Service-Oriented Computing

“The S.O.C. Manifesto”

Participants: Mike Papazoglou, Vincenzo d’ Andrea, Dimitris Plexousakis, Paul Grefen, Jian Yang, Massimo Mecella, Pierluigi Plebani

Topics for discussion:

· Definitions

· Characteristics

· Classification

· Scenarios

· State of the Art

· Architecture

· Technology

· Standards

· Products / prototypes

· Limitations

· Synchronizing different types of services

· Future requirements and directions

1 Definitions

Definition: Services are autonomous platform-independent computational elements that can be described, published, discovered, orchestrated and programmed for the purpose of developing distributed interoperable applications.
Services possess the ability to engage other services in a computation in order to:

· conduct a complex business transaction;

· complete a task; or

· solve a problem
and expose their features programmatically over the Internet (or intra-net) using standard Internet protocols like XML and HTTP; and

· can be implemented via a self-describing interface based on open Internet standards.

Services are accessible by a variety of devices such as personal computers, workstations, laptops, WAP-enabled cellular phones, personal digital assistants (PDAs), and even household appliances fitted with computer chips.

If services “live” on the Web then they are called web-services. Web-services enable developers to construct Web-based applications using any platform and programming language that is required. Once a web-service is deployed, other applications and web-services can discover and invoke that service.

One important aspect of services is that they distinguish between an interface and implementation part. The interface part defines the functionality visible to the external world and how it is accessed. The service describes its own interface characteristics, i.e., the operations available, the parameters, data-typing and the access protocols, in a way that other software modules can determine what it does, how to invoke its functionality, and what result to expect in return. In this regard, services are contracted software modules as they provide publicly available descriptions of the interface characteristics used to access the service so that potential clients can bind to it. The service client uses the service’s interface description to bind to the service provider and invoke its functionality.
The implementation realizes the interface and the implementation details are hidden from the users of the service. Different service providers using any programming language of their choice may implement the same interface. One service implementation might provide the direct functionality itself, while another service implementation might use a combination of other services to provide the same functionality.

The eventual goal of service-oriented computing is to enable distributed applications that can be dynamically assembled according to changing business needs, and customised based on device and user access.

2 Service types and characteristics

Services exhibit the following characteristics, which we will describe in the following.

· Functional and non-functional properties

· State properties

· Granularity

· Complexity

· Synchronicity

· Extensibility

· Configurability (static / binding)

· Subtyping

· Parameterizability (run-time)

· Wrapping

· Composition

· Coding (around the service)

2.1 Functional and non-functional properties

Services are described in terms of a description language that provides functional as well as non-functional characteristics. Functional characteristics include operational characteristics that define the overall behaviour of the service while non-functional characteristics include security, authorisation, authentication, performance characteristics, e.g., speed or accuracy, timeliness information as well as payment schemes on a “Finance it”, “Lease it”, “Pay for it” or “Pay per use” basis.

2.2 State properties

Services exhibit an important characteristic, they are:

· Stateless: This means that services in their pure form do not keep any memory of what happens to them between requests. Consequently, all the information required to perform the service is either passed with the request message or can be retrieved from a data repository based on some information provided with the request.

2.3 Complexity and granularity

Services can vary in function from simple requests (for example, currency conversion, credit checking and authorization, inventory status checking, or a weather report) to complex systems that access and combine information from multiple sources, such as an insurance brokering system, a travel planner, an insurance liability computation or a package tracking system. We distinguish between two forms of services: simple informational and interactive (session-oriented) services.

Simple informational services are discrete in nature, exhibit normally a request/reply mode of operation and are of fine granularity, viz. atomic in nature. Informational services are services of relatively simple nature, they either involve simple request/response sequences between interacting services thus providing access to content (content services) or they expose back-end business applications to other applications located outside the firewall (business process services). Simple services are programmatic services as they encapsulate a programmatic process and expose the logic of the applications and components that underly them, e.g., currency conversion. These services expose function calls, typically written in programming languages such as Java/EJB, Visual Basic or C++. Applications access these function calls by executing a service through standard WSDL programmatic interface. The exposed programmatic services perform a request-response type of business task and return a concrete result, in this sense they can be viewed as “atomic” operations. The clients of these services can assemble them to build new applications.

