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ABSTRACT 
Web services -- Web-accessible programs and devices – are a key 
application area for the Semantic Web. With the proliferation of 
Web services and the evolution towards the Semantic Web comes 
the opportunity to automate various Web services tasks.  Our 
objective is to enable markup and automated reasoning 
technology to describe, simulate, compose, test, and verify 
compositions of Web services.  We take as our starting point the 
DAML-S DAML+OIL ontology for describing the capabilities of 
Web services.  We define the semantics for a relevant subset of 
DAML-S in terms of a first-order logical language.  With the 
semantics in hand, we encode our service descriptions in a Petri 
Net formalism and provide decision procedures for Web service 
simulation, verification and composition.  We also provide an 
analysis of the complexity of these tasks under different 
restrictions to the DAML-S composite services we can describe.  
Finally, we present an implementation of our analysis techniques.  
This implementation takes as input a DAML-S description of a 
Web service, automatically generates a Petri Net and performs the 
desired analysis.  Such a tool has broad applicability both as a 
back end to existing manual Web service composition tools, and 
as a stand-alone tool for Web service developers. 

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]:  Knowledge Representation 
Formalisms and Methods - Representation languages, 
representations, Predicate logic, Frames and scripts. 

General Terms 
Algorithms, Design, Standardization, Languages, Theory,  
Verification. 

Keywords 
Semantic Web, DAML, Ontologies, Web Services, Web Service 
Composition, Distributed Systems, Automated Reasoning. 
 
1.  INTRODUCTION 
The vision of the semantic Web [4] is to provide computer-
interpretable markup of the Web’s content and capability, thus 
enabling automation of many tasks currently performed by 
human-beings.  A key application for semantic Web 
technologies is Web services – Web-accessible programs and 
devices that will proliferate the Web.   Examples of such Web 
services include the book-buying service at www.amazon.com, 
or the travel service at www.travelocity.com.  Semantic markup 

of the content and capability of Web services – what a service 
does, how to use it, what its effect will be – will enable easy 
automation of a variety of reasoning tasks, currently performed 
manually by human beings, or through arduous hand-coding that 
enables subsequent automation.  Such tasks include automated 
Web service discovery, automated invocation, automated 
interoperation, automated selection and composition, and 
automated execution monitoring [10,17,23]. 
 
In this paper, we are motivated by issues related to Web service 
composition.  Compositions of Web services are created in many 
different ways.  Many compositions are created manually by the 
service provider by taking simple Web-accessible programs, such 
as a form-validation program, or database lookup program, and 
composing them using typical procedural programming constructs 
such as if-then-else, sequence or while-loop.   The book-buying 
service at www.amazon.com is an example of a composite service.  
 
A number of software systems are available to facilitate manual 
composition of programs, and more recently Web services.  Such 
programs, which include a diversity of workflow tools [1,12], and 
more recently service composition aids such as BizTalk 
Orchestration [20] enable a user to manually specify a composition 
of programs to perform some task.  Most recently, technologies 
have been proposed that use some form of semantic markup of 
Web services in order to automatically compose Web services to 
perform some desired task (e.g., [23,24,3,31]).  Regardless of how 
the compositions originated, we are interested here in describing 
and proving properties of these services – to test the system by 
simulating its execution under different input conditions, to 
logically verify certain maintenance and safety conditions 
associated with the service, and to automatically compose services.  
In summary, our objective is to enable markup and automated 
reasoning technology to describe, simulate, automatically compose, 
test and verify Web service compositions.   
 
Our starting point is the DAML-S ontology for Web services [8,9], 
which we exploit to provide semantic markup of the content and 
capabilities of Web services.  In Section 3 we provide a semantics 
for a portion of the DAML-S language we require to describe 
compositions of Web services.  In Section 4, we provide an 
operational semantics using Petri Nets.  In Section 5, we describe 
decision procedures for Web services simulation, testing, 
composition, and verification.  We also provide an analysis of the 
complexity of these tasks under restricted classes of Web service 
compositions.  Finally in Section 6, we discuss our implementation 
of a software tool for performing the proposed automated reasoning 
tasks.  The theory and implementation presented in this paper has 
broad applicability both as a back end to enhance existing manual 
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composition tools, and as a stand-alone tool for simulation, testing, 
verification and automated composition of Web services. 
 
