
IBM

Web Services
Development Concepts
(WSDC 1.0)

May 2001

By Peter Brittenham
IBM Software Group

IBM Software Group Front Matter

Developing Web Services ii

Notices
The authors have utilized their professional expertise in preparing this report. However, neither
International Business Machines Corporation nor the authors make any representation or
warranties with respect to the contents of this report. Rather, this report is provided on an AS IS
basis, without warranty, express or implied, INCLUDING A FULL DISCLAIMER OF THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Software Group Front Matter

Developing Web Services iii

Contents
Notices ..ii
Contents...iii
Figures ... v
Tables .. v
Preface...vi

Abstract ...vi
Target Audience..vi
Comments ...vi

Overview .. 7
Web Services Development Lifecycle... 7

Build... 7
Deploy ... 8
Run... 8
Manage.. 8

Developing Web Services ... 9
Service Registry... 9
Service Provider .. 9

Green Field.. 9
Build .. 10
Deploy... 10
Run.. 11

Top-Down.. 11
Build .. 12
Deploy... 12
Run.. 13

Bottom-Up ... 13
Build .. 14
Deploy... 14
Run.. 14

Meet-in-the-Middle .. 14
Build .. 15
Deploy... 15
Run.. 16

Service Requestor ... 16
Static Binding .. 16

Build .. 17
Deploy... 17
Run.. 17

Build-Time Dynamic Binding... 18
Build .. 18
Deploy... 19
Run.. 19

Runtime Dynamic Binding... 19
Build .. 20
Deploy... 20
Run.. 20

Web Service Tools ... 21
UDDI Browser.. 21
UDDI Editor.. 21
UDDI Publishing Tools... 21
WSDL Editor .. 21

IBM Software Group Front Matter

Developing Web Services iv

WSDL Generator.. 21
Service Proxy Generator ... 22
Service Implementation Template Generator ... 22

Developing Web Services Using Java .. 23
Service Provider .. 23

Green Field.. 24
Build .. 24
Deploy... 25
Run.. 26

Top-Down.. 26
Build .. 26
Deploy... 26
Run.. 27

Bottom-Up ... 27
Build .. 27
Deploy... 27
Run.. 27

Meet-In-The-Middle... 28
Build .. 28
Deploy... 28
Run.. 28

Service Requestor ... 28
Static Binding .. 29

Build .. 29
Deploy... 29
Run.. 29

Build-Time Dynamic Binding... 30
Build .. 30
Deploy... 30
Run.. 30

Runtime Dynamic Binding... 30
Build .. 30
Deploy... 31
Run.. 31

Related Information.. 32
Web Sites... 32
Other Papers ... 32

IBM Software Group Front Matter

Developing Web Services v

Figures
Figure 1. Green field method... 10
Figure 2.Top-down method ... 12
Figure 3. Bottom-up method.. 13
Figure 4. Meet-in-the-middle method .. 15
Figure 5. Static binding.. 17
Figure 6. Build-time dynamic binding.. 18
Figure 7. Dynamic runtime binding ... 20

Tables
Table 1 .Service provider methods.. 9
Table 2. Green field method .. 9
Table 3. Top-down method.. 11
Table 4. Bottom-up method ... 13
Table 5. Meet-in-the-middle method ... 14
Table 6. Service requestor methods.. 16

IBM Software Group Front Matter

Developing Web Services vi

Preface
AbstractAbstractAbstractAbstract
This paper describes the approach for developing Web Services from the point of view of the
developer of service providers and service requestors. The development approach explains the
components, interactions, application development patterns and tools necessary to implement
Web Services in general. It relates these common concepts to their application using Java
technology.

The development approach presented in this paper includes high-level descriptions of the
components and functions required for Web Services, and requirements on the tools and
middleware to implement these components and functions. Some of this functionality exists
today in products such as the IBM XML and Web Services Development Environment, the IBM
Web Services Toolkit, and IBM WebSphere Application Server. These and other products will
implement additional functions in the future. However, the presence of a component, function or
requirement in this paper does not guarantee that it will be implemented in future IBM products.

Target AudienceTarget AudienceTarget AudienceTarget Audience

• Early adopters and implementers of Web Services

• External technical reviewers seriously evaluating the IBM Web Services approach.
Reviewers should read the Web Services Overview and Value paper that explains the
value of Web Services, and the Web Services Conceptual Architecture paper that
explains the IBM approach to Web Services technologies.

CommentsCommentsCommentsComments
Please send any feedback, technical or editorial, to Web Services at wbservcs@us.ibm.com or
webservices/Raleigh/IBM@IBMUS.

mailto:wbservcs@us.ibm.com

IBM Software Group Overview

Developing Web Services 7

Overview
When developing Web Services, there are build, deployment and runtime considerations for
Web service developers and Web service requestors. This paper outlines the architectural
components, subsystems and best practices for the creation, packaging and usage of a Web
service.

The service requestor, service provider and service registry roles are incorporated in the
development approach at varying levels depending on business needs and the robustness
required to facilitate the publish, find and bind operations.

Web Services Development Lifecycle
As described in the Web Services Conceptual Architecture paper, Web Services have three
primary component roles: service registry, service provider and service requestor.

Each component role has specific requirements for each phase of the development lifecycle.
This paper describes the interactions between the Web Services component roles of service
provider and service requestor. (The development and deployment of a service registry is
outside the scope of this paper.) This paper describes the primary tasks defined by the
development lifecycle. The service provider and service requestor roles are logical constructs,
because a single service can exhibit characteristics of both a service requestor and service
provider.