We can also distinguish between three models of simple services on basis of the business functionality they provide [Papa 03]:

1. Pure content services give programmatic access to content such as weather report information, simple financial information, stock quote information, design information, news items and so on.

2. Business process services are more complicated forms of information services can also provide a seamless aggregation of information across disparate systems and information sources, including back-end systems, giving programmatic access to a business service so that the requester can make the best decisions. Typical examples include services such as reserving a rental car or submitting a purchase order.

3. Information syndication services aggregate (business) information with the goal of establishing coherent market intelligence among the members of a vertical market sector. Information syndication services are value-added information services that purport to "plug into" commerce sites of various types, such as e-Marketplaces, or sell-sites. Generally, these services are offered by a third-party and run the whole range from commerce-enabling services, such as logistics, payment, fulfilment, and tracking services, to other value-added commerce services, such as rating services. Typical examples of syndicated services might include reservation services on a travel site or rate quote services on an insurance site.

Informational and simple trading services are atomic in that they perform a complete unit of work that leaves its underlying data stores in a consistent state. However, they are not transactional in nature. Informational and simple trading service require support by the three evolving standards: (i) Service description (WSDL), (ii) Service Publication and Discovery (UDDI) and (iii) Communication Protocol (SOAP). The key limitations of information and simple trading services are that they do not define any standards for business collaboration, process definition or security over the Web.

Today, most of the software vendors who support web-services provide either information syndication or simple trading functionality.
Interactive services are coarse-grained and involve interactions with other services and possibly end-users in a single or multiple sessions. Enterprises can use a single (discrete) service to accomplish a specific business task, such as billing or inventory control or they may compose several services together to create a distributed e-business application such as customised ordering, customer support, procurement, and logistical support. These services are collaborative in nature and some of them may require transactional functionality. From an e-business perspective these services are referred to as complex trading services [Papa 03].

For businesses to obtain the full benefit of service oriented computing, transactional-like service functionality is required. Business-to-business collaboration relies on numerous document exchanges, multi-party, long running transactions (or “business conversations”) that involve sophisticated security techniques, such as non-repudiation and digital signatures, as well as business process management. Business-to-business collaboration usually involves business agreement descriptions, which define roles such as buyer and seller and a purchasing protocol between them. Consider for instance a secure supply-chain marketplace application where buyers and suppliers collaborate and compete for orders and the fulfilment of those orders. Numerous document exchanges will occur in this process including requests for quotes, returned quotes, purchase order requests, purchase order confirmations, delivery information and so on. Long running transactions and asynchronous messaging will occur, and business “conversation” and even negotiations may occur before the final agreements are reached. This type of functionality is exhibited by complex web-services. Complex interactive services, just like informational services, require the support of standards such as SOAP, WSDL and UDDI, however, they also require emergent standards for the following functions:

· Describing business processes and their behaviour based on interactions between the process and its partners and how multiple service interactions with these partners are coordinated to achieve a business goal, as well as the state and the logic necessary for this coordination (BPEL);

· Business transactions and collaboration partner agreements;

· A registry for publishing and discovering business processes and collaboration protocol profiles;

· Standard business terminology;

· A uniform message transportation layer.

In addition to the models and types of web-services mentioned above it also useful to divide information services into different categories based on the web-service requester’s perspective. We base the following classification and discussion on a revision of the findings reported in [Péraire 00]. Here we may distinguish between the following service categories:

Commodity service: this kind of service is provided by a large number of different providers. Replacing one service provider by another will not compromise system functionality and unavailability of the web-service does not affect productivity. Each access to a service is preceded by discovery phase until an appropriate provider (in terms of price and service quality) is located. An example of this kind of web-service is a weather report as part of a travel application.

Replaceable service: a replaceable web-service is a service provided by several providers and replacing one provider with another does not affect application functionality. The productivity is not reduced severely if the service is unavailable for a short period of time. A discrete (enumerated) discovery process involving several alternative possibilities may be persued here. An example of this kind of service is a car rental service. Here we may persue different car rental agencies, e.g., Avis, Hertz, Budget, and choose the first service response that arrives and satisfies our needs.