2.  DAML-S  
Critical to the vision of the semantic Web is the provision of a 
markup language, (or in artificial intelligence (AI) terminology, a 
knowledge representation language), that has a well-defined 
semantics to enable unambiguous computer interpretation.  The 
language must also be sufficiently expressive to describe the 
properties and capabilities of Web services.  Over the last several 
years, a number of semantic Web markup languages have been 
proposed.  These include XML, RDF and RDF(S) and most 
recently DAML+OIL [13,17,30].  We have adopted DAML+OIL 
as our content language for describing Web services, and in 
particular we have adopted DAML-S. 
 
DAML+OIL is an AI-inspired description logic-based language 
for describing taxonomic information. The DAML+OIL language 
builds on top of XML and RDF(S) to provide a language with 
both a well-defined semantics and a set of language constructs 
including classes, subclasses and properties with domains and 
ranges, for describing a Web domain.  DAML+OIL can further 
express restrictions on membership in classes and also restrictions 
on domains and ranges, including cardinality restrictions.   
 
DAML-S is a DAML+OIL ontology for Web services developed 
by a coalition of researchers1, under the auspices of the DARPA 
Agent Markup Language (DAML) program.  The latest release of 
this ontology is located at [8] and an earlier version is described 
[9]. The DAML-S ontology describes a set of classes and 
properties, specific to the description of Web services.  The upper 
ontology of DAML-S comprises the service profile for describing 
service advertisements, the process model for describing the 
actual program that realizes the service, and the service grounding 
for describing the transport-level messaging information 
associated with execution of the program.  The service grounding 
is akin to the Web Service Description Language, WSDL. 
 
It is the process model that provides a declarative description of 
the properties of the Web-accessible programs we wish to reason 
about. To illustrate the salient features of the DAML-S process 
model, we use the example of a fictitious book-buying service 
offered by the Web service provider, Congo Inc.  The Congo 
example was described in the original release of DAML-S, and its 
markup can be found at http://www.daml.org/services.  We use a 
variant of it here for illustration purposes. 
 
The process model conceives each program as either an atomic  or 
composite process. It additionally allows for the notion of a 
simple process, which is used to describe a view, abstraction or 
default instantiation of the atomic or composite process to which 
it expands. We focus here on atomic and composite processes. 
 
<daml:Class rdf:ID="Process"> 
  <daml:unionOf rdf:parseType="daml:collection"> 
    <daml:Class rdf:about="#AtomicProcess"/> 
    <daml:Class rdf:about="#SimpleProcess"/> 
    <daml:Class rdf:about="#CompositeProcess"/> 
  </daml:unionOf> 
</daml:Class> 

                                                 
1 DAML Services Coalition: A. Ankolekar, M. Burstein, J. Hobbs, 
O. Lassila, D. Martin, D. McDermott, S. McIlraith, S. Narayanan, 
M. Paolucci, T. Payne, K. Sycara, H. Zeng. 

An atomic process is a non-decomposable Web-accessible 
program.  It is executed by a single (e.g., http) call, and returns a 
response.  It does not require an extended conversation between 
the calling program or agent, and the Web service.   
 
<daml:Class rdf:ID="AtomicProcess"> 
  <daml:subClassOf rdf:resource="#Process"/> 
</daml:Class> 

An example of an atomic process is the LocateBook service 
that takes as input the name of a book and returns a description of 
the book and its price, if the book is in Congo’s catalogue. 
 
