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ABSTRACT

Workflow management systems (WFMYS) that are geared for the
orchegtration of business processes across multiple organizations
are complex distributed systems. they consist of multiple
workflow engines, application servers, and communication
middleware servers such as ORBs, where each of these server
types can be replicated on multiple computers for scalability and
availability.

Finding an gppropriate system configuration with guaranteed
application-specific quality of service in terms of throughput,
response time, and tolerable downtime is a major challenge for
human sysem adminigtrators. This paper presents a tool that
largely automates the task of configuring a distributed WFMS.
Based on a suite of mathematical models, the tool derives the
necessary degrees of replication for the various server types in
order to meet specified goals for performance and availability as
well as "performability” when service is degraded due to outages
of individual servers. The paper describes the configuration tool,
with emphasis on how to capture the load behavior of workflows
in arealistic manner. We also present extensive experiments that
evaluate the accurecy of the tool's underlying models and
demonstrate the practical feasibility of automating the task of
configuring a distributed WFMS. The experiments use a detailed
simulaion which in turn has been validated through
measurements with the Mentor-lite prototype system.

1 INTRODUCTION

1.1 Motivation

Next-generation e-services such as advanced forms of electronic
sdles, auctions, and brokerage will achieve their mission only if
they provide guaranteed "qudlity of service® (Qo0S). This goal
encompasses both high availability and user-acceptable response
time, and ideally even the combined notion of "performability”
which considers the impact of transient outages on throughput and
responsetime [11].

Today's Web-based e-services are still far from providing QoS
guarantees: they frequently exhibit inconvenient outages, and
often have absolutely unacceptable responsiveness during popular
business hours (i.e., when load surges occur). The bottlenecks
include both networking and server-side issues [17], but most
often it is congested gpplication and data servers at the e-business
site that cause performance problems. The reason is that these
servers are poorly configured, tuned, and administered.
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Obvioudy, there are exceptions to this largely poor situation, but
these are exactly those sites that heavily invest into their human
support staff for proper configuration and tuning. However, the
scarceness and high cogt of these human experts, on one hand, and
the high dynamics of e-business processes and cusomer demands,
on the other hand, mandate an automated approach to the
problem.

Advanced e-services, especialy those in the B2B (busness-to-
business) category such as supply chains, have rich application
logic and need to support long-lived business processes [5]. The
gppropriate technology for this purpose, within a standard three-
tier architecture, is workflow management, either in explicit form
by setting up workflow engine as part of the site's middle-tier
gpplication server (see, e.g., the WISE project [15]) or implicitly
by orchestrating application server scripts (eg., ASP or PHP
scripts) into business processes. Workflow engines have become
relatively mature products (eg., MQ Workflow, Staffware,
Biztalk, E-Speak, etc.) that can interact with a Web server as the
gpplication frontend as well as backend database servers.
Furthermore and most importantly, by replicating a workflow
server across multiple computers it is possible to scae up
throughput, improve responsiveness, and enhance availability in
the presence of individual server failures. Unlike the replication of
transectional data, the replication of workflow servers does not
pose any severe scalability problems. In contrag to simple,
gdateless Web applications, the workflow engines need to maintain
gdate information for ongoing workflow instances, but this can be
easly delegated to (aclugter of) database servers.

So the replication of workflow servers in a distributed system is
the mechaniam toward better qudity of service, and the same
argument holds also for servers that handle invoked applications
that are spawned as activities of a workflow. The critical issue,
however, is how to devise a strategy for the degree of replication
and how to configure the entire system such that it can guarantee
the application's QoS specification. The problem is made more
difficult by the fact that business processes may span different
enterprises or autonomous units within an organization, so the
complete system consists of different types of workflow engines
dedicated to handle specific subworkflows. The key question to be
answered is how many replicas we need for which kind of servers.
Thisistheissuethat we address in this paper.

1.2 Contribution

In this paper we present a fully implemented tool for the
automatic configuration of a distributed workflow system in order
to meet specified goals for throughput, response time, availability,
and performability. The workflow sysem that we have primarily
considered, is our own prototype system Mentor-lite [19, 24],
which is accessible from Web application servers via XML
messages. Our tool can be easily adapted to other workflow
sysems; Mentor-lite serves as an example platform over which
we have full control for instrumentation and experimental studies.
The configuration tool, coined Goliat (for Goal-driven auto-



configuration tool), automatically derives suitable degrees of
replication for workflow servers and gpplication servers of
different types as wdl as request brokering and communication
servers (e.g., Corba ORBS) so that the entire system can guarantee
the quality of service tha is requested for the e-business
application under consideration.

The Goliat auto-configuration tool is driven by the specifications

of the business processes, which are statecharts in our specific

Mentor-lite environment, and gatistics about the execution paths

of these workflows. Its core asset is a suite of analytic models,

using stochastic methods like continuoustime Markov chains

(CTMC) and Markov reward models, to predict the performance,

availability, and performability of a given system configuration

under a given load. The performance model estimates the
maximum sugtainable throughput in terms of workflow instances
per time unit and the mean waiting time for service requeds such
as interactions upon starting an activity. The availability model
estimates the mean downtime of the entire system for given
failure and restart rates of the various components. Finaly, the
performability model takes into account the performance
degradation during transient failures, and estimates the effective
mean waiting time for service requests with explicit consideration
of periods during which only a subset of a server type's replicas
are running. These models, which form the mathematical
underpinnings of the Goliat tool, have mostly been derived in our

earlier work published in [8].

The current paper extends our earlier work in two major ways.

1) We have refined and improved the load and performance
model of Goliat so that it can capture the behavior of
workflow executions in a more realigic manner. In
particular, we have extended the model so that it can cope
with arbitrary subworkflows and loops. Also, we can now
support constructs for which exponential digributions, the
standard assumption in Makov models, are inadequate,
namely, component downtimes and activity turnaround
times. We eliminate this restriction by the technique of
approximating generalized Erlang distributions  with
appropriaely designed Markov sub-models [22].

