
The World of e-Business: Web-Services,
Workflows, and Business Transactions

Michael P. Papazoglou

Infolab, Tilburg University, PO Box 90153, 5000 LE, Tilburg, Netherlands
{mikep}@kub.nl

Abstract. Process oriented workflow systems and e-business applica-
tions require transactional support in order to orchestrate loosely cou-
pled services into cohesive units of work and guarantee consistent and
reliable execution.
In this paper we introduce a multi-level transaction model that provides
the necessary independence for the participating resource managers, e.g.,
local database and workflow servers of organisations, engaging in business
transactions composed of interacting web-services. We also present tax-
onomy of e-business transactions features such as unconventional atomic-
ity criteria, the need for support for business conversations and the need
for distinguishing between three basic elements within a business trans-
action. In addition, we argue that an extensible framework such as the
Business Transaction Protocol (BTP) proposed by OASIS is necessary
for building robust and extendible e-business applications.

1 Introduction

Electronic-business applications are based on a sequence of business messages
that are exchanged between enterprises, their content, precise sequence and tim-
ing, for the purpose of carrying a business activity or collaboration, e.g., secu-
rities trade settlement. Such business activities are known as business processes
and could be both internal and external to organisations. We, may view an
automated business process as a precisely choreographed sequence of activities
(actions) that performs a certain business task and which operate from a start
state until an end state is achieved. For example, processing a credit card num-
ber, hiring a new employee, ordering goods from a supplier; creating a market-
ing plan; processing and paying an insurance claim; and so on, are all examples
of business processes. An activity such as a credit check, automated billing, a
purchase order, stock updates and shipping on the back end systems, or such
frivolous tasks as sending a document, and filling a form, constitutes part of the
business process.

Business processes need to cross-organisational boundaries, i.e., they occur
across organisations or between organisational subunits. Therefore, they can
drive their collaboration to achieve a shared business activity by enabling highly
fluid networks of collaborating web-services. The process workflow is made up
of activities that follow routes, with checkpoints represented by conditions and

Ch. Bussler et al. (Eds.): WES 2002, LNCS 2512, pp. 153–173, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



154 Michael P. Papazoglou

rules. Enterprise workflow systems today support the definition, execution and
monitoring of long running processes that coordinate the activities of multiple
business applications. However, they do not separate internal implementation
from external protocol description.

Web-services technology promises to facilitate this undertaking by replacing
proprietary interfaces and data formats with a standard web-messaging infras-
tructure. Web messaging is sufficient for some simple application integration
needs; however, it does not adequately support the complete automation of
critical business processes. Process automation requires both the ubiquitously
supported standards for interfaces and data that work as well across the firewall
as well as within it.

With e-business applications trading partners must run their own, private
business processes (workflows). The interdependent workflows among multiple
trading partners need to be coordinated to ensure that the outcome of the col-
laborative business process is reliable. Therefore, the interdependent workflows,
which may drive business transactions, must interlock at points to achieve a
mutually desired outcome. This synchronization is one part of a wider busi-
ness collaboration protocol that defines the public, agreed interactions between
business parties. Therefore, the motivation is to create a business transaction
protocol (BTP)1 to be used in e-business applications that require transactional
support beyond classical ACID and extended transactions. Classical (ACID)
transactions2 and extended transaction models based on the ACID transactions
are too constraining for the applications that include activities and services that
are disjoint in both time and location. Strict ACIDity and isolation is not appro-
priate to a loosely coupled world of autonomous trading partners, where security
and inventory control issues prevent hard locking of local databases. Sometimes
in a loosely coupled or long running activity it may be desirable to cancel a work
unit without affecting the remainder.

The purpose of BTP is to orchestrate loosely coupled software services (e.g.
web services) into a single business transaction. BTP offers transactional support
in terms of coordinating distributed autonomous business functionality, in the
form of services that can be orchestrated by the business application.

This paper provides an overview of current developments in the areas of
business process automation and workflow systems for service-based B2B ap-
plications and outlines the requirements, essential characteristics and building
blocks for BTPs based on networks of collaborating web-services. The paper
introduces a set of criteria for business transaction functionality and measures
standard initiatives such as the Web Service Flow Language (WSFL) and the
ebXML Business Process Specification Schema (BPSS) against them.

1 A standard BTP is currently under development by representatives of numerous soft-
ware product companies, grouped in the Business Transaction Technical Committee
(BTTC) of OASIS [1].

2 ACID transactions can be still be used in the context of e-business for short duration
activities.



The World of e-Business 155

2 Business Transactions Characteristics

A business transaction is a consistent change in the state of the business that is
driven by a well-defined business function. Normally, business processes are com-
posed of several business transactions essentially signifying interactions between
businesses to accomplish some well-defined shared business process. A business
transaction in its simplest form could represent an order of some goods from
some company. The completion of an order results in a consistent change in the
state of the affected business: the order database is updated and a document copy
of the purchase order is filed. More complex business transactions may involve
payment processing, shipping and tracking, coordinating and managing mar-
keting strategies, determining new product offerings, granting/extending credit,
managing market risk and so on.

Business transactions (BTs) are automated long-running propositions involv-
ing negotiations, commitments, contracts, shipping and logistics, tracking, varied
payment instruments, exception handling and customer satisfaction. BTs exhibit
the following characteristics:

1. They represent a function that is critical to the business, e.g., supply-chain
management.

2. They can involve more than two parties (organisations) and multiple re-
sources operated independently by each party, such as business applications,
databases and ERP systems.

3. They define communications protocol bindings that target the emerging do-
main of web-services, while preserving the ability to carry business trans-
action messages also over other communication protocols. Protocol message
structure and content constraints are schematised in XML, and message
content is encoded in XML instances.

4. They should be based on a formal trading partner agreement, such as Roset-
taNet Partner Interface Processes (PIPs) or ebXML Collaboration Protocol
Agreements (CPAs).

