
ABSTRACT 
Workflow management systems (WFMS) that are geared for the 
orchestration of business processes across multiple organizations 
are complex distributed systems: they consist of multiple 
workflow engines, application servers, and communication 
middleware servers such as ORBs, where each of these server 
types can be replicated on multiple computers for scalability and 
availability. 
Finding an appropriate system configuration with guaranteed 
application-specific quality of service in terms of throughput, 
response time, and tolerable downtime is a major challenge for 
human system administrators. This paper presents a tool that 
largely automates the task of configuring a distributed WFMS. 
Based on a suite of mathematical models, the tool derives the 
necessary degrees of replication for the various server types in 
order to meet specified goals for performance and availability as 
well as "performability" when service is degraded due to outages 
of individual servers. The paper describes the configuration tool, 
with emphasis on how to capture the load behavior of workflows 
in a realistic manner. We also present extensive experiments that 
evaluate the accuracy of the tool's underlying models and 
demonstrate the practical feasibility of automating the task of 
configuring a distributed WFMS. The experiments use a detailed 
simulation which in turn has been validated through 
measurements with the Mentor-lite prototype system. 

1 I NTRODUCTI ON 
1.1 Motivation 
Next-generation e-services such as advanced forms of electronic 
sales, auctions, and brokerage will achieve their mission only if 
they provide guaranteed "quality of service" (QoS). This goal 
encompasses both high availability and user-acceptable response 
time, and ideally even the combined notion of "performability" 
which considers the impact of transient outages on throughput and 
response time [11]. 
Today's Web-based e-services are still far from providing QoS 
guarantees: they frequently exhibit inconvenient outages, and 
often have absolutely unacceptable responsiveness during popular 
business hours (i.e., when load surges occur). The bottlenecks 
include both networking and server-side issues [17], but most 
often it is congested application and data servers at the e-business 
site that cause performance problems. The reason is that these 
servers are poorly configured, tuned, and administered. 

Obviously, there are exceptions to this largely poor situation, but 
these are exactly those sites that heavily invest into their human 
support staff for proper configuration and tuning. However, the 
scarceness and high cost of these human experts, on one hand, and 
the high dynamics of e-business processes and customer demands, 
on the other hand, mandate an automated approach to the 
problem. 
Advanced e-services, especially those in the B2B (business-to-
business) category such as supply chains, have rich application 
logic and need to support long-lived business processes [5]. The 
appropriate technology for this purpose, within a standard three-
tier architecture, is workflow management, either in explicit form 
by setting up workflow engine as part of the site's middle-tier 
application server (see, e.g., the WISE project [15]) or implicitly 
by orchestrating application server scripts (e.g., ASP or PHP 
scripts) into business processes. Workflow engines have become 
relatively mature products (e.g., MQ Workflow, Staffware, 
Biztalk, E-Speak, etc.) that can interact with a Web server as the 
application frontend as well as backend database servers. 
Furthermore and most importantly, by replicating a workflow 
server across multiple computers it is possible to scale up 
throughput, improve responsiveness, and enhance availability in 
the presence of individual server failures. Unlike the replication of 
transactional data, the replication of workflow servers does not 
pose any severe scalability problems. In contrast to simple, 
stateless Web applications, the workflow engines need to maintain 
state information for ongoing workflow instances, but this can be 
easily delegated to (a cluster of) database servers. 
So the replication of workflow servers in a distributed system is 
the mechanism toward better quality of service, and the same 
argument holds also for servers that handle invoked applications 
that are spawned as activities of a workflow. The critical issue, 
however, is how to devise a strategy for the degree of replication 
and how to configure the entire system such that it can guarantee 
the application's QoS specification. The problem is made more 
difficult by the fact that business processes may span different 
enterprises or autonomous units within an organization, so the 
complete system consists of different types of workflow engines 
dedicated to handle specific subworkflows. The key question to be 
answered is how many replicas we need for which kind of servers. 
This is the issue that we address in this paper. 

1.2 Contr ibution 
In this paper we present a fully implemented tool for the 
automatic configuration of a distributed workflow system in order 
to meet specified goals for throughput, response time, availability, 
and performability. The workflow system that we have primarily 
considered, is our own prototype system Mentor-lite [19, 24], 
which is accessible from Web application servers via XML 
messages. Our tool can be easily adapted to other workflow 
systems; Mentor-lite serves as an example platform over which 
we have full control for instrumentation and experimental studies. 
The configuration tool, coined Goliat (for Goal-driven auto-
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configuration tool), automatically derives suitable degrees of 
replication for workflow servers and application servers of 
different types as well as request brokering and communication 
servers (e.g., Corba ORBs) so that the entire system can guarantee 
the quality of service that is requested for the e-business 
application under consideration. 
The Goliat auto-configuration tool is driven by the specifications 
of the business processes, which are statecharts in our specific 
Mentor-lite environment, and statistics about the execution paths 
of these workflows. Its core asset is a suite of analytic models, 
using stochastic methods like continuous-time Markov chains 
(CTMC) and Markov reward models, to predict the performance, 
availability, and performability of a given system configuration 
under a given load. The performance model estimates the 
maximum sustainable throughput in terms of workflow instances 
per time unit and the mean waiting time for service requests such 
as interactions upon starting an activity. The availability model 
estimates the mean downtime of the entire system for given 
failure and restart rates of the various components. Finally, the 
performability model takes into account the performance 
degradation during transient failures, and estimates the effective 
mean waiting time for service requests with explicit consideration 
of periods during which only a subset of a server type's replicas 
are running. These models, which form the mathematical 
underpinnings of the Goliat tool, have mostly been derived in our 
earlier work published in [8]. 
The current paper extends our earlier work in two major ways: 
1) We have refined and improved the load and performance 

model of Goliat so that it can capture the behavior of 
workflow executions in a more realistic manner. In 
particular, we have extended the model so that it can cope 
with arbitrary subworkflows and loops. Also, we can now 
support constructs for which exponential distributions, the 
standard assumption in Markov models, are inadequate, 
namely, component downtimes and activity turnaround 
times. We eliminate this restriction by the technique of 
approximating generalized Erlang distributions with 
appropriately designed Markov sub-models [22]. 

