
Simulation, Verification and Automated Composition
of Web Services

Srini Narayanan
AI Laboratory

SRI International
Menlo Park, CA 94020, USA

1-650-859-4415

srini@ai.sri.com

Sheila A. McIlraith
Knowledge Systems Laboratory

Dept. Computer Science, Stanford University
Stanford, CA 94305-9020, USA

1-650-723-7932

sam@ksl.stanford.edu

ABSTRACT
Web services -- Web-accessible programs and devices – are a key
application area for the Semantic Web. With the proliferation of
Web services and the evolution towards the Semantic Web comes
the opportunity to automate various Web services tasks. Our
objective is to enable markup and automated reasoning
technology to describe, simulate, compose, test, and verify
compositions of Web services. We take as our starting point the
DAML-S DAML+OIL ontology for describing the capabilities of
Web services. We define the semantics for a relevant subset of
DAML-S in terms of a first-order logical language. With the
semantics in hand, we encode our service descriptions in a Petri
Net formalism and provide decision procedures for Web service
simulation, verification and composition. We also provide an
analysis of the complexity of these tasks under different
restrictions to the DAML-S composite services we can describe.
Finally, we present an implementation of our analysis techniques.
This implementation takes as input a DAML-S description of a
Web service, automatically generates a Petri Net and performs the
desired analysis. Such a tool has broad applicability both as a
back end to existing manual Web service composition tools, and
as a stand-alone tool for Web service developers.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods - Representation languages,
representations, Predicate logic, Frames and scripts.

General Terms
Algorithms, Design, Standardization, Languages, Theory,
Verification.

Keywords
Semantic Web, DAML, Ontologies, Web Services, Web Service
Composition, Distributed Systems, Automated Reasoning.

1. INTRODUCTION
The vision of the semantic Web [4] is to provide computer-
interpretable markup of the Web’s content and capability, thus
enabling automation of many tasks currently performed by
human-beings. A key application for semantic Web
technologies is Web services – Web-accessible programs and
devices that will proliferate the Web. Examples of such Web
services include the book-buying service at www.amazon.com,
or the travel service at www.travelocity.com. Semantic markup

of the content and capability of Web services – what a service
does, how to use it, what its effect will be – will enable easy
automation of a variety of reasoning tasks, currently performed
manually by human beings, or through arduous hand-coding that
enables subsequent automation. Such tasks include automated
Web service discovery, automated invocation, automated
interoperation, automated selection and composition, and
automated execution monitoring [10,17,23].

In this paper, we are motivated by issues related to Web service
composition. Compositions of Web services are created in many
different ways. Many compositions are created manually by the
service provider by taking simple Web-accessible programs, such
as a form-validation program, or database lookup program, and
composing them using typical procedural programming constructs
such as if-then-else, sequence or while-loop. The book-buying
service at www.amazon.com is an example of a composite service.

A number of software systems are available to facilitate manual
composition of programs, and more recently Web services. Such
programs, which include a diversity of workflow tools [1,12], and
more recently service composition aids such as BizTalk
Orchestration [20] enable a user to manually specify a composition
of programs to perform some task. Most recently, technologies
have been proposed that use some form of semantic markup of
Web services in order to automatically compose Web services to
perform some desired task (e.g., [23,24,3,31]). Regardless of how
the compositions originated, we are interested here in describing
and proving properties of these services – to test the system by
simulating its execution under different input conditions, to
logically verify certain maintenance and safety conditions
associated with the service, and to automatically compose services.
In summary, our objective is to enable markup and automated
reasoning technology to describe, simulate, automatically compose,
test and verify Web service compositions.

Our starting point is the DAML-S ontology for Web services [8,9],
which we exploit to provide semantic markup of the content and
capabilities of Web services. In Section 3 we provide a semantics
for a portion of the DAML-S language we require to describe
compositions of Web services. In Section 4, we provide an
operational semantics using Petri Nets. In Section 5, we describe
decision procedures for Web services simulation, testing,
composition, and verification. We also provide an analysis of the
complexity of these tasks under restricted classes of Web service
compositions. Finally in Section 6, we discuss our implementation
of a software tool for performing the proposed automated reasoning
tasks. The theory and implementation presented in this paper has
broad applicability both as a back end to enhance existing manual

Copyright is held by the author/owner(s).
WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

77

composition tools, and as a stand-alone tool for simulation, testing,
verification and automated composition of Web services.

2. DAML-S
Critical to the vision of the semantic Web is the provision of a
markup language, (or in artificial intelligence (AI) terminology, a
knowledge representation language), that has a well-defined
semantics to enable unambiguous computer interpretation. The
language must also be sufficiently expressive to describe the
properties and capabilities of Web services. Over the last several
years, a number of semantic Web markup languages have been
proposed. These include XML, RDF and RDF(S) and most
recently DAML+OIL [13,17,30]. We have adopted DAML+OIL
as our content language for describing Web services, and in
particular we have adopted DAML-S.

DAML+OIL is an AI-inspired description logic-based language
for describing taxonomic information. The DAML+OIL language
builds on top of XML and RDF(S) to provide a language with
both a well-defined semantics and a set of language constructs
including classes, subclasses and properties with domains and
ranges, for describing a Web domain. DAML+OIL can further
express restrictions on membership in classes and also restrictions
on domains and ranges, including cardinality restrictions.

DAML-S is a DAML+OIL ontology for Web services developed
by a coalition of researchers1, under the auspices of the DARPA
Agent Markup Language (DAML) program. The latest release of
this ontology is located at [8] and an earlier version is described
[9]. The DAML-S ontology describes a set of classes and
properties, specific to the description of Web services. The upper
ontology of DAML-S comprises the service profile for describing
service advertisements, the process model for describing the
actual program that realizes the service, and the service grounding
for describing the transport-level messaging information
associated with execution of the program. The service grounding
is akin to the Web Service Description Language, WSDL.

It is the process model that provides a declarative description of
the properties of the Web-accessible programs we wish to reason
about. To illustrate the salient features of the DAML-S process
model, we use the example of a fictitious book-buying service
offered by the Web service provider, Congo Inc. The Congo
example was described in the original release of DAML-S, and its
markup can be found at http://www.daml.org/services. We use a
variant of it here for illustration purposes.

The process model conceives each program as either an atomic or
composite process. It additionally allows for the notion of a
simple process, which is used to describe a view, abstraction or
default instantiation of the atomic or composite process to which
it expands. We focus here on atomic and composite processes.

<daml:Class rdf:ID="Process">
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#AtomicProcess"/>
 <daml:Class rdf:about="#SimpleProcess"/>
 <daml:Class rdf:about="#CompositeProcess"/>
 </daml:unionOf>
</daml:Class>

1 DAML Services Coalition: A. Ankolekar, M. Burstein, J. Hobbs,
O. Lassila, D. Martin, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara, H. Zeng.

An atomic process is a non-decomposable Web-accessible
program. It is executed by a single (e.g., http) call, and returns a
response. It does not require an extended conversation between
the calling program or agent, and the Web service.