Due to their long-lived nature and multi-level collaborations, BTs require
support for a variety of unconventional behavioural features that can be sum-
marised as follows:

1. Generic characteristics:
(a) who is involved in the transaction;
(b) what is being transacted;
(c) the destination of payment and delivery;
(d) the transaction time frame;
(e) permissible operations.

2. Distinguishing characteristics:
(a) links to other transactions;
(b) receipts and acknowledgments;
(c) identification of money transferred outside national boundaries.



156 Michael P. Papazoglou

3. Advanced characteristics:
(a) the ability to support reversible (compensatible) and repaired (contin-

gency) transactions;
(b) the ability to reconcile and link transactions with other transactions;
(c) the ability to specify contractual agreements, liabilities and dispute res-

olution policies;
(d) the ability to support secure transactions that guarantee integrity of

information, confidentiality, privacy and non-repudiation;
(e) the ability for transactions to be monitored, audited/logged and recov-

ered.

Business transactions usually operate on document-based information ob-
jects such as documents and forms. A document is traditionally associated with
items such as purchase orders, catalogues (documents that describe products
and service content to purchasing organisations), bids and proposals. A form is
traditionally associated with items such as invoices, purchase orders and travel
requests. Forms- based objects are closely aligned with business transactions that
have a numerical or computational/transformational nature while document-
based objects are usually associated with agreements, contracts or bids. This
allows business transactions to interchange everything from product informa-
tion and pricing proposals to financial and legal statements.

When a business function is invoked through a web-service as part of a larger
business process, the overall transactional behaviour associated with that busi-
ness process depends on the transactional capabilities of the web-service. Rather
than having to compose ever more complex end-to-end offerings, application de-
velopers choose those elements that are most appropriate, combining the trans-
actional and non-transactional web- service fragments into a cohesive BT-service
whole. In [18] we proposed two kinds of business transactions (on which we ex-
pand in this paper):

– Atomic business transactions: these are small scale interactions made up of
services that all agree to enforce a common outcome (commit or abort) of the
entire transaction. The atomic transaction follows the ACID properties and
guarantees that all participants will see the same outcome (atomic). In case
of a success all services make the results of their operation durable (commit).
In case of a failure all services undo (compensate, roll-back) operations that
they invoked during the transaction.

– Cohesive business transactions (or ”cohesions3”): these are aggregations of
several atomic transactions. Cohesions are non-atomic in the sense that they
allow the selective confirm (commit) or cancel (rollback) of participants (even
if they are capable of committing). The atomic transactions forming a partic-
ular cohesion do not necessarily have a common outcome. Under application
control, some of these may be performed (confirmed), while others may fail.

To understand atomic transactions we introduce a simple example. Assume
that a client application (initiator in Figure-1) decides to invoke one or more
3 This terminology has been borrowed from the OASIS BTP specification.



The World of e-Business 157

operations from a particular service such as orderFulfillment. It is highly likely
for the client application to expect these operations to succeed or fail as a unit.
We can thus view the set of operations used by the client in each web-service
as constituting an atomic unit of work (atomic BT or service-atom). An atomic
transaction follows the traditional ACID properties and must either fully commit
or fully rollback. Within an atomic transaction, the operations exposed by a
single transactional web-service and the internal processes of the service, e.g.,
support processes, would usually make up a single atomic transaction.

Since atomic transactions use a two-phase commit protocol (with presumed
abort), a coordinating process is required to manage the BTP messages sent to
the participating services within a given atomic transaction. This coordinator
might be implemented within the application itself, or more likely, it will be a
specialised web service [2]. Once the actual work involving the consumed web
services in an atomic transaction has finished, the client application can begin
the two-phase commit coordination of those web- services. The client is expected
to control all aspects of the two-phase commit protocol, i.e. prepare phase and
confirm phase. to decide upon timings implicitly permits reservation-style busi-
ness processes to be carried out with ease. For instance, this can apply to a
hotel or aircraft reservation system, where the prepare phase of the two- phase
commit protocol reserves a room or seat, and the confirm phase actually buys
the reserved room or seat.

CoordinatorCoordinator ParticipantParticipant

InitiatorInitiator

Service#2Service#2

Service#1Service#1
operation1
operation2 
operation3

operation1
operation2 
operation3

votevote
enrollenroll
resignresign

prepareprepare
confirmconfirm
cancelcancel

coordination 
protocol

operation
invocation 

protocol

CoordinatorCoordinator ParticipantParticipant

InitiatorInitiator

Service#2Service#2

Service#1Service#1
operation1
operation2 
operation3

operation1
operation2 
operation3

votevote
enrollenroll
resignresign

prepareprepare
confirmconfirm
cancelcancel

coordination 
protocol

operation
invocation 

protocol

Fig. 1. BT actors and their invocations.

A cohesive transaction (or cohesion) is a set of service atoms that can be
manipulated by the BT’s initiator (typically a client application). With cohesion,
an initiator can dictate whether a service atom within the cohesion succeeds or
fails, even if the service is capable of succeeding. To exemplify this consider the
following case [2]. In an e-business application one service atom arranges for the
purchase of a valuable object, while a second arranges for its insurance, and a
third one for its transportation. If the client application is not risk-averse, then
even if the insurance atom votes to cancel, then the client might still confirm
the cohesion and get the item shipped uninsured. Most likely, however, the client



158 Michael P. Papazoglou

would simply like to re-try to obtain insurance for the item. In this case the web
services infrastructure comes into play, and the client would opt for another
insurer via the UDDI service infrastructure. Once the client discovers a new
insurer, it can try again to complete the cohesion with all the necessary atoms
voting to confirm.

One of the major drawbacks of web-services is that their underlying imple-
mentations are located remotely and hosted by third parties, thus, there is an
increased risk of failure during their application. To cater for this threat a cohe-
sion transaction may decide to selectively cancel atomic transactions and create
new ones during its lifetime. Thus, the membership of cohesion is established
dynamically by the action of a client application.

