
Web Component:

A Substrate for Web Service Reuse
and Composition

Jian Yang and Mike. P. Papazoglou

Tilburg University, Infolab
PO Box 90153, 5000 LE, Tilburg, Netherlands

{jian,mikep}@kub.nl

Abstract. Web services are becoming the prominent paradigm for dis-
tributed computing and electronic business. This has raised the oppor-
tunity for service providers and application developers to develop value-
added services by combining existing web services. Emerging web service
standards and web service composition solutions have not addressed the
issues of service re-use and extension yet. In this paper we propose the
concept of web component that packages together elementary or complex
services and presents their interfaces and operations in a consistent and
uniform manner in the form of a class definition. Web components are
internally synthesized out of reused, specialized, or extended elementary
or complex web services. They are published externally as normal web
services and can thus be employed by any web-based application.

1 Introduction

The Web has become the means for organizations to deliver goods and services
and for customers to discover services that match their needs. By web service,
we mean a self-contained, internet-enabled applications capable not only of per-
forming business activities on its own, but also possessing the ability to engage
other web services in order to complete higher-order business transactions. Ex-
amples of such services include catalogue browsing, ordering products, making
payments and so on. The platform neutral nature of the web services creates
the opportunity for building composite services by using existing elementary or
complex services possibly offered by different enterprises. For example, a travel
plan service can be developed by combining several elementary services such
as hotel reservation, ticket booking, car rental, sightseeing package,
etc., based on their WSDL description [13]. Web services that are used by a
composite service are called constituent services.

Web service design and composition is a distributed programming activity. It
requires software engineering principles and technology support for service reuse,
specialization and extension such as those used, for example, in component based
software development. Although web service provides the possibility for offering
new services by specialization and extension instead of designing them from

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 21–36, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

22 Jian Yang and Mike. P. Papazoglou

scratch, to this date there is little research initiative in this context. In this
paper we introduce the concept of web component to facilitate this very idea of
web service reuse, specialization and extension.

Web components are a packaging mechanism for developing web-based dis-
tributed applications in terms of combining existing (published) web services.
Web components have a recursive nature in that they can be composed of pub-
lished web services while in turn they are also considered to be themselves web
services (albeit complex in nature). Once a web component class is defined, it
can be reused, specialized, and extended. The same principle applies to service
composition activities if we view a composite service as a special web service,
which contains composition constructs and logic.

Normally, composite services are developed by hard-coding business logic in
application programs. However, the development of business applications would
be greatly facilitated if methodologies and tools for supporting the development
and delivery of composite services in a co-ordinated and effectively reusable
manner were to be devised. Some preliminary work has been conducted in the
area of service composition, mostly in aspects of workflow-like service integra-
tion [3], service conversation [7], and B2B protocol definition [1]. However, these
approaches are either not flexible or too limited as they lack proper support for
reusability and extensibility.

Services should be capable of combination at different levels of granularity,
while composite services should be synthesized and orchestrated by reusing or
specializing their constituent services. Therefore, before complex applications
can be built on simple services or composite services, we need to look at a
fundamental aspect of composition: composition logic. Composition logic dictates
how the component services can be combined, synchronised, and co-ordinated.
Composite logic is beyond conversation logic (which is modeled as a sequence
of interactions between two services) and forms a sound basis for expressing the
business logic that underlies business applications.

We use the concept of web component as a means to encapsulate the com-
position logic and the construction scripts which oversee the combination of
existing web services. These constructs are private (non-externally visible) to a
web component. The public interface definition provided by a web component
can be published and then searched, discovered, and used in applications as any
other normal web service. Web components can also serve as building blocks to
construct complex applications on the basis of reuse and extension.

In this paper we will concentrate on how web components are used for com-
posite service planning, definition and construction. The contribution of this
paper is three-fold:

– it proposes the concept of a web component for creating composite services
and web service re-use, specilization, and extension;

– it also proposes a light-weight service composition language that can be used
as the script for controlling the execution sequence of service compositions.
Since this language is expressed in XML it can be exchanged easily across
the network;

Web Component: A Substrate for Web Service Reuse and Composition 23

– Finally, it provides a complete framework for web service composition so
that composite web services can be planned, defined, and invoked on the
basis of web components.