<daml:Class rdf:ID="AtomicProcess">
 <daml:subClassOf rdf:resource="#Process"/>
</daml:Class>

An example of an atomic process is the LocateBook service
that takes as input the name of a book and returns a description of
the book and its price, if the book is in Congo’s catalogue.

<daml:Class rdf:ID="LocateBook">
 <rdfs:subClassOf
 rdf:resource="&process;#AtomicProcess"/>
</daml:Class>

In contrast, a composite process is composed of other composite
or atomic processes through the use of control constructs. These
constructs are typical programming language constructs such as
sequence, if-then-else, while, fork, etc. that dictate the ordering
and the conditional execution of processes in the composition.
We provide a subset of the markup below.

<daml:Class rdf:ID="CompositeProcess">
 <daml:intersectionOf
 rdf:parseType="daml:collection">
 <daml:Class rdf:about="#Process"/>
 <daml:Restriction daml:minCardinality="1">
 <daml:onProperty rdf:resource="#composedOf"/>
 </daml:Restriction>
 </daml:intersectionOf>
</daml:Class>

<rdf:Property rdf:ID="composedOf">
 <rdfs:domain rdf:resource="#CompositeProcess"/>
 <rdfs:range rdf:resource="#ControlConstruct"/>
</rdf:Property>

An example of a composite process might be the Find-n-Buy
service that composes LocateBook, together with order request
and financial transaction services. The composition constructs
allow for multiple different execution pathways to termination
depending, in this case, on whether the book is sold by Congo, is
in stock, and whether the user wishes to buy it.

Associated with each process is a set of properties. Using a
program or function metaphor, a process has parameters to which
it is associated. Two types of parameters are the DAML-S
properties input and (conditional) output.

<rdf:Property rdf:ID="parameter">
 <rdfs:domain rdf:resource="#Process"/>
 <rdfs:range
 rdf:resource="http://www.daml.org/... #Thing"/>
 </rdf:Property>

<rdf:Property rdf:ID="input">
 <rdfs:subPropertyOf rdf:resource="#parameter"/>
</rdf:Property>

An input for LocateBook might be the name of the book.

<rdf:Property rdf:ID="bookName">
 <rdfs:subPropertyOf
 rdf:resource="&process;#input"/>
 <rdfs:domain rdf:resource="#LocateBook"/>

78

 <rdfs:range rdf:resource="&xsd;#string"/>2
</rdf:Property>

Inputs can be mandatory or optional. In contrast, outputs are
generally conditional. This is important. For example, when you
search for a book in the Congo catalogue, the output may be a
detailed description of the book, if Congo carries it, or it may be a
“Sorry we don’t carry.” message. Such outputs are characterized
as conditional outputs. We define a conditional output class that
describes both a condition and the output based on this condition.
An unconditional output has a zero cardinality restriction on its
condition.

<rdf:Property rdf:ID="output">
 <rdfs:domain rdf:resource="#parameter"/>
 <rdfs:range rdf:resource="#ConditionalOutput"/>
</rdf:Property>

<daml:Class rdf:ID="ConditionalOutput">
 <daml:subClassOf
 rdf:resource="http://www.daml.org/...#Thing"/>
</daml:Class>

<rdf:Property rdf:ID="coCondition">
 <rdfs:comment>
 The condition of the conditional output.
 </rdfs:comment>
<rdfs:domain rdf:resource="#ConditionalOutput"/>
 <rdfs:range rdf:resource="#Condition"/>
</rdf:Property>

<rdf:Property rdf:ID="coOutput">
 <rdfs:comment>
 The output of the conditional output.
 </rdfs:comment>
 <rdfs:domain rdf:resource="#ConditionalOutput"/>
 <rdfs:range
 rdf:resource="http://www.daml.org/...#Thing"/>
</rdf:Property>

In addition to the program or function metaphor, it is also useful
to use an action, event or process metaphor to conceive services.
In this context we can consider services to have the properties
precondition and (conditional) effect. Preconditions and
conditional effects are described analogously to inputs and
conditional outputs.

Preconditions specify things that must be true of the world in
order for an agent to execute a service. A precondition of every
process is that the agent knows the input parameters of the
process. For example, one precondition for LocateBook is that
the agent Knows(bookName). Stipulating knowledge
preconditions pertaining to the input parameters is redundant with
the input parameters and are only distinguished as knowledge
preconditions in the semantics. Many Web services that are
embodied as programs on the Web only have these preconditions.
At the level of abstraction we are modeling Web services, there
are no physical preconditions to the execution of a piece of
software on the Web. In contrast, Web-accessible devices may
have many physical preconditions such as bandwidth resources or
battery power.

2 Observe that the range of many properties is currently stipulated
as #Thing or #string. Some of these ranges will be changed to
well-formed formulae in first-order logic, as soon as that ontology
is complete.

<rdf:Property rdf:ID="precondition">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range
 rdf:resource="http://www.daml.org/... #Thing"/>
</rdf:Property>

Conditional effects characterize the physical side-effects,
execution of a Web-service has on the world. An example of a
conditional effect for a BuyBook service might be
Own(bookName), when InStock(bookName). Note that
not all services have physical side-effects, in particular, services
that are strictly information providing do not. The DAML-S
markup for conditional effects is analogous to that for conditional
outputs.

3. THE SEMANTICS OF DAML-S
The DAML-S DAML+OIL ontology provides a set of
distinguished classes and properties for describing the content and
capabilities of Web services. The DAML+OIL language in which
it is specified has a well-defined semantics, however the
expressive power of DAML+OIL is not sufficient to restrict
DAML-S to all and only the intended interpretations. Our
objective in this section is to describe a semantics for that portion
of DAML-S that is relevant to our work on Web service
composition. In particular, we ascribe a semantics to the notion of
atomic and composite processes.

One compelling way to do this, as has been done with the
semantics of DAML+OIL [13], is to describe DAML-S in a more
expressive language, such as first-order logic, and to add a set of
axioms to this theory that constrains the models of the theory to
all and only the intended interpretations. Since DAML-S is
actually a process modeling language, and its relationship to other
process modeling languages is important to interoperability, an
even more compelling way to ascribe a semantics to DAML-S is
to map it to the US National Institute of Standard’s (NIST)
Process Specification Language (PSL) [29]. PSL is a process
specification ontology described in the situation calculus, a
(mostly) first-order logical language for reasoning about
dynamical systems [28]. PSL’s role is to serve as the lingua
franca for all business and manufacturing process specification
languages. Once the DAML-S language is stabilized, we should
easily be able to translate the situation calculus description in
Section 3.1 into the PSL ontology [15].