2) The Goliat tool has now been fully implemented, validated, 
and evaluated. To this end, we have carried out extensive 
experiments with the Mentor-lite environment. For better 
reproducibility and efficiency of systematic studies we have 
developed a simulator for Mentor-lite, which actually 
executes the Mentor-lite code but has parameterized 
functions for the usage of (virtual, i.e., simulated) resources. 
The simulator has been validated by measurements of 
Mentor-lite, and its parameters have been calibrated by these 
measurements. The evaluation of the Goliat tool against the 
simulations and measurements shows that its analytic 
predictions are sufficiently accurate to be practically viable. 

1.3 Related work 
Although the literature includes much work on scalable WFMS 
architectures (e.g., [1, 6, 16]), there are only few research projects 
that have looked into the quantitative assessment of WFMS 
configurations with regard to performance and availability. The 
work reported in [2, 3] presents several types of distributed 
WFMS architectures and discusses the influence of different load 
distribution methods on the network and workflow-server load, 
mostly using simulations. [20] presents heuristics for the 
allocation of workflow-type and workflow-instance data onto 
servers. Mechanisms for enhanced WFMS availability by 

replicating state data on a standby backup server have been 
studied in [9, 14]. None of this prior work has addressed the issue 
of how to configure a WFMS for given performance and 
availability goals. 
The use of CTMC models in the context of workflow 
management has been pursued by [13]. This work uses the steady-
state analysis of such models to analyze the efficiency of different 
outsourcing strategies in a virtual-enterprise setting. Our approach 
is more far-reaching in that we use methods for the transient 
analysis of Markov chains to capture the dynamic behavior of 
workflow instances and the resulting performance. In addition, we 
address also the availability and performability dimensions. 

1.4 Outline 
The rest of the paper is organized as follows. Section 2 presents 
the architecture of the Goliat configuration tool. Section 3 reviews 
the suite of stochastic models that we developed in [8]. Section 4 
presents new extensions of the stochastic performance model to 
capture the behavior of workflow executions in a more realistic 
manner. Section 5 describes the experimental testbed for the 
validation and evaluation of the developed auto-configuration 
method. Section 6 presents the results of the performance and 
performability experiments. 

2 ARCHI TECTURE OF THE GOLI AT 
CONFIGURATI ON TOOL 

A distributed configuration of Mentor-lite consists of different 
workflow servers (i.e., instances of the workflow engine) and 
application servers, and one communication server (i.e., ORB). 
Each server of the first two categories can be dedicated to a 
specified set of workflow activities or invoked applications on a 
per type basis. Each of these dedicated servers and also the 
communication server can be replicated across multiple computers 
for enhanced performance and availability. Given this flexibility 
(which is supported in similar ways also by some commercial 
WFMSs), it is a difficult problem to choose an appropriate 
configuration for the entire WFMS that meets all requirements 
with regard to throughput, interaction response time, and 
availability. Moreover, it may be necessary to adapt an initial 
configuration over time due to changes of the workflow load, e.g., 
upon adding new workflow types.  
To solve this problem, we have developed the Goliat auto-
configuration tool based on a suite of analytic models, using 
stochastic methods like continuous-time Markov chains and 
Markov reward models, to predict the performance, availability, 
and performability for given configuration and workload. These 
models have been developed in [8]; we will outline the general 
approach in Section 3 and will present new extensions in Section 
4. The Goliat tool is driven by the workflow specifications that it 
obtains from the repository and by statistics on the workload from 
the monitoring tool of Mentor-lite. Goliat feeds this information 
into its analytic models for a what-if analysis of a hypothetical 
configuration. By systematic variation of the parameters for 
different candidate configurations the tool is also able to derive 
the (analytically) best configuration, i.e., the minimum degree of 
replication of each of the involved server types to meet given 
performance, availability, and performability goals. The Goliat 
tool is largely independent of a specific WFMS, by using specific, 
easily replacable, stubs for its interactions with the WFMS. 
The components of the Goliat tool and its embedding into the 
overall system environment are illustrated in Figure 1. Goliat 
consists of four main components:  



• the mapping of workflow specifications onto the tool’ s 
internal models,  

• the calibration of the internal models by means of statistics 
from monitoring the system, 

• the evaluation of the models for given input parameters, and 
• the computation of recommendations to system 

administrators regarding specified goals. 
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Figure 1 : Integration of the auto-configuration tool 

For the mapping the tool interacts with a workflow repository 
where the specifications of the various workflow types are stored. 
In addition, statistics from online monitoring are used as a second 
source (e.g., to estimate typical control flow behavior etc.). The 
configuration tool translates the workflow specifications into 
corresponding continuous-time Markov chain models. For the 
evaluation of the models, additional parameters may have to be 
calibrated; for example, the first two moments of server-type-
specific service times for various elementary service requests 
(e.g., starting an activity) have to be fed into the models. This 
calibration is again based on appropriate online monitoring. So 
both the mapping and calibration components  exploit online 
statistics about the running system. Consequently, when the tool is 
to be used for configuring a completely new workflow 
environment, many parameters have to be intellectually estimated 
by a human expert. Later, after the system has been operational 
for a while, these parameters can be automatically adjusted, and 
the tool can then make appropriate recommendations for 
reconfiguring the system.  
Goliat uses the results of the model evaluations to generate 
recommendations to system administrators or application 
architects. Such recommendations may be asked for regarding 
specific aspects only (e.g., focusing on performance and 
disregarding availability), and they can take into account specific 
constraints such as limiting or fixing the degree of replication of 
particular server types (e.g., for cost reasons). The more far-
reaching use of the Goliat tool is to ask it for the minimum-cost 
configuration that meets specified performability (i.e., throughput 
and response time) and availability (i.e., downtime) goals. 
Computing the best configuration requires searching the space of 
possible configurations and evaluating the tool’ s internal models 
for each candidate configuration. In our current implementation 
we use a simple greedy heuristics for this purpose, thus possibly 
arriving at a suboptimal, but sufficiently good, result. The 
algorithm iterates over candidate configurations by increasing the 
number of replicas of the most critical server type until both the 
performability and the availability goals are satisfied [8]. 