The paper is organized as follows. Section 2 presents a framework for service
composition. Section 3 discusses different forms of service composition so that
basic composition logic can be derived, and introduces the Service Composi-
tion Specification Language (SCSL) that defines a web component and provides
implementation scripts. Section 4 outlines the features of the Service Compo-
sition Planning Language (SCPL) and Service Composition Execution Graphs
(SCEG). In section 5 we demonstrate how SCSL, SCPL, and SCEG work to-
gether to fulfill the tasks of planning, design, implementation, and execution
of composite web services. Section 6 presents related work and summarizes our
main contributions. Finally, section 7 concludes the paper.

2 Service Composition: Technical Challenges

In this section we will first analyze the nature of service composition, pro-
vide a framework for service composition and application development based
on web services. Subsequently, we illustrate the characteristics of composition
logic which lays the foundation for creating web components.

2.1 A Framework for Service Composition

The real challenge in service composition lies in how to provide a complete so-
lution. This means to develop a tool that supports the entire life cycle of service
composition, i.e., discovery, consistency checking and composition in terms of
re-use and extendibility. This comes in contrast to the solutions provided by clas-
sical workflow integration practices, where service composition is pre-planned,
pre-specified, has narrow applicability and is almost impossible to specialise and
extend.

Service composition spans three phases: (1) planning, (2) definition, and (3)
implementation. By planning, we mean the candidate services (elementary or
composite) that are discovered and checked for composability and conformance.
During this phase alternative composition plans may be generated and proposed
to the application developer. The outcome of this phase is the synthesis of a
composite service out of desirable or potentially available/matching constituent
services. At the definition phase, the actual composition structure is generated.
The output of this phase is the specification of service composition. Finally, the
implementation phase implements the composite service bindings based on the
service composition specification. The following types of service composition are
used throughout these phases:

– Explorative composition: service composition is generated on the fly based
on a customer (application developer’s) request. The customer describes the

24 Jian Yang and Mike. P. Papazoglou

desired service, the service broker then compares the desired composite ser-
vice features with potentially matching published constituent service speci-
fications and may generate feasible (alternative) service composition plans.
These plans result in alternative service compositions that can be ranked or
chosen by service customers depending a criteria such as availability, cost
and performance. This type of service composition is specified on the fly and
requires dynamically structuring and co-ordination of constituent services.

– Semi-fixed composition: Here some of the actual service bindings are decided
at run time. When a composite service is invoked, the actual composition
plan will be generated based on a matching between the constituent services
specified in the composition and the possible available services. In this case,
the definition of the composite service is registered in an e-marketplace, and
it can be used just as any other normal service, i.e., it can be searched,
selected, and combined with other services.

– Fixed composition: a fixed composite service synthesizes fixed (pre-specified)
constituent services. The composition structure and the component services
are statically bound. Requests to such composite services are performed by
sending sub-requests to constituent services.

We can conclude that the following main elements are needed to develop a
complete solution for service composition: (1) service request description, (2)
service matching and compatibility checking, (3) description of service compo-
sition, and (4) service execution monitoring and coordination. In this paper we
shall concentrate on the first three items in some detail.

2.2 Composition Logic

Composition logic we refer to the way a composite service is constructed in terms
of its constituent services. Here, we assume that all publicly available services
are described in WSDL. Composite logic has the following two features:

– Composition type: this signifies the nature of the composition and can take
two forms:
• Order: indicates whether the constituent services in a composition are

executed in a serial or parallel fashion.
• Alternative service execution: indicates whether alternative services can

be invoked in a service composition. Alternative services can be tried out
either in a sequential or in a parallel manner until one succeeds.

– Message dependency: indicates whether there is message dependency among
the parameters of the constituent services and those of the composite ser-
vice. We distinguish between three types of necessary message dependency
handling routines in a composition:
• message synthesis: this construct combines the output messages of con-

stituent services to form the output message of the composite service.
• message decomposition: this construct decomposes the input message of

the composite service to generate the input messages of the constituent
services;

Web Component: A Substrate for Web Service Reuse and Composition 25

Web ComponentWeb Component

Interface specificationInterface specification

Composition logicComposition logic

Construction SpecificationConstruction Specification

Composition
Type

Message
Dependency

Applications

Web
Component
Library

Fig. 1. Web component ingredients

• message mapping: it specifies the mappings between the inputs and out-
puts of the constituent services. For example, the output message of one
component service is the input message of another service.