Using a combination of atomic transactions that deal with smaller interac-
tions, and cohesions that deal with larger business transactions, provides a great
deal of flexibility in creating an overall transaction scheme that is both robust
and flexible [2].

2.1 Business Conversations

In business applications it is expected that web-services can communicate
through conversation sequences. A conversation sequence is a long-running se-
quence of interactions, e.g., documents exchanges, between two or more inter-
acting services [12]. For example a component manufacturer may engage in a
conversation with a supplier and a conversation with a shipper to carry out the
activity of purchasing parts. In many situations, the backend logic triggered as
part of these conversations may be transactional. For example, it is possible to
arrange for parts to be shipped and later to cancel the shipment (provided that
the parts have not been actually shipped). Cancelling the shipment is an ex-
ample of a compensating transaction, it compensates for the initial transaction
that arranged for the shipment. Since the notion of conversation is fundamental
to web-services, the exportation of transactional properties should fit within the
context of conversations, giving rise to transactional conversations [12]. For ex-
ample, a master purchasing agreement, which permits the placing of orders for
components by known buying organisations allows a buyer and a seller to create
and subsequently exchange meaningful information about the creation and pro-
cessing of an order. Such agreements stem from business negotiations and are
specific to a particular trading community, e.g., a vertical e-marketplace such as
semiconductors, chemicals, travel industry, etc.

One important element of business conversations is to be able to demarcate
the parts of a conversation that are transactional. At one extreme the whole
conversation sequence may be considered transactional. However, as this is not
practical, it is more likely that a conversation sequence may have multiple parts
that we can view as transactional.

2.2 Atomicity Criteria

BTs are governed by unconventional types of atomicity much in the spirit of
business applications that use them. We may distinguish between the following
broad types of atomicity some of which were reported in [5] and [19]:



The World of e-Business 159

– Service request atomicity: a single operation on a web service occurs com-
pletely or not at all. This is a capability that the end-point publishes to
users. The end-point may implement this by an internal transaction on its
infrastructure, or some other mechanism. Service request atomicity simply
implies that each service provider offers services and operations (and guar-
antees) that will complete as an atomic piece of work.

– Payment atomicity: payment-atomic protocols affect the transfer of funds
from one party to another. Payment atomicity is the basic level of atomicity
that each electronic commerce protocol should satisfy.

– Goods atomicity: goods atomicity protocols are payment-atomic, and also
affect an exact transfer of goods for money. Goods atomicity implies that
the goods will be received only if payment has been made.

– Certified delivery atomicity: certified delivery-atomic protocols are payment-
and goods-atomic protocols that allow both transacting parties to prove
exactly which goods were delivered. A goods-atomic transaction guarantees
delivery to the customer, but an additional requirement is that the right
goods are delivered.

– Contract atomicity: in addition to these basic atomicity protocols, BTs are
generally governed by contracts and update accounts. These are normally
based on electronic commerce protocols that include the exchange of finan-
cial information services and the exchange of bills and invoices. Thus for
e-business applications payment- atomic protocols must also be contract-
atomic. If a contract atomic BT succeeds it may be designated as legally
binding between two (or more) partners, or otherwise govern their collabo-
rative activity. If it fails it is null and void, and each partner must relinquish
any mutual claim established by the transaction. This can be thought of as
”rolling back” the BT upon failure.

– Non-Repudiation atomicity: contract atomic transactions are also non-repu-
diation atomic. This requires the storage of all the messages and receipts for
extended periods of time (months or years).

– Conversation atomicity: allows a pair of collaborating services to correlate
sequences of requests within a logical unit of work. The pair of services uses
architected conversation messages and headers to begin the conversation and
end the conversation. They determine if the conversation ended successfully
or if one or both participants want the conversation to rollback. The seman-
tics of rollback is that each participant (service) can undo the operations
it has performed within the conversation and expect its counterpart service
to revert back to a consistent state. Furthermore, a service can rely on its
counterpart service’s transactional behaviour to ensure state consistency in
the presence of failures, such as logical error conditions, e.g., shipping is im-
possible, or system-level failures, e.g., crash of a process or a network failure.

The above atomicity criteria could be seen as core programming constructs
for building business applications that make use of them. I addition, they can
be extended and specialised to serve the needs of a large variety of business
applications.



160 Michael P. Papazoglou

3 Business Transaction Protocols

One of the earlier attempts to define an Internet-based transaction protocol that
simplifies the distributed applications programming is the Transaction Internet
Protocol (TIP) [3]. The TIP deals with the deficiencies of conventional two-phase
commit (2PC) protocols. Conventional 2PC protocols employ a one-pipe model
whereby the transaction protocol flows over the same conduit (pipe) as the as the
application to application communications. This renders them complex and hard
to implement, thereby inhibiting the development of distributed business appli-
cations. TIP is a simple two-phase commit protocol that removes the restrictions
of conventional 2PC protocols by providing ubiquitous distributed transaction
support in a heterogeneous and cross-domain environment. This is made possi-
ble by employing a two-pipe model separating the transaction protocol from the
application communications protocol.

Although the TIP offers flexibility for 2PC protocol-based short-lived trans-
actions, it falls short in the case of long-lived business transactions. Business
transactions consist of a number of component transactions with largely differ-
ent response times, thus blocking resources controlled by short- lived transac-
tions for unacceptably long periods of time, rendering them unable to process
new service requests. This is an undesirable option from an autonomous service
provider’s point of view.

3.1 Nature and Characteristics

To address the shortcomings of the TIP and at the same time provide support
for business web-service enabled transactions, OASIS has introduced the concept
of the Business Transaction Protocol (BTP) [1]. The BTP is designed to provide
a basic framework for providing transactional coordination of participants of
services offered by multiple autonomous organisations that use XML (WSDL)
to exchange data.