An example of a complete end-to-end lifecycle scenario would start with the creation and
publication of a service interface (build), proceed to the creation and deployment of the Web
service (deploy), move on to the publication of the service implementation definition and end
with the invocation of the Web service by the service requestor (run).

The development lifecycle encompasses the following phases: build, deploy, run, and manage.

BuildBuildBuildBuild
The build phase of the lifecycle includes development and testing of the Web Services
implementation, the definition of the service interface description and the definition of the service
implementation description. Locating an existing service interface definition is also a build-time
function. The Web Services implementations can be provided by creating new Web Services,
transforming existing applications into Web Services, and composing new Web Services from
other Web Services and applications. This paper focuses on the development concepts for a
single Web service.

Developing a new Web service involves using the programming languages and models that are
appropriate for the service provider’s environment. Transforming existing applications into Web
Services involves generating service interfaces and service wrappers to expose the
application’s relevant business functions. Composing new Web Services from existing Web
Services involves sequencing and orchestrating message flows between programs directly or
with workflow technologies. The Web Services that are used to compose a workflow can exist
within the enterprise and outside the enterprise.

There are some similarities between a Web service development approach and object-oriented
programming, because it uses constructs such as encapsulation, interface inheritance using
tModels, and dynamic binding. This means that object-oriented design methodologies can be
applied to Web Services design, but it is not required to design a Web service.

IBM Software Group Overview

Developing Web Services 8

DeployDeployDeployDeploy
The tasks associated with the deploy phase of the development lifecycle include the publication
of the service interface and service implementation definition, deployment of the runtime code
for the Web service and integration with back-end legacy systems.

For Web Services representing transformed applications, deployment can include only the Web
service wrapper because the application might already be deployed. For service flows,
deployment will include customization of the workflow manager and business process manager
to execute and monitor the new flows. Additional administrative integration into the execution
environment would also have to be performed for the definition of operation-based authorization
and service credentials and integration with back-end legacy applications.

RunRunRunRun
During the run lifecycle phase, the Web service is fully deployed and operational. During this
stage of the lifecycle, a service requestor can find the service definition and invoke all defined
service operations. The runtime functions include static and dynamic binding, service
interactions as a function of Simple Object Access Protocol (SOAP) messaging and interactions
with legacy systems.

ManageManageManageManage
The manage phase of the Web service lifecycle covers ongoing management and administration
of the Web service application. Security, availability, performance, quality of service and
business processes must all be addressed. Because this paper focuses on the development of
Web Services, this phase of the lifecycle is not covered.

IBM Software Group Overview

Developing Web Services 9

Developing Web Services
This section describes the Web service lifecycle for each Web service component role: service
registry, service provider and service requestor.

Service RegistryService RegistryService RegistryService Registry
The service registry provides a role in the Web Services development approach, but it is a
passive participant. It is assumed that the registry has been built and deployed before it is
selected for use by the service provider or service requestor. For this reason, the development
lifecycle for the service registry is not provided in this paper.

Service ProviderService ProviderService ProviderService Provider
There are four basic methods that a service provider can use to develop a Web service. The
method that is used is based on the existence of the service interface and application that will
become the Web service. Table 1 provides an overview of these development methods.

 New Service Interface Existing Service Interface
New Web Service green field top-down
Existing Application bottom-up meet-in-the-middle

Table 1 .Service provider methods

Each of these methods for developing a Web service is described in detail below. When
describing the tasks within each phase of the lifecycle, some tasks are repeated between
methods. The tasks that are repeated are described in detail only when they are listed for the
first time.

Green FieldGreen FieldGreen FieldGreen Field

Service Interface New
Web Service New

Table 2. Green field method

As shown in Table 2, the green field method for developing Web Services describes how a new
service interface will be created for a new Web service. Figure 1 illustrates how using this
method, the Web service is created first, and then the service interface definition is generated
from the new Web service. The service interface and service implementation are both owned by
the service provider.

IBM Software Group Overview

Developing Web Services 10

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service

Service
Proxy

Publish

Develop

Figure 1. Green field method

BuildBuildBuildBuild

1. Develop the new Web service.
The first step in the development lifecycle is to design and implement the application
that represents the Web service. This step includes the design and coding required to
implement the service, and the testing to verify that all of its interfaces work correctly.

2. Define a new service interface.
After the new Web service has been developed, the service interface definition can be
generated from the implementation of the service. The service interface should not be
generated until the Web service development is complete because the interface must
match the exact implementation of the service.

DeployDeployDeployDeploy

1. Publish the service interface.
The service interface definition needs to be published before the service is deployed.
The service interface is used by a service requestor to determine how to bind to the
service.

2. Deploy the Web service.
Deploy the runtime code for the service and any deployment meta data that is required
to run the service. An example of deployment meta data would be the deployment
descriptor that is required to deploy a SOAP service. Some Web Services will require a
deployment environment which provides support for functions such as billing, auditing,
logging and security. After a service has been deployed, it is ready to be used by a
service requestor.

IBM Software Group Overview

Developing Web Services 11

3. Create the service implementation definition.
The service implementation definition should be created based on how and where the
service was deployed. The service implementation definition can contain references to
more than one version of the deployed Web service. This allows the service provider to
implement different levels of service for service requestors.

4. Publish the service implementation definition.
The service implementation definition contains the definition of the network-accessible
endpoint or endpoints where the Web service can be invoked.