Examples of message dependency are given in Section 3.3 and Figure 3. The
composition types together with message dependency constructs form the basis
of composition logic, which is specified in web components. Figure 1 depicts the
ingredients of a web component. It illustrates that a web component presents a
single public interface to the outside world in terms of a uniform representation
of the futures and exported functionality of its constituent services. It also in-
ternally specifies its composition logic in terms of composition type and message
dependency constructs. The process of web service composition design becomes
a matter of reusing, specializing, and extending the available web components.
This enables a great deal of flexibility and reusability of service compositions.

3 Creation of Web Components

In this section, we first present the basic constructs for expressing composition
logic, then we demonstrate how web components are specified in SCSL and in
terms of web component classes.

3.1 Basic Constructs for Service Composition

The following constructs have been identified to serve as the basis for composi-
tions [12]:

1. Sequential service composition (sequ). In this case, the constituent
services are invoked successively. The execution of a constituent service is

26 Jian Yang and Mike. P. Papazoglou

dependant on its preceding service, i.e., one cannot begin unless its preceding
service has committed. For example, when a composite travel plan service
- composed of an air ticket reservation service, a hotel booking
service, and a car rental service - makes a travel plan for a customer,
the execution order should be hotel booking, air ticket reservation,
and car rental. The invocation of the hotel booking service is depen-
dent on the successful execution of the air ticket reservation because
without a successful air ticket reservation, hotel booking can not go ahead.

2. Sequential alternative composition (seqAlt). This situation indicates
that alternative services could be part of the composition and these are
ordered on the basis of some criterion (e.g., cost, time, etc). They will be
attempted in succession until one service succeeds.

3. Parallel service composition. In this case, all the component services
may execute independently. Here two types of scenarios may prevail:
(a) Parallel with result syncronization (paraWithSyn). This situa-

tion arises when the constituent services can run concurrently, however,
the results of their execution need to be combined. For example, pur-
chasing a PC may involve sending inquiries to different companies which
manufacture its parts. These inquires may run in parallel, however, they
all need to execute to completion in order to obtain the total configura-
tion and price.

(b) Parallel alternative composition (paraAlt). In this situation alter-
native services are pursued in parallel until one service is chosen. As soon
as one service succeeds the remainder are discarded.

Although these constructs represent the most common cases of service com-
position, to make the composition logic complete, we also need to introduce two
additional control constructs: condition and while do. The former is used to
decide which execution path to take, while the latter is a conventional iteration
construct.

The various composition types may result in different message dependencies
and therefore require different message handling constructs. Table 1 summa-
rizes the message dependency handling constructs required for different types of
service composition.

The basic composition types together with message dependency handling
constructs provide a sound basis for forming the composition logic in a web
component.

Similar basic routing mechanisms such as sequential and parallel for use in
distributed computations and workflows can be found in [9,10]. The main differ-
ence between this work and ours is that they provide basic constructs for control
flow execution, whereas we use them as part of the abstraction mechanism for
defining web service interfaces and the composition logic for building composite
services.

Web Component: A Substrate for Web Service Reuse and Composition 27

Table 1. Message handling used in different types of composition

messageSynthesis messageDecomposition messageMapping

sequ X X X

seqAlt X

paraWithSyn X X X

paraAlt X

condition X

while do X

3.2 The Web Component Class Library

Web component classes are abstract classes used as a mechanism for packag-
ing, reusing, specializing, extending and versioning web services by converting a
published WSDL specification into an equivalent object-oriented notation. Any
kind of web service (composite or not) can be seen as a web component class
provided by an organization and can be used in the development of distributed
applications.

The web component class library is a collection of general purpose and spe-
cialized classes implementing the primitives and constructs discussed in the pre-
vious section. Classes in the web component library act as abstract data types
i.e., they cannot be instantiated. They provide basic constructs and functional-
ity that can be further specialized depending on the needs of an application. A
distributed web application can be build by re-using, specializing, and extending
the web component library classes. The web component library classes can be
categorized as follows:

– web service construction class: this abstract class is used for creating defi-
nitions out of WSDL specifications. This construction class will generate a
web component class for a registered web service defined in WSDL, i.e., the
service messages, interface and implementation.