Mission-critical service: a specific provider always provides the service, replacing this provider severely compromises the functionality of the application. If the service is unavailable for a period of time it would drastically reduce the productivity of the application. If the service is busy or unavailable then the ensuing service discovery phase needs to be short and targeted to the extend possible.

2.4 Synchronicity

Here we can distinguish between two programming styles for services: synchronous or remote procedure call (RPC)-style versus asynchronous or message (document)-style.

2.4.1 Synchronous services

Clients of synchronous services express their request as a method call with a set of arguments, which returns a response containing a return value. This implies that when a client sends a request message, it expects a response message before continuing with its computation. Because of this type of bilateral communication between the client and service, RPC-style services require a tightly coupled model of communication between the client and service provider.

RPC-style web-services are normally used when an application exhibits the following characteristics:

· The client invoking the service requires an immediate response.

· The client and service work in a back-and-forth conversational way.

· The service is process-oriented rather than data-oriented.

Examples of typical simple information services with an RPC-style include returning the current price for a given stock; providing the current weather conditions in a particular location; or checking the credit rating of a potential trading partner prior to the completion of a business transaction.

2.5 Asynchronous services
Asynchronous services are document-style or message driven services. When a client invokes a message-style service, the client typically sends it an entire document, such as a purchase order, rather than a discrete set of parameters. The service accepts the entire document it processes it and may or may not return a result message. A client that invokes an asynchronous service does not need to wait for a response before it continues with the remainder of its application. The response from the service, if any, can appear hours or even days later. Asynchronous services promote a looser coupling between the client and service provider, as there is no requirement for a tightly coupled request-response model between the client and the web-service.

Document-style web-services are normally used when an application exhibits the following characteristics:

· The client does not require (or expect) an immediate response.

· The service is data-oriented as opposed to process-oriented.

Examples of document-style web-services include processing a purchase order; responding to a request for quote order from a customer; or responding to an order placement by a particular customer. In all these cases, the client sends an entire document, such as a purchase order, to the web-service and assumes that the web-service is processing it in some way, but the client does not require an immediate answer.

Summary of fine-grained simple informational services:

	Characteristics
	Perspectives

	
	End-user
	Provider
	Application Programmer

	Functional and non-functional properties
	Stateless,

As is (non-functional properties)
	Stateful (from implementation perspective)
	Stateless,

Change (non-functional

properties)

	Synchronicity
	As is
	Synchronous, Asynchronous
	Mixed (conversion between asynchronous and synchronous)

	Types of Extensibility
	Parameterization
	Configurability
	Parameterization, Subtyping, Wrapping

	Complexity
	Elementary
	Depends on implementation infrastructure
	Elementary

	
	
	
	

Summary of coarse-grained interactive services:

	Characteristics
	Perspectives

	
	End-user
	Provider
	Application Programmer

	Functional and non-functional properties
	** Stateless ** (even in the case where human intervention is required as the info. passes along the wire to the producer)

As is (non-functional properties)
	Stateful (from implementation perspective)
	Stateful,

Change (functional & non-functional properties from development perspective)

	Synchronicity
	(mostly)

Asynchronous
	(mostly)

Asynchronous
	(mostly)

Asynchronous

	Types of Extensibility
	Parameterization

Configurability
	Configurability
	Parameterization, Subtyping, Composition, Coding

	Complexity
	Complex
	Complex
	Complex

	
	
	
	

3 Scenarios of service use

Services can be used in wide array of business relationships and applications. Business interactions may range from connecting different participants in an ad-hoc manner to forming distributed marketplaces. In the following we use two comprehensive examples to illustrate our points [Papa 03].