RunRunRunRun

Run the Web service.
The runtime environment for the Web service consists of the platform on which it was
deployed to run. As an example, if the Web service is a servlet, then it runs in the
context of a Web application server. If the Web service is a SOAP service, then it runs in
the context of a SOAP server.

Top-DownTop-DownTop-DownTop-Down

Service Interface Exists
Web Service New

Table 3. Top-down method

As shown in Table 3, using this method, a new Web service can be developed that conforms to
an existing service interface. This type of service interface is usually part of an industry
standard, which can be implemented by any number of service providers. As Figure 2 shows,
the service provider must find the service interface, implement the interface contained in this
definition, and then deploy the new Web service. The service interface can not be owned by the
service provider.

IBM Software Group Overview

Developing Web Services 12

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service

Service
Proxy

Publish

Skeleton

Service
Interface

Find

Develop

Generate

Figure 2.Top-down method

BuildBuildBuildBuild

1. Find the service interface.
Locate the service interface that will be used to implement the Web service. The service
interface is located by searching the service registry or an industry specification
registry. The search can be completed by using keywords or taxonomy information.

2. Generate the service implementation template.
Using the service interface definition, an implementation template of the Web service is
generated. This will contain all of the methods and parameters that must be
implemented by the Web service to be compliant with the service interface.

3. Develop the new Web service.
Using the service implementation template created in the previous step, design and
implement the application that represents the Web service. This step includes the
design and coding required to implement the service, and the testing to verify that all of
its interfaces work correctly.

DeployDeployDeployDeploy

The deployment steps for the top-down method are the same as deployment steps 2 to 4 for the
green field method. For the deploy phase, the only difference is that the service interface has
already been published by another entity.

1. Deploy the Web service.
Deploy the runtime code for the service, and any deployment meta-data that is required
to run the service.

IBM Software Group Overview

Developing Web Services 13

2. Create the service implementation definition.
The service implementation definition should be created based on how and where the
service was deployed.

3. Publish the service implementation definition.
The service implementation definition contains the definition of the network-accessible
endpoint or endpoints where the Web service can be invoked.

RunRunRunRun

Run the Web service.
The runtime environment for the Web service consists of the platform on which it was
deployed to run.

Bottom-UpBottom-UpBottom-UpBottom-Up

Service Interface New
Web Service Exists

Table 4. Bottom-up method

As shown in Table 4, the bottom-up method is used to create a new service interface for an
existing application. The application can be implemented as an Enterprise JavaBean (EJB),
JavaBean, servlet, C++ or Java class file, or Component Object Model (COM) class. The service
interface is derived from the application's application programming interface (API). Figure 3
shows the generation of the application.

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service
Service
Proxy

Publish

Service
InterfaceGenerate

Figure 3. Bottom-up method

IBM Software Group Overview

Developing Web Services 14

BuildBuildBuildBuild

Generate the service interface.
The service interface is generated from the implementation of the application that
represents the Web service.

DeployDeployDeployDeploy

1. Deploy the Web service.
Deploy the runtime code for the service, and any deployment meta data that is required
to run the service. After a service has been deployed, it is ready to be used by a service
requestor.

2. Create the service implementation definition.
The service implementation definition should be created based on how and where the
service was deployed. The service implementation definition can contain references to
more than one version of the deployed Web service. This allows the service provider to
implement different levels of service for service requestors.

3. Publish the service interface definition.
Before the service implementation can be published, the service interface definition
must be published.

4. Publish the service implementation definition.
The service implementation definition contains the definition of the network-accessible
endpoint or endpoints where the Web service can be invoked. After the service
implementation definition is published, a service requestor can find the service definition
and use it to bind to the Web service.

RunRunRunRun

Run the Web service.
The runtime environment for the Web service consists of the platform on which it was
deployed to run.

Meet-in-the-MiddleMeet-in-the-MiddleMeet-in-the-MiddleMeet-in-the-Middle

Service Interface Exists
Web Service Exists

Table 5. Meet-in-the-middle method

As shown in Table 5, the meet-in-the-middle method for developing a Web service is used when
a service interface already exists and the application that will be used for the Web service
already exists.

The primary task for this method of developing a Web service is to map the existing application
interfaces to those defined in the service interface definition. As shown in Figure 4, this can be
done by creating a wrapper for the application that uses the service interface definition, and
contains an implementation that maps the service interface into the existing application
interface.

IBM Software Group Overview

Developing Web Services 15

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service

Service
Proxy

Publish

Skeleton

Find

Generate

Service
Interface

Service
Wrapper

Develop

Figure 4. Meet-in-the-middle method

BuildBuildBuildBuild

The first two build steps are the same as those for the top-down method.

1. Find the service interface.
Locate the service interface that will be used to implement the Web service.

2. Generate the server implementation template.
Using the service interface definition, an implementation template of the Web service
generated.

3. Develop the service wrapper.
Using the service implementation template created in the previous step, design and
implement the service wrapper which will map the service interface into the existing
application interface.

DeployDeployDeployDeploy

The deployment steps for the meet-in-the-middle method are the similar to those for the bottom-
up method. The only difference is that the service interface is already published.

1. Deploy the Web service.
Deploy the runtime code for the service, and any deployment meta-data that is required
to run the service.

2. Create the service implementation definition.
The service implementation definition should be created based on how and where the
service was deployed.

IBM Software Group Overview

Developing Web Services 16

3. Publish the service implementation definition.
The service implementation definition contains the definition of the network-accessible
endpoint or endpoints where the Web service can be invoked.

RunRunRunRun

Run the Web service.
The runtime environment for the Web service consists of the platform on which it was
deployed to run.