3.1 From DAML-S to Situation Calculus
The situation calculus language we use [28] is a first-order logical
language for representing dynamically changing worlds in which
all of the changes are the direct result of named actions performed
by some agent. Situations are sequences of actions, evolving from
an initial distinguished situation, designated by the constant S0. If
a(y)3 is an action and s, a situation, the result of performing a in s
is the situation represented by the function do(a,s). Functions and
relations whose values vary from situation to situation, called
fluents, are denoted by a predicate symbol taking a situation term
as the last argument (e.g., Own(bookName,s)). Finally, Poss(a,s)
is a distinguished fluent expressing that action a is possible to
perform in situation s.

3 Actions are parameterized a(y). Where possible, we suppress
the parameters for the sake of parsimony.

79

The dialect of the situation calculus that we use includes a means
of representing knowledge. In particular, there is a distinguished
fluent K(s,s’) that describes the accessibility relation between
situations. The notation Knows(φ,s) denotes that the formula φ is
known in situation s (e.g., Knows(Owns(“On the Road”,s))). The
notation Kwhether(φ,s) is an abbreviation for a formula indicating
that the truth value of φ is known. I.e., Kwhether(φ,s) =
Knows(φ,s) ∨ Knows(¬φ,s). Finally, the abbreviation Kref(ϕ,s)
abbreviates a formula indicating that the functional value of ϕ is
known. The situation calculus is fully described in [28]. We
dispense with further details and focus here on the salient features
relevant to this paper.

Atomic processes in DAML-S are actions a(y) in the situation
calculus. The input parameters of an atomic process are the
parameters y of action a. E.g., the atomic process BuyBook is the
parameterized action BuyBook(bookName) .

Conditional effects and outputs: The conditional effects of an
atomic process are represented in the situation calculus as positive
and negative effect axioms of the following form:
 Poss(a,s) ∧ γF

+(x,a,s) → F(x,do(a,s))
 Poss(a,s) ∧ γF

-(x,a,s) → ¬ F(x,do(a,s)).

γF

(+/-)(x,a,s) contains all the different combinations of actions and
conditions that would make fluent F (e.g., Own(bookName,s))
respectively true/false after execution of the action. The following
is an example of a positive effect axiom for the BuyBook service
with respect to its effect on Own(bookName). In this example,
γF

+(x,a,s) is a=BuyBook(bookName) ∧ Instock(bookName).
 Poss(a,s) ∧ a=BuyBook(bookName) ∧ Instock(bookmane,s)
 → Own(bookName,do(a,s))

In our example, we do not illustrate a service that has a negative
effect on the fluent Own. To make it more interesting, we add the
following.
 Poss(a,s) ∧ a=SellBook(bookName)
 → ¬ Own(bookName,do(a,s))
Although specified as outputs rather than effects in the DAML-S
markup, the conditional outputs of an atomic process a are treated
as knowledge effects semantically. This is an important
distinction captured in our semantics. E.g.,
 Poss(a,s) ∧
 a=LocateBook(bookName) ∧ Incatalogue(bookName,s)
 → Kref(Price(bookName),do(a,s))

The output of a service is the information the agent is being told.
Hence the effect will either be a Kref, Kwhether or Knows
expression.

To address the frame problem representationally [28], effect
axioms are compiled into successor state axioms, by appealing to
a causal completeness assumption – that the effect axioms for a
fluent F characterize all and only actions that cause a change in
the (truth) value of fluent F. Successor state axioms express all
the conditions underwhich a fluent value can change. This
ensures that the models of the situation calculus represent all and
only the intended interpretations.

Successor state axioms, one for each fluent in the language, are of
the following form:
 F(x,do(a,s)) ≡ γF

+(x,a,s) ∨ (F(x,s) ∧ ¬ γF
-(x,a,s))

I.e., the fluent F is true in do(a,s) iff an action made it true (i.e.,
γF

+(x,a,s)) or it was already true and an action did not make it
false (i.e., (F(x,s) ∧ ¬ γF

-(x,a,s))).
 Own(bookName,do(a,s)) ≡

(a=BuyBook(bookName) ∧ Instock(bookName,s))
 ∨ (Own(bookName,s) ∧ a ≠ SellBook(bookName))

Successor state axioms for knowledge are discussed in [28].

Preconditions and inputs: DAML-S preconditions for an atomic
process are represented as well-formed formula in the situation
calculus. Each precondition of an atomic process is expressed as
a necessary condition for actions in the situation calculus.
 Poss(a,s) → πi
where πi is a formula relativized to s. E.g.,
 Poss(CheckGPS(location),s) → Charged(GPSbattery,s)

For multiple preconditions, this generalizes to:
 Poss(a,s) → π1 ∧ π2 ∧…∧ πn

Just as outputs are treated as knowledge effects, so too are inputs
treated as knowledge preconditions semantically. The agent must
know the value of the inputs to the service before it can execute
the service. For example, in order to execute LocateBook, the
agent must know the values of all the inputs. Hence for every
input ϕi, of an atomic process a,
 Poss(a,s) → Kref(ϕ1,s) ∧…∧ Kref(ϕn,s)

Under the completeness assumption, that the preconditions encode
all and only the preconditions for an atomic process, these
necessary conditions for action are compiled into action
precondition axioms of the following form:
 Poss(a,s) ≡ π1 ∧ π2 ∧…∧ πn ∧ Kref(ϕ1,s) ∧…∧ Kref(ϕn,s)

E.g.,
 Poss(CheckGPS(location),s) ≡
 Charged(GPSbattery,s) ∧ Kref(location,s)

The complete situation calculus axiomatization of a DAML-S
description includes the sets of axioms described above,

• successor state axioms, DSS,
• action precondition axioms, Dap,,

as well as the following axioms described in [28], namely
• foundational axioms of the situation calculus, Σ,
• axioms describing the initial situation, DS0,,
• unique names for actions, Duna,
• domain closure axioms for actions, Ddca.

These axioms collectively capture the intended interpretation of
the portion of DAML-S we have described here.

Note that we have not described the translation of DAML-S
composite processes into the situation calculus. This translation
follows nicely from the representation of complex actions in the
situation calculus using Golog [14]. Further discussion of this
point is beyond the scope of this paper.

4. AN OPERATIONAL SEMANTICS
In the previous section we ascribed a semantics to a relevant
subset of DAML-S. With this semantics in hand, we can reason
about the execution of Web services. We use the situation
calculus as a lingua franca and translate into a representation that

80

provides special-purpose machinery for the tasks we wish to
address. Specifically, we use the distributed operational
semantics of processes provided by Petri Nets [26]. Several other
options present themselves, including simple finite state automata,
or process algebras such as the Pi-Calculus. The latter provides
the theoretical foundations for Microsoft’s XLANG. However,
most of these approaches do not offer techniques for quantitative
analysis. We selected Petri Nets for its combination of compelling
computational semantics, ease of implementation, and its ability
to address both offline analysis tasks such as Web service
composition and online execution tasks such as deadlock
determination resource satisfaction, and quantitative performance
analysis. We also note the existence of several well-known
techniques mapping from Petri Nets to process logics and vice
versa [25,26].