– web component class: this class represents all elementary or composite web
services. There are six subclasses in this category which implement the com-
position constructs discussed in the previous section (see Table-1).

– application program class: this class is used to develop application programs
by using the web component classes. Since application program classes are
web components, they also can be reused, specialized, and extended.

Figure 2 the web component class definition for a travelPlan service. We
assume that a travel plan is a composite service which combines the two ser-
vices hotelBooking and ticketReservation which are published by the two
service providers Paradise and DisneyLand, respectively. In this figure, class
TravelPlan is defined as a subclass of class sequ which provides the basic op-
erations for the sequential type of composition and message dependency han-
dling. The TripOrderMessage in the travelPlan interface includes such informa-
tion as the dates, the type of rooms, the location, and the preferred airline for

28 Jian Yang and Mike. P. Papazoglou

the trip. These are the combined input messages from the WSDL specification
of the hotelBooking and ticketReservation web services. In the construc-
tion specification of the travelPlan service the TripOrderMessage is shown
to be decomposed to its constituent messages Paradise.HotelBookingMsg and
DisneyLand.TicketResMsg which need to be executed at the Paradise and
DisneyLand service provider sites, respectively.

class TravelPlan is sequ {

public TripOrderMessage tripOrderMsg;

public TripResultMessage tripResDetails;

public travelPlanning(TripOrderMessage) -> TripResultMessage;

private void compose(Paradise.makeBooking, DisneyLand.makeRes);

private void messageDecomposition(TravelPlan.TripOrderMsg,

Paradise.HotelBookingMsg,

DisneyLand.TicketResMsg);

private void messageSynthesis(TravelPlan.TripResDetails,

Paradise.HotelBookingDetails,

DisneyLand.E-ticket);

}

Fig. 2. Web component class definition for travelPlan service

A web component is specified in two isomorphic forms: a class definition
(discussed above), and an XML specification in terms of a Service Composition
Specification Language (SCSL). Interacting web components and services (across
the network) can only communicate on the basis of exchanging XML Web service
specifications and SOAP messages. Thus although web component classes serve
as a means for specification and reusability they need to be converted to an
equivalent XML representation in order to be transmitted across the network.
For this purpose we use the SCSL.

3.3 Web Component Specification in XML

There are two parts in SCSL: the interface of the composite service specified
in its defn part and the construction of the composition logic is specified in its
construct part, (see Figure 3). These are isomorphic to the interface and con-
struction parts of a web component shown in Figure 2. The construct part of an
SCSL specification consists of a compositionType, a series of activities, and mes-
sage handling constructs. Activities are internal (non-visible) elementary tasks
that need to be performed to achieve a certain web component operation. These
are executed remotely in the web sites hosting the web service constituents. The
composition type in SCSL specifies the nature of activity execution according to
the discussion in section 3.1, while message handling specifies how service and
activity messages are processed.

Web Component: A Substrate for Web Service Reuse and Composition 29

<webService name="travelPlan">

<!--== Message definition ==-->

<definition>

<message name="tripOrderMsg">

<part name="hotelBookingMsg" element="hotelBookingMsg"/>

<part name="ticketResMsg" element="ticketResMsg"/>

</message>

<message name="tripResDetails">

<part name="hotelBookingDetails" element="hotelBookingDetails"/>

<part name="e-ticket" element="e-ticket"/>

</message>

</definition>

<!-== The composite service interface definition ==-->

<defn>

<portType name="travelPlaner">

<operation name="travelPlanning">

<input message="tripOrderMsg"/>

<output message="tripResDetails"/>

</operation>

</portType>

</defn>

<!--== The composite service implementation details ==-->

<construct>

<composition type="sequ">

<activity name="hotelBooking">

<input message="hotelBookingMsg"/>

<output message="hotelBookingDetails"/>

<performedBy serviceProvider="Paradise"/>

<use portType="hotelBookingHandler" operation="makeBooking"/>

</activity>

<activity name="ticketReservation">

<input message="ticketResMsg"/>

<output message="e-ticket"/>

<performedBy serviceProvider="Disney Land"/>

<use portType="ticketResHandler" operation="makeRes"/>

</activity>

<messageHandling>

<messageDecomposition>

<source message="tripOrderMsg"/>

<target message="hotelBookingMsg"/>

<target message="ticketResMsg"/>

</messageDecomposition>

<messageSynthesis>

<source message="hotelBookingDetails"/>

<source message="e-ticket"/>

<target message="tripResDetails"/>

</messageHandling>

</composition>

</construct>

</webService>

Fig. 3. Service Composition Specification Language (SCSL)