Service RequestorService RequestorService RequestorService Requestor
The service requestor progresses through the same lifecycle elements as the service provider,
but the requestor performs different tasks during each phase. The build time tasks for the
service requestor are dictated based on the method for binding to a Web service.

The service interface is used to generate a service proxy. The service proxy contains all of the
code that is required to access and invoke a Web service. As an example, if the Web service is
a SOAP service, the service proxy will contain all of the SOAP client code that is required to
invoke a method on the SOAP service.

There are three methods for binding to a specific service. A static binding is used only at build
time, whereas dynamic binding can be used either at build time or runtime. A static binding can
not be used at runtime, because it requires all of the information needed to bind to a service at
build time.

 Static Binding Dynamic Binding
Build Static binding Build-time dynamic binding
Run [not applicable] Runtime dynamic binding

Table 6. Service requestor methods

Static BindingStatic BindingStatic BindingStatic Binding
A service requestor will use a static binding (Figure 5) when there is only one service
implementation that will be used at runtime. The static binding is built at build time by locating
the service implementation definition for the single Web service that will be used by the service
requestor. The service implementation definition contains a reference to the service interface,
which will be used to generate the service proxy code. The service proxy contains a complete
implementation of the client application that can be used by the service requestor to invoke Web
service operations.

IBM Software Group Overview

Developing Web Services 17

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service
Service
Proxy

Publish

GenerateService
Implementation

Figure 5. Static binding

BuildBuildBuildBuild

1. Find the service implementation definition.
At build time, the service requestor must locate the service implementation definition for
the Web service. The service implementation definition will contain both a reference to
the service interface definition, and the location where the service can be accessed.

2. Generate the service proxy.
The service interface definition and the service location information are used to generate
the service proxy implementation. The service proxy implementation will conform to the
service interface, and will always try to access the Web service at the same location.

3. Test service proxy.
Before deploying the service proxy it should be tested to verify that it can interact with
the specified Web service.

DeployDeployDeployDeploy

Deploy service proxy.
After the service proxy has been tested to verify that it works correctly, it should be
deployed with the client application in the client runtime environment.

RunRunRunRun

Invoke the Web service.
Run the requestor application which will use the service proxy to invoke the Web
service.

IBM Software Group Overview

Developing Web Services 18

Build-Time Dynamic BindingBuild-Time Dynamic BindingBuild-Time Dynamic BindingBuild-Time Dynamic Binding
This type of binding is used when a service requestor wants to use a specific type of Web
service, but the implementation is not known until runtime or it can change at runtime. The type
of service is defined in a service interface definition.

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service
Service
Proxy

Publish

Find

GenerateService
Interface

Figure 6. Build-time dynamic binding

BuildBuildBuildBuild

1. Find the service interface definition.
The first step is to locate the service interface definition for the type of service that will be
used by the service requestor. The service interface contains only the abstract definition
of the Web service operations.

2. Generate the generic service proxy.
Using the service interface definition, a generic service proxy can be generated. This
service proxy can be used to access any implementation of the service interface. The
only difference between this service proxy and the one generated for a static binding is
that the static binding will contain knowledge of a specific service implementation. This
means that the generic service proxy will contain code to locate a service
implementation by searching a service registry.

3. Test service proxy.
Before deploying the service proxy it should be tested to verify that it can interact with
the specified type of Web service. This can be accomplished by finding an
implementation of the service interface.

IBM Software Group Overview

Developing Web Services 19

DeployDeployDeployDeploy

Deploy service proxy.
After the service proxy has been tested to verify that it works correctly, it should be
deployed within the runtime environment. This process can also include the deployment
of the requestor application that will use the service proxy. The runtime environment that
the service proxy is deployed in must have access to the service registry that will be
searched for an implementation of the service interface.

RunRunRunRun

1. Find the Service implementation definition.
Before the service proxy can invoke a service, an implementation of the service must be
located in the service registry. The generated service proxy should contain all of the
code that is required to search the service registry for an implementation of the service
interface.

2. Invoke the Web service.
After a service implementation has been found, the service proxy can be used to invoke
the Web service.

Runtime Dynamic BindingRuntime Dynamic BindingRuntime Dynamic BindingRuntime Dynamic Binding
Runtime dynamic binding is similar to build-time dynamic binding. A service interface is used to
generate a general service proxy interface that can be used to invoke any implementation of the
service interface. This type of binding is different in that the service interface is found at runtime.
After the service interface is found, the proxy code is generated, compiled, and then executed.
This type of binding would typically be used with a user interface, because it is not possible for a
machine-to-machine interaction to be truly dynamic.

IBM Software Group Overview

Developing Web Services 20

Service
Provider

Service
Requestor

Service
Registry

Service
Interface

Service
Implementation

Bind

Find

Service
Service
Proxy

Publish

Find

GenerateService
Interface

Figure 7. Dynamic runtime binding

BuildBuildBuildBuild

Build requestor application.
The service requestor application is built using a dynamic binding runtime interface.
This interface is used to find a service implementation, and then retrieve the service
interface associated with the service implementation.

DeployDeployDeployDeploy

Deploy requestor application.
Deploy the requestor application so that it will run and use the Web service runtime
environment.

RunRunRunRun

1. Find the service implementation definition.
The service requestor application uses runtime environment to find a service
implementation definition. There are different methods that can be used to locate a
service implementation in a service registry. A service implementation can be found by
first locating a business or type of business, and then determining the services offered
by those businesses. The service implementation could also be located by searching for
a classification of service, or by first locating a type of service (or service interface). If
the service interface is the target of a search operation, then it is used to locate the
implementations of service interface.