2) The Goliat tool has now been fully implemented, validated,
and evaluated. To this end, we have caried out extensive
experiments with the Mentor-lite environment. For better
reproducibility and efficiency of systematic studies we have
developed a simulaor for Mentor-lite, which actualy
executes the Mentor-lite code but has parameterized
functions for the usage of (virtual, i.e., simulated) resources.
The dmulator has been validated by measurements of
Mentor-lite, and its parameters have been calibrated by these
measurements. The evaluation of the Goliat tool againg the
simulaions and measurements shows that its anaytic
predictions are sufficiently accurate to be practicaly viable.

1.3 Related work

Although the literature includes much work on scalable WFMS
architectures (e.g., [1, 6, 16]), there are only few research projects
that have looked into the quantitative assessment of WFMS
configurations with regard to performance and availability. The
work reported in [2, 3] presents several types of digtributed
WFMS architectures and discusses the influence of different load
distribution methods on the network and workflow-server load,
mogly using simulations. [20] presents heuristics for the
alocation of workflow-type and workflow-instance data onto
servers. Mechanisms for enhanced WFMS  availability by

replicating date data on a standby backup server have been
gudied in [9, 14]. None of this prior work has addressed the issue
of how to configure a WFMS for given performance and
availability goals.

The use of CTMC models in the context of workflow
management has been pursued by [13]. This work uses the steady-
gdate anaysis of such models to anayze the efficiency of different
outsourcing strategies in a virtual-enterprise setting. Our gpproach
is more far-reaching in that we use methods for the transient
andysis of Markov chains to capture the dynamic behavior of
workflow ingances and the resulting performance. In addition, we
address also the availability and performability dimensions.

1.4 Outline

The rest of the paper is organized as follows. Section 2 presents
the architecture of the Goliat configuration tool. Section 3 reviews
the suite of stochastic models that we developed in [8]. Section 4
presents new extensions of the stochastic performance model to
capture the behavior of workflow executions in a more realistic
manner. Section 5 describes the experimental testbed for the
validation and evaluation of the developed auto-configuration
method. Section 6 presents the results of the performance and
performability experiments.

2 ARCHITECTURE OF THE GOLIAT

CONFIGURATION TOOL

A didributed configuration of Mentor-lite consists of different
workflow servers (i.e, instances of the workflow engine) and
gpplication servers, and one communication server (i.e, ORB).
Each server of the first two categories can be dedicated to a
ecified set of workflow activities or invoked applications on a
per type basis. Each of these dedicated servers and also the
communication server can be replicated across multiple computers
for enhanced performance and availability. Given this flexibility
(which is supported in smilar ways aso by some commercial
WFMSg), it is a difficult problem to choose an appropriate
configuration for the entire WFMS that meets all requirements
with regard to throughput, interaction response time, and
availability. Moreover, it may be necessary to adapt an initial
configuration over time due to changes of the workflow load, e.g.,
upon adding new workflow types.

To solve this problem, we have developed the Goliat auto-
configuration tool based on a suite of analytic models, using
gochastic methods like continuoustime Markov chains and
Markov reward models, to predict the performance, availability,
and performability for given configuration and workload. These
models have been developed in [8]; we will outline the general
gpproach in Section 3 and will present new extensions in Section
4. The Goliat tool is driven by the workflow specifications that it
obtains from the repository and by gatistics on the workload from
the monitoring tool of Mentor-lite. Goliat feeds this information
into its analytic models for a wha-if analysis of a hypothetical
configuration. By systemaic variation of the parameters for
different candidate configurations the tool is aso able to derive
the (analytically) best configuration, i.e., the minimum degree of
replication of each of the involved server types to meet given
performance, availability, and performability goals. The Goliat
tool is largely independent of a specific WFMS, by using specific,
easly replacable, stubsfor its interactions with the WFMS.

The components of the Goliat tool and its embedding into the
overall sysem environment are illustrated in Figure 1. Goliat
consigs of four main components:



¢ the mapping of workflow specifications onto the tool’s
internal models,

¢ the calibration of the internal models by means of datistics
from monitoring the system,

¢ theevaluation of the modelsfor given input parameters, and

e the computation of recommendations to system
administrators regarding specified goals.

Repository

WFMS
WF App.
engine  server

Moritoring

| Configuration Tool |

A 4
[ Mapping | [ calibration |
Goals Administrator
Figurel: Integration of the auto-configuration tool

For the mapping the tool interacts with a workflow repository
where the specifications of the various workflow types are stored.
In addition, statistics from online monitoring are used as a second
source (eg., to estimate typica control flow behavior etc.). The
configuration tool trandates the workflow specifications into
corresponding continuoustime Markov chain models. For the
evaluation of the models, additional parameters may have to be
caibrated; for example, the firg two moments of server-type-
specific service times for various elementary service requests
(eg., sarting an activity) have to be fed into the models. This
calibration is again based on appropriate online monitoring. So
both the mapping and calibration components exploit online
gatistics about the running system. Consequently, when thetool is
to be used for configuring a completely new workflow
environment, many parameters have to be intellectually esimated
by a human expert. Later, after the system has been operational
for a while, these parameters can be automatically adjusted, and
the tool can then make appropriate recommendations for
reconfiguring the system.

Goliat uses the results of the model evaluations to generate
recommendations to system administrators or gpplication
architects. Such recommendations may be asked for regarding
specific aspects only (eg., focusing on performance and
disregarding availability), and they can take into account specific
congraints such as limiting or fixing the degree of replicaion of
particular server types (e.g., for cogt reasons). The more far-
reaching use of the Goliat tool is to ask it for the minimum-cost
configuration that meets specified performability (i.e., throughput
and response time) and availability (i.e, downtime) goads.
Computing the best configuration requires searching the space of
possible configurations and evaluating the tool’s internal models
for each candidate configuration. In our current implementation
we use a simple greedy heuristics for this purpose, thus possibly
arriving at a suboptimal, but sufficiently good, result. The
algorithm iterates over candidate configurations by increasing the
number of replicas of the most critical server type until both the
performability and the availability goals are satisfied [8].
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Figure2: User interfaces of the configuration tool

