term post-condition is synonym to the term “effect”.

Traditionally, pre- and post-conditions are formulated as expressions in first
order predicate logic (FOL). A FOL language is commonly constructed over a
signature Σ = (F,R), where F and R are non-empty disjoint sets of function and
predicate symbols, respectively. Further, an infinite set X of variable symbols is
assumed, disjointed from the symbols in Σ. As a consequence of predicate logic’s
known problems of undecidability and incompleteness, we need to abstain from
certain features of FOL to ensure our requirement of computational tractability.

We need to chose from a number of potential language simplifications to
optimize runtime behavior – a few examples are:

• To drop support for n-ary function symbols, and to forbid nested terms
[20]

• To restrict expressions to Horn-like clauses [20]

• Many PDDL planners support only propositional logics, which means that
no quantified variables and no predicate and function terms exist.

However, which of these simplifications serves our purposes best remains to
be evaluated. In the following discussions, we will not assume any particular
language restriction.

5.2 Describing Inputs and Outputs

Input and output types in WSDL documents describe the format of messages
that are transferred between a Web Service and its client. As a meta language
W3C XML Schema is proposed, albeit other XML Schema approaches (like
Relax NG or Schematron) can also be used, as long as the clients are able to
process this information.

In the realm of automatic service usage, grammar rules are not sufficient
to describe inputs and outputs. Instead, agents are interested in the semantic

13

meaning of the inputs and outputs. That is, they need to be enabled to inter-
pret the input and output symbols, i.e. They need to be able to make certain
assumptions about the extension (interpretation) of the input and output sym-
bols used in the Web Service description. If we assume that relevant worlds
can be described as sets of objects, the extension of a symbol would refer to
some specific sub-set of objects. Successful reasoning about shared information
requires that those who provide and those who consume symbolic descriptions
actually refer to the same (or similar) extensions of objects in a world.

This is usually achieved by using a controlled vocabulary, i.e. by introduc-
ing standards, defining terms in a way that all participants interpret them in
a similar way. However, the introduction of standards is a time consuming
process, which does not necessarily meet the requirements of the constantly
evolving area of internet and Web Services. It is desirable that machines can
interpret terms that are defined by means of logics. This topic is well studied by
the research field of logic especially the emerging field of “Description Logics”.
Description logics [11] restrict semantic nets [68] to adhere to a controlled set
of epistemological constructors (“primitives”) which may be used as building
blocks defining complex structures (ontologies [30]). Among the most expres-
sive, yet tractable, members of the Description Logic families is the SHIQ logic,
which is implemented by Description Logic engines like FaCT [14] and RACER
[28]. A modified version of SHIQ served as starting point for the development
of Semantic Web based ontology languages DAML+OIL [1] [27] and its succes-
sor OWL [5]. These logics are the latest outcome of the efforts to create a global
web of machine readable knowledge.

Inputs and outputs can be integrated into PDDL pre-conditions and post-
conditions. An input can be interpreted as part of a pre-condition. To state that
literal I is an input of an operation, we can declare that the predicate know(I)
is true1. Outputs can be expressed in terms of post-conditions. To state that
O is an output of an operation, we simply attach a post-condition know(O) to
the operation.

5.3 Translating Web Service Usage descriptions

This section contains some errors, which will be removed in the sec-
ond draft of this paper. Any comments for more elegant solutions
are welcome

As discussed above, process descriptions are often used to describe how users
need to interact with Web Services in order to achieve useful results. The
most important constructs for such usage descriptions are sequence, choice and
iteration. The following paragraphs will illustrate how these constructs can be
translated into PDDL.

1in case of propositional logic, we would chose a literal instead of a predicate

14

5.3.1 Sequence

Sequences of operations can be expressed by pre- and post-conditions. We need
to introduce a set of sentences which represent whether an agent may call a
certain operation or not.