30 Jian Yang and Mike. P. Papazoglou

In SCSL we adopt the same convention as WSDL [13], i.e., the portType is
used for grouping operations. Operations represent a single unit of work for
the service being described. The example of travelPlan illustrated in Figreu 3
corresponds to the web component class isslustrated in Figure2 and provides
a single portType named travelPlaner with one operation travelPlanning.
The activity hotelBooking uses the operation makeBooking of port type
hotelBookingHandler. The activity ticketReservation uses the operation
makeRes of port type ticketResHandler.

We also specify how input and output messages of constituent services oper-
ations are linked from (to) those of the composite service. Here we rely on the
three types message handling: (1) message synthesis, (2) message decomposition,
and (3) message mapping described in section 2.2. For example, the output mes-
sage hotelBookingDetails of the constituent operation makeBooking and the
output message e-ticket of the constituent operation makeRes are composed
into the output message tripResDetails of the composite service travelPlan
in the messageSynthesis part. The input message of the composite service
travelPlan called tripOrderMsg is decomposed into two messages: the input
message hotelBookingMsg of constituent operation of makeBooking and input
message ticketResMsg of constituent operation makeRes.

Although the above example is meant for sequential compositions, the other
types of composition can be specified in a similar fashion. Note Figure 3 is
a much simplifier version of the SCSL for illustrative purposes. The binding
specifications are not included in this figure.

The XML schema of SCSL is not provided for reasons of brevity.

4 Service Composition Planning
and Composition Execution Languages

As discussed in section 2, service composition should be planned and generated
according to service developer’s request. With this in mind, we are developing
a Service Composition Planning Language (SCPL) that specifies how a
composite service is built up in terms of the relationships among constituent
services such as execution order and dependency. The resulting specification
combines services from the web component library and presents them in the
form of web component classes as described in the previous. These specifications
will subsequently generate a service execution structure in the form of a Service
Composition Execution Graph (SCEG). When the SGEC is executed it
invokes the corresponding services at remote site and co-ordinates them. In the
following, we will first introduce the concepts of SCPL and SCPG by means of
a simple example then we will present their formal specifications.

Figure 4 illustrates how a composite service called HolidayPlan can be
planed in SCPL by combining three component services restaurantBooking,
hotelReservation, and sightseeing. In this example, we specify that
restaurantBooking and hotelReservation have to run sequentially, and there
is data dependency between them, i.e., the location of the hotel determines the

Web Component: A Substrate for Web Service Reuse and Composition 31

Composition holidayPlanning

C1: sequ (hotelReservation, restaurantBooking)

mapping (hotelBooking.location = restaurantBooking.location)

C2: paraWithSyn (C1, sightseeing)

Fig. 4. Specification of a service composition plan

hotelReservation restaurantBooking

sightseeing

C1: seqWithInteraction
restaurantBooking.location:=
hotelReservation.location

holidayPlanning:
paraWithSyn

Fig. 5. The service composition execution graph

location of the restaurant, while Sightseeing can run in parallel with the other
two services.

There are two aspects of SCPL which make it flexible and extensible: (1)
a labelling system which can be used to label any composition. The labels can
be used in any place where services (operations) are required. We can build
a composition plan recursively by labelling existing composition plans. (2) plan
variables and macros which can be used in the place where the service (operation)
and composition types (such as sequential, paraWithSyn etc) are required. This
second aspect is not discussed in this paper due to space limitations. SCPL
provides a simple light-weight but powerful mechanism for service composition
nesting and substitution, composition extension, and dynamic service selection.

A Service Composition Execution Graph (SCEG) is generated on the basis
of an SCPL specification. Figure 5 illustrates the SCEG corresponding to the
SCPL specification in Figure 4 .

Formally an SCEG is a labelled DAG P =< N, A, spe > where N is a set of
vertices, A is a set of arcs over N , such that

– for every operand and label in a statement in SCPL, create a vertex;
– for v ∈ V , spe(v) represents the type of composition and the mapping spec-

ification;
– if u is used in v for composition, introduce an arc u → v.