  
(a) 

 
(b)  

Figure 2 : User interfaces of the configuration tool 

Figure 2 gives an impression of the user interface of Goliat for the 
interactive case that either no run-time statistics are available yet 
or the system administrator wants to carry out certain sensitivity 
studies in an explorative manner. The main control panel shown in 
Figure 2(a) allows the user to explore a workflow type (i.e., a 
statechart file from which the specification is loaded) and a 
system configuration as the basic input for the calculations. The 
parameters for the quantitative behavior of the workflow can be 
edited in the workflow editor shown in Figure 2(b). States are 
represented by buttons and transitions as arrows with a small 
circle denoting the target state of the transiton. The user can 
switch between the top level workflow and its subworkflows by 
clicking on the corresponding state button. Nested states are 
marked with an arrow. The small textfields at the transitions serve 
to specify transition probabilities.  Clicking on a state that does 
not represent a subworkflow opens a dialog in which the state 
parameters can be edited. These parameters are 1) the state-
specific load vector (i.e., the number of service requests that this 
state generates on the different server types), and 2) the state’ s 
mean residence time, which is the time that is spent in this state 
(i.e., the turnaround time of the corresponding activity) before 
entering the next state. In addition to these state-specific load 
parameters, the user must provide the arrival rate of workflows for 
the given workflow type (i.e., the number of workflows initiated 
per time unit).  



The system configuration can also be loaded from a file or edited. 
The parameters that can be set for each server type are: 1) the 
name of the server type, 2) the number of replications of the 
server type, 3) the server type's mean time to failure (MTTF), 4) 
the server type's mean time to repair (MTTR), 5) the mean service 
time for a single request sent to the server, and 6) the second 
moment of the service time distribution. The user can also add or 
remove new server types.  
On the left hand side of the control panel, the user can specify 
acceptable thresholds for the system availability and the mean 
waiting time of the service requests in the WFMS. In the analyis 
mode, where one configuration is assessed, Goliat produces the 
following output: 

• the total load in average that is induced on the different 
server types in terms of the number of requests for the 
execution of a single workflow instance, 

• the maximum sustainable throughput in terms of service 
requests per time that each server can process,  

• the expected mean waiting time at each server, which is the 
main indicator for deciding whether the system’ s 
performance is user-acceptable or not, 

• the mean turnaround time of the specified workflow type 
based on the given residence times and transition 
probabilities of the workflow type,  

• the expected availability of the system (in percent) and its 
expected downtime in hours, minutes, and seconds per year,  

• the performability (i.e., throughput and mean waiting time 
metrics) of the system with temporary degradation and 
unavailability of servers taken into account. 

3 STOCHASTI C M ODELI NG OF 
WORKFL OW BEHAVI OR 

3.1 Example scenario 
As an example we consider a simplified e-commerce scenario, 
which we suggested as a benchmark in [7]. This electronic 
purchase workflow is similar to the TPC-C benchmark for 
transaction systems [23], with the key difference that we combine 
multiple transaction types into a workflow and further enhance the 
functionality. Figure 3 shows the workflow specification in the 
form of a statechart [11].  A statechart is a finite state machine 
with a distinguished initial state and transitions driven by event-
condition-action rules (ECA rules). 
Important additional features of state charts are nested states and 
orthogonal components. Nesting of states means that a state can 
itself contains an entire statechart. The semantics is that upon 
entering the higher-level state, the initial state of the embedded 
lower-level statechart is automatically entered, and upon leaving 
the higher-level state all embedded lower-level state charts are 
left. The support for state nesting is especially useful for 
incorporating subworkflows, for stepwise refinement during the 
design of business processes, and as an abstraction for service 
composition. Orthogonal components denote the parallel 
execution of two or more statecharts that are embedded in the 
same higher-level state. Such components enter their initial states 
simultaneously, and the transitions in the two components proceed 
in parallel, subject to the preconditions for a transition to fire. 
Figure 3(a) shows the top-level statechart for the electronic 
purchase workflow. Each state corresponds to an activity or a (set 
of parallel) subworkflow(s), except for initial and final states. We 
assume that for every activity act the condition act_DONE is set 
to true when act is finished. For parallel subworkflows, the final 

states of the corresponding orthogonal components serve to 
synchronize the termination (i.e., a join in the control flow). 
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Figure 3 : State charts of the electronic purchase (EP) 

workflow example 

The workflow behaves as follows. First, the NewOrder activity is 
executed. Upon its completion the control flow is split. If the 
customer uses a credit card for payment, the condition 
PayByCreditCard is set and the CreditCardCheck activity checks 
the validity of the credit card. If there are problems with the credit 
card, the workflow is terminated. In the standard case the 
shipment, represented by the state Shipment_S, is initiated 
spawning two parallel subworkflows which are specified in the 
statecharts Notify_SC (Figure 3(b)) and Delivery_SC (Figure 
3(c)). The first subworkflow, Notify, has only one activity that 
sends an acknowledgment mail. The second subworkflow, 
Delivery, (sequentially) invokes for each ordered item an activity 
that identifies a store or warehouse from which the item could be 
shipped. Then, a second activity instructs the store to deliver the 
item and waits for an acknowledgement. The two activities 
FindStore and CheckStore are repeated within a loop over all 
ordered items. After the termination of both subworkflows, the 
parallel branches in the control flow are synchronized, and then 
split again depending on the mode of payment. The workflow 
terminates in the final state EP_EXIT_S. 

3.2 Basic workload model 
For predicting the load that is induced by workflow execution on 
the underlying servers, we have to analyze the control flow 
behavior of workflow instances. As workflows include 



conditional branches and loops, the best we can do in this regard 
is to describe the execution stochastically. Our goal thus is to 
estimate, for each type of activity, the mean number of activity 
invocations per workflow instance. We first concentrate on 
workflows without nesting, and will come back to the general case 
later by showing how to incorporate subworkflows in the overall 
model. To describe the control flow behavior we use stochastic 
processes, more specifically first-order continuous-time Markov 
chains (CTMC) (see, e.g., the textbook [22]).  