3.1 Simple service scenario

The following simple service scenario comes from the domain of e-tourism and e-travelling where airlines, hotel chains, travel agents, tourist information agencies, tour operators, car-rental and other tourism related companies are gradually packaging their offerings to create turnkey products. Booking an entire travel package using the Internet can be represented as a complex set of services. Users who want to book a travel package could use the booking web-service of an online travel agency, and submit their travel specification to it. The travel agency’s booking web-service would first invoke a web booking-service to compare different airline offerings and choose the airline ticket best suited to the travel specification (i.e., price range, departure date and time). The travel agency’s booking web-service would then divide the different parts of the travel package specification among the appropriate web-services. If, for example, a client buys a plane ticket from New York to London, the Web-service may then dynamically suggest a hotel and car for the same dates. Hotel rooms and rental cars are chosen in a similar fashion by the hotel booking web-service and car rental web-service. The car rental web-service may also call on a GPS-service to provide driving directions inside the rented car. Entertainment, dinning and weather web-services can also be included in the package, if the travel specification calls for it.

Tracking and adjusting travel plans due to unexpected events usually involves a lot of coordination work. This calls for the use of “smart” or reactive services. For instance, if a single event in the travel plan needs to change or is cancelled, the entire plan can unravel instantly. Under normal circumstances a travel agent would have to redo all of the scheduling manually, making a number of phone calls and hoping that a new plan can be put together in time to satisfy the customer’s needs. An automated solution could be created by employing a collection of web-services that work together to adjust travel schedules for such situations. In the case of a flight cancellation the airline booking service can automatically book a suitable replacement flight and the hotel and car rental service can be notified of a later arrival time. Subsequently, the hotel and car rental web-services automatically adjust the hotel and rental schedule, respectively. When all of these service interactions have been completed and the new adjusted schedule is available, the travel web-service notifies the traveller via a message on their WAP-enabled PDA or cellular phone by sending her an updated itinerary. This dynamic assembly of products and services gives the client real added value and provides enterprises with marketing advantages such as lower costs for acquiring customers and sharing programs for customer loyalty.

3.2 An e-Marketplace example

The second scenario comes from the domain of e-business where service oriented computing can also be used to replace the rigid practices involved in business-to-business transactions by creating a web-services marketplace or business directory community that matches buyers and sellers. These buyers and sellers may have, but are not required to have, prior relationships with each other. They can enter and leave the marketplace at any time and use web-services the match them up for specific transactions, without requiring the point-to-point implementations and tightly coupled systems currently used in the e-business environment.

To illustrate the usefulness of service-oriented computing in e-marketplaces consider the following application. Consider an information technology equipment and software manufacturer. This manufacturer may have kept up with the times by maintaining a just-in-time inventory and by arranging for goods to be shipped to its customers by employing an express carrier. It also wishes to include into its offerings credit services and credit scoring, payment-processing services, user authentication and calendaring
. Using current technology this supplier does not have any satisfactory solution for communicating with its various partners. One possible solution involves establishing EDI links with its partners and specific customers. However, this solution requires heavy investments and much involvement from its partners’ IT departments as it involves integrating their systems into the platform. The manufacturer may attempt to solve this complex problem by using simple hypertext links between its web site and the wed sites of its partners. However, this will result in the manufacturer losing control over the end customer. Until recently, any enterprise such as this - whether accessed via proprietary EDI or via a dedicated Web site – would have required, at the very least, integration to specific vendors for shipping, payment-processing services, credit services, user authentication and calendaring. This supplier can reap huge benefits by creating a new web-services based e-Marketplace where it can communicate with its suppliers and other business partners both effectively and easily. With the ability to deploy a services based e-Marketplace this manufacturer is not only able to integrate internal application systems, such as forecast, inventory and ordering, and loosely connect them with its suppliers through web-services but also provides its contractors and their partners with the possibility to assemble to jointly plan hardware assembly projects through calendar and configuration. In addition to this, service-oriented computing gives the manufacturer the opportunity to build several other useful applications that are available via the e-Marketplace. For example, the manufacturer can build an availability application as a combination of the availability web-services of all its suppliers and an internal production planning service. When the inventories reach certain thresholds, the application would automatically send a Request for Quote (RFQ) to multiple suppliers who also have exposed web-service based applications. The web-service based applications of these suppliers (which are connected to their internal systems via services) receive the request and respond automatically based on predefined constraints such as inventory, supplier status, discount levels, margins and so on. The manufacturer’s originating application receives these responses and makes supplier selections based on predefined criteria. An automatic confirmation can then be sent back to the selected suppliers (via web-services) with binding agreement information that may include purchase order fulfilment, and desired logistics information. Supplier applications web-services then can respond with acknowledgement and appropriate logistical information, such as tracking numbers and import/export documentation.