The service composition execution graph is used for coordinating constituent
service execution at remote sites and run time service selection based on the
user requirement specifications. These issues are further discussed in the next
section.

32 Jian Yang and Mike. P. Papazoglou

5 Service Composition: A Complete Picture

In this section, we explain how the SCSL, the SCPL and the SCEG work together
to create service compositions. Recall that as already explained in section 2, there
are three stages of service composition: planning, definition, and implementation.
We address these in the following.

The planning stage involves service discovery, composability and compatibil-
ity checking. The output of this stage is a composition plan specified in SCPL.
Assume we have the following request:

<request>

<from src="http://www.infolab.nl/jian />

<vocabulary name="holiday planning" />

<service name="ticket booking" />

<service name="hotel booking" />

<service name="restarurant booking", option="optional" />

<service name="sightseeing" />

<result> $serviceInfo </result>

<condition condition="ticketBooking.date=hotelBooking.date">

<condition condition="restarurantBooking.loc=hotelBooking.place"

</request>

This request can be satisfied if we find the services which match the required
constituent services either completely or partially. For service discovery, it is im-
portant to find an appropriate service with the right capability. Service discovery
relies on the following steps:

– Semantic relatedness: during this step, the requested service is compared
against the service description in the repository in terms of service contents
to decide how closely related they are. Services with a high degree of relat-
edness will be selected as relevant services for further capability checking.

– Capability analysis: the capabilities of the services selected from the previous
step are checked in terms of the functions they provide to determine whether
they can accomplish completely or partially the tasks of the requested ser-
vice.

– Syntactic analysis: ”capable” services have their syntax of their interfaces
checked to determine how they can be combined to achieve the requested
higher-order service.

We can view a web service (S) as a triple: < C, A, P > where C, A, P stand for
contents, activities (capabilities), and properties respectively. Contents refer to
what the service is about. Activities are a set of operations the service provides.
Properties refer to some end point information about the service such as payment
methods, cost, etc. C is used in conjunction with semantic relatedness checks, A
is used in capability and syntax check, while P is used for selecting alternative
composition plans.

Web Component: A Substrate for Web Service Reuse and Composition 33

We can identify two types of checking depending on the nature of composi-
tion: compatibility checking and conformance checking. Service S1 is compatible
with S2 when S1 is at least as capable as S2 and S1 can substitute S2. Service S
conforms to S′ when S and S′ can be combined in a way that the output of S
can be taken as the input of S′. Here, we introduce two symbols: � for ”compati-
bility” and � for ”conformance”. As P does not play an important role in service
discovery, we only consider C and A for the purpose of semantic and syntactic
checking.
Service S =< C, A, P >, where ∀a ∈ A, we define a =< op, I, O >, where op, I,
and O stand for operation, inputs and outputs respectively. For input, we have
I =< p1, . . . , pm >, and for output, we have O =< q1, . . . , qn >., where every pi

(i = 1 . . .m) and qj (j = 1 . . . n), takes the form < name >:< type >.

Definition 1. Service S′ is compatible with S (S′ � S) if the contents of S are
a subset those of S′ (S.C ⊂ S′.C) and the operations of S′ are compatible with
those of S (S′.A � S.A).

Definition 2. Activities in Service S′ are compatible with the activities in ser-
vice S (S′.A � S.A) when ∀a ∈ S.A, if we can find an operation a′ ∈ S′.A such
that a′ � a.

Definition 3. Operations a′ � a if
(1) the pre-condition and the post-condition of a′.op are equivalent to a.op,
(2) the inputs a′.I � a.I and
(3) the outputs a′.O � a.O.

Definition 4. S′ conforms to S (S′ � S) if:
(1) the the contents S′C and S.C are overlapping and
(2) ∃a′ ∈ S′.A, ∃a ∈ S.A such that a′.O � a.I.

There is still a lot of research that needs to be done in the area of compati-
bility and conformity checking. However this is beyond the scope of this paper.
Some primary research results can be found in [11,8].