3.2.1 The flow process 
A CTMC is a process that proceeds through a set of states in 
certain time periods. Its basic property is that the probability of 
entering the next state within a certain time depends only on the 
currently entered state, and not on the previous history of entered 
states. The mathematical implication is that the residence time in a 
state - that is, the time the process resides in the state before it 
makes its next transition - follows a (state-specific) exponential 
distribution. Consequently, the behavior of a CTMC is uniquely 
described by a matrix ( )jipP ,=  of one-step probabilities 

between states and a vector ( )iHH =  of the mean residence 

times of the states. 
Let { }1..0| −= nisi  be the set of possible execution states of a 

workflow type t. The control flow of an instance of t is modeled 
by a CTMC where the states correspond to the workflow 
execution states is . The state transition probability jip ,  

corresponds to the probabil ity that a workflow instance of 
workflow type t enters state js  when leaving state is . The 

transition probabilities have to be provided by the workflow 
designer based on the semantics of the conditions between the 
workflow activities and the anticipated frequencies of business 
cases. If the entire workflow application is already operational and 
our goal is to reconfigure the WFMS (or investigate if a 
reconfiguration is worthwhile), then the transition probabilities 
can be derived from audit trails of previous workflow executions. 
The mean residence time iH  of a state is  corresponds to the 

mean time that instances of workflow type t stay in the execution 
state is , i.e., the turnaround time of the corresponding activity (or 

the mean runtime of the corresponding nested subworkflow), and 
needs to be estimated or observed analogously. In accordance 
with the workflow specif ication, we assume that the CTMC has a 
single initial state 0s . In the initial state-probabil ity vector of the 

CTMC, the probability is set to 1 for the initial state 0s  and to 0 

for all other states. Moreover, we add a transition from the final 
execution state into an artif icial absorbing state As . The 

transition probability of this transition is set to 1, and the 
residence time of the absorbing state  is set to infinity.  
The formal definition of the f low process of a workflow type is as 
follows: 

Definition 1 : (flow process, mean residence time, 
departure rate, one-step probability) 

The flow process ( )τtF  of the workflow type t is a 

stochastic process with the f inite set of states { }A
t sZ ∪ , 

where Z
t
 is the set of possible execution states of the 

workflow (i.e., the states of its statechart) and sA is an 

additional absorbing state with incoming transitions from the 
workflow’ s final states and no outgoing transition. The 

transitions between the states of ( )τtF   achieve the 
following conditions: 

1. When the flow process enters a state t
i Zs ∈  the time 

until the f low process performs the next transition is 
randomly distributed with mean value iH . iH  is called the 

mean residence time of the process in state is , and 

i
i H

1=ν  is called the departure rate of the process from 

state is .  

2. The flow process enters the state { }A
t

j sZs ∪∈  when 

leaving the state is  with a probability of jip ,  with 0, =iip  

and 
{ }

1, =
�

∪∈ A
t

j sZs
jip . This probability is independent of 

the time period that the flow process spent in state si and also 
independent of the process’s earlier history before reaching 
si. jip ,  is called the one-step probability from state is  to 

state js . 

3. The process starts in the initial state 0s  with a probability 

of 1 and in every other state including As  with a probability 

of 0. 

With the assumption that the residence times of the execution 

states t
i Zs ∈  are exponentially distributed over all instances of 

the workflow type t, the flow process is a CTMC. 
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Figure 4 : CTMC representing the electronic purchase 

workflow type 

Figure 4 gives an example for the CTMC representing the 
electronic purchase workflow type of Figure 3(a). The CTMC 
consists of seven states (plus the absorbing state As ), each 

representing one of the seven possible execution states of the 
workflow’s top-level statechart.  
For better readability of Figure 4, the names of the CTMC's states 
are extended by the names of the corresponding states of the 
statechart. The values for the one-step probabilities and the mean 
residence times are fictitious for mere illustration. The shown 



values would, for example, mean that 10% of all orders are paid 
by credit card, and 10% of these cases are rejected because the 
credit card is not valid.  

3.2.2 Mean turnaround time of workflow instances 
We derive the mean turnaround time of a workflow instance of 
type t by the transient analysis of the corresponding CTMC. The 
mean turnaround time, tR , is the mean time that the CTMC needs 

to enter the absorbing state for the first (and only) time, the so-
called first-passage time of the absorbing state As  [22]. The first-

passage time of a CTMC state is generally computed by solving a 
set of linear equations that can be easily solved using standard 
methods such as the Gauss-Seidel algorithm. 

3.2.3 Induced load per workflow instance 
The execution of a workflow instance spawns a set of activities, 
which in turn generate service requests to different server types. 
For example, the invocation of an activity incurs a certain 
initialization and termination load, and a processing load is 
induced during the entire activity on the underlying workflow 
engine, application server, and also the communication server. Let 
the matrix ( )xaLL =  denote the number of service requests 

generated on server type x by executing a single instance of the 
activity type a. Each column in this matrix is an activity-specific 
load vector.   
Consider the Delivery workflow type of our running example. 
Recall that each activity corresponds to exactly one state, and vice 
versa. Figure 5 shows the corresponding CTMC with the state-
specific load vectors for the service requests 0L  of the initial state 

0s  and DeliveryL2  of state 2s . Here the xth vector component 

denotes the server-type x load 0xL  and 2xL , respectively, 

assuming three different server types.  
The corresponding CTMC has five states in total, but the 
absorbing state As  does not invoke an activity and thus does not 

incur any load anymore. With three server types, the state-specific 
load vectors have three components each, and the entire load 
matrix L  is a 43×  matrix that could, for example, look as 
follows: 
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In practice, the entries of the load matrix have to be determined by 
collecting appropriate runtime statistics. 
Note that our server model could be easily extended to include 
more server types, for example, to incorporate directory services 
or worklist management facil ities as separate servers if this were 
desired. The three server categories made explicit in our model are 
the most relevant ones for performance and availability 
assessment. Also note that we do not include clients as explicit 
components in the model, for the simple reason that client 
machines are usually not performance-critical. Rather the shared, 
and heavily utilized resources of servers usually form the 
bottlenecks in multi-user applications. Finally, we disregard all 
effects of human user behavior, e.g., their speed of reaction, 
intellectual decision making etc., for the assessment of workflow 
turnaround times, as these aspects are beyond the control of the 
computer system configuration. 