BTP is a core-level transaction protocol that contains a set of specific mes-
sages that get exchanged between systems supporting a business application in
order to achieve interoperability between web-service enabled transactions. How-
ever, as already proposed by the TIP, prior to performing a business transaction
interacting systems need to exchange application-specific messages to affix ten-
tative commitments to the terms of an interaction, e.g., price, quantity, delivery
time, etc. To exemplify this, consider a manufacturing company that orders the
parts and services it needs on-line. This manufacturer may have relationships
with several parts suppliers and several providers of services such as shipping
and insurance. Thus, within this example, the manufacturer’s and a chosen sup-
plier’s applications, could exchange XML messages detailing what the goods are,
their quantity, price and so on. After these terms are accepted the applications
will start exchanging BTP messages implementing the business transaction. The
parts of the business application (in both interacting systems) that handle these
different sets of messages need to be distinguished. Therefore, for each party
intending to use BTP-based messages to implement its business transactions it
would be useful to distinguish between the following elements:



The World of e-Business 161

1. The business application communication protocol element (pre-transaction
phase) that exchanges meaningful business terms such as order information
and is the prelude to performing associated business functions. Automating
the exchange of critical information prior to the actual business transaction
decreases the impact of out-of- date data, reduces the potential for cancel-
lations, and improves the odds of successfully completing transactions.

2. The main-transaction or BT-based element, which sends and receives the
BTP messages, performs specific roles in the protocol (refer to the follow-
ing subsection). BTP elements assist the application in executing business
transactions and getting the actual work of the application done.

3. The post-transaction element that is responsible for observing the agreements
and terms stipulated during the execution of a BT. This element corresponds,
broadly speaking, to contract fulfilment phase.

In the following we examine briefly the W3C Tentative Hold Protocol (an
application communication protocol) and subsequently introduce elements of the
OASIS Business Transaction Protocol.

3.2 The W3C Tentative Hold Protocol

The objective of Tentative Hold Protocol (THP) is an effort to facilitate auto-
mated coordination of multi- business transactions [9]. Tentative Hold Protocol
is an open, loosely coupled messaging-based protocol for the exchange of in-
formation between trading partners prior to the actual transaction itself. This
framework includes a standard way for trading partners to exchange tentative
commitments to the terms of an interaction, e.g., price, quantity, delivery time,
and so on, and update each other when the situation changes.

THP defines an architecture that allows tentative, non- blocking holds or
reservations to be requested for a business resource, e.g., the items for sale from
an online retailer. In this example of online ordering, these lightweight reser-
vations are placed prior to the sale, allowing multiple clients to place holds on
the same item (thus non-blocking). Whenever one client completes the purchase
of the item the other clients receive notifications that their holds are no longer
valid. This provides flexibility for both ends of the transaction. The clients have
the ability to request tentative reservations on the resources that they want
to acquire as a single coordinated purchase, verifying price and availability be-
fore completing the transactions. If one item becomes unavailable (purchased
by some other client), this client has the ability to replace it with another item
without losing any holds on other items already reserved. The vendors grant
non-blocking reservations on their products, retaining control of their resources,
while allowing many potential customers greater flexibility in coordinating their
purchases.

There is a THP coordinator on both the client and resource owner side,
responsible for communicating various messages such as hold requests, cancella-
tions, and so on. Additionally, a resource owner provides a business rules engine
with which the resource side THP coordinator communicates in order to handle



162 Michael P. Papazoglou

business rule specific actions. This gives the resource owner the possibility of pro-
viding targeted customer service with the granting of holds, specifying greater
or lesser hold expirations for a given hold request, as well as the potential for
notifying valued clients when some resource is being reserved by another client
- allowing the preferred client the opportunity to lock in their purchase first.

Tentative Hold Protocol and Compensating Transactions. The man-
agement of cross-organisation business transactions often involves the use of
compensating transactions. Under normal circumstances individual steps in a
business transaction are completed immediately. However, if one of the business
transaction steps fails, the other steps in the transaction are undone using a
compensating transaction. A new transaction is issued to compensate for the
failed transaction, e.g., an order cancellation transaction would compensate for
the order placement transaction.

Not all business transactions may be cleanly and completely reversable. Con-
sider, for example, a situation where an item was purchased across interna-
tional borders. Such a purchase could conceivably involve fluctuating currency
exchange rates. A compensating transaction for a cancelled sale may not result
in transferring the same amount of money should the exchange rate fluctuate be-
tween the original transaction and the compensating transaction. Compensating
transactions can be kept to a minimum by using the THP.

Adding a tentative hold phase for business application elements provides the
following benefits [9]:

– Minimises compensations. Consider, for instance, a client application which
attempts to coordinate the purchase of an item X from company A and item
Y from company B. Without THP, the client application would most likely
place an order for item X from company A, and then try to purchase item
Y. If the application is unable to purchase item Y, then it would compensate
for its earlier action in its business logic by cancelling the order with com-
pany A. However, if tentative holds were used, the client application would
place tentative holds on both the items thus ensuring their availability, and
thereafter complete both purchases. In this case, the application is far less
likely to cancel, having determined that both X and Y are available at an
acceptable price before placing any orders.

– Reduces lag between original transaction and compensation. From the pre-
vious example, it is clear that the lag time between a purchase and a com-
pensating transaction would be reduced as the client application acquires
tentative commitments from all potential business partners before it issues
any actual business transactions with any one of them.

Tentative Hold Protocol and Two Phase Commit. Introducing a ten-
tative hold phase prior to the 2PC protocol – for small scale interactions, i.e.,
atomic transactions, where resource locks can be tolerated – provides the follow-
ing benefits [9]:



The World of e-Business 163

– Shortens the required 2PC lock duration by minimizing the time spent in
the prepare phase since it allows applications to obtain tentative commits
and make all decisions before they enter the prepare phase of a 2PC commit
transaction.