There are tradeoffs associated with any choice of computational
machinery. In the most general case, Petri Nets with inhibitory
arcs are Turing equivalent. Hence, the translation from situation
calculus does not limit the systems we can analyze. Nevertheless,
the situation calculus is a more parsimonious for large theories.
Petri Nets have a form of computational completion semantics
that enables easy mapping from the situation calculus and that
addresses the frame problem in a very nice way [27]. Their natural
representation of change and concurrency allows us to construct a
distributed and executable operational semantics of Web services.
We are also able to bring to bear well established theories from
the vast computer science literature on Petri Nets [26] to define
subclasses of the DAML-S process model with respect to their
computational complexity. Finally, Petri Nets also have the
advantage of dealing with resources, something that will be
important in reasoning about Web service devices.

In the subsection to follow we describe our approach in detail.
We introduce the notion of a Petri Net and describe the
representation of our situation calculus theory in Petri Nets. We
then go on to describe computational analysis techniques to
realize many Web service automation tasks.

4.1 Petri Nets
We have constructed an execution semantics for DAML-S based
on Petri Nets. A Petri Net is a bipartite graph containing places
(drawn as circles) and transitions (drawn as rectangles). Places
hold tokens and represent predicates about the world state or
internal state. Transitions are the active component. When all of
the places pointing into a transition contain an adequate number of
tokens (usually 1) the transition is enabled and may fire, removing
its input tokens and depositing a new set of tokens in its output
places. The most relevant features of Petri Nets for our purposes
are their ability to model events and states in a distributed system
and to cleanly capture sequentiality, concurrency and event-based
asynchronous control. Our extensions to the basic Petri Net
formalism include typed arcs, hierarchical control, durative
transitions, parameterization, typed (individual) tokens and
stochasticity. For this paper, the crucial fact about our
representation is that it is active with a well defined real-time
execution semantics for service descriptions.

The rest of this section details our mapping. The section to follow
describes our automatic model construction, simulation and
analysis of DAML-S markups using the theory of Petri Nets.
While we are aiming for this paper to be selfsufficient, we will
borrow results from the well-developed theory of concurrent
systems. For specific relevant results, we refer the reader to the

appropriate citation. For a more general introduction to the theory
and analysis of distributed and concurrent systems using Petri
Nets, the reader is referred to one of several excellent surveys
(e.g., [26, 5, 32,1]).

Definition 1 (Petri Nets) A Petri Net (PN) is an algebraic
structure (P, T, I, O) composed of:

• finite set of places, P = {p1, p2, ... pn},
• finite set of transitions, T = {t1, t2, ... tm},
• Transition Input Function, I. I maps each transition ti to

a multiset of P.
• Transition Output Function, O. O maps each transition ti

to a multiset of P. 4

Definition 2 (Markings/Tokens/Initial marking) A marking in a
Petri Net PN(P, T, I, O) is a function µ, that maps every place into
a natural number. If for a given marking µ, µ(pi) = x, then it is
said that the place pi holds x tokens at the marking µ. A special
marking, denoted by µ0, will be called the initial marking.

Definition 3 (Enabled/Fireable transitions at marking µ) At a
given marking µ, if for any ti ε T, µ(p) ≥ #[p,I(ti)], ∀ p ε P, then ti
is said to be enabled by the marking µ. Here #[p,I(ti)] denotes the
number of occurrences of place p in the multiset I(ti). Let us
denote the set of all enabled transitions at a given marking µ by
EN(µ). In conventional Petri Nets every enabled transition may
fire. This is not always true for other kind of Petri Nets,
particularly the timed ones. If we denote by F(µ) the set of all
fireable transitions at a given marking µ, then for conventional
Petri Nets F(µ) = EN(µ).

Definition 4 (Transition firing/Occurrence sequence) The
firing of any enabled transition, ti, at marking µ, causes the
change of the marking µ to a new marking µ' as follows: ∀ p ε P,
µ'(p) = µ(p) - #[p, I(ti)] + #[p, O(ti)]. Where: #[p, I(ti)] and #[p,
O(ti)], denotes, the number of occurrences of place p in the
multiset I(ti) and in the multiset O(ti) respectively. In other words,
the new marking µ', for each place p, is equal to the old number of
tokens in that place, minus the number of occurrences of p in the
input. A sequence of firings (t1 …tn) that take an initial marking
µ0 to a new marking µN is called an occurrence sequence.

Graphical representation: The algebraic structure of a Petri Net
PN(P, T, I, O) may be represented graphically. In this graphical
representation, a Petri Net will be represented by a bipartite graph,
where: every place will be represented by a circle; every
transition will be represented by a rectangle ; the function I will be
represented by directed arcs linking every p ∈ I(ti) to the
transition ti. These arcs are called input arcs to the transition ti;
and the function O will be represented by directed arcs linking
each transition ti to every p ∈ O(ti). Analogously with the input
arcs, these arcs are called output arcs to the transition ti .

Modeling discrete systems with Petri Nets: When modeling a
discrete system with a Petri Net, partial states of the system are
represented by places. Whether the system is in a particular partial
state or not is represented by the presence/absence of a token in

4 For ease of exposition, we leave out the case of typed or colored
nets, which represent predicate transition nets. For finite domains
(finite colors), such nets can be unfolded to the ordinary case
considered here. The tool described in Section 6 handles both
prepositional (ordinary) and predicate (with types) nets.

81

the place representing this partial state. Events are represented by
the transitions. Conditions allowing an event to occur are
represented by the input arcs to the associated transition of this
event. These are normally called pre-conditions. The input places
of these arcs represent the combination of the several partial
states that must be valid in order that the event represented by the
transition occurs. After the occurrence of an event (firing of an
enabled transition) a new set of partial states will be valid. These
are called the post conditions and are represented by the output
arcs of the fired transition.

4.2 A Petri Net Semantics for DAML-S
Section 3 defined the semantics of DAML-S atomic processes in
terms of a set of situation calculus axioms. We start by showing
the mapping from the situation calculus axioms to the
corresponding Petri Net structure. After describing the basic
mapping, we describe the net structures for the various control
constructs that define composite processes in DAML-S.

4.2.1 DAML-S Atomic Processes as Petri Nets
Recall, the basic set of axioms representing the DAML-S atomic
process were the effect axioms, i.e.,
 Poss(a,s) ∧ γF

+(x,a,s) → F(x,do(a,s))
 Poss(a,s) ∧ γF

-(x,a,s) → ¬F(x,do(a,s)),

and the necessary conditions for actions. The latter embody both
the physical preconditions described in the DAML-S markup, and
the knowledge preconditions reflecting the requirement that an
agent know the values of the input parameters of the process. We
distinguish these by the subscript w (world) and k (knowledge) :
 Possw (a,s) → π1 ∧ π2 ∧…∧ πn
 Possk(a,s) → Kref(ϕ1,s) ∧…∧ Kref(ϕn,s)
 Poss(a,s) → π1 ∧ π2 ∧…∧ πn ∧ Kref(ϕ1,s) ∧…∧ Kref(ϕn,s)

In the situation calculus, a completion assumption is made to
reflect that 1) the effect axioms specify all and only the conditions
underwhich a fluent can change, and 2) the necessary conditions
for actions specify all and only the conditions under which an
action a is possible to execute. This completion assumption is
captured axiomatically by translating effect axioms into successor
state axioms and necessary conditions for actions into action
precondition axioms. Petri Nets provide a computational
mechanism for achieving this completion. The graph structure
defines the completion and computation over the graph structure
achieves the computational completion semantics. Hence, the
solution to the frame problem is captured in the computational
semantics of Petri Nets.