3.2.4 Nested subworkflows 
For workflow types with subworkflows, each subworkflow is 
represented as a single state within the CTMC of the parent 
workflow. In the case of parallelism (i.e., orthogonal components 
in statechart terminology), the corresponding state represents all  
parallel subworkflows together. Subworkflows are analyzed first 
in terms of their load matrix and their turnaround time. To 
incorporate these results into the corresponding parent workflow, 
the expected turnaround time of the parent is calculated in the 
following hierarchical manner. For a CTMC state s that represents 
a subworkflow or a set of parallel subworkflows S, sH  

corresponds to the mean turnaround time for the entire set of 
nested subworkflows. Thus, the mean residence time sH  is set to 

the maximum of the mean turnaround times of the parallel 
subworkflows { }t

St
s RH

∈
= max . Note that the maximum of the 

mean turnaround times of  the parallel subworkflows is actually a 
lower bound of the mean residence time of the corresponding 
higher-level state. So the approximation is conservative with 
regard to the induced load per time unit.  
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Figure 5 : CTMC representing the Delivery workflow type  

3.3 Per formance model 
For analyzing the mean waiting time of service requests, we 
model each server type x as a set of xY  M/G/1 queueing systems 

[22, 21] where xY  is the number of server replicas of the server 

type in the system configuration. So we assume that service 
requests are, on average, uniformly distributed across all servers 
of the same type. This can be achieved by assigning work to 
servers in a round-robin or random (typically hashing-based) 
manner. In practice these assignments would typically be 
performed when a workflow instance starts, so that all  
subworkflows, activities, or invoked applications of the same type 
within that workflow instance are assigned to the same server 
instance for locality. While this realistic load partitioning policy 
may create temporary load bursts, the long-term (steady-state) 
load would be spread uniformly.  
Each server is modeled only very coarsely by considering only its 
mean service time per service request and the second moment of 
this metric. Both of these server-type-specific values can be easily 
estimated by collecting and evaluating online statistics. We do not 
model the details of a server’ s hardware configuration such as 
CPU speed, memory size, or number of disks. Rather we assume 
that each server is a well-configured building block, and that we 
scale up the system by adding such building blocks. In particular, 
the CPU and disk I/O power of a server are assumed to be in 
balance, so that neither of these resources becomes a bottleneck 
while the other is way underutilized. Commercially available 



commodity servers for information systems in general are 
configured this way, and workflow management would fall into 
this category. Nevertheless, even if it turns out that one resource 
type always tends to be the bottleneck, our coarse-grained model 
is applicable under the assumption that the abstract notion of 
service time refers to the bottleneck resource within a server. 

3.4 Performability model regarding transient 
component outages 

The performability model allows us to predict the performance of 
the WFMS with the effects of temporarily non-available servers 
(i.e., the resulting performance degradation) taken into account. 
Our performability model is a hierarchical model constituted by a 
Markov reward model (MRM) [21]. A MRM consists of a 
continuous time Markov chain and a reward function. The reward 
function assignes state-specific rewards to the states of the 
CTMC. In our case, the CTMC models the availability of the 
WFMS components (see [8]). At each point in time when a failure 
occures or the repair of a failed component is f inished, the CTMC 
makes a step into another state. The states of the CTMC represent 
the system states of the WFMS, i.e., a state of the CTMC is a k-
tuple with k being the number of different server types within the 
WFMS, and each entry of the tuple represents the number xX  of 

currently available servers of server type x when the CTMC is in 
that state. Note that the overall configuration is merely the “ upper 
bound” for the system states of interest. The transition rates 
between the states of the CTMC are derived by the mean time to 
failure (MTTF) and mean time to repair (MTTR) of the involved 
server types. We assume that the time periods of availability of a 
component and the component downtimes are exponentially 
distributed. This assumption is common in the performance 
evaluation community when Markov models are used for 
availabil ity and reliability analysis [21]. However, we will show 
in Section 4.2 how to extend our model to capture also non-
exponential, generally distributed, component downtimes and 
uptimes.  As the reward for a given state of that availability 
CTMC, we use the mean waiting time of service requests of the 
WFMS in that system state. The steady-state analysis of the MRM 
yields the expected value for the waiting time of service requests 
for a given WFMS configuration with temporary performance 
degradation incurred by failures. 

4 EXTENDED PERFORM ABIL ITY M OD. 
The models presented in Section 3 have essentially been 
developed in [8]. In this section, we extend the workload model to 
capture workload behavior in a more realistic manner. Section 4.1 
discusses the realistic modeling of loops in the control f low, and 
Section 4.2 shows how to model non-exponentially distributed 
component downtimes and activity turnaround times. 

4.1 Modeling of control flow loops 
For loops in the control f low of a workflow, the number of loop 
iterations is usually a random variable with a discrete distribution. 
Without explicit considerations, the CTMC model would typically 
use a geometric distribution for the number of iterations, which is 
not exactly realistic. Rather we introduce a better approaches that 
captures uniformly distributed loop repetitions. 
 
Observations on operational workflow applications show that 
most loops in workflows have the following properties: 

• There is exactly one execution state that the loop starts with 
(i.e., we rule out jumps into the middle of the loop’ s body). 

• There is exactly one execution state from which the loop 
exits. This state may be the source of several transitions that 
leave the loop, and there is exactly one transition that goes 
back to a state inside the loop’ s body. 

• There is a positive lower bound 0<m  for the number of  
loop iterations (e.g., every order consists of at least one item). 

• There is a finite upper bound ∞<n  for the number of loop 
iterations (e.g., one cannot order more items than the shop 
has in its catalog). 

• The number of loop iterations can be described by a discrete 
distribution with values between m and n. 

A commonly found distribution is the uniform distribution 
UD(m,n) with values from m to n (i.e., every value between m and 
n has the same probability). To capture this distribution by 
expanding the statechart in the following manner. Let 
{ }jii ss +,...,  be the set of execution states that the loop consists 

of. Without loss of generality, let jis +  be the distinct state from 

which the loop can be left, and let is  be the successor of jis +  

inside the loop (i.e., there is a transition from jis +  to is ). So we 

assume that the loop’ s body starts at is  and ends at jis + , and 

jis +  is the exit state of the loop. 

1. State expansion:  

We substitute each state { }jiix sss +∈ ,...,  of the CTMC by a 

set of n new states nxx ss ,1, ,..., . So, we "clone" the states of 

the CTMC that are involved in the loop iterations so that the 
maximum number of loop iterations corresponds to visiting 
each clone of each state exactly once.  

2. Entering the loop: 

For all states { }jiix sss +∉ ,...,  and { }jiiy sss +∈ ,...,  we add 

a transition from xs  to 1,ys  with the one-step probability 

yxp ,  of the transition form xs  to ys  in the original CTMC. 