A sentence maycall(opx) indicates that the agent is allowed to invoke oper-
ation opx, whereas ¬maycall(opx) indicates that the agent may not invoke this
operation. The logical sentence maycall(opx) can be expressed using predicates
and constants or simply by propositional boolean sentences.

The sequence 〈op1, op2, op3〉 can be expressed by means of pre- and post-
conditions as follows:

(:action op1
:effect (maycall op2))

(:action op2
:precondition (maycall op2)
:effect (maycall op3))

(:action op3
:precondition (maycall op3))

The predicate maycall is used to signal whether an agent should (may) call
a certain operation or not.

5.3.2 Choice

Choice constructs like the BPEL4WS switch operator are used to distinguish
between two or more different paths a service execution may take. There are
two different types of choices: deterministic (transparent) and indeterministic
(opaque) ones. We will only consider deterministic choices here.

A deterministic choice 〈if A then 〈op1〉else 〈if B then 〈op2〉else 〈if C
then 〈op3〉〉〉〉 can be translated into PDDL as follows:

(:action op1
:precondition (and A (not B) (not C)))

(:action op2
:precondition (and B (not A) (not C)))

(:action op3
:precondition (and C (not A) (not B)))

TO DO: to correctly reflect the semantic of the switch construct we need to
create aliases and append post-conditions to make sure that only one and not
several op’s are invoked

5.3.3 Iteration

Iteration constructs like the switch operator of XLANG and BPEL4WS, can
also be translated to fit the requirements of AI planning tools. A statement
while(A) 〈blockB〉 can be translated to PDDL as follows. Each operation opn ∈

15

B is assigned an alias name, e.g. opb−1, opb−2, ..., opb−n. For each of these alias
names, the condition A is attached as pre-condition. This tells the planner that
the aliased operations (those operations that belong to the while-block) can only
be performed if condition A is true. This does not impose restrictions to other
contexts, i.e. outside of the while loop.

(:action op1-b
:precondition (and A (...)))

(:action op2-b
:precondition (and A (not A) (...)))

6 Open Problems and Future Work

Among the issues that need to be clarified by future work are the following
questions:

• Which restrictions do we have to impose on FOL statements to describe
pre- and post-conditions in an reasonable expressive yet algorithmic tractable
manner?

• Which set of “reserved words” (predicates, constants) do we have to define
for the PDDL domain defintions? In this paper we presented the predi-
cates know and maycall, but many other reserved words will be turn out
to be useful for semantic Web Service description.

We are planning a project to test and compare several of these possibilities
empirically. We hope this will contribute to the clarification of these issues.

7 Summary and Conclusion

In this paper we proposed a concept for the semantic description of Web Ser-
vices. We have shown how WSDL documents can be annotated by semantic
information, and we have illustrated how this information can be transformed
into PDDL, a format used by AI planners.

References

[1] DAML+OIL language specification.

[2] Blum, A., and Furst, M. Fast planning through planning graph analy-
sis. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 95) (1995), pp. 1636–1642.

[3] Blum, A., and Furst, M. L. Fast planning through planning graph
analysis. Artificial Intelligence, 1-2 (1997).

16

[4] Clavel, M. e. a. A maude tutorial, 2002.

[5] Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Hor-
rocks, I., McGuinness, D. L., Patel-Schneider, P. F., and Stein,
L. A. OWL web ontology language 1.0 reference.

[6] Erol, K., Hendler, J., and Nau, D. S. Semantics for hierarchical task
network planning, 1994.

[7] Fischer, B. Deduction based software component retrieval, 2001.

[8] Fischer, B., and Schumann, J. NORA/HAMMR: Making deduction-
based software component retrieval practical. In Proc. CADE-14 Workshop
on Automated Theorem Proving in Software Engineering (1997).

[9] Fruehwirth, T., and Abdennadher, S. Constraint Programmierung.
Springer Lehrbuch. Springer Verlag, Berlin, Heidelberg, 1997.