Figure 1. Atomic DAML-S process

Figure 1 illustrates the graphical Petri Net representation of a
DAML-S atomic process. With multiple conditional effects, there
would be a transition for each possible conditional effect, with a
preset of the specific condition(s) and a postset of the effect of
excecuting that action under those conditions. To ease exposition
in this paper, we will not consider multiple conditional effects. In
the discussion to follow, the atomic process in Figure 1 will be
represented as a single transition (in blue, where visible).

4.2.2 DAML-S Composite Processes as Petri Nets
Having illustrated the mapping from the situation calculus
description of a DAML-S atomic process, we now turn to
modeling composite processes as Petri Net structures. DAML-S
composite processes are compositions of sub-processes -- other
composite or atomic processes. All composite processes bottom
out in atomic processes. The DAML-S composedOf property
specifies the control flow and data flow of its sub-processes,
yielding constraints on the ordering and conditional execution of
these sub-processes.

 Figure 2. Canonical DAML-S composite process

Figure 2 illustrates the canical graphical Petri Net representation
of a DAML-S composite process, comprising start/finish,
ready/done, and a control construct. We consider each construct
of DAML-S version 0.6 [8] and provide the appropriate Net
structure that captures a possible execution semantics of that
construct. The basic control constructs we consider are the
sequence, parallel, condition, choice, and the various iterate
classes of DAML-S. Figure 3 depicts the Distributed OPErational
(DOPE) semantics for the various DAML-S composite constructs.

We have implemented a DAML-S interpreter that translates
DAML-S markups to the Petri Net based simulation and modeling
environment KarmaSIM [27]. The KarmaSIM tool allows for
interactive simulation and supports the various verification and
performance analysis techniques. In Figure 3, the thickened (red,
where visible) arcs correspond to the result of transition firing and
token transfer as the system moves from state to state. The
thickened (brown filled) transitions depict the enabled transitions.
As is clear from the state shown in Figure 3, the overall system
has a distributed operational semantics. I.e., each transition fires
based on its local input conditions, and transition firings
correspond to system evolution.

We now describe the various DAML-S composite constructs and
their DOPE semantics. Note that in Figure 3, DAML-S atomic
processes correspond to transition and embedded composite
processes are recursively built up from their ground atomic
processes. In Section 6, we illustrate a book buying example [8]
that utilizes and illustrates many of these constructs.

^ π 1
π 2
π n

^
Kre (ϕ 1 ,s)

Kre (ϕ 1 ,s)

Action

Poss k (a,s)

Poss w (a,s)
Effect

World

Input

Ready

start
finish

Done COMPONENT
CONTROL

CONSTRUCTS
COMPONENT

CONTROL
CONSTRUCTS

82

The sequence construct: In DAML-S, Sequence has a list of
component sub-processes that specify the body. As shown in
Figure 3 (Seq(P1,P2)), the semantics of sequence is a total
ordering on the process list, where Process1 (P1) and Process2
(P2) are executed in sequence. Assuming its preconditions are
satisfied, P2 can execute upon the completion of P1.

The split construct: A split composite process consists of
concurrent execution of a bag of sub-processes. No further
specification about waiting, synchronization, etc. is made at this
level of the DAML-S ontology. Our model of the Split construct
assumes a process that initiates a set of concurrent processes and
terminates. We use special constructs to model the
synchronization aspects, both local and barrier types. Thus, in the
situation shown in Figure 3 (Split(P1,P2)), the two split processes
Process1 and Process2 are initiated, and the composite process is
ready to transition to a FINISHed state.

The split and join (concurrent) construct: A split-and-join
composite process consists of concurrent execution of a bag of
sub-processes. The default assumes barrier synchronization. With
Split and Split and Join, we can define processes which have
partial synchronization (e.g., split all and join some subset). In the
example network shown in Figure 3 (Conc(P1,P2)), both
processes are concurrently enabled and the overall composite
process waits until both processes are completed. One can
analogously construct cases of Split n join m (m <= n), etc.

The choice construct: A choice composite process selects a
process for execution from among a bag of processes. The choose
property, takes a choice bag and returns a chosen bag. The
cardinality of the bag can be specified through a restriction to get
choose(n) (0<n<=|bag|). DAML-S does not distinguish choice
from alternative. As shown in Figure 3 (Choice(P1,P2)), the
DAML-S specification corresponds to both Process1 and Process2
being possible choices; selecting and completing either choice
would allow the composite process to finish. The semantic
framework supports probabilistic choice, but DAML-S has not
(yet) been augmented with probabilities.

The if-then-else construct: An if-then-else composite process is
a simple construct that has a relation whose domain is a process
and whose range is a binary value. This internal process usually
corresponds to one or more test actions, but it may alternatively be
some evaluation of world state, resource levels, timeouts or other
conditions that affect the evolution of processes. DAML-S
conditions have a property conditionValue which is a boolean.
The specific execution branch (i.e., which process/action to
execute) depends on the value of this property. In the example
shown in Figure 3 (If-Then-Else), the Condition value is TRUE
and the Then branch of the If-Then-Else is enabled. If the
Condition value were FALSE, the Else process bag would be
active.

Figure 3. Distributed OPErational (DOPE) Semantics for the DAML-S Composite Process Constructs

83

The repeat-condition construct: DAML-S has both repeat-while
and repeat-until composite processes. Repeat-while specializes
the ControlConstruct class with properties whileCondition (whose
DAML-S range is of type Condition) and whileProcess (range is
of type Repeat). No commitments are made about whether this is
asynchronous (w/o prioritized interrupts) or synchronous (with
specific polling/busy-wait strategies), etc. This is left for the
particular execution model to specify. Similarly, repeat-until
specializes the ControlConstruct class with properties
untilCondition (range is of type Condition) and untilProcess
(range is of type Repeat). Figure 3 (repeat-until) shows the
execution semantics of the Repeat-until construct. The Repeat-
while semantics is analogous except that input places for the
DAML-S conditionValue (the Condtion=true and
Condition=False nodes in Figure 3) are reversed.