– Minimises the likelihood of rollbacks since it allows the customers and ven-
dors to exchange information on the terms they could commit to, e.g., price
and quantity, and keep each other up-to-date about any change in status
through proactive notifications.

3.3 The OASIS Business Transaction Protocol

The Business Transaction Protocol, BTP, is a Committee Specification of the Or-
ganisation for the Advancement of Structured Information Standards (OASIS)
[1]. BTP is an interoperation protocol that defines how transactional services
behave, and what messages are passed between those services during a transac-
tion.

BTP is based on two-phase commit for small-scale (short duration) interac-
tions known as atoms, which can be aggregated into larger non-ACID transac-
tions known as cohesions [2]. BTP atoms are the atomic transactions introduced
in section-2 and in that respect they posses full ACID properties and are coor-
dinated by a standard two- phase commit protocol.

The BTP cohesion (refer to section-2 for a definition) is a transaction that is
run by a voting/enrolment process where the client application of the transaction
has the final approval or rejection vote. The client can apply business rules to its
decision-making process in full light of the recommendations made by all of the
atoms in the transaction. For cohesions a relaxed form of the two-phase commit
protocol is used. This is illustrated in Figure 3 and will be explained later in this
section.

The BTP should be implemented on the sites of all trading partners. To co-
ordinate interaction the BTP defines the roles that trading partner applications
may perform in a BTP-based interaction. It also introduces the messages, e.g.,
enrol, vote, prepare, etc, that pass between such actors and the obligations upon
and commitments made by actors-in- roles. There are a variety of roles used in
this specification:

1. A transaction is always initiated by an application of a trading partner (ini-
tiator). The initiator sends application messages to a web-service in order to
invoke its operations.

2. A transaction coordinator is a software component that implements the BTP
and can decide about the outcome of a single atomic transaction. It enlists
and de-lists participants in a transaction and participates in the transaction
execution protocol. A coordinator instructs participants to prepare, cancel,
and/or confirm, see Figure 1. A transaction participant returns a successful
message to a prepare instruction if it is capable of confirming or cancelling the
set of operations it participates in an atomic transaction, i.e., first phase of a
2PC protocol. The cancel message is essentially the rollback operation of an
atomic transaction. The confirm message instructs participants to make their
current set of operations permanent, i.e., commit. The coordinator makes its



164 Michael P. Papazoglou

decisions based on input from BT participants and the BT initiator. As BTs
are nested there might be multiple coordinators in a BT. These can play the
role of a main or subordinate coordinator. There is only one main coordinator
in a BT. The main coordinator drives the execution/termination protocol for
that BT. The subordinate coordinators cooperate with the main coordinator
for terminating a transaction with success, failure or timeout.

3. The applications of trading partners that take part in a transaction are called
participants. These are capable of executing prepare, cancel and/or confirm
operations issued by a coordinator. A participant is capable of sending vote
and prepare messages to a coordinator, see Figure 1. A participant sends a
vote message to a coordinator usually in response to a prepare message. A
participant can vote to cancel, ready, ready with inability to cancel after
timeout, or ready with cancel after timeout. An enrol message is sent from
participant to a coordinator when a participant has a set of operations that
it wants to participate in a service atom. A resign message is sent from a
participant to a coordinator to indicate that the service should no longer
be part of this atomic transaction. These signals are used by the applica-
tion(s) to determine whether to confirm or cancel the results of application
operations.

Since multiple application components and resources participate in a BT, it
is necessary for the transaction coordinator to establish and maintain the state
of the BT as it occurs. This is achieved by using a transaction context, which is
a data structure propagated onto messages passed between the BT initiator and
the services within a business transaction. It specifies the type of a transaction
atomic transaction or cohesion and identifies it as a superior - containing both
addressing information and the identification of the relevant state information.
The business transaction context is unique to a transaction instance and it con-
tains information that helps the actors to execute the BTP. The context also
indicates whether this superior will behave atomically or cohesively with respect
to its inferiors4.

The propagation of the business transaction from one party to another, to es-
tablish the superior:inferior relationships involves the transmission of the trans-
action context. This is shown in Figure 2.

The Cohesion Protocol. The BTP uses a variation of the two-phase com-
mit protocol, where participating resources are allowed to pre- commit their
sub-transaction and apply a compensating action in case the main transaction
terminates with a failure. First the application elements exchange messages that
determine the characteristics and cause the execution of the provisional effect;
then they send a separate reply message, to the BTP element, asking for confir-
mation or cancellation, Figure 3. This comprises the following steps [1]:
4 The BTP distinguishes between superiors that treat their inferiors in an atomic or

cohesive fashion. The former are called (atom) coordinators, while the latter are
called (cohesion) composers. . we will use the term coordinator in the broad sense
to encompass both types of superior behaviour.



The World of e-Business 165

Initiator ParticipantSubordinate
Coordinator

Main 
Coordinator

4: receive business message

5: enlist participant

10: transaction terminated

3: send message

9: terminate transaction

11: transaction terminated

7: enlist subordinate
coordinator

1: create transaction

2: send message

8: terminate transaction

12: transaction terminated

6: register

Fig. 2. Actors that can be involved in a business transaction.

– The coordinating entity decides to terminate the BTP in which case it needs
to determine whether the BT participants are able either to confirm or cancel
their respective operations, by sending them prepare messages.

– The participants report their ability to confirm-or-cancel (their prepared-
ness) to the coordinating entity. After receiving these reports, the coordi-
nating entity:
1. determines which of the systems should be instructed to confirm and

which should be instructed to cancel
2. informs each system whether it should confirm or cancel by sending a

message to its BTP element.
3. The coordinating entity returns a set of results to its superior entity

(the client application). The client application may decide to confirm
the cohesion even in the case that some of the atoms have chosen to
cancel rather than confirm.