To exemplify these issues, we use the above service request holidayPlanning
as an example and assume we have a choice between the following two plans
specified in SCPL after semantic and capability checking:

CompositionPlan1 holidayPlanning

C1: sequential (ticketBooking, hotelBooking, restaurantBooking)

Mapping (ticketBooking.arrive_date=hotelBooking.date,

RestarurantBooking.loc=hotelBooking.place)

C2: paraWithSyn (C1, sightseeing)

Sythesizing (holidayPlanning.schedule=C1.schedule+sightseeing.schedule)

CompositionPlan2 holidayPlanning

C1: sequential (travelPlan, restaurantBooking)

Mapping (RestarurantBooking.loc=hotelBooking.place)

C2: paraWithSyn (c1, sightseeing)

Sythesizing (holidayPlanning.schedule=C1.schedule+sightseeing.schedule)

34 Jian Yang and Mike. P. Papazoglou

CompositionPlan1 contains three services and defines two mappings. The
first mapping indicates that the arrival date must be the same as the hotel
check-in date. The second mapping indicates that the restaurant and the hotel
must be located at the same place. CompositionPlan2 contains two services
one of which is a composite service defined and constructed in Figure3. The
mapping ticketBooking.arrive date=hotelBooking.date is assumed to be
accomplished by the composite service travelPlan.

To choose among alternative composition plans generated by the planning
stage, we need look at the properties of the candidate constituent end point
services (such as cost, performance, binding requirements). Suppose that
CompositionPlan1 is selected, we can then use the sequ and paraWithSyn web
component classes to define and construct the plan in an incremental fashion.
We first generate C1 by using the web component class sequ as a super-class
and further extend it with new message types and operations. Then we use the
web component class paraWithSyn as a super-class to construct an application
program class holidayPlanning by linking C1 together with another service
sightseeing and specifying the appropriate message dependency handlings.
The final class definition then can be transformed into SCSL. The code in Fig-
ure 6 illustrates how the web component class holidayPlanning is defined.

To execute a composite service, an SCEG graph is generated. As already
stated in Section 4, the SCEG is a labelled DAG. Every node in this graph
is a composite service with its children representing constituent services. The
root node is the application we want to build. The type of composition and the
message dependency is indicated in the label of the node. The node in the SCEG
bind to and execute web services at different sites while the overall control is
situated at the site which launches the application. The algorithm for SCEG
execution has been developed on basis of the depth-first search.

class C1 is sequential {

public TravelSchedule travelSchedule;

... //public operations

private void compose(TicketBooking, HotelBooking, RestaurantBooking);

private void messageMapping(TicketBooking.date, HotelBooking.date);

private void messageMapping(RestaurantBooking.location,

HotelBooking.location);

}

class HolidayPlanning is paraWithSyn {

public HolidaySchedule holidaySchedule;

... //public operations

private void compose(C1, Sightseeing);

private void messageSynthesizing(HolidayPlanning.holidaySchedule,

C1.TravelSchedule, Sightseeing.Schedule);

}

Fig. 6. An application program class HolidayPlanning

Web Component: A Substrate for Web Service Reuse and Composition 35

6 Related Work

Most of the work in service composition has focussed on using work flows either
as a engine for distributed activity coordination or as a tool to model and define
service composition. Representative work is described in [2] where the authors
discuss the development of a platform specifying and enacting composite services
in the context of a workflow engine. The eFlow system provides a number of
features that support service specification and management, including a simple
composition language, events and exception handling.

The workflow community has recently paid attention to configurable or ex-
tensible workflow. The approach described in [6] allows for automatic process
adaptation. The authors present a workflow model that contains a placeholder
activity, which is an abstract activity replaced at run-time with a concrete activ-
ity type. This concrete activity must have the same input and output parameter
types as those defined as part of the placeholder. In addition, the model allows
to specify a selection policy to indicate which activity should be executed.

The work presented in [5] proposes some interesting ideas in workflow in-
teroperation. It provides infrastructure to support dynamic aspects in planning,
scheduling, and execution by introducing workflow schema templates. Reuse of
existing workflow schema and templates can be achieved by schema splicing.
However how this approach can be used in service composition is not clear.