IBM Software Group Overview

Developing Web Services 21

2. Generate and deploy the service proxy.
Using the service interface associated with the service implementation, generate the
service proxy code that will be used to invoke the service. After the code is generated, it
is compiled and made available in the runtime environment.

3. Invoke the Web service.
The generated service proxy code is used to invoke the Web service.

Web Service Tools
A set of service development tools can be used to assist with these scenarios. Development
tools automate various aspects of Web service development simplifying design, deployment and
integration. IBM provides a suite of development tools for Web Services, providing support for
wrapping preexisting applications, generation of service descriptions, code generation from
Web Services Description Language (WSDL) documents and more. The following components
are logical functions that make up the tooling needed to support service development. They
form functional parts that are planned to be integrated into the IBM XML and Web Services
Development Environment.

UDDI BrowserUDDI BrowserUDDI BrowserUDDI Browser
This browser allows the developer to interactively browse the Universal Description, Discovery
and Integration (UDDI) registry to find the services that can already be defined. This allows the
developer to download an interface definition that would be the basis for the development of a
conforming service.

UDDI EditorUDDI EditorUDDI EditorUDDI Editor
The UDDI editor is used by the service developer to create different UDDI entries, including the
businessEntity, businessService and tModel information needed to publish the service in a UDDI
registry.

UDDI Publishing ToolsUDDI Publishing ToolsUDDI Publishing ToolsUDDI Publishing Tools
UDDI publishing tools take UDDI definitions created by the UDDI editor or generation tools and
publish them to a UDDI registry. Because portions of these definitions can already exist in the
registry, appropriate new or changed elements will be applied to the target UDDI repository.
Examples of existing entities with new elements include a business entity to which we are
adding additional services, and a binding template to which we are adding additional tModel
references. Some elements can already exist, and will need to be resolved to existing universal
unique identifiers (UUID) keys. The publishing tools must also support promotion of the UDDI
information from a private test UDDI registry to one or more production registries.

WSDL EditorWSDL EditorWSDL EditorWSDL Editor
This creates WSDL interfaces for publication. It is used by developers who are creating WSDL
documents to describe Web Services from scratch.

WSDL GeneratorWSDL GeneratorWSDL GeneratorWSDL Generator
The WSDL generator produces WSDL interface documents that describe interfaces
implemented by existing applications. This tool can be used to automatically generate a WSDL
document describing EJBs, JavaBeans, servlets, C++ or Java class files, Common Object
Request Broker Architecture (CORBA), Interface Definition Language (IDL), COM class, and

IBM Software Group Overview

Developing Web Services 22

MQSeries message definitions that have already been implemented. This tool also generates
WSDL implementation documents, including support for non-IBM environments such as
Microsoft .NET.

For SOAP services, the WSDL generator should also create the SOAP deployment descriptor
which is required to deploy the service.

Service Proxy GeneratorService Proxy GeneratorService Proxy GeneratorService Proxy Generator
The service proxy generator produces client code from a WSDL interface document, and
optionally a service implementation document. If only the service interface document is used,
then a generic service proxy is generated. This type of proxy can be used to access any
implementation of service interface. If both a service interface and a service implementation are
used, then a service proxy is generated that will access only the specified service
implementation. The service proxy contains the code that is specific to a binding within the
service interface. For example, if the binding is a SOAP binding, then the service proxy will
contain SOAP client code that is used to invoke the service.

Service Implementation Template GeneratorService Implementation Template GeneratorService Implementation Template GeneratorService Implementation Template Generator
The service implementation template generator can be used to create an implementation
template used to implement a Web service. The implementation template is created using only
the service interface definition. An example of a service implementation template is a Java
interface. If binding in the service interface is a SOAP binding, then the deployment descriptor
that is needed to deploy the SOAP service is also generated.

IBM Software Group Developing Web Services Using Java

Developing Web Services 23

Developing Web Services Using Java
This section describes one instantiation of the abstract approach for developing Web Services
defined in the previous section. It defines the build, deployment and runtime requirements of the
service requestor and service provider as Java components.

Homogeneity across the service requestor and service provider component is not a requirement
with respect to programming language or component model. Because this is a derivation of the
Web Services development approach, the loosely coupled characteristics of Web Services are
maintained such that a requestor can employ a non-Java-based Web Services development
approach while maintaining interoperability with a peer Web service being hosted by a Java-
based service provider.

Service ProviderService ProviderService ProviderService Provider
Within this development approach, the service provider hosts Web Services within a Java
runtime environment. The Java runtime environment consists of the following components:

• Web application server
An HTTP server and servlet engine.

• SOAP RPC router
Network endpoint that unmarshalls SOAP remote procedure call (RPC) messages and
forwards them to a designated provider. The provider response is then marshalled and
returned to the requestor. The router is conventionally a servlet managed within the
context of the Web application server.

• SOAP message router
Network endpoint that unmarshalls SOAP messages and forwards them to a designated
provider. The router is conventionally a servlet managed within the context of the Web
application server.

• Plugable provider interface
Provides extensibility of the SOAP server, by facilitating the addition of user-defined
providers. This support is required to host JavaBeans, servlets, EJBs and Java
applications as Web Services. A pluggable provider will provide the necessary logic to
locate, load and invoke the service implementation referenced in the SOAP request.

If RPC-based, the provider will convert the service result to a SOAP envelope. This
conversion is typically defined by an object model. For example, Apache SOAP 2.1
provides an org.apache.SOAP.RPC.SOAPContext object to encapsulate the
envelope.