This e-Marketplace scenario could be extended to include logistic service providers. These could provide detailed and up-to-the-minute information for the movement of goods via a web-service application. The manufacturer would then be able to able to make transactions contingent on additional criteria, such as estimated time of arrival and actual quantities shipped. This allows for context sensitive transactions that ensure that the actual goods arrive at the appointed place, as scheduled.

Service-oriented technology makes such applications accessible via a rapid-recognition web-based interface, rendering enterprises capable of far greater business agility as they are able to support a loosely coupled collaborative relationship between their suppliers, partners and customers. The direct result of the standardisation of inter-enterprise exchanges implies profound changes in the retail models in the Internet. Due to technical and marketing alliances with its various partners, an enterprise can create and deploy product and service offerings with high added value.

4 Services vs. components

Services are primarily developed to provide a standard framework for distributed applications to communicate with each other. As components also follow the same service-oriented philosophy at first it may seem that web-services and components are simply different flavours of the same type of distributed computing. When compared with component software, service-oriented computing is not an attempt to define a new component model but rather a functional distributed service specification that can be layered over any existing component model, language, or execution environment.

In the following we provide several criteria for comparison to explain the difference between services and components
.

4.1 Type of support infrastructure

With the widespread use of component technologies it has been customary to employ components to build distributed applications. Distributed component platforms are accessed via object-model-specific protocols that require specific, homogeneous infrastructures on both the client and service machines and thus cannot interoperate. For example, CORBA requires all applications to conform to IDL and use of an Object Request Broker. DCE requires the use of the COM object model and Java RMI requires the communicating entities to be written using Java.

Services take a different approach; they communicate ubiquitous protocols and data formats, such as the Hypertext Transfer Protocol (HTTP) and the Extensible Markup Language (XML). Any system supporting these standards is able to support services. Furthermore, a service interface is defined strictly in terms of the messages the service accepts and generates. By focusing solely on messages, service oriented computing is completely language, platform, and object model-agnostic. A service can be implemented using the full feature set of any programming language, object model, and platform. Applications that consume the service can also be implemented on any platform in any programming language. As long as the contract that explains the service's capabilities and the message sequences and protocols it expects is respected, the implementations of services and service consumers can vary independently without affecting the application at the other end of the conversation.

4.2 Type of communication

Communication at the component method level results in fine-grained communication at the object level over a network. This is often unreliable and expensive. Service based applications communicate at a coarser-grained (message-based) level where the information exchange is the minimal required to complete the task. Coarse-grained communication implies larger and richer data structures, viz. those supported by XML, and enables looser coupling, which in turn enables asynchronous communication.

The key difference between a service messaging system and a component-based system is how much knowledge in the recipient’s infrastructure the requester requires. With the distributed object system, the sender makes many assumptions about the recipient regarding how the application will be activated, what its interface are called and their signatures and so on. Messaging systems, on the other hand, form the contract at the wire format level. The only assumption the requester makes is that the recipient will be able to understand the message being sent. The requester makes no assumptions about what will happen once the message is received, nor does it make any assumptions about what might occur between the sender and the receiver.

4.3 Type of coupling between client and the service provider

The attempts at distributed computing such as CORBA, DCOM, Java RMI and so on, have yielded systems where the coupling between various components in a system is too tight to be effective for low-overhead e-business applications over the Internet. The homogeneous infrastructure implies tight coupling between a client component to the service
 itself and often means that this type of coupling is very brittle. If the implementation in one side changes, the other side changes. For example, if the server application’s interface changes, then the client will break. Hence, these approaches require too much agreement and shared context among business systems from different organisations to be reliable for open, low-overhead e-business applications. While implementations that are tightly coupled to specific component technologies are perfectly acceptable in a controlled environment, they become impractical and do not scale on the Web. As the set of participants in an integrated business process changes, and as technology changes over time, it becomes increasingly difficult to guarantee a single, unified infrastructure among all participants.