Figure 2 gives an impression of the user interface of Goliat for the
interactive case that either no run-time datistics are available yet
or the system administrator wants to carry out certain senstivity
gudies in an explorative manner. The main control panel shown in
Figure 2(a) alows the user to explore a workflow type (i.e, a
gatechart file from which the specificaion is loaded) and a
sysem configuration as the basic input for the calculations. The
parameters for the quantitative behavior of the workflow can be
edited in the workflow editor shown in Figure 2(b). States are
represented by buttons and transitions as arrows with a small
circle dencting the target state of the transiton. The user can
switch between the top level workflow and its subworkflows by
clicking on the corresponding state button. Nested states are
marked with an arrow. The small textfields at the transitions serve
to specify trandtion probabilities. Clicking on a state that does
not represent a subworkflow opens a dialog in which the date
parameters can be edited. These parameters are 1) the state-
ecific load vector (i.e., the number of service requedts that this
date generates on the different server types), and 2) the date's
mean residence time, which is the time that is spent in this state
(i.e, the turnaround time of the corresponding activity) before
entering the next state. In addition to these state-specific load
parameters, the user must provide the arrival rate of workflowsfor
the given workflow type (i.e., the number of workflows initiated
per time unit).



The system configuration can dso be loaded from afile or edited.
The parameters that can be set for each server type are: 1) the
name of the server type, 2) the number of replications of the
server type, 3) the server type's mean time to failure (MTTF), 4)
the server type's mean time to repair (MTTR), 5) the mean service
time for a single request sent to the server, and 6) the second
moment of the service time digtribution. The user can also add or
remove new server types.
On the left hand side of the control panel, the user can specify
acceptable thresholds for the system availability and the mean
waiting time of the service requests in the WFMS. In the analyis
mode, where one configuration is assessed, Goliat produces the
following output:
¢ the total load in average that is induced on the different
server types in terms of the number of requests for the
execution of asingle workflow ingance,
¢ the maximum sugtainable throughput in terms of service
requeds per time that each server can process,
¢ the expected mean waiting time at each server, which is the
main indicator for deciding whether the system’s
performance is user-acceptable or not,
¢ the mean turnaround time of the specified workflow type
based on the given residence times and transition
probabilities of theworkflow type,
¢ the expected availability of the system (in percent) and its
expected downtime in hours, minutes, and seconds per year,
¢ the performability (i.e., throughput and mean waiting time
metrics) of the system with temporary degradation and
unavailability of serverstaken into account.

3 STOCHASTIC MODELING OF
WORKFLOW BEHAVIOR

3.1 Examplescenario

As an example we consider a smplified e-commerce scenario,
which we suggested as a benchmark in [7]. This electronic
purchase workflow is similar to the TPC-C benchmark for
transaction systems [23], with the key difference that we combine
multiple transaction types into aworkflow and further enhance the
functionality. Figure 3 shows the workflow specification in the
form of a datechart [11]. A daechat is a finite state machine
with a distinguished initial state and transitions driven by event-
condition-action rules (ECA rules).

Important additional features of state charts are nested states and
orthogonal components. Negting of states means that a state can
itself contains an entire satechart. The semantics is that upon
entering the higher-level state, the initia state of the embedded
lower-level statechart is automatically entered, and upon leaving
the higher-level state all embedded lower-level state charts are
left. The support for state nesting is especialy useful for
incorporaing subworkflows, for stepwise refinement during the
design of business processes, and as an abstraction for service
composition. Orthogonal components dencte the parallel
execution of two or more statecharts that are embedded in the
same higher-level state. Such components enter their initial sates
simultaneously, and the transitions in the two components proceed
in parallel, subject to the preconditionsfor atransition to fire.
Figure 3(a) shows the top-level statechart for the electronic
purchase workflow. Each state corresponds to an activity or a (set
of paralel) subworkflow(s), except for initial and final sates. We
assume that for every activity act the condition act DONE is set
to true when act is finished. For parallel subworkflows, the final

dates of the corresponding orthogonal components serve to
synchronize thetermination (i.e., ajoin in the control flow).
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State charts of the dectronic purchase (EP)
workflow example

The workflow behaves as follows. First, the NewOrder activity is
executed. Upon its completion the control flow is split. If the
cugomer uses a credit cad for payment, the condition
PayByCreditCard is set and the CreditCardCheck activity checks
the validity of the credit card. If there are problems with the credit
card, the workflow is terminated. In the standard case the
shipment, represented by the state Shipment S, is initiated
sawning two parallel subworkflows which are specified in the
datecharts Notify SC (Figure 3(b)) and Delivery SC (Figure
3(c)). The first subworkflow, Notify, has only one activity tha
sends an acknowledgment mail. The second subworkflow,
Delivery, (sequentially) invokes for each ordered item an activity
that identifies a store or warehouse from which the item could be
shipped. Then, a second activity instructs the sore to deliver the
item and waits for an acknowledgement. The two eactivities
FindStore and CheckStore are repeated within a loop over all
ordered items. After the terminaion of both subworkflows, the
parallel branches in the control flow are synchronized, and then
plit again depending on the mode of payment. The workflow
terminates in thefinal gate EP_EXIT_S.

Figure3:

3.2 Basic workload model

For predicting the load that is induced by workflow execution on
the underlying servers, we have to anadyze the control flow
behavior of workflow ingances. As workflows include



conditional branches and loops, the best we can do in this regard
is to describe the execution sochastically. Our goa thus is to
estimate, for each type of activity, the mean number of activity
invocations per workflow instance. We first concentrate on
workflows without nesting, and will come back to the general case
later by showing how to incorporate subworkflows in the overall
model. To describe the control flow behavior we use stochagtic
processes, more specificaly first-order continuous-time Markov
chains (CTMC) (see, e.g., thetextbook [22]).

3.21 Theflow process

A CTMC is a process that proceeds through a set of states in
certain time periods. Its basic property is that the probability of
entering the next gate within a certain time depends only on the
currently entered gate, and not on the previous higory of entered
dtates. The mathematical implication is that the residencetimein a
date - that is, the time the process resides in the state before it
makes its next transition - follows a (state-specific) exponential
distribution. Consequently, the behavior of a CTMC is uniqudy
described by a marix P= (pi’j) of one-gtep probabilities

between states and a vector H =(H;) of the mean residence

times of the states.