The following are examples of pluggable providers that are used to interact with Java
objects:

� Java RPC provider
Provides the bridge between the SOAP RPC router and the Java RPC service
implementation being invoked. This provider is capable of loading the Java class
specified in the SOAP message and invoking the appropriate operation, with the
given parameters. The service response is then returned to the SOAP RPC router.

IBM Software Group Developing Web Services Using Java

Developing Web Services 24

� Java message provider
Provides the bridge between SOAP message router and the Java messaging
service being invoked. This provider is capable of loading the Java class specified
in the SOAP message. The provider relays the message payload in the SOAP
envelope to the target service.

• EJB container
Hosting environment that manages EJB lifecycles. Required for EJB-based Web service
implementations.

A Web service deployed in this environment will be implemented using one or more of the
following methods:

1. Java class
2. Servlet
3. Bean Scripting Framework (BSF) compatible script
4. JavaBean
5. EJB
6. Java Native Interface (JNI) interface defined for native application components

Each of the following sections describes a method for developing a Web service using Java.
When describing the steps within each phase of the lifecycle, some methods use the same
steps. The repeated steps are described in detail only when they are listed for the first time.

Green FieldGreen FieldGreen FieldGreen Field

BuildBuildBuildBuild

1. Develop the new Java Web service.
The first step in the development lifecycle is to design and implement the Java-based
Web Services application. The service implementation can range from a simple Java
class to an EJB.

2. Define a new service interface.

The service interface is a WSDL document defining the type, messages and port type
elements. After the development of the Web service, a service interface definition should
be created. The service interface will describe the abstract operations supported by the
service and the messages that will be communicated.

For RPC interactions the messages represent input, input/output, and output
parameters. This process can be manual or automated via WSDL utilities. Given a fully
qualified class name for a Java class, bean, or servlet, a WSDL generation utility can
use reflection to generate the service interface. The desired methods are selected prior
to the generation of the service interface. Given an EJB deployment descriptor (that is,
jar file), a WSDL generation utility can create the service interface that exposes the
desired remote and home interface methods as service operations. IBM provides utilities
which will generate the appropriate WSDL interface document for the given
implementation types.

IBM Software Group Developing Web Services Using Java

Developing Web Services 25

DeployDeployDeployDeploy

1. Publish service interface.

Publishing the service interface definition is a function supported by the registry
component of the development approach. The registry can be a simple storage
mechanism, without any supporting Web service data structures (for example, diskette
or file system). However the registry can be more complex, and provide support for
business registration, industrial categorization based on standard taxonomies, and
maintaining technical service information. Some registries such as the UDDI registry will
support a programmatic interface to publishing service interfaces. UDDI defines the
UDDI programmer’s API that incorporates a publish API, available at www.uddi.org. IBM
provides tools that simplify publishing to UDDI registries via the UDDI4J implementation
of the UDDI programmers API. Note that within the context of UDDI, a WSDL service
interface document represents a tModel.

2. Deploy Web service.

Deploying the Web service implies integration of the Web service and relevant meta-
data with the Java runtime. The following characterizes the general deployment steps:

i. Generate SOAP deployment descriptor.
The SOAP deployment descriptor contains meta-data relevant to deploying services
such as an object ID, provider type identification, and class identifier using the
necessary naming system (that is, Java class name, Java Naming and Directory
Interface [JNDI] environment naming context, and so on), and which class, instance
method, or both that will be exposed as service operations.

EJB service implementations will require the use of the EJB deployment descriptor
to generate the SOAP deployment descriptor. Methods of the remote and home
interfaces will be exposed as service operations. The SOAP deployment descriptor
for EJBs must reference an EJB provider. The Apache SOAP implementation
provides three EJB-compliant providers: stateless, stateful, and entity providers.

ii. Deploy SOAP service.
Deploy the service as a SOAP service. This can be accomplished using a server-
side API provided by the SOAP server vendor. For example, in Apache SOAP the
ServiceManagerClient class will deploy a service given a class name and
deployment descriptor.

EJB implementations of Web Services will require the use of an EJB provider class,
which will unmarshall incoming SOAP request and forward the message to the
appropriate EJB as an EJB client. The response data is then marshalled and
returned to the SOAP client. The EJB is deployed within an EJB container.

3. Create service implementation definition

The service implementation is a WSDL document defining the binding, service and port
elements. The service implementation will import a service interface document.
Generating the service implementation definition can be either a manual or automated
process. This information will provide location information for the service and reference
the service implementation definition. The SOAP address should reference the URL of
the appropriate SOAP router. The binding should reference the object ID provided in the

IBM Software Group Developing Web Services Using Java

Developing Web Services 26

SOAP deployment descriptor as the namespace for the operations. The binding is typed
such that it is mapped to a particular port type defined by the service interface. IBM is
planning to provide tools that will simplify the generation of service implementations.

4. Publish service implementation definition.

Publishing the service implementation definition is a function supported by the registry
component of the development approach.

RunRunRunRun

The Web service can have multiple runtimes or simply run within the context of a Web
application server. For example, EJB service implementations will require the SOAP
server to execute in a Web application service, while the EJB implementation itself can
run in a separate runtime environment consisting of an EJB container.

Top-DownTop-DownTop-DownTop-Down

BuildBuildBuildBuild

1. Find service interface.

Locating the service interface definition is a function supported by the registry
component of the development approach.