In most standard 2PC-based systems the coordinating entity automatically
commits (confirms) if all the participants vote ready. The BTP deliberately
hands the decision up to the initiator (client) application. This allows the ini-
tiator to make complex decisions about the outcome of the atomic transac-
tion (confirm, cancel). These decisions are based on business rules and other
(application-related) service execution outcomes.

The two-phases of the BTP protocol ensure that either the entire attempted
transaction is abandoned or a consistent set of participants is confirmed. Note



166 Michael P. Papazoglou

2PC – phase one
Client

1.Application

2.Application

Transaction 
Coordinator

Request to 
Confirm 
Context Preparedness?

Context

Reply

Preparedness?
Context

Reply

2PC – phase two
Client

1.Application

2.Application

Transaction 
Coordinator

Request to 
Confirm 
Context Commit/Rollback

Context

Commit/Rollback
Context

Transactional 
Outcome

2PC – phase one
Client

1.Application

2.Application

Transaction 
Coordinator

Request to 
Confirm 
Context Preparedness?

Context

Reply

Preparedness?
Context

Reply

2PC – phase two
Client

1.Application

2.Application

Transaction 
Coordinator

Request to 
Confirm 
Context Commit/Rollback

Context

Commit/Rollback
Context

Transactional 
Outcome

Fig. 3. The relaxed two-phase commit protocol for cohesions.

that this 2PC variant is a consensus protocol between parties and does not
require two-phase locking (within the participants).

The following code fragment taken from [15] illustrates how a cohesion might
look to a Java initiator. Note an API like this is not part of BTP specification,
the code is used for illustrative purposes only.

void cohesionComposer() // an application method {
Atom orderGoods = new Atom();
Atom shippingViaGoodsSupplier = new Atom();
Atom shippingFromAnotherSource = newAtom();
// application work
Quote quoteForGoods =

orderGoods.sendApplicationMessage ("quoteForGoods", arg, arg ...);
Quote quoteForShippingViaGoodsSupplier =

orderGoods.sendApplicationMessage ("quoteForShipping", arg, arg ...);
Quote quoteForShippingFromAnotherSource =

orderGoods.sendApplicationMessage ("quoteForShipping", arg, arg ...);
// ensure that the quotes are guaranteed (may be folded into app messages)
orderGoods.prepare(); // no exception, so it is ready
shippingViaGoodsSupplier.prepare(); // ditto
shippingFromAnotherSource.prepare(); // ditto
orderGoods.confirm();
QuotesOutcome quotesOutcome

= this.decideQuotesOutcome (quoteForShippingViaGoodsSupplier,
quoteForShippingFromAnotherSource);

quotesOutcome.selected().confirm();
quotesOutcome.rejected().cancel();
}



The World of e-Business 167

4 Web-Services and Workflows:
The Web-Services Flow Language

When looking at web-services, it is important to differentiate between the base-
line specifications of SOAP, UDDI and WSDL that provide the infrastructure
that supports the publish, find and bind operations in the service- oriented archi-
tecture and higher-level specifications. Higher-level specifications provide func-
tionality that supports and leverages web-services and enables specifications for
business process modelling and automation.

There are several initiatives that aim to define and manage business pro-
cess activities and business interaction protocols comprising collaborating web-
services. Among them is the Web Services Flow Language (WSFL), and XLANG.
In the following we will give a brief overview of the capabilities of WSFL as a
BTP could easily be attached to the service provider invocations (activities)
within a business process defined in WSFL and transaction demarcation could
be applied to the control link semantics as an extension of WSFL.

The Web Services Flow Language (WSFL) focuses on processing a core model
for Workflow [10]. WSFL is an XML language for the description of web-service
compositions as part of the definition of a business process. It also defines a
public interface that allows business processes themselves to be defined as web-
services. WSFL allows for added-value functions to be created as an aggregation
of services from multiple service providers. WSFL extends the web-services ar-
chitecture by providing the ability to describe compose web-services defined by
WSDL into workflows by means of a flow model. Flow models are particularly
useful when modelling business processes based on web-services. Defining the
flow of control and data between web- services specifies execution orders. The
power of WSFL lies in its ability to model business processes that span tech-
nology as well as business boundaries - a limitation that most workflow engines
suffer from.

The unit of work in WSFL is an activity. An activity represents a business
task that must be performed as a single step to completion within the context of a
business process. Every activity defined in the WSFL flow model is implemented
in the form of a web- service defined on the basis of WSDL. An activity has
a signature that is related to the signature of the operation that is used to
implement the activity. WSFL models the basic business process in the form of
a directed acyclic graph that uses simple directed edges that control the flow of
processing logic from one activity to the next.

A data link specifies that its source activity passes data to the flow engine
as part of the context of some process instance. The data link also enables the
specification of a mapping between a source and a target document, if necessary.

The WSFL global model provides a simple composition meta-model that de-
scribes how messages can be sent between the web-services in the flow model
as the flow is executed [14]. The global model describes how the web-services
involved in the business processes of the flow model are expected to interact with
one another. A plug link identifies pairs of operations that communicate with
each other, and describes which operation initiates this communication.



168 Michael P. Papazoglou

We summarise this discussion by examining how the WSFL specification
addresses business process semantics, workflow and transactional properties, and
collaborative agreements.

– Collaboration-based process modelling: WSFL describes processes as inter-
actions between web-service providers, which can be abstracted using roles
so collaboration-based process modelling tools could certainly be used to
generate WSFL descriptions.

– Workflow support: In WSFL, the flow model defines the workflow associated
with each service provider (collaboration role).

– Business transaction support: In WSFL there is no explicit mention of trans-
actions. WSFL currently does not support transactions.