3. Exiting the loop or next iteration: 

For each potential number of loop iteration { }nmo ,...,∈  we 
do the following: 

• We add a transition from the exit state of the o-th iteration 

ojis ,+  into the states { }jiix sss +∉ ,...,  outside the loop with 

the one-step probability { } xjixoji p
on

p ,,, 1

1
++ +−

=  with 

xjip ,+  being the one-step probability from state jis +  to 

state xs  in the original CTMC. 

• If no <  we add a transition from state ojis ,+  into state 

1, +ois  (i.e., a new iteration starts) with the one-step 

probability 
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probabilities of the transitions from jis +  into states outside 

the loop. 

Note, that 
1

1

+− on
 is the probability that the loop is left 

after exactly o steps if  { }nmo ,...,∈ .  

For each mo <  we add a transition from state ojis ,+  to 

state 1, +ois  (i.e., a new iteration starts) with a  

one-step probability of 1.  

4. Transitions inside the loop: 

For each { }no ,...,1∈ , each { }1,..., −+∈ jiix , and each 

{ }jiiy +∈ ,...,  we add a transition from state oxs ,  to state 

oys ,  with the one-step probability yxp ,  of the transition 

from xs  to ys  in the original CTMC. 

Figure 6 shows the resulting CTMC expansions of the example 
workflow type Delivery assuming that the number of loop 
iterations is uniformly distributed with values from 3 to 5. The 
first visit to execution state 1s  does not belong to the loop in our 

interpretation; i.e., 1ss ji =+  is the exit state and 2ssi =  is the 

first state of the loop in this example. So we have to model the 
first visit to state 1s  in a separate way by adding the state 0,1s  to 

the CTMC. 
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Figure 6 : Expanded CTMC of workflow type Delivery 

4.2  Non-exponentially distr ibuted compo-
nent downtimes and activity turnaround 
times 

In our availability model, i.e., the CTMC model sketched in 
Section 3.4, we assumed that the downtimes of the servers and the 
time from a server restart until the next crash are exponentially 
distributed with mean values MTTR and MTTF of the server type, 
respectively. Especially for server downtimes, this assumption is 
quite unrealistic. The duration of service maintenances or reboots 
after soft crashes, for example, are nearly constant. There is a 
mechanism to expand the CTMC such that non-exponentially 
distributed state residence times can be approximated. The 
mechanism is known in the literature as the Phase Method [22]. It 
approximates a positive random variable (i.e., the state residence 
time) by a mixture of Erlangian distributions with the same scale 
parameters, i.e., sums of independent exponentials with the same 

means. As a special case we are able to automatically substitute a 
state of the CTMC by a sequence of h states whose combined 
residence time is Erlang-h-distributed and thus approaches a 
constant with increasing h. 
Figure 7 shows an example of such a substitution. The transition 
rates λ and µ describe the transition rates of the outgoing 
transitions of the state to be substituted. Note that the mean state 
residence time of a CTMC state is the reciprocal of the sum of the 
transition rates of its outgoing transitions. In the CTMC of the 
availability model, for a system configuration ( )kYYY ,...,1=  and a 

state that represents X1, ..., Xk currently operational servers of 
server types 1 through k a CTMC state has actually up to 2k 
outgoing transitions to "adjacent" system states. For the purpose 
of emulating non-exponential state residence time by the Phase 
Method only the aggregate transition rate needs to be considered. 

Thus, in the state substitution λ is �
i i

i
MTTF

X  and µ is 

� −−

i i
ii

MTTR
XY ))1(( .  

The Phase Method can also be used to expand the CTMC of the 
flow process described in section 3.2.1 when the residence times 
of the execution states of a workflow type are not exponentially 
distributed (e.g., when the turnaround time of an activity is 
uniformly distributed or nearly constant). 
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Figure 7 : Substitution of a CTMC state for non-exponential 

downtimes 

5 EVALUATION 
In this section, we present a systematic evaluation of the Goliat 
configuration tool. Section 5.1 describes the experimental testbed 
that we have developed based on the Mentor-lite WFMS 
prototype. Section 5.2 discusses the various parameters that we 
investigated in our experiments. The experimental results are 
presented in Section 6. 

5.1 Experimental testbed 
The experimental testbed is a combination of simulation and a real 
WFMS. The core of the experimental testbed is the workflow 
engine of our WFMS Mentor-l ite [24]. The workflow engine is 
responsible for the interpretation and execution of the workflow 
specification. Depending on the workflow specification, the 



workflow engine starts activities and sends synchronization 
messages to other engines in the case of distributed workflow 
execution. So the entire workflow execution “ logic”  is processed 
by the full-fledged code of a real WFMS, i.e., the Mentor-lite 
prototype. 
In addition to the Mentor-lite workflow engine in the core, the 
experimental testbed consists of the following components: 
• A synthetic load generator starts new workflow instances 

following a given distribution for the arrivals of instances of 
different workflow types. We use Poisson arrivals as the 
most common traffic pattern. The arrival rate is a variable 
parameter of the experiments. 

• A monitoring module observes the waiting times and the 
service times of service requests at the different servers of the 
WFMS and logs start and stop points of the activities.  

• An activity module simulates the activities. The activity 
module receives incoming data from the workflow engine, 
sleeps for some time that corresponds to the human 
interaction time, and delivers result data back to the engine. 
If the activity is an automatic one the activity module 
additionally initiates a service request on an application 
server.  

• A crash module simulates the downtime of servers. The 
mean time to failure (MTTF) and the mean time to repair 
(MTTR) of each server type are specified as parameters. 

A distributed configuration of Mentor-lite consists of different 
workflow servers (i.e., instances of the workflow engine), 
application servers, and one communication server (i.e., ORB). 
Each server of the first two categories can be dedicated to a 
specified set of workflow activities or external applications, on a 
per type basis. Each of these dedicated servers and also the 
communication server can be replicated across multiple computers 
for enhanced performance and availability. The computers 
themselves are simulated using the CSIM library [4, 18] that 
provides primitives for “ virtual resources”  and performs all the 
necessary bookkeeping (for computing resource utilization, queue 
lengths, waiting times, etc.). The usage periods of the virtual 
resources are derived in different ways depending on the server 
type: for the workflow engine they are dynamically obtained, by 
online instrumentation, from the actual execution path lengths of 
the Mentor-lite code while workflow instances are processed; for 
application servers the simulated resource usage time is derived 
from the simulation parameters; and for communication servers 
the simulated usage periods have been calibrated by the results of 
offline measurements of the Orbix ORB used by the full-fledged 
Mentor-lite system. 
So the entire testbed can be seen primarily as a simulation, with 
the Mentor-lite code embedded and really executed. This way the 
simulation is automatically validated through the online 
measurements of Mentor-l ite path lengths. With this hybrid 
approach we aimed at easily reproducible experiments with high 
statistical confidence and flexible control over hardware resources 
(hence the virtual resources provided by CSIM), while at the same 
time capturing the real execution paths and timing behavior of our 
own workflow engine. 