5. ANALYSIS OF WEB SERVICES TASKS
Whether created manually by Web service providers, value-
adding 3rd party Web service providers, or by some automated
tool, the semantic Web will be replete with composite services.
Assessing the correctness, effectiveness, safety and efficiency of
composite services is vital to safe and reliable automation of Web
services. In this section we provide a set of computational
analysis tools, based on our Petri Net representation, that enable
us to automate Web service tasks such as:
Simulation – simulate the evolution of a Web service under
different conditions.
Validation – test whether a Web service behaves as expected.
Verification – establish the upholding of certain properties of a
Web service (e.g., that it maintains certain properties, that it
ensures safety, etc.)
Composition – generate a composition of Web services that
achieves a specified goal.
Performance Analysis – evaluate the ability of a service to meet
requirements with respect to throughput times, service levels, and
resource utilization.

While our tools provide for sophisticated performance analysis,
detailed discussion of these techniques is outside the scope of this
paper. In Section 6, we discuss the implementation of these
analysis tools together with their application to DAML-S
described Web services.

5.1 Simulation, Validation, Verification and
Composition
Simulation of a PN is straightforward. Similarly, validation can
be done by interactive simulation: hypothetical cases, in many
cases a predefined test suite, are fed to the system to see whether
they generate the expected output and the expected effects relative
to the PN representation. For verification, composition and
performance analysis more advanced analysis techniques are
needed. Fortunately, many powerful analysis techniques have
been developed for Petri Nets [5,11,26]. Linear algebraic
techniques can be used to verify many properties, e.g., place
invariants, transition invariants, and (non-)reachability.
Coverability graph analysis, model checking, and reduction
techniques can be used to analyze the dynamic behavior of a Petri
Net. Simulation and Markov-chain analysis can be used for
performance evaluation.

Three of the most important verification problems are:
reachability, liveness and existence of deadlocks. With the
proliferation of embedded devices, the issue of safe operation is

becoming central to device verification. In the context of Web
services, verification that a composite service upholds a safety
constraint (e.g., ensuring that a credit card is only debited once per
transaction, or not executing the order to send the merchandise
until the goods are paid for) is critical. In what follows, we show
that the verification of safety constraints, the detection of
deadlock, and the automated composition of Web services can be
characterized in terms of the notion of reachability.5

Definition 5 (Reachability) A marking M is reachable if it is the
marking reached by some occurrence sequence (Definition 4).
Given a marking M of N, the set of reachable markings of the net
(P; T; F; M) (i.e., the net obtained by replacing the initial marking
M0 by M) is denoted by [M >.

Notice that the empty sequence is an occurrence sequence and that
it reaches the initial marking M0. The reachability problem for a
net N is the problem of deciding for a given marking M of N if it
is reachable.

Safety of a distributed system is defined as lack of reachabilility
to an unsafe state.

Definition 6 (Safety of Web Service Compositions) Let S be a
Web service composition with associated net (P;T;F;M). Let φ be
a safety constraint, and let marking M’ encode the negation (i.e.,
the violation) of the safety constraint φ. Then a Web service
composition S is safe with respect to φ iff there is no occurrence
sequence of the net of S that reaches M’.

Analogously we define the task of generating a composition of
Web services to achieve a goal as the problem of finding an
occurrence sequence that reaches the marking depicting the user’s
desired goal state. The occurrence sequence dictates the sequence
of Web services whose execution leads to the goal. Sequential
composition of atomic services to achieve a goal state can be
realized using DAML-S and reachability analysis as described
here. We may automatically compose composite services using
the same technique by compiling composite processes into macros
following [22].

Definition 7 (Automated Composition of Web Services) Let A
be a set of atomic Web services and let N=(P;T;F;M) be the net
that depicts the behavior of all the services in A. Further, let ϕ
represent the user’s goal, and let M’ be the marking that depicts
this goal in N. Then a1;a2,…;an is a sequential composition of
atomic services that achieves user goal ϕ iff a1;a2,…;an is an
occurrence sequence in the reachability analysis of M’ in N.
Note, that the case of Web service composition is one of service
input-output composition where an individual service is treated as
atomic. This is in contrast to general process composition, where
all possible interleavings should be considered.6 Of course, given
some agent goal, a service description and our process semantics,
a smart agent with sufficient computational resources could

5 Note that we are mainly interested in the analysis of the control
compositions. For instance, we assume finite domains. It is well
known that in infinite domains (nets with infinite colors), many
verification problems become undecidable [27]. Also, the
reachability analysis relies on an interleaving semantics which
corresponds to a total ordering on tasks. This is consistent with
results in AI planning [2].
6 Thanks to an anonymous referee for pointing this out.

84

compute optimal compositions by combining partial service
executions.7

This notion of automated composition of Web services with
macros is analogous to AI planning in systems such as Blackbox
[19] or Graphplan [6] where we have complete information about
the initial situation [22]. In contrast, however, these planners look
for plans of a bounded length, hence reducing the complexity of
search as we will see below. It is important to observe in the
general case that the search space for most practical Web service
compositions is very branchy (there are many services to choose
from). Fortunately, the resulting composition tends to be short.

In addition to the verification of safety constraints, another
important analysis to perform is the determination of deadlock.
Deadlock is obviously an important property to consider in the
composition of services, since one wishes to avoid compositions,
which lead to reachable states where the service hangs and no
further interaction is possible.

Definition 8 (Deadlock) A marking of a net is a deadlock if it
enables no transitions. The deadlock problem for a net is the
problem of deciding if any of its reachable markings is a
deadlock.

5.2 Complexity of DAML-S Services Tasks
In this subsection, we relate the complexity of various Web
service task to the expressiveness of DAML-S.

Theorem 1 The reachability problem for process models built on
DAML-S (0.5) service descriptions is PSPACE-complete.

Proof Sketch (Theorem 1) The proof relies on the results of [7]
which showed P-Space completeness of a specific subclass of
Petri Nets which are 1-safe nets. Their proof was based on a
polynomial reduction from reachability for 1-safe nets to the
LINEAR BOUNDED AUTOMATON ACCEPTANCE problem,
which is known to be PSPACE-complete.

Definition 9 (1-Safe Nets) A marking M of a net N is 1-safe if
for every place p of the net M(p) ≤ 1. We identify a 1-safe
marking M with the set of places p such that M(p) = 1. A net N is
1-safe if all its reachable markings are 1-safe.

Lemma 1 DAML-S 0.5 service descriptions result in 1-safe nets.

The proof can be found in an extended version of this paper, now
at http://www.icsi.berkeley.edu/~snarayan/www11.html.

Proposition 1 (Complexity of Verification and Composition)
From Theorem 1, we can conclude that the complexity of Web
service safety verification and automated sequential composition
of atomic services is P-SPACE in the general case. Note however
that in the case of safety verification, the net is simply the net of
the individual composite service being verified, which will in
general be extremely small. In contrast, the net used for Web
service composition is the net characterizing the behavior of all
atomic Web services under consideration for composition. It will

7 Consider the case where an agent (fictitious, of course) may go
to Congo.com to browse reviews of books and then buy them
from a cheaper rival. This is possible if Congo.com includes the
browse review process in its service description.

be large, though the resulting occurrence sequence will in general
be short. These results are consistent with the complexity results
for AI planning [2]. From Theorems 2 and 3 below we can draw
similar conclusions about the complexity of our Web service
automation tasks.