Let {si |i =0..n—1} be the set of possible execution states of a
workflow type t. The control flow of an instance of t is modeled
by a CTMC where the dates correspond to the workflow
execution states sj. The date transition probability pj j

corresponds to the probability that a workflow instance of
workflow type t enters state s; when leaving state s;. The

transition probabilities have to be provided by the workflow
designer based on the semantics of the conditions between the
workflow activities and the anticipated frequencies of business
cases. If the entire workflow application is already operational and
our goal is to reconfigure the WFMS (or investigate if a
reconfiguration is worthwhile), then the transition probabilities
can be derived from audit trails of previous workflow executions.
The mean residence time H; of a state s; corresponds to the

mean time that instances of workflow typet stay in the execution
state s;, i.e., the turnaround time of the corresponding activity (or

the mean runtime of the corresponding nested subworkflow), and
needs to be estimated or observed analogously. In accordance
with the workflow specification, we assume that the CTMC has a
single initial state sq. In the initial state-probability vector of the

CTMC, the probability is set to 1 for the initial state sy and to O

for all other states. Moreover, we add a transition from the final
execution state into an artificial absorbing state sp. The

transition probability of this transition is set to 1, and the
residence time of the absorbing state is set to infinity.

Theformal definition of the flow process of a workflow type is as
follows:

Definition1:  (flow process, mean residence time,
departure rate, one-step probability)

The flow process F'(r) of the workflow type t is a

stochastic process with the finite set of states z' 0{sp},
t

where Z is the set of possible execution states of the

workflow (i.e., the states of its statechart) and sp is an

additional absorbing state with incoming transitions from the
workflow’s final states and no outgoing transition. The

transitions between the dates of Ft(r) achieve the

following conditions:

1. When the flow process enters a sae s 0Z' the time

until the flow process performs the next transtion is
randomly distributed with mean value H;. H; iscalled the

mean residence time of the process in state sj, and
Vi =%_|_ is called the departure rate of the process from
|

date ;.

2. The flow process enters the state sj 0Z' O{sa} when
leaving the state s; with a probability of p; j with p;; =0
and >
s,02'0{s,}
the time period that the flow process spent in state 5, and also
independent of the process's earlier history before reaching
S. pj,j is caled the one-step probability from date s; to

date Sj -

pi,j =1. This probability is independent of

3. The process starts in the initial state sy with a probability
of 1 and in every other state including s with a probability
of 0.
With the assumption that the residence times of the execution
dates s O Zt ae exponentialy distributed over all instances of
theworkflow typet, theflow processisaCTMC.
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s1 (NewOrder)

Ho=1min EP_CTMC

H,=10sec
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[ss(CreditCardPaymentfs) J

Figure4: CTMC representing the electronic purchase

workflow type

Figure 4 gives an example for the CTMC representing the
electronic purchase workflow type of Figure 3(@). The CTMC
consists of seven dates (plus the absorbing state sp ), each

representing one of the seven possible execution states of the
workflow’ stop-level statechart.

For better readability of Figure 4, the names of the CTMC's states
are extended by the names of the corresponding states of the
gdatechart. The values for the one-gtep probabilities and the mean
residence times are fictitious for mere illustration. The shown



values would, for example, mean that 10% of al orders are paid
by credit card, and 10% of these cases are rejected because the
credit card is not valid.

3.2.2 Mean turnaround time of workflow instances

We derive the mean turnaround time of a workflow instance of
type t by the transient analysis of the corresponding CTMC. The
mean turnaround time, R, isthe mean time that the CTMC needs

to enter the absorbing state for the first (and only) time, the so-
called first-passage time of the absorbing state sa [22]. Thefirst-

passage time of a CTMC date is generally computed by solving a
set of linear equations that can be easily solved using sandard
methods such as the Gauss-Seidel algorithm.

3.2.3 Induced load per workflow instance

The execution of a workflow ingance spawns a set of activities,
which in turn generate service requests to different server types.
For example, the invocation of an activity incurs a certain
initialization and termination load, and a processing load is
induced during the entire activity on the underlying workflow
engine, application server, and aso the communication server. Let
the matrix L =(Lya) denote the number of service requests

generated on server type x by executing a single ingance of the
activity type a. Each column in this matrix is an activity-specific
load vector.

Consider the Ddivery workflow type of our running example.
Recall that each activity correspondsto exactly one state, and vice
versa. Figure 5 shows the corresponding CTMC with the state-
specific load vectors for the service requests L of theinitial state

sg and L?elivery of sate s,. Here the X" vector component

denotes the server-type x load Lyg and Lyo, respectively,

assuming three different server types.
The correponding CTMC has five dates in total, but the
absorbing state s does not invoke an activity and thus does not

incur any load anymore. With three server types, the state-specific
load vectors have three components each, and the entire load
matrix L is a 3x4 matrix that could, for example, look as
follows:

2251
LDeivery —1 5 3 7 11,
4202

In practice, the entries of the load matrix have to be determined by
collecting appropriate runtime statistics.

Note that our server model could be easily extended to include
more server types, for example, to incorporate directory services
or worklist management facilities as separate servers if thiswere
desired. The three server categories made explicit in our model are
the mos relevant ones for performance and availability
assessment. Also note that we do not include clients as explicit
components in the model, for the simple reason that client
machines are usually not performance-critical. Rather the shared,
and heavily utilized resources of servers usuadly form the
bottlenecks in multi-user applications. Finally, we disregard all
effects of human user behavior, e.g., their speed of reaction,
intellectual decision making etc., for the assessment of workflow
turnaround times, as these aspects are beyond the control of the
computer system configuration.