5.2 Parameter settings 
5.2.1 Benchmark workflow 
In the experiments we used only one workflow type, the 
benchmark workflow presented in Section 3.1. We set the 
parameters of the workflow as follows: 

• Mean turnaround time of activities: The mean turnaround 
times of the activities of the benchmark workflow are shown 
in Table 1. The activities NewOrder and Payment are 
interactive activities, i.e., activities that require human 
interaction. These activities are executed on the user's client 
machine and do not induce any load on the application 
servers. 

• Distribution of loop iterations: The number of iterations of 
the control f low loop in the Delivery subworkflow  follows a 
discrete uniform distribution with lower bound 1 and upper 
bound 3.  

• Frequency of credit card payment: The mode of payment 
influences the behavior of a workflow instance at two control 
flow splits that are jointly responsible for the lifetime of the 
instance and the load that the workflow instance induces on 
the application servers. In the case of credit card payment, 
the workflow results in two short-running automatic 
activities that stress the application (i.e., CreditCardCheck 
and CreditCardPayment), whereas payment by bill spawns an 
interactive activity. In the experiments, we set the relative 
frequency of credit card payment to 50%. 

• Frequency of credit card failures: After the activity 
CreditCardCheck, the control f low is split depending on the 
result of the activity. If the check failed the workflow 
instance terminates immediately. So, the workload includes 
also workflow instances with extremely short lifetime. In the 
experiments we set the relative frequency of credit card 
failures to 10%. 

For experiments with distributed workflow execution, we 
partitioned the benchmark workflow into two partitions. One 
partition includes all activities of the subworkflow Delivery; the 
rest of the activities forms the second partition. For each of the 
partitions there is one dedicated type of workflow servers and one 
dedicated type of application servers. In the alternative case of 
centralized workflow execution (i.e., the entire workflow is 
processed by a single workflow engine), the assignment of the 
application servers is the same as in the distributed case (i.e., there 
are also two types of application servers). All workflow servers 
and application servers communicate with each other via one type 
of communication servers. 

5.2.2 Service times of server types 
The service times of a request to the workflow servers are given 
by the CPU times that the Mentor-lite workflow engine needs for 
such a request in its real execution, which is measured online. 
The service times of the communication servers leans have been 
determined offline from (relatively coarse) measurements of 
Orbix, a commercial CORBA implementation [12] that provides 
the communication middleware for Mentor-lite. Orbix also 
includes support for distributed transactions by its Object 
Transaction Service (OTS) component, which is used by Mentor-

Activity Type Mean Turnaround Time 

NewOrder interactive 30 min 
CreditCardCheck automatic 10 sec 
Notify automatic 5 sec 
FindStore automatic 3 sec 
CheckStore automatic 5 sec 
CreditCardPayment automatic 12 sec 
Payment interactive 2 h 
Table 1: mean turnaround time of activities 



Request Mean Service Time 

Bind the communication server 100 msec 
Bind an activity on application server 500 msec 
Start an activity via IDL 75 msec 
Data exchange via IDL 75 msec 
Delete a registry entry at the ORB 50 msec 
Begin of transaction in OTS 100 msec 
Rollback a transaction in OTS 100 msec 
Commit a transaction in OTS 100 msec 
Table 2: mean service time of communication servers 

lite for reliable message exchanges between workflow engines. 
Table 2 gives the most important types of Orbix requests for the 
execution of (distributed) workflows with Mentor-lite and the 
setting of their mean service times in the experiments. 

The activity module of the experimental testbed induces exactly 
one service request for each automatic activity on an application 
server. The service time of such an service request is the mean 
turnaround time of the activity as given in Table 1.  

5.2.3 Downtimes of server types 
There are many possible causes of server failures: soft crashes 
caused by Heisenbugs which require rebooting and log-based 
recovery, hard crashes such as disk failures which require 
restoring data from a backup, and possibly even external denial-
of-service attacks that result in heavy performance losses so that 
the system becomes unusable for its actual users. Heavily loaded 
servers are more likely to fail than lightly loaded ones. Finally, 
there are periodic server shutdowns for maintenance (e.g., 
software upgrades). 

Especially for frequent server downtimes, the accuracy of Goliat’ s 
steady-state performability model is crucial but also the most 
difficult metric to predict. We set the MTTF and MTTR of soft 
and hard crashes of servers to reflect an extremely stress tested 
system. Table 3 shows the values that we calibrated the crash 
module with. In addition, the crash module initializes a server 
once a week (i.e., with a continuous uniform distribution with 
values between 6 and 8 days) to model service shutdowns for a 
duration of 60 minutes. Each of these planned outages affects one 
server of a server type at a time; the outages of different servers 
are spread evenly across the entire one-week period. 

6 EXPERIMENTAL RESULTS 
We studied two major degrees of freedom in our experiments: 
1) Centralized vs. distributed workflow execution: 

The proper configuration of a WFMS critically depends on 
whether the workflow execution is distributed over several 
workflow engines. In particular, the communication servers 
have to sustain a higher load because of the synchronization 
messages that are exchanged between the workflow engines. 
Moreover, different workflow partitions are typically 

executed by different workflow servers. So we have to add a 
second type of workflow servers in experiments with 
distributed workflow execution. 