2. Generate service implementation template.

A service implementation template is typically generated through an automated
process. The generated implementation template will be a Java class with empty
methods defined, where the method signatures are mapped to the WSDL-defined
operations and messages. Given a WSDL implementation, the deployment descriptor
can be generated as well.

3. Develop the new Web service.

Develop the implementation of the service by implementing the empty methods from the
Java class generated in step 2. The service implementation can range from a simple
Java class to EJB.

DeployDeployDeployDeploy

1. Deploy Web service.
Deploying the Web service implies integration of the Web service and relevant meta-
data with the Java runtime. This process is the same as the one defined for the green
field method.

2. Create service implementation definition.
The service implementation is a WSDL document defining the binding, service and port
elements.

3. Publish service implementation definition.
Publishing the service implementation definition is a function supported by the registry
component of the development approach.

IBM Software Group Developing Web Services Using Java

Developing Web Services 27

RunRunRunRun

The Web service can have multiple runtimes or simply run within the context of a Web
application server. For example, EJB service implementations will require the SOAP server
to execute in a Web application service, while the EJB implementation itself can run in a
separate runtime environment consisting of an EJB container.

Bottom-UpBottom-UpBottom-UpBottom-Up

BuildBuildBuildBuild

1. Generate service interface.

The service interface is a WSDL document defining the type, messages and port type
elements. After the development of the Web service, a service interface definition should
be created. The service interface describes the abstract operations supported by the
service and the messages that will be communicated. For RPC interactions, the
messages represent input, input/output, and output parameters. This process can be
manual or automated using WSDL utilities.

Given a fully qualified class name for a Java class, bean or servlet, a WSDL generation
utility can use reflection to generate the service interface. The desired methods are
selected prior to the generation of the service interface.

Given an EJB deployment descriptor (that is, jar file) a WSDL generation utility can
create the service interface that exposes the desired remote and home interface
methods as service operations. IBM provides utilities that will generate the appropriate
WSDL interface document for the given implementation types.

DeployDeployDeployDeploy

1. Deploy Web service.

Deploying the Web service implies integration of the Web service and relevant meta-
data with the Java runtime.

2. Create service implementation definition.

The service implementation is a WSDL document defining the binding, service and port
elements.

3. Publish service interface.
Publishing the service interface definition is a function supported by the registry
component of the development approach.

4. Publish service implementation definition.
Publishing the service implementation definition is a function supported by the registry
component of the development approach.

RunRunRunRun

The Web service can have multiple runtimes or simply run within the context of a Web
application server. For example, EJB service implementations will require the SOAP server
to execute in a Web application service, while the EJB implementation itself can run in a
separate runtime environment consisting of an EJB container.

IBM Software Group Developing Web Services Using Java

Developing Web Services 28

Meet-In-The-MiddleMeet-In-The-MiddleMeet-In-The-MiddleMeet-In-The-Middle

BuildBuildBuildBuild

1. Find service interface.

Locating the service interface definition is a function supported by the registry
component of the development approach.

2. Generate service implementation template.
A service implementation template is typically generated through an automated
process. The generated implementation template will be a Java class with empty
methods defined, where the method signatures are mapped to the WSDL-defined
operations and messages.

3. Develop the service wrapper.
The service wrapper represents the mapping code for the preexisting Java code base.
The empty methods from the Java class generated in the previous section should be the
integration points for the preexisting application. For EJB service implementations, the
service wrapper should use the home and remote interfaces supported by the
enterprise bean implementation.

DeployDeployDeployDeploy

1. Deploy Web service.

Deploying the Web service implies integration of the Web service and relevant meta-
data with the Java runtime.

2. Create service implementation definition.

The service implementation definition is a WSDL document defining the binding, service
and port elements.

3. Publish service implementation definition.

Publishing the service implementation definition is a function supported by the registry
component of the development approach.

RunRunRunRun

The Web service can in fact multiple runtimes or simply run within the context of a Web
application server. For example EJB service implementations will require the SOAP server to
execute in a Web application service, while the EJB implementation itself can run in a
separate runtime environment consisting of an EJB container.

Service RequestorService RequestorService RequestorService Requestor
Within this development approach, the service requestor is hosted within a Java runtime
environment. The Java runtime environment for the service requestor assumes only a Java
virtual machine. Because WSDL defines bindings for SOAP, HTTP GET/POST and MIME
extensions, the service requestor can access services from a browser or application runtime. A
Web service requestor deployed in this environment represents one or more of the following:

IBM Software Group Developing Web Services Using Java

Developing Web Services 29

1. Java class
2. Servlet
3. JavaServer Pages (JSP)
4. JavaBean
5. EJB
6. JNI interface defined for native application components
7. Java Applet

Static BindingStatic BindingStatic BindingStatic Binding

BuildBuildBuildBuild

1. Find service implementation definition.

Locating the service implementation definition is a function supported by the registry
component of the development approach.

2. Generate service proxy.

A service proxy is typically generated through an automated process. The generated
proxy will be a Java class where the implemented methods have signatures that are
correlated with the service interface (imported by service implementation). The body of
the methods leverage the service implementations binding and address information to
build a SOAP message. The SOAP message can be represented by an object model.
Apache SOAP 2.1 provides the org.apache.SOAP.RPC.Call class to encapsulate
the SOAP request message.

3. Build requestor application.

Develop the requestor application such that it uses the service proxy methods to invoke
the Web service.

4. Test service proxy.

Before deploying the service proxy it should be tested to verify that it can interact with
the specified Web service.

DeployDeployDeployDeploy

Deploy service proxy.

Deploy the service proxy within a Java Virtual Machine (JVM) along with the requestor
Java application. A SOAP client is required to process the SOAP messages.