Theorem 2 Without the iterate constructs (iterate, repeat-until,
repeat-while) the reachability problem for a DAML-S 0.5 process
model is NP-Complete.

The proof makes use of the following fact.

Proposition 2 DAML-S 0.5 without the iterate constructs results
in an acyclic network.

Proof Sketch (Theorem 2) For acyclic networks, there is a well
known polynomial-time reduction to INTEGER LINEAR
PROGRAMMING [7], because in an acyclic net N with initial
marking M0 a marking M is reachable iff the system of equations
corresponding to the state equation M = M0+C(X), where C is the
incidence matrix of N, has an integer vector solution X. (For the
definitions of incidence matrix and state equation, see, for
instance, [26].) Since INTEGER LINEAR PROGRAMMING is
in NP [7], so is the reachability problem for DAML-S 0.5 without
the iterate constructs.

Proposition 3 (Complexity of Restricted Verification and
Composition) From Theorem 2 we can conclude that Web
Service Safety Verification is NP-Complete for composite
services without the iterate constructs. Theorem 2 is not relevant
to automated composition since the net used to generate the
composition does not represent a single process. Theorems 3 and
4 below define classes of composite Web services where safety
verification is polynomial.

Theorem 3 Without the choice and iterate constructs, DAML-S
0.5 forms a sub-language with polynomial algorithms for
reachability and deadlock of a DAML-S process.

Proof Sketch (Theorem 3) The proof makes use of the theory of
conflict-free nets.

Definition 7 (Conflict-Free Nets) Conflict-free nets are a
subclass in which conflicts are structurally ruled out. A net N =
(P; T; F; M0) is conflict-free if for every place p, if |p•| > 1, then
p•⊆ •p. Howell and Rosier show [18] that the reachability,
liveness, and deadlock problems for 1-safe conflict-free nets are
solvable in polynomial time.
Proposition 4 In DAML-S, a) both iterate and choice introduce
conflict constructs (iterate introduces a conflict between the
repeat and finish transitions, while choice is by definition a
structural conflict) and b) no other control construct introduces
structural conflicts.

Theorem 4 Without the iterate and condition constructs, DAML-
S forms a sublanguage with polynomial algorithms for
reachability and deadlock of a DAML-S process.

Proof Sketch (Theorem 4) The proof makes use of the theory of
free-choice nets.

85

Definition 8 (Free-Choice Nets) A net N = (P; T; F; M0) is free-
choice if for any pair (p; t) ∈ F ∩ (T X P), it is the case that p•.=
{t} or •p = {t}. In a free-choice net, if some transitions share an
input place p, then p is their unique input place. It follows that if
any of them is enabled, then all of them are enabled. Therefore, it
is always possible to freely choose which of them occurs. The
reachability problem is still PSPACE-complete for 1-safe free-
choice nets.

Proposition 5 In DAML-S, a) both iterate and condition
introduce nonfree constructs and b) no other control construct
introduces nonfree constructs.

Proposition 6 DAML-S modulo the iterate and condition
constructs results in a free-choice net.

The principal verification tractability results are shown in Table 1.
We have not discussed the issue of resources in this paper.
Resources are not common with Web-accessible programs, but
they are common with devices. With resources, the DAML-S
language becomes equivalent to general place transition nets, for
which reachability and deadlock detection is known to be
exponential in both space and time. This result is included for
completeness since the DAML-S coalition plans to introduce
resources in a future release.

6. IMPLEMENTATION
We have implemented a DAML-S interpreter that translates
DAML-S markups to the simulation and modeling environment
KarmaSIM [27]. The KarmaSIM tool allows for interactive
simulation and supports the various verification and performance
analysis techniques outlined earlier.

The DAML-S interpreter is a Java program that reads in DAML-S
files and outputs a network description. The network is
constructed recursively. Atomic processes are created as shown in
Figure 1. For each control construct specified in the file, a
template net is created as described in Section 4. The recursive
procedure bottoms out when all the transitions correspond to
atomic processes. The network thus constructed can then be
visualized graphically using the KarmaSIM simulation
environment. Once created, a variety of analysis techniques
including reachability analysis, deadlock detection, invariant
computations (T and S invariants) can be performed for different
intial states. The service provider can also perform interactive
simulations to validate various hypothetical interaction scenarios,
as well as to enact the canonical usage of the service. Built into
the framework are also quantitative analysis techniques that can
compute throughputs, as well as most-likely paths using a variety

of Markov Chain analysis techniques. A more complete
description of the KarmaSIM framework can be found at
http://www.ai.sri.com/daml/services/.

We have already used our implementation to model a variety of
the existing DAML-S service ontologies. An example network,
constructed from the DAML-S Congo.daml book-buying Web
service, is illustrated in Figure 4 of the paper and can be found at
http://www.daml.org/services/daml-s/2001/05/Congo.daml. The
thick (red) arrow indicates the stage of the interactive simulation
(here the customer is ready to finish the buy transaction)8. The
network here has a variety of non-free constructs as well as loops
and exercises the full functionality of DAML-S. An earlier
version of the system had a deadlock in that it does not allow a
user to create a new account if there is already one known. This
has since been corrected.

7. CONCLUSION
The Semantic Web is an exciting vision for the evolution of the
World Wide Web. Adding semantics enables structured
information to be interpreted unambiguously. Precise
interpretation is a necessary prerequisite for automatic Web
search, discovery and use. Services are a particularly important
component of the Semantic Web. A semantic service description
language can enable a qualitative advance in the quality and
quantity of e-commerce transactions on the Web [16,23]. The
DAML Services Coalition, under the guise of DAML-S [9], has
taken some important first steps in this direction. This paper is the
first attempt to provide a model-theoretic semantics as well as a
distributed operational semantics that can be used for simulation,
validation, verification, automated composition and enactment of
DAML-S-described Web services. The benefits of our approach
include:
Formal executable semantics: a service description is fully
represented using the machinery of situation calculus and its
execution behavior unambiguously described using Petri Nets.
Analysis techniques and tools: mapping DAML-S onto situation
calculus and Petri Nets allows us to tap into a rich repository of
analysis techniques and tools.
Service implementation tool: we mapped the DAML-S service
description to an existing process model which was able to
perform simulation, enactment and analysis of composite service
descriptions.

8 Colors of the gif in Figure 2 are not faithfully reproduced in
some pdf files. http://www.ai.sri.com/daml/services/ and also
http://www.icsi.berkeley.edu/~snarayan/www11.html show a set
of the screen dumps for different stages of the interactive
simulation.

Table 1: Tractability results for DAML-S subsets

DAML-S subset Reachability Deadlock

DAML-S \ Iterate & Choice Polynomial Polynomial
DAML-S \ Iterate & Condition NP-Complete Constant time

DAML-S \ Iterate NP-Complete Polynomial time
DAML-S 0.5 P-Space Complete P-Space Complete

DAML-S + Resources Exp- Space-Time-hard [21] Exp-Space-Time-hard[21]

86

Complexity and reasoning: the expressive power of the DAML-S
process model compares to ordinary Petri Nets. We identified
more tractable subsets of DAML-S which trade expressiveness for
more efficient analysis for verification, composition and model
checking.