3.2.4 Nested subworkflows

For workflow types with subworkflows, each subworkflow is
represented as a single state within the CTMC of the parent
workflow. In the case of parallelism (i.e., orthogona components
in gatechart terminology), the corresponding state represents all
parallel subworkflows together. Subworkflows are analyzed first
in terms of their load matrix and their turnaround time. To
incorporate these reaults into the corresponding parent workflow,
the expected turnaround time of the parent is calculated in the
following hierarchical manner. For a CTMC date s that represents
a subworkflow or a set of parallel subworkflows S, Hg

corresponds to the mean turnaround time for the entire set of
nested subworkflows. Thus, the mean residence time Hg isset to

the maximum of the mean turnaround times of the parallel
subworkflows Hg :max{Rt}. Note that the maximum of the
taos

mean turnaround times of the parallel subworkflowsis actually a
lower bound of the mean residence time of the corresponding
higher-level state. So the approximation is conservative with
regard to the induced load per time unit.
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Figure5: CTMC representing the Ddivery workflow type

3.3 Performance model
For analyzing the mean waiting time of service requests, we
model each server type x as a set of Y, M/G/1 queueing systems

[22, 21] where Yy is the number of server replicas of the server

type in the system configuration. So we assume that service
requests are, on average, uniformly distributed across all servers
of the same type. This can be achieved by assigning work to
servers in a round-robin or random (typically hashing-based)
manner. In practice these assignments would typicaly be
performed when a workflow ingance starts, so tha all
subworkflows, activities, or invoked applications of the same type
within that workflow ingance are assigned to the same server
instance for locality. While this realistic load partitioning policy
may create temporary load bursts the long-term (steady-state)
load would be spread uniformly.

Each server is modeled only very coarsely by considering only its
mean service time per service request and the second moment of
this metric. Both of these server-type-specific values can be easily
estimated by collecting and evaluating online statigtics. We do not
model the details of a server's hardware configuraion such as
CPU speed, memory size, or number of disks. Rather we assume
that each server is a well-configured building block, and that we
scale up the system by adding such building blocks. In particular,
the CPU and disk I/O power of a server are assumed to be in
balance, so that neither of these resources becomes a bottleneck
while the other is way underutilized. Commercialy available



commodity servers for informaion systems in general are
configured this way, and workflow management would fall into
this category. Nevertheless, even if it turns out that one resource
type always tends to be the bottleneck, our coarse-grained model
is applicable under the assumption that the abstract notion of
service time refersto the bottleneck resource within a server.

34 Performability model regarding transient

component outages
The performability model allows usto predict the performance of
the WFMS with the effects of temporarily non-available servers
(i.e., the resulting performance degradation) taken into account.
Our performability model is a hierarchical model constituted by a
Markov reward model (MRM) [21]. A MRM conssts of a
continuous time Markov chain and areward function. The reward
function assignes state-specific rewards to the states of the
CTMC. In our caese, the CTMC models the availability of the
WFM S components (see [8]). At each point in time when afailure
occures or the repair of a failed component is finished, the CTMC
makes a step into another state. The states of the CTMC represent
the system states of the WFMS, i.e., a state of the CTMC is a k-
tuple with k being the number of different server types within the
WFMS, and each entry of the tuple represents the number X of

currently available servers of server type x when the CTMC isin
that state. Note tha the overall configuration is merely the “upper
bound” for the system states of interest. The transition rates
between the states of the CTMC are derived by the mean time to
failure (MTTF) and mean time to repair (MTTR) of the involved
server types. We assume tha the time periods of availability of a
component and the component downtimes are exponentialy
distributed. This assumption is common in the performance
evaluation community when Markov models are used for
availability and reliability analysis [21]. However, we will show
in Section 4.2 how to extend our model to capture also non-
exponential, generally distributed, component downtimes and
uptimes. As the reward for a given date of that availability
CTMC, we use the mean waiting time of service requests of the
WFMS in that system state. The seady-state analysis of the MRM
yields the expected value for the waiting time of service requests
for a given WFMS configuration with temporary performance
degradation incurred by failures.

4 EXTENDED PERFORMABILITY MOD.
The models presented in Section 3 have essentially been
developed in [8]. In this section, we extend the workload model to
capture workload behavior in a more realistic manner. Section 4.1
discusses the redlistic modeling of loops in the control flow, and
Section 4.2 shows how to model non-exponentially distributed
component downtimes and activity turnaround times.

4.1 Modeling of control flow loops

For loops in the control flow of a workflow, the number of loop
iterations is usudly arandom variable with a discrete distribution.
Without explicit consderations, the CTMC model would typically
use a geometric digtribution for the number of iterations, which is
not exactly realistic. Rather we introduce a better approaches that
captures uniformly distributed loop repetitions.

Observations on operational workflow applications show that
most loops in workflows have the following properties:
¢ There is exactly one execution state that the loop starts with
(i.e., we rule out jumps into the middle of the loop’ s body).

¢ There is exactly one execution state from which the loop
exits. This state may be the source of several transitions that
leave the loop, and there is exactly one transition that goes
back to a state inside the loop’ s body.
e There is a positive lower bound m<0 for the number of
loop iterations (e.g., every order consists of at least one item).
e Thereisafinite upper bound n< o for the number of loop
iterations (e.g., one cannot order more items than the shop
hasin itscaaog).
¢ The number of loop iterations can be described by a discrete
distribution with values between mandn.
A commonly found distribution is the uniform distribution
UD(m,n) with valuesfrom mton (i.e., every value between m and
n has the same probability). To capture this distribution by
expanding the statechat in the following manner. Let
{si s|+J} be the set of execution states that the loop condsts

of. Without loss of generality, let s +] be the distinct state from
which the loop can be left, and let s be the successor of 4 j
inside the loop (i.e, thereis atransition from s+ j to s;). Sowe
assume that the loop's body starts at s; and ends at Si+js and
Si+j isthe exit state of the loop.

1. State expansion:

We substitute each state sy D{si yeeer S 4 j} of the CTMC by a
set of n new dtates Syq,..., Sy n- S0, we "clone” the states of

the CTMC that are involved in the loop iterations so that the
maximum number of loop iterations corresponds to visiting
each clone of each gate exactly once.