– Collaborative agreements: In a separate development IBM is currently at
work expanding on XML protocols with development of a new, proposed
standard – Trading Partner Agreement Markup Language (tapML) [17]. The
foundation of tpaML is the Trading Partner Agreement (TPA) A TPA is an
electronic contract that uses XML to stipulate the general terms and condi-
tions, participant roles, e.g., buyers and sellers, communication and security
protocols, and a business protocol (such as valid actions and sequencing
rules). Although TPAs are not part of WSFL, WSFL global models give a
foundation that could be used for supporting such business agreements.

– Support for BTP: BTP could be supported by the service provider invoca-
tions (activities) within a business process defined in WSFL, while transac-
tion demarcation could be applied to the control link semantics [16].

5 Transactional Conversation Sequences

The objective of transactional conversations is to introduce a standard way of
describing BT-based conversations and thereby support interactions between
services. ebXML is a major initiative that ascribes to this principle by means of
its Business Process Specification Schema (BPSS) [13] whose aim is to support
the specification of business transactions and their choreography into business
collaborations.

An ebXML business transaction represents business document flows between
requesting and responding partners. In any BT there always is a requesting
business document, and optionally, a responding business document. Each busi-
ness transaction can be implemented using one of many available standard
UN/CEFACT Modelling Methodology (UMM) patterns, which determine the
actual exchange of business documents and business signals between trading
partners to achieve the required electronic business transaction.

An ebXML business collaboration specifies as part of a Collaboration Proto-
col Agreement (CPA) an ”agreement” between two or more business partners.
A business collaboration is essentially the specification of business transaction
activities between the two partners, their associated document flow, and the
choreography of these business transaction activities. The business collabora-
tion specifies all the business messages that are exchanged between two trading



The World of e-Business 169

Responding
Business
Activity

Shipment
Insurance

Request

Requesting 
Business Activity

Initiator Responder

[SUCCES]

End Fail

Reject
Shipment
Insurance

[FAILURE]

Shipment
Insurance
Contract

Responding
Business
Activity

Shipment
Insurance

Request

Requesting 
Business Activity

Initiator Responder

[SUCCES]

End Fail

Reject
Shipment
Insurance

Reject
Shipment
Insurance

[FAILURE]

Shipment
Insurance
Contract

Shipment
Insurance
Contract

Fig. 4. ebXML business transaction representation with a UML activity diagram.

partners, their content, and their precise sequence and timing. This part of the
”agreement” provides a shared understanding of the interaction. An ebXML col-
laboration is conducted by two parties, each using a human or an automated
business logic system that interprets the documents transmitted and decides how
to (or whether to) respond. All collaborations are composed of combinations of
atomic transactions, each between two parties. Multi- party arrangements must
be decomposed into bilateral transactions. The sequencing rules contained in a
collaboration definition are not between messages but between business trans-
action activities.

5.1 Business Collaboration Choreography

Business transaction definitions may be represented as UML activity diagrams.
The UML notation represents the requesting and responding roles as swim lanes,
the exchange of documents as object flows, and the start and end of the busi-
ness transaction. An example of this is illustrated in Figure 4, where a party
requesting to insure shipment of an object issues an insureShipment transaction,
where the transaction will reach a success or a fail state based on the result of
this request.

A collaboration and its sequencing rules are also represented with a UML
activity diagram such the one illustrated in Figure 5. An activity within a swim
lane indicates that this business transaction activity is initiated by the corre-
sponding role.

The BPSS specification defines five states: start, success, failure, fork and join,
which can be interleaved with the business transaction or collaboration activities.
These states are known as pseudo-states as they have the same semantics as a
state and are identical across collaboration definitions.



170 Michael P. Papazoglou

Fig. 5. ebXML collaboration activity diagram.

We summarise this discussion by examining how the BPSS addresses busi-
ness process semantics, workflow and transactional properties, and collaborative
agreements.

– Collaboration-based process modelling: BPSS describes public processes as
collaborations between roles, with each role abstractly representing a trad-
ing partner. There are two types of collaborations: binary collaborations
and multi-party collaborations. Multi-party collaborations are decomposed
to binary collaborations.

– Workflow support: BPSS workflow is described by assigning a public control
flow based on UML activity graph semantics to each binary collaboration.
The control flow describes the sequencing of business transactions between
the two roles.

– Business transaction support: BTs within the BPSS are applied to the se-
mantic business level with a simplistic protocol defined for the interaction be-
tween two parties (requesting and responding) and determination of success
or failure of the transaction. A business transaction consists of a request and
optionally a response. Each request or response may require that a receipt
acknowledgement be returned to the sender. For contract-forming transac-
tions such as purchase order requests an acceptance acknowledgement may
need to be returned to the requester. Time constraints can be applied to the
return of responses and acknowledgements. Transactions are not nested and
there is no support for specifying compensating transactions. No support for
atomicity types is provided other than service request atomicity.

– Collaborative agreements: A BPSS process model can be referenced in an
ebXML collaboration protocol agreement (CPA).



The World of e-Business 171

5.2 BPSS and the BTP

The following are a high level comparison of properties of business transactions
defined in ebXML and BTP and is based on an analysis presented in [16]:

– ebXML business transactions are pre-defined re-usable interactions that in-
clude one or two business documents exchange, and one or more signals that
indicate the state changes in the transaction. BTP, on the other hand, allows
any BTP aware participant/service to be part of the coordinated transaction.
The ebXML business transactions are atomic in nature and thus comparable
to the atoms of BTP.

– ebXML business transactions currently are only between two roles - request-
ing and responding partners. BTP transactions have no limitation of number
of participants that take part in the transactions.

– ebXML business transactions may be based on UMM [8] transaction pat-
terns. A transaction pattern is immaterial for BTP since coordination is
governed by protocol not by a pattern of message exchanges.

– The semantics of an ebXML transaction is enforced by the Business Ser-
vice Interface (BSI). With the BTP a service participating in a transaction
enforces the semantics of functionality, while the protocol itself supports
recovery of the transaction.