[10] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,
Veloso, M., Weld, D., and Wilkins, D. PDDL—the planning domain
definition language. In AIPS-98 Planning Committee (1998).

[11] Hendler, J. Is there an intelligent agent in your future. Nature, Web
Matters (1999).

[12] Hendler, J., Wu, D., Sirin, E., Nau, D., and Parsia, B. Auto-
matic web services composition using Shop2. In Proceedings of The Second
International Semantic Web Conference(ISWC) (2003).

[13] Hoare, C. A. R. An axiomatic basis for computer programming. Com-
munications of the ACM, 10 (1969).

[14] Horrocks, I. Using an expressive description logic: FaCT or fiction? In
Prof. of KR’98 (1998).

[15] Kautz, H., and Selman, B. BLACKBOX: A new approach to the ap-
plication of theorem proving to problem solving. In Workshop on Planning
as Combinatorial Search, AIPS-98, Pittsburgh, PA, 1998 (1998).

[16] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and Scherl,
R. B. GOLOG: A logic programming language for dynamic domains.
Journal of Logic Programming, 1-3 (1997).

[17] McIlraith, S., and Son, T. Adapting Golog for composition of seman-
tic web services. In Proceedings of the Eighth International Conference
on Knowledge Representation and Reasoning (KR2002)Toulouse, France,
April 2002 (2002).

[18] Meyer, B. The grand challenge of trusted components. In Proc. of the
25th International Conference on Software Engineering, May 03 - 10, 2003
Portland, Oregon (2003), IEEE.

17

[19] Peer, J. Bringing together semantic web and web services. In Proceedings
of The First International Semantic Web Conference (ISWC) (2342 2002),
I. Horrocks and J. Hendler, Eds., no. 2342 in Lecture Notes in Computer
Science, Springer-Verlag.

[20] Peer, J. Semantic annotation and matchmaking of web services. In
Submitted to: Workshop on Semantic Web and Databases at Very Large
Databases Conference, VLDB-2003 (2003).

[21] Penix, J., and Alexander, P. Efficient specification-based component
retrieval. Automated Software Engineering (1999).

[22] Pratt, V. Action logic and pure induction. In Proc. Logics in AI: Eu-
ropean Workshop JELIA ’90 (1990), J. van Eijck, Ed., Springer-Verlag
Lecture Notes in Computer Science, pp. 97–120.

[23] Russel, S., and Norvig, P. Artificial Intelligence: A Modern Approach.
Prentice-Hall Inc., 1995.

[24] Stefik, M. Planning with constraints. Artificial. Intelligence (1981).

[25] Sycara, K., Widoff, S., Klusch, M., and Lu, J. LARKS: Dynamic
matchmaking among heterogeneous software agents in cyberspace. Au-
tonomous Agents and Multi-Agent Systems, 2 (2002).

[26] The DAML-S Coalition. DAML Web Services V0.9, 2002.

[27] van Harmelen, F., Patel-Schneider, P. F., and Horrocks, I. A
model-theoretic semantics for DAML+OIL, 2001.

[28] Volker Haarslev, R. M. Description of the racer system and its ap-
plications. In Proceedubgs International Workshop on Description Logics
(DL-2001), Stanford, USA, 1.-3. August 2001 (2001).

[29] Wiederhold, G., Wegner, P., and Ceri, S. Toward megaprogram-
ming. Communications of the ACM, 11 (1992).

[30] Wing, J. M., Rollins, E., and Zaremski, A. M. Thoughts on a
larch/ML and a new application for LP. In Proceedings of the First Inter-
national Workshop on Larch (1993), U. Martin and J. Wing, Eds., Springer-
Verlag, pp. 297–312.

[31] Wirsing, M. Structured algebraic specifications: A kernel language. The-
oretical Computer Science (1986).

[32] Zaremski, A. M., and Wing, J. M. Specification matching of software
components. In Proceedings of 3rd ACM SIGSOFT Symposium on the
Foundations of Software Engineering (1995).

18