2. Entering the loop:
For all states sy D{si,...,si”-} and sy D{si,...,si+j} we add
a trangtion from sy to sy with the one-step probability
Py,y of thetransition form sy to sy intheorigina CTMC.

3. Exiting the loop or next iteration:

For each potential number of loop iteration oD{m,...,n} we
do the following:

*« We add a transition from the exit state of the o-th iteration
Si+j,0 iNtothestates sy D{si s|+J} outside the loop with

the one-step probability pfi+j o} x = Pi+j,x With

n-o+1
Pi+j,x being the one-step probability from state sj4+j to
date sy intheoriginal CTMC.

* If o<n we add a transition from state sj+j o into state
S,o+1 (i€, a new iteretion starts) with the onestep
probability

Pfi+j,0h{i,o+1} Z[l- n_:(L)_'_l][ij,i +ﬂ{ Z piij,zJ

ot ]

with 2. Pi+j,z beng the sum of the one-sep

o+ ]



probabilities of the transitions from Sj 4 j into states outside
the loop.

Note, that

isthe probability that the loop is left
n-o+1

after exactly o stepsif oD{m,..., n} .
For each 0<m weadd atransition from state s+ o to
state s o+1 (i-€, anew iteration starts) with a

one-step probability of 1.
4. Trangitions inside the loop:
For each OD{L...,n}, each xD{i,...,i +j —1}, and each
y Ofi,...i+ j} we add a transition from state s, , to state
Sy,0 With the one-step probability pyy of the transition
from s, to sy intheoriginal CTMC.

Figure 6 shows the resulting CTMC expansions of the example
workflow type Delivery assuming that the number of loop
iterations is uniformly distributed with values from 3 to 5. The
first visit to execution state s; does not belong to the loop in our
interpretation; i.e., §+j =9 isthe exit state and § = s is the
first state of the loop in this example. So we have to model the
firgt visit to state s, in a separate way by adding the state s g to
the CTMC.
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Figure6:

4.2 Non-exponentially distributed compo-
nent downtimes and activity turnaround
times

In our availability modd, i.e, the CTMC model sketched in

Section 3.4, we assumed that the downtimes of the serversand the

time from a server restart until the next crash are exponentialy

distributed with mean valuesMTTR and MTTF of the server type,
respectively. Especialy for server downtimes, this assumption is
quite unrealistic. The duraion of service maintenances or reboots

after soft crashes, for example, are nearly constant. There is a

mechanism to expand the CTMC such that non-exponentially

distributed state residence times can be approximated. The
mechanism is known in the literature as the Phase Method [22]. It
approximates a positive random variable (i.e., the state residence
time) by a mixture of Erlangian distributions with the same scale
parameters, i.e., sums of independent exponentials with the same

means. As a special case we are able to automatically substitute a
gate of the CTMC by a sequence of h states whose combined
residence time is Erlang-h-distributed and thus approaches a
constant with increasing h.

Figure 7 shows an example of such a subgtitution. The transition
rates A and W describe the transition rates of the outgoing
transitions of the state to be subgtituted. Note that the mean date
residence time of aCTMC date isthe reciproca of the sum of the
transition rates of its outgoing transitions. In the CTMC of the
availability model, for asystem configuration Y =(¥,...,Y¢) anda
date that represents Xy, ..., Xy currently operational servers of
server types 1 through k a CTMC stae has actualy up to 2k
outgoing transitions to "adjacent” system states. For the purpose
of emulating non-exponential state residence time by the Phase
Method only the aggregate transition rate needs to be considered.

Thus, in the state subdtitution A is ZX%MTF_ and p is
- i
1

Yi = (X -1
;(I (I %_l_l_

The Phase Method can aso be used to expand the CTMC of the
flow process described in section 3.2.1 when the residence times
of the execution gtates of a workflow type are not exponentially
distributed (eg., when the turnaround time of an activity is
uniformly distributed or nearly constant).

e )

h(A+1)

h(A+1)
> h new states

h(A+1)

h () A

N/

J
Figure7: Subgtitution of aCTMC statefor non-exponential
downtimes

5 EVALUATION

In this section, we present a systematic evaluation of the Goliat
configuration tool. Section 5.1 describes the experimental testbed
tha we have developed based on the Mentor-lite WFMS
prototype. Section 5.2 discusses the various parameters that we
investigated in our experiments. The experimenta results are
presented in Section 6.

5.1 Experimental testbed

The experimental testbed is a combination of simulation and areal
WFMS. The core of the experimental testbed is the workflow
engine of our WFMS Mentor-lite [24]. The workflow engine is
responsible for the interpretation and execution of the workflow
ecification. Depending on the workflow specification, the



workflow engine starts activities and sends synchronization

messages to other engines in the case of distributed workflow

execution. So the entire workflow execution “logic” is processed
by the full-fledged code of a real WFMS, i.e., the Mentor-lite
prototype.

In addition to the Mentor-lite workflow engine in the core, the

experimental testbed consists of the following components:

¢ A synthetic load generator starts new workflow instances
following a given digtribution for the arrivals of instances of
different workflow types. We use Poisson arrivals as the
most common traffic pattern. The arrival rate is a variable
parameter of the experiments.

¢ A monitoring module observes the waiting times and the
servicetimes of service requests at the different servers of the
WFMS and logs start and stop points of the activities.

¢ An activity module simulates the activities. The activity
module receives incoming data from the workflow engine,
sleeps for some time that corresponds to the human
interaction time, and delivers result data back to the engine.
If the activity is an automatic one the activity module
additionaly initiates a service request on an application
server.

e A crash module smulates the downtime of servers. The
mean time to failure (MTTF) and the mean time to repair
(MTTR) of each server type are specified as parameters.

A distributed configuration of Mentor-lite consists of different

workflow servers (i.e, instances of the workflow engine),

application servers, and one communication server (i.e.,, ORB).