The workflow approaches provide some basic mechanisms that can be used
for supporting dynamic service co-ordination and composition. However as the
authors pointed out in [1,4], workflow systems do not cater for the dynamic and
distributed nature of service composition for two reasons: (1) a common work-
flow modelling and management environment is impossible to achieve especially
across different enterprises since no WFMS vendor shares the same workflow
syntax and semantics; (2) workflow systems do not offer facilities such as chang-
ing flow definitions which is a fundamental requirement for service composition.
Therefore, these solutions may work only for semi-fixed and fixed compositions,
however, they do not work well with explorative composition which requires the
service composition structure to be generated on the fly and the composition
itself to be changeable. Moreover, they do not support parameterization, reuse,
specialization, and nesting of service compositions.

Our approach differs from the above in the following ways:

– in this paper we propose an integrated approach towards service compo-
sition, which includes composition planning, specification, implementation
and execution.

– The concept of web component is introduced for web service reuse, special-
ization, and extension.

– At the planning stage, variables and macros can be introduced in the SCPL
which can be used for service substitution.

– Unlike workflow schemas SCSL is a light-weight specification language in
XML which can be executed in different organizational settings without too
much implementation overhead.

36 Jian Yang and Mike. P. Papazoglou

7 Conclusion

It is obvious that service composition is not just an interoperability problem. The
real challenge in service composition is how to provide a complete solution in
terms of tools that support the entire cycle of service composition, i.e., discovery,
consistency checking, composition, re-use, and extendibility.

In this paper, we presented a framework to discuss the different forms of
service composition and their essential characteristics. Based on this framework,
we presented an approach for composition planning, definition, implementation,
and execution. In order to support the need for flexible, scalable, extensible ser-
vice composition, we introduced the concept of web component that packages
together elementary or complex services and presents their interfaces and oper-
ations in a consistent and uniform manner in the form of class definitions. This
approach is light weight, flexible, and leads to reusable web components when
compared with current popular workflow solutions.

References

1. C. Bussler. The Role of B2B Protocols in Inter-Enterprise Process Execution. Proc.
Of the 2nd VLDB-TES Workshop, Rome, 2001. 22, 35

2. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M. C. Shan. Adaptive and Dy-
namic Service Composition in eFlow, HP Lab. Techn. Report, HPL-2000-39 . 35

3. F. Casati and Ming-Chien Shan. Dynamic and adaptive composition of e-services,
Information Systems, 26(2001), page 143-163, 2001. 22

4. F. Casati, M. Sayal, and M. C. Shan Developing E-Services for Composing E-
Services. Proc. Of the 13th CAiSE conference, Switzerland, 2001 35

5. V. Christophides, R. Hull, A. Kumar, and J. Simeon Workflow Mediation using
VorteXML. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 2000. 35

6. D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing Escalation
of Collaboration Processes in Crisis Mitigation Situations. Proceedings of ICDE
2000, San Diego, CA, USA, 2000. 35

7. H. Kuno, M. Lemon, A. Karp, and D. Beringer. Conversations + Interface =
Business Logic. Proc. Of the 2nd VLDB-TES Workshop, Rome, 2001. 22

8. M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services in a Cooperative
Multi-platform Environment. Proc. Of the 2nd VLDB-TES Workshop, Rome, 2001.
33

9. M. P. Papazoglou, A. Delis, A. Bouguettaya, M. Haghjoo. “Class Library Support
for Workflow Environments and Applications”. IEEE Transactions on Computer
Systems , vol. 46, no.6, June 1997. 26

10. W. M. P. van der Aalst and A. Kumar. XML Based Schema Definition for Support
of Inter-organizational Workflow. Information System Research (accepted) 26

11. W-J Van Heuvel, J. Yang, and M. P. Papazoglou. Service Representation, Discov-
ery, and Composition for E-Marketplaces, Proc. Of International Conference on
Cooperative Information Systems (cooPIS01), Sep, 2001. 33

12. J. Yang, M. P. Papazoglou, and W-J Van Heuvel. Tackling the Challenges of Service
Composition. Proc. of ICDE-RIDE workshop, San Jose, 2002. 25

13. Web Service Definition Language. http://www.w3.org/TR/wsdl. 21, 30

	Web Component: A Substrate for Web Service Reuse and Composition
	Introduction
	Service Composition: Technical Challenges
	A Framework for Service Composition
	Composition Logic

	Creation of Web Components
	Basic Constructs for Service Composition
	The Web Component Class Library
	Web Component Specification in XML

	Service Composition Planning and Composition Execution Languages
	Service Composition: A Complete Picture
	Related Work
	Conclusion