We described an implemented system that is able to read in
DAML-S service descriptions and perform simulation, enactment
and analysis that can a) aid the service provider to test the
functional correctness and tune the performance of her service,
and b) enable service composition agents to automatically
configure a sequence of atomic services to achieve a specific goal.
Furthermore, our model provides guidelines for important future
extensions to DAML-S in the direction of richer execution
monitoring constructs and more expressive resource-based
reasoning constructs. While this paper outlined our computational

model and implementation with respect to the DAML-S markup
language, we believe that the tools and techniques described are
broadly applicable and necessary for realizing the vision of a
Semantic Web.

8. ACKNOWLEDGEMENTS
We would like to acknowledge our colleagues in the DAML
Services Coalition for development of the DAML-S ontology.
We would also like to thank the members of the DAML groups at
KSL, Stanford and at SRI International for interesting discussions
on various aspects of this work. We particularly thank the
WWW11 anonymous reviewers for an informative and thorough
review of this paper. Finally we gratefully acknowledge the
financial support of the US Defense Advanced Research Projects
Agency DARPA Agent Markup Language (DAML) Program
#F30602-00-C-0168 and #F30602-00-2-0579-P00001.

Figure 4. KarmaSIM simulation the DAML-S congo example

87

9. REFERENCES
[1] van der Aalst, W..M..P. Woflan: A Petri-net-based workflow
analyzer, Systems Analysis - Modelling - Simulation, 35(3):345-
357, 1999.

[2] Baral, C., Kreinovich, V. and Trejo, R. Computational
complexity of planning and approximate planning in the presence
of incompleteness, Artificial Intelligence, 122(1-2):241-267,
2000.

[3] Benjamins, V.R., Plaza, E., Motta, E., Fensel, D., Studer, R.,
Wielinga, B., Schreiber, G., and Zdrahal, Z. IBROW3 - An
intelligent brokering service for knowledge-component reuse on
the world wide web. Proc.11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW’98), 1998.
http://spuds.cpsc.ucalgary.ca/KAW/KAW98/KAW98Proc.html

[4] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web,
Scientific American, May, 2001.

[5] Best, E. and Desel, J. Partial order behaviour and structure of
Petri Nets. Formal Aspects of Computing, 2:123-138, 1990.

[6] Blum, A.L. and Furst, M.L. Fast Planning through Planning
Graph Analysis, Artificial Intelligence, 90(1-2):281-300, 1997.

[7] Cheng, A. and Esperza, J. Complexity results for 1-safe nets,
FST&TCS 13, Foundations of Software Technology &
Theoretical Computer Science, 1993.

[8] DAML-S versions 0.5 and 0.6. http://www.daml.org/services/.

[9] DAML Services Coalition: Ankolekar, A., Burstein, M.,
Hobbs, J., Lassila, O., Martin, D., McIlraith, S., Narayanan, S.,
Paolucci, M., Payne, T., Sycara, K., Zeng, H. DAML-S: Semantic
Markup for Web Services, Proc. International Semantic Web
Working Symposium (SWWS), 2001.

[10] Denker, G., Hobbs, J., Martin D., Narayanan, S. and
Waldinger, R., Querying and accessing information on the
semantic web, Proc. Semantic Web Workshop, in conjunction
with 10th International Worldwide Web Conference, 2001.

[11] Desel, J. and Esparza, J. Shortest paths in reachability graphs.
Proc. Application and Theory of Petri Nets, pp. 224-241,
Springer-Verlag (LNCS 691), 1993.

[12] Ellis, C.A. and G.J. Nutt, Modelling and enactment of
workflow systems, Application and Theory of Petri Nets, LNCS
691, pp. 1-16, Springer-Verlag, 1993.

[13] Fikes, R. and McGuinness, D. An Axiomatic Semantics for
RDF, RDF-S, and DAML+OIL, Manuscript. March, 2001.
 http://www.daml.org/2001/03/axiomatic-semantics.html

[14] De Giacomo, G., Lesperance, Y. and Levesque, H.
ConGolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence, 121(1-2):109-169, 2000.

[15] Gruninger, M. Personal communications, August, 2001.

[16] Hendler, J. Agents on the Web. IEEE Intelligent Systems.
Special Issue on the Semantic Web. 16(2) March/April, 2001.

[17] Hendler, J. and McGuinness, D. The DARPA Agent Markup
Language. IEEE Intelligent Systems, Trends and Controversies,
pp. 6-7, November/December 2000.

[18] Howell, R. and Rosier, L.E. Problems concerning fairness
and temporal logic for conflict-free Petri Nets. Theoretical
Computer Science, 64(3):305-329, 1989.

[19] H. Kautz and B. Selman, Unifying SAT-based and graph-
based planning, Proc. 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), 1999.

[20] Lowe, D. et al. BizTalk(TM) Server: The Complete
Reference. November, 2001.

[21] Mayr, E.W. An algorithm for the general Petri net
reachability problem. SIAM Journal on Computing, 13:441-460,
1984.

[22] McIlraith, S. and Fadel, R. Planning with Complex Actions.
Proc. International Workshop on Non-Monotonic Reasoning
(NMR2002). To appear, 2002.

[23] McIlraith, S. Son, T.C. and Zeng, H. Semantic Web services ,
IEEE Intelligent Systems. Special Issue on the Semantic Web.
16(2):46-53, March/April, 2001.

[24] McIlraith, S. and Son, T. Adapting Golog for composition of
semantic Web services, Proc 8th International Conference on
Principles of Knowledge Representation and Reasoning. To
appear, 2002.

[25] Meseguer, J. and Montanari, U. Petri Nets are monoids.
Information and Computation, 88:105, 1990.

[26] Murata, T. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541-580, 1989.

[27] Narayanan, S. Reasoning About Actions in Narrative
Understanding. Proc. International Joint Conference on Artificial
Intelligence (IJCAI '99), pp. 350-358, 1999.

[28] Reiter, R. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
2001.

[29] Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, J.
Lee, The Process Specification Language (PSL): Overview and
Version 1.0 Specification, NISTIR 6459, National Institute of
Standards and Technology, Gaithersburg, MD, 2001.

[30] van Harmelen, F. and Horrocks, I. FAQs on OIL: the
Ontology Inference Layer. IEEE Intelligent Systems, Trends and
Controversies, pp. 3-6, November/December 2000.

[31] Waldinger, R. Deductive composition of Web software
agents. Proc. NASA Goddard Workshop on Formal Approaches to
Agent-Based Systems, LNCS 1871, Springer-Verlag. 2000.

[32] Winskel, G. Petri Nets, algebras, morphisms and
compositionality. Information and Computation, 72(3):197-238,
1987.

88