Each server of the first two categories can be dedicated to a

specified set of workflow activities or externa applications, on a

per type basis. Each of these dedicated servers and also the

communication server can be replicated across multiple computers
for enhanced performance and availability. The computers
themselves are simulated using the CSIM library [4, 18] that
provides primitives for “virtual resources’ and performs all the
necessary bookkeeping (for computing resource utilization, queue
lengths, waiting times, etc.). The usage periods of the virtual
resources are derived in different ways depending on the server
type: for the workflow engine they are dynamically obtained, by
online instrumentation, from the actual execution path lengths of
the M entor-lite code while workflow instances are processed; for
application servers the simulated resource usage time is derived
from the simulation parameters, and for communication servers
the simulated usage periods have been calibrated by the results of
offline measurements of the Orbix ORB used by the full-fledged

Mentor-lite system.

So the entire testbed can be seen primarily as a simulation, with

the Mentor-lite code embedded and really executed. This way the

simulaion is automatically validated through the online
measurements of Mentor-lite path lengths. With this hybrid
approach we aimed at easily reproducible experiments with high
statistical confidence and flexible control over hardware resources

(hence the virtua resources provided by CSIM), while at the same

time capturing the real execution paths and timing behavior of our

own workflow engine.

5.2 Parameter settings

5.2.1 Benchmark workflow

In the experiments we used only one workflow type, the
benchmark workflow presented in Section 3.1. We set the
parameters of theworkflow as follows:

¢ Mean turnaround time of activities. The mean turnaround
times of the activities of the benchmark workflow are shown
in Table 1. The activities NewOrder and Payment are
interactive activities, i.e, activities that require human
interaction. These activities are executed on the user's client
machine and do not induce any load on the application

ervers.

Activity Type Mean Turnaround Time
NewOrder interactive 30 min
CreditCardCheck automatic 10 sc
Notify automatic 5 sc
FindStore automatic 3sc
CheckStore automatic 5 sc
CreditCardPayment | automatic 12 s*=c
Payment interactive 2h

Table1: mean turnaround time of activities

¢ Digtribution of loop iteraions: The number of iterations of
the control flow loop in the Delivery subworkflow follows a
discrete uniform distribution with lower bound 1 and upper
bound 3.

¢ Frequency of credit card payment: The mode of payment
influences the behavior of aworkflow instance at two control
flow splits that are jointly responsible for the lifetime of the
instance and the load that the workflow instance induces on
the application servers. In the case of credit card payment,
the workflow results in two short-running automatic
activities that dress the application (i.e,, CreditCardCheck
and CreditCardPayment), whereas payment by bill spawns an
interactive activity. In the experiments, we set the relative
frequency of credit card payment to 50%.

e Frequency of credit card failures After the activity
CreditCardCheck, the control flow is split depending on the
result of the activity. If the check failed the workflow
instance terminates immediately. So, the workload includes
also workflow instances with extremely short lifetime. In the
experiments we set the relative frequency of credit card
failures to 10%.

For experiments with distributed workflow execution, we
partitioned the benchmark workflow into two partitions. One
partition includes all activities of the subworkflow Délivery; the
rest of the activities forms the second partition. For each of the
partitions there is one dedicated type of workflow servers and one
dedicated type of application servers. In the aternative case of
centralized workflow execution (i.e, the entire workflow is
processed by a single workflow engine), the assignment of the
gpplication serversisthe same as in the digtributed case (i.e., there
are also two types of application servers). All workflow servers
and application servers communicate with each other via one type
of communication servers.

5.2.2 Servicetimesof server types

The service times of arequest to the workflow servers are given
by the CPU times that the Mentor-lite workflow engine needs for
such arequest in its real execution, which is measured online.

The service times of the communication servers leans have been
determined offline from (relatively coarse) measurements of
Orbix, a commercial CORBA implementation [12] that provides
the communication middleware for Mentor-lite. Orbix also
includes support for distributed transactions by its Object
Transaction Service (OTS) component, which is used by Mentor-



lite for reliable message exchanges between workflow engines.
Table 2 gives the most important types of Orbix requests for the
execution of (distributed) workflows with Mentor-lite and the
setting of their mean service times in the experiments.

Request Mean Service Time
Bind the communication server 100 msec
Bind an activity on applicaion server 500 msec
Start an activity vialDL 75 msec
Dataexchange vialDL 75 msec
Delete aregistry entry at the ORB 50 msec
Begin of transaction in OTS 100 msec
Rollback atransaction in OTS 100 msec
Commit atransection in OTS 100 msec

Table2: mean service time of communication servers

The activity module of the experimental testbed induces exactly
one service request for each automatic activity on an application
server. The service time of such an service request is the mean
turnaround time of the activity asgivenin Table 1.

5.2.3 Downtimes of server types

There are many possible causes of server failures: soft crashes
caused by Heisenbugs which require rebooting and log-based
recovery, hard crashes such as disk failures which require
restoring data from a backup, and possibly even external denial-
of-service attacks that result in heavy performance losses so that
the system becomes unusable for its actual users. Heavily loaded
servers are more likely to fail than lightly loaded ones. Finally,
there are periodic server shutdowns for maintenance (eg.,
software upgrades).

Server type MTTF MTTR

WFS1 1d 20 min
WFS?2 2d 30 min
CS 6h 15 min
AS1 1d 30 min
AS2 12h 20 min

Table3: MTTFand MTTR of crashes of server types

Especially for frequent server downtimes, the accuracy of Goliat’s
steady-state performability model is crucial but also the most
difficult metric to predict. We set the MTTF and MTTR of soft
and hard crashes of servers to reflect an extremely stress tested
system. Table 3 shows the values that we calibrated the crash
module with. In addition, the crash module initializes a server
once a week (i.e., with a continuous uniform distribution with
values between 6 and 8 days) to model service shutdowns for a
duration of 60 minutes. Each of these planned outages affects one
server of a server type at a time; the outages of different servers
are oread evenly across the entire one-week period.

6 EXPERIMENTAL RESULTS

We studied two major degrees of freedom in our experiments:
1) Centraized vs. distributed workflow execution:

The proper configuration of a WFMS critically depends on
whether the workflow execution is distributed over several
workflow engines. In particular, the communication servers
have to sustain a higher load because of the synchronization
messages that are exchanged between the workflow engines.
Moreover, different workflow partitions are typicaly

executed by different workflow servers. So we haveto add a
second type of workflow servers in experiments with
distributed workflow execution.