Services as opposed to components are loosely coupled, the implementation can change at either end of a connection and the application will still continue to function. Technically speaking, this translates to using a message-based asynchronous technology (for complex web-services) to achieve robustness, and using web protocols such as HTTP and XML to achieve universal reach. Systems built under these principles are more likely to dominate the next generation of e-business systems. And this is the very reason why web-services represent the logical evolution of the Internet for web-enabled business applications.

4.4 Type of interface

Components expose object-level interfaces to applications whereas services expose application-level interfaces. Application-level interfaces are coarse-grained interfaces that describe services that are useful at the business level. For instance, an inventory service would expose the inventory replenishment service and associated parameters. It would not expose the inventory object and all its interfaces, the replenishment object and its interfaces, which are of no interest to a business application. The service interface used by a services developer may in fact encapsulate a number of objects. This cuts down on the complexity of using a component, makes it more reusable and protects other components that use the service from the details of implementations, such as the method names of objects within an application.

4.5 Type of invocation

Traditional distributed computing programming models focus on locating services by name – for instance CORBA uses naming contexts. In contrast to this service oriented computing introduces the concept of service-capability. Service capability describes the classification, functionality (“the what”), and conditions (“the how”) under which a particular service can be published and discovered. Service capability allows users and applications to navigate through categorisations and classifications of industries and services and locate services that belong to particular industry and explore their interfaces to check whether they offer services of interest. For example, we may be able to find the categories of services that a particular business offers, e.g., hotel reservation services that a travel and tourism e-marketplace may offer. In addition, we would be able to find if this community has agreed on any common business protocols for interaction. For example, if there is a common protocol for the hotel industry to expose room reservation and tariff related common functionality then we would be able to invoke methods that expose this business functionality (included in the tModel of UDDI).

4.6 Type of request brokering

Traditional approaches to distributed computing, e.g., component frameworks, rely on predefined interfaces to invoke remote objects: the code that uses the service understands the message formats of the target service. Services rely on a quite different service binding paradigm:

1. Static binding where the application knows the details of the collaborating service as this has been determined during the design time. This helps optimise communication with service partners with long-term, established relationships, and

2. Dynamic binding where the application knows how to ask a service broker for the precise collaborating service. The service broker knows how to convert a requested interface to a published interface.

As opposed to components that use synchronous communication, services employ both the synchronous and asynchronous communication to perform computations. While simple services can be developed using a request-response RPC-style synchronous behaviour with fine-grained object interactions, complex web-services require a more loosely coupled asynchronous mode, which is typical of message-based systems.

In conclusion, component systems are best suited to building systems with well-defined architectural considerations that are very much oriented towards the intranet and the enterprise architectures of a single organisation. It is difficult to create the technical agreement and coordination needed to build a distributed object system that spans between enterprises. Services, on the other hand, are best suited for implementing shared business tasks between enterprises they can, however also be used for inter-enterprise application integration purposes (EAI). A service provides a common facade for cross-enterprise specific systems, making it easier to create the service-level agreement needed for business-to-business integration.

The component and service technologies are largely complementary. Components provide the underlying implementation infrastructure for the systems that run a single enterprise, while services provide the connectivity between collaborating systems in independent enterprises.

References

[Papa 03]
M. P. Papazoglou “Web-services and e-Business Computing”, Addison Wesley, forthcoming 2003.

[Péraire 00]
C. Péraire and D. Coleman (2000), “Modelling for Web-service creation”, available at http://www.hp.com/web-services, July 2000.

� A calendar system manages control of appointment scheduling and time management. Calendar entries are scheduled by date and time and may include locations, descriptions and agenda items.

� This material is based on reference [Papa 03].

� In the context of distributed objects a service is an operation that a component performs on behalf of a user or another component. Services are often parameterised and the service parameters need to be specified in the interface. A client component uses such an interface to request a service from a server component.

PAGE
© The authors.

Confidential
Page 1
23-10-2002