– There is no support for 2PC in ebXML transactions while BTP supports an
extension of the 2PC protocol.

The ”open top” coordination capabilities that BTP offers could be used to
prepare multiple binary collaborations and then decide to confirm only a subset
– thus allowing ebXML to support not only atomic type BTs for binary and
multi-party collaborations but also cohesive transactions for multi-party collab-
orations.

6 Concluding Remarks

Web services and businesses-to-business collaborative systems are becoming the
predominant methods of creating business applications. Process oriented work-
flow systems and e-business applications require transactional support in order
to orchestrate loosely coupled services into cohesive units of work and guarantee
consistent and reliable execution. In this paper we addressed the issues relat-
ing to the use of business transactions in web-service based applications, intro-
duced two forms of business transactions and presented a taxonomy of e-business
transaction features such as unconventional atomicity criteria, the need for sup-
port for business conversations and the need for distinguishing between three
business transaction elements: the business applications communication proto-
col element, the main-transaction element and the post-transaction element. We
have also shown that a flexible and extensible framework such as the Business
Transaction Protocol (BTP) proposed by OASIS is necessary for building robust
and extendible e-business applications. Finally, we introduced standard workflow



172 Michael P. Papazoglou

web-service based initiatives, viz. the WSFL, and the Business Process Speci-
fication Schema (BPSS) of ebXML that enables the description of the public
interface of e-business processes. We subsequently compared their operational
characteristics against those of the proposed taxonomy.

Recently, there have been several approaches to provide support for busi-
ness web-service enabled transactions in the research field. These include among
other correlation mechanisms for managing multiple service conversations [4],
protocols for conversational transactions [6], WSDL extensions to describe im-
plicit transactional semantics found in business applications [8] and extensions
of the two-phase commit protocol with a transactional messaging infrastructure
[7]. Out of these the most notable is the work reported in [8] where the authors
describe a framework that introduces transactional attitudes as extensions of
WSDL to enable web-service providers to declare their individual transactional
capabilities and semantics, and web-service clients to declare their transactional
requirements in terms of provider supplied services.

References

1. OASIS Committee Specification ”Business Transaction Protocol”, version 1.0, May
2002.

2. J. Webber et. Al. ”Making web services work”, Application Development Advisor,
Nov. Dec 2001, pp. 68-71.

3. K. Evans, J. Klein, J. Lyo, ”Transaction Internet Protocol - requirements and
supplemental information”, 1998, http://www.landfield.com./rfcs/rfc2372.html

4. A. Sahai, J. Ouyang, V. Machiraju, K. Wurster, ”End-to-End E-Service Transac-
tion and Conversation– Management through Distributed Correlation”, HP Lab-
oratories Palo Alto, HPL-2000-145, September 2000.

5. J.D., Tygar ”Atomicity in Electronic Commerce”, ACM-Mixed Media, Apr. 1998.
6. J. Ouyang, A. Sahai, V. Machiraju, ”An Approach to Optimistic Commit and

Transparent Compensation for E-Service Transactions”, HP Laboratories Palo
Alto, HPL-2001-34, February 2001.

7. S. Tai, T. Mikalsen, I. Rouvellou, S. Sutton ”Dependency Spheres: A Global Trn-
saction Context for Distributed Objects and Messages”, 5th Int’l Enterprise Dis-
tributed Object Computing Conference (EDOC), September 2001.

8. T. Mikalsen, S. Tai, I. Ravellou, ”Transactional Attitudes: Reliable Composition of
Autonomous Web Services”, Workshop on Dependable Middleware based Systems,
March 2002.

9. J. Roberts, S. Krisnamurthy, ”Tentative Hold Protocol ”W3C Workshop on Web
Services, November 2001, http://www.w3.org/TR/tenthold-1.

10. F. Leymann, ”Web Services Flow Language (WSFL 1.0), May 2001
http://www-4.ibm.com/software/solutions/webservcies/pdf/WSFL.pdf

11. S. Thatte, ”XLANG - Web Services for Business Process Design”, Microsoft Cor-
poration http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

12. S. Frolund, K. Govindarajan ”Transactional Conversations”, W3C web Services
Workshop, http://www.w3.orgt/2001/03/WSWS-popa/, July 2001.

13. BPSS - ”Business Process Specification Schema”,
ebXML Business Process Project Team, May 11, 2001
www.ebxml.org/specdrafts/cc and bp document overview ver 1.01.pdf



The World of e-Business 173

14. J.Snell ”Introducing the web services flow language”, IBM developer works, June
2001, http://www-106.ibm.com/developersworks/library/

15. A. Green, P. Furniss, ”Scope and Requirements, Actors and Terminology”, Chore-
ology Ltd, May 2001.

16. M. Potts, S. Temel ”Business Transactions in Workflow and Business Process Man-
agement”, OASIS Business Transactions Technical Committee Workflow sub- com-
mittee, Dec. 2001.

17. M. Sachs, et. al. ”Executable Trading-Partner Agreements in Electronic Com-
merce”, IBM T.J.Watson Research Center, 2000.

18. M. P. Papazoglou, A. Tsalgatidou, J Yang ”The Role of eServices and Transactions
for Integrated Value Chains”, IDEA Publishers, 2002.

19. J. Yang and M. Papazoglou. ”Interoperation Support for Electronic Business”.
Communications of the ACM, Vol. 43, no. 6, pp. 39-47, June 2000.


	1 Introduction
	2 Business Transactions Characteristics
	2.1 Business Conversations
	2.2 Atomicity Criteria

	3 Business Transaction Protocols
	3.1 Nature and Characteristics
	3.2 The W3C Tentative Hold Protocol
	3.3 The OASIS Business Transaction Protocol

	4 Web-Services and Workflows: The Web-Services Flow Language
	5 Transactional Conversation Sequences
	5.1 Business Collaboration Choreography
	5.2 BPSS and the BTP

	6 Concluding Remarks
	References