2) Peformance of a stable system vs. performability regarding
transient outages:

We evauae the configuration tool's predictions for the
system performance assuming that no servers will fail as well
as the predictions for the system performability when
transient server outages are taken into account. In the
experiments we study both situations by switching the crash
module of thetestbed off or on.
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Figure8: Service requests per workflow instance

In the following, we present peformance as wel as
performability results for centralized workflow execution and
performance results for digributed workflow execution. In all
experiments we measured the mean waiting times of service
requests at the various server types as a function of the arrival rate
workflow ingtances for a given sysem configuration. We varied
the system configuration from experiment to experiment to are
able to show the most meaningful results.

First, we discuss the accuracy of the approximation of the induced
load per workflow instance using the CTMC model of Sections 3
and 4. Figure 8 shows Goliat's predictions for the expected
number of service requeds of a single workflow instance to the
various server types versus the mean values of the requests that
were actualy observed in the experiments. For both, centralized
(Figure 8(a)) and distributed (Figure 8(b)) workflow execution,
the analytic predictions match the measurements very well. The
increased number of service requedts to the workflow servers and
the communication server under distributed workflow execution is
caused by Mentor-lite's polling of the transactiond message



queues via OTS when waiting for synchronization messages.
Indeed, there are probably many issues for optimizing the Mentor-
lite code, but thisisnot the subject of this paper.

Figure 9 shows the results of our first, performance-oriented,
experiment, where we switched the crash module off and executed
the workflow instances in a centralized manner. The system
configuration was set to 1 workflow server, 1 communication
server, and 1 server of each gpplication server type. The charts
present the mean waiting times given observed in the experiments
versus the predicted values from Goliat's analytic models, as a
function of the arrival rate of new instances of the example
workflow type. Goliat underestimates the mean waiting time of
the service requestsfor all server types. But the underestimation is
not criticd and the approximation of the overal system
performance, i.e., the mean waiting time averaged over the service
requests of all server types (Figure 9(€)) isin an acceptable range
reasonably close to the experimental results.
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The performance results of the experiments with distributed
workflow execution (and gill deactivated crash module) are given
in Figure 10. Because of the much higher load at the
communication server when executing the workflows in a
distributed manner (see Figure 8), we increased the number of
replicas of the communication server type to 5. The number of
servers of the additional workflow server type that is responsible
for the execution of the subworkflow Delivery is set to 1. The
measured as well as the predicted values of the mean waiting
times of the application server types are the same as in the
experiments with central workflow execution because the load at
the application servers is independent of the execution srategy.
Goliat's approximation of the mean waiting times is as accurate as
in the previous experiment for the workflow servers and becomes
even better for the communication servers. Goliat slightly
overesimates the waiting times at the communication servers
when the arrival rate is low because the round-robin assignment of
the service requests among the 5 server replicas in the simulations
balances the load better than the anaytical model assumes. In
contrast to the actual round-robin drategy, the model would
partition the overall arrival stream into five streams so that each of

the server replicas receives one fifth of the load, which could ill
lead to significant fluctuations of the load at each server. The
round-robin assignment, however, smoothes the arrivals at each
server to amuch better extent. This effect can dso be seen in the
following experiments.
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Figure10: Server performance of the stable system under

distributed workflow execution

Figure 11 shows the results of our third setting where we
increased the number of server replicas to 3 for each server typeto
meassure the performability under centralized workflow execution
with transient server outages. With the exception of the workflow
server type, the mean waiting times of the service regueds are
overesimated as discussed before. The mean waiting times of the
workflow servers are dightly underestimated because, unlike for
the other server types, the service reguests are not scheduled in a
round-robin manner; rather all service requests of a workflow
instance are served by the same workflow server replica. The
underestimation increases with the server's load because the
model neglect transient queueing effects when a server fails and
its active workflow ingtances have to be reassigned to available
Eervers.

Finally, we ran a simulation with a configuration that was
suggested by Goliat's recommendation component. We specified
the goals as follows. the system availability should be at least
99.99 %, and the overall mean waiting time of service requests
should be no higher than 10 milliseconds under a load of 2
workflow ingances per minute. Goliat's recommendation for a
minimum cost configuration that can satisfy these goals was: 3
workflow servers, 5 communication servers, and 3 application
servers of both types. It turns out, by running additiona
experiments, that 4 replicas would be sufficient, but this is indeed
the true minimum, and also none of the other degrees of
replication can be reduced. So Goliat misses the true minimum-

cog configuration by only one server, %4 of the total cost.

To summarize, Goliat's internal analytic models exhibit acceptable
accurecy for both performance and performablity predictions.
Goliat underestimates the mean waiting times of a server type
when there is only one server of this type. On the other hand, it
tends to overestimate the overal waiting times with increasing



number of server replicas. Goliat's performability predictions
result in a recommended sysem configuration that truly
minimizes the number of server replicas while satisfying all

specified goals.
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7 CONCLUSION

In [8] we have developed models to derive quantitative
information  about the performance, availability, and
performability of configurations for a distributed WFMS. These
models form the core of an assessment and configuration tool. As
an initial step towards evaluating the viability of our approach, we
have defined a WFMS benchmark [7] that we used for
measurements of our own prototype, Mentor-lite, under different
configurations. The current paper isthe final step in this research
program. We have presented the fully implemented Goliat tool,
and have systematically evaluated its accuracy and practical
viability using a comprehensive experimental testbed that
combines simulated with online measurements of the real Mentor-
lite code. We have also presented novel extensions to Goliat's
models that are important to capture the behavior of a workflow
system in a redistic manner. The presented experiments have
shown that Goliat's predictions of both performance and
performability are indeed reasonably accurate.

Apart from certain fine-tuning issues, the work on Goliat is
completed. We plan to make both the Goliat software and the
Mentor-lite system available as shareware source code. Our own
plans for future work include adapting Goliat to a commercial
workflow sysem and conducting more tests towards indugtrial-
strength practicality.
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