2) Performance of a stable system vs. performability regarding 
transient outages: 

We evaluate the configuration tool's predictions for the 
system performance assuming that no servers will fail as well 
as the predictions for the system performability when 
transient server outages are taken into account. In the 
experiments we study both situations by switching the crash 
module of the testbed off or on. 
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(a) centralized workflow execution 

0

10

20

30

40

50

60

70

Goliat 44,43 50,35 782,3 1,90 4,81

Experimental 44,23 51,00 787,64 1,91 4,72

WFS1 WFS2 CS AS1 AS2

 
(b) distributed workflow execution 

Figure 8 : Service requests per workflow instance 

In the following, we present performance as well as 
performability results for centralized workflow execution and 
performance results for distributed workflow execution. In all 
experiments we measured the mean waiting times of service 
requests at the various server types as a function of the arrival rate 
workflow instances for a given system configuration. We varied 
the system configuration from experiment to experiment to are 
able to show the most meaningful results.  
First, we discuss the accuracy of the approximation of the induced 
load per workflow instance using the CTMC model of Sections 3 
and 4. Figure 8 shows Goliat's predictions for the expected 
number of service requests of a single workflow instance to the 
various server types versus the mean values of the requests that 
were actually observed in the experiments. For both, centralized 
(Figure 8(a)) and distributed (Figure 8(b)) workflow execution, 
the analytic predictions match the measurements very well. The 
increased number of service requests to the workflow servers and 
the communication server under distributed workflow execution is 
caused by Mentor-lite's polling of the transactional message 

Server type MTTF MTTR 

WFS 1 1 d 20 min 
WFS 2 2 d 30 min 
CS 6 h 15 min 
AS 1 1 d 30 min 
AS 2 12 h 20 min 
Table 3: MTTF and MTTR of crashes of server types 



queues via OTS when waiting for synchronization messages. 
Indeed, there are probably many issues for optimizing the Mentor-
lite code, but this is not the subject of this paper.  
Figure 9 shows the results of our first, performance-oriented, 
experiment, where we switched the crash module off and executed 
the workflow instances in a centralized manner. The system 
configuration was set to 1 workflow server, 1 communication 
server, and 1 server of each application server type. The charts 
present the mean waiting times given observed in the experiments 
versus the predicted values from Goliat's analytic models, as a 
function of the arrival rate of new instances of the example 
workflow type. Goliat underestimates the mean waiting time of 
the service requests for all server types. But the underestimation is 
not critical and the approximation of the overall system 
performance, i.e., the mean waiting time averaged over the service 
requests of all server types (Figure 9(e)) is in an acceptable range 
reasonably close to the experimental results. 
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Figure 9 : Server performance of the stable system under 

central workflow execution 

The performance results of the experiments with distributed 
workflow execution (and still deactivated crash module) are given 
in Figure 10. Because of the much higher load at the 
communication server when executing the workflows in a 
distributed manner (see Figure 8), we increased the number of 
replicas of the communication server type to 5. The number of 
servers of the additional workflow server type that is responsible 
for the execution of the subworkflow Delivery is set to 1. The 
measured as well as the predicted values of the mean waiting 
times of the application server types are the same as in the 
experiments with central workflow execution because the load at 
the application servers is independent of the execution strategy. 
Goliat's approximation of the mean waiting times is as accurate as 
in the previous experiment for the workflow servers and becomes 
even better for the communication servers. Goliat slightly 
overestimates the waiting times at the communication servers 
when the arrival rate is low because the round-robin assignment of 
the service requests among the 5 server replicas in the simulations 
balances the load better than the analytical model assumes. In 
contrast to the actual round-robin strategy, the model would 
partition the overall arrival stream into five streams so that each of 

the server replicas receives one fifth of the load, which could still  
lead to significant fluctuations of the load at each server. The 
round-robin assignment, however, smoothes the arrivals at each 
server to a much better extent. This effect can also be seen in the 
following experiments. 
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Figure 10 : Server performance of the stable system under 

distributed workflow execution 

Figure 11 shows the results of our third setting where we 
increased the number of server replicas to 3 for each server type to 
meassure the performability under centralized workflow execution 
with transient server outages. With the exception of the workflow 
server type, the mean waiting times of the service requests are 
overestimated as discussed before. The mean waiting times of the 
workflow servers are slightly underestimated because, unlike for 
the other server types, the service requests are not scheduled in a 
round-robin manner; rather all service requests of a workflow 
instance are served by the same workflow server replica. The 
underestimation increases with the server's load because the 
model neglect transient queueing effects when a server fails and 
its active workflow instances have to be reassigned to available 
servers. 
Finally, we ran a simulation with a configuration that was 
suggested by Goliat's recommendation component. We specified 
the goals as follows: the system availability should be at least 
99.99 %, and the overall mean waiting time of service requests 
should be no higher than 10 milliseconds under a load of 2 
workflow instances per minute. Goliat's recommendation for a 
minimum cost configuration  that can satisfy these goals was: 3 
workflow servers, 5 communication servers, and 3 application 
servers of both types. It turns out, by running additional 
experiments, that 4 replicas would be sufficient, but this is indeed 
the true minimum, and also none of the other degrees of 
replication can be reduced. So Goliat misses the true minimum-

cost configuration by only one server, 14
1  of the total cost. 

To summarize, Goliat's internal analytic models exhibit acceptable 
accuracy for both performance and performablity predictions. 
Goliat underestimates the mean waiting times of a server type 
when there is only one server of this type. On the other hand, it 
tends to overestimate the overall waiting times with increasing 



number of server replicas. Goliat's performability predictions 
result in a recommended system configuration that truly 
minimizes the number of server replicas while satisfying all 
specified goals. 

(a) workflow server (b) communication server

(c) application server 1 (d) application server 2

(e) overall system performability
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Figure 11 : Server performability under centralized execution 

7 CONCLUSION 
In [8] we have developed models to derive quantitative 
information about the performance, availability, and 
performability of configurations for a distributed WFMS. These 
models form the core of an assessment and configuration tool. As 
an initial step towards evaluating the viability of our approach, we 
have defined a WFMS benchmark [7] that we used for 
measurements of our own prototype, Mentor-lite, under different 
configurations. The current paper is the final step in this research 
program. We have presented the fully implemented Goliat tool, 
and have systematically evaluated its accuracy and practical 
viability using a comprehensive experimental testbed that 
combines simulated with online measurements of the real Mentor-
lite code. We have also presented novel extensions to Goliat’ s 
models that are important to capture the behavior of a workflow 
system in a realistic manner.  The presented experiments have 
shown that Goliat’s predictions of both performance and 
performability are indeed reasonably accurate.  
Apart from certain fine-tuning issues, the work on Goliat is 
completed. We plan to make both the Goliat software and the 
Mentor-lite system available as shareware source code. Our own 
plans for future work include adapting Goliat to a commercial 
workflow system and conducting more tests towards industrial-
strength practicality.  
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