RunRunRunRun

Invoke Web service.

The requestor runs within the context of a JVM.

IBM Software Group Developing Web Services Using Java

Developing Web Services 30

Build-Time Dynamic BindingBuild-Time Dynamic BindingBuild-Time Dynamic BindingBuild-Time Dynamic Binding

BuildBuildBuildBuild

1. Find service interface definition.

Locating the service interface definition is a function supported by the registry
component of the development approach.

2. Generate generic service proxy.

A service proxy is typically generated through an automated process. The generated
proxy will be a Java class where the implemented methods have signatures that are
correlated with the service interface (imported by service implementation).

3. Build requestor application.

Develop the requestor application such that it uses the service proxy methods to invoke
the Web service.

4. Test service proxy.

Before deploying the service proxy it should be tested to verify that it can interact with
the specified Web service.

DeployDeployDeployDeploy

Deploy service proxy.

Deploy the service proxy within a JVM along with the requestor Java application.

RunRunRunRun

1. Find service implementation definition.

Locating the service implementation definition is a function supported by the registry
component of the development approach.

2. Invoke Web service.

Now that the network address of the desired service implementation has been resolved,
the service can be invoked.

Runtime Dynamic BindingRuntime Dynamic BindingRuntime Dynamic BindingRuntime Dynamic Binding

BuildBuildBuildBuild

Build requestor application.

Build the requestor Java application with introspection functionality to facilitate
leveraging a mutable API.

IBM Software Group Developing Web Services Using Java

Developing Web Services 31

DeployDeployDeployDeploy

Deploy requestor application.

Deploy the requestor application within a JVM.

RunRunRunRun

1. Find service interface definition.

Locating the service interface definition is a function supported by the registry
component of the development approach.

2. Find service implementation definition.

Locating the service implementation definition is a function supported by the registry
component of the development approach.

3. Generate and deploy service proxy.

A service proxy is typically generated through an automated process. The generated
proxy will be a Java class where the implemented methods have signatures which are
correlated with the service interface (imported by service implementation). The service
proxy should be compiled and integrated within the requestor application using
introspection and reflection, and the following method:
Class.getConstructer(Class[]).newInstance(Object[]).

4. Invoke Web service.

Now that the network address of the desired service implementation has been resolved
and the service proxy can be programmatically accessed, the requestor can invoke the
service.

IBM Software Group Related Information

Developing Web Services 32

Related Information
Web SitesWeb SitesWeb SitesWeb Sites
AXIS http://xml.apache.org/axis
DISCO http://msdn.microsoft.com/xml/general/disco.asp
EbXML http://www.ebxml.org/
JAVA http://java.sun.com/
OAG http://www.openapplications.org/
SOAP http://www.w3.org/TR/SOAP/
UDDI http://www.uddi.org/
WSDL http://www.uddi.org/submissions.html
XMLP http://www.w3.org/2000/xp/
XML Schema Part 1 http://www.w3.org/TR/xmlschema-1/
XML Schema Part 2 http://www.w3.org/TR/xmlschema-2/

Other PapersOther PapersOther PapersOther Papers
Web Services Flow Language (WSFL 1.0)

Web Services Conceptual Architecture (WSCA 1.0)

IBM Web Services Roadmap

Web Services and Business Process Management Technology

http://xml.apache.org/axis
http://msdn.microsoft.com/xml/general/disco.asp
http://www.ebxml.org/
http://java.sun.com/
http://www.openapplications.org/
http://www.w3.org/TR/SOAP/
http://www.uddi.org/
http://www.uddi.org/submissions.html
http://www.w3.org/2000/xp/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

IBM®

© Copyright IBM Corporation 2001

International Business Machines Corporation
Software Communications Department
Route 100, Building 1
Somers, NY 10589
U.S.A.

05-01
All Rights Reserved

IBM, the IBM logo, VisualAge, WebSphere, and
MQSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc in the United
States, other countries, or both.

Other company, product and service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM
operates.

	IBM
	Notices
	Contents
	Figures
	Tables
	Preface
	Abstract
	Target Audience
	Comments

	Overview
	Web Services Development Lifecycle
	Build
	Deploy
	Run
	Manage

	Developing Web Services
	Service Registry
	Service Provider
	Green Field
	Build
	Deploy
	Run

	Top-Down
	Build
	Deploy
	Run

	Bottom-Up
	Build
	Deploy
	Run

	Meet-in-the-Middle
	Build
	Deploy
	Run

	Service Requestor
	Static Binding
	Build
	Deploy
	Run

	Build-Time Dynamic Binding
	Build
	Deploy
	Run

	Runtime Dynamic Binding
	Build
	Deploy
	Run

	Web Service Tools
	UDDI Browser
	UDDI Editor
	UDDI Publishing Tools
	WSDL Editor
	WSDL Generator
	Service Proxy Generator
	Service Implementation Template Generator

	Developing Web Services Using Java
	Service Provider
	Green Field
	Build
	Deploy
	Run

	Top-Down
	Build
	Deploy
	Run

	Bottom-Up
	Build
	Deploy
	Run

	Meet-In-The-Middle
	Build
	Deploy
	Run

	Service Requestor
	Static Binding
	Build
	Deploy
	Run

	Build-Time Dynamic Binding
	Build
	Deploy
	Run

	Runtime Dynamic Binding
	Build
	Deploy
	Run

	Related Information
	Web Sites
	Other Papers
	
	
	
	
	
	Web Services and Business Process Management Technology