<daml:Class rdf:ID="LocateBook"> 
  <rdfs:subClassOf   
          rdf:resource="&process;#AtomicProcess"/> 
</daml:Class> 
 
In contrast, a composite process is composed of other composite 
or atomic processes through the use of control constructs.  These 
constructs are typical programming language constructs such as 
sequence, if-then-else, while, fork, etc. that dictate the ordering 
and the conditional execution of processes in the composition.  
We provide a subset of the markup below. 
 
<daml:Class rdf:ID="CompositeProcess"> 
 <daml:intersectionOf  
            rdf:parseType="daml:collection"> 
   <daml:Class rdf:about="#Process"/> 
   <daml:Restriction daml:minCardinality="1"> 
     <daml:onProperty rdf:resource="#composedOf"/> 
   </daml:Restriction> 
 </daml:intersectionOf> 
</daml:Class> 
 
<rdf:Property rdf:ID="composedOf"> 
  <rdfs:domain rdf:resource="#CompositeProcess"/> 
  <rdfs:range rdf:resource="#ControlConstruct"/> 
</rdf:Property> 
 
An example of a composite process might be the Find-n-Buy 
service that composes LocateBook, together with order request 
and financial transaction services.  The composition constructs 
allow for multiple different execution pathways to termination 
depending, in this case, on whether the book is sold by Congo, is 
in stock, and whether the user wishes to buy it. 
 
Associated with each process is a set of properties. Using a 
program or function metaphor, a process has parameters to which 
it is associated.  Two types of parameters are the DAML-S 
properties input and (conditional) output.  
 
<rdf:Property rdf:ID="parameter"> 
 <rdfs:domain rdf:resource="#Process"/> 
 <rdfs:range   
   rdf:resource="http://www.daml.org/... #Thing"/> 
 </rdf:Property> 
 
<rdf:Property rdf:ID="input">  
 <rdfs:subPropertyOf rdf:resource="#parameter"/>  
</rdf:Property> 

An input for LocateBook might be the name of the book.  

<rdf:Property rdf:ID="bookName"> 
  <rdfs:subPropertyOf  
             rdf:resource="&process;#input"/> 
  <rdfs:domain rdf:resource="#LocateBook"/> 

78



  <rdfs:range rdf:resource="&xsd;#string"/>2 
</rdf:Property> 
 
Inputs can be mandatory or optional.  In contrast, outputs are 
generally conditional.  This is important.  For example, when you 
search for a book in the Congo catalogue, the output may be a 
detailed description of the book, if Congo carries it, or it may be a 
“Sorry we don’t carry.” message.  Such outputs are characterized 
as conditional outputs. We define a conditional output class that 
describes both a condition and the output based on this condition.  
An unconditional output has a zero cardinality restriction on its 
condition. 
 
<rdf:Property rdf:ID="output"> 
 <rdfs:domain rdf:resource="#parameter"/> 
 <rdfs:range rdf:resource="#ConditionalOutput"/> 
</rdf:Property> 
 
<daml:Class rdf:ID="ConditionalOutput"> 
 <daml:subClassOf  
    rdf:resource="http://www.daml.org/...#Thing"/> 
</daml:Class> 
 
<rdf:Property rdf:ID="coCondition"> 
  <rdfs:comment>  
     The condition of the conditional output. 
  </rdfs:comment> 
<rdfs:domain rdf:resource="#ConditionalOutput"/> 
 <rdfs:range rdf:resource="#Condition"/> 
</rdf:Property> 
 
<rdf:Property rdf:ID="coOutput"> 
  <rdfs:comment>  
     The output of the conditional output. 
  </rdfs:comment> 
  <rdfs:domain rdf:resource="#ConditionalOutput"/> 
  <rdfs:range   
    rdf:resource="http://www.daml.org/...#Thing"/> 
</rdf:Property> 
 
In addition to the program or function metaphor, it is also useful 
to use an action, event or process metaphor to conceive services.  
In this context we can consider services to have the properties 
precondition and (conditional) effect.  Preconditions and 
conditional effects are described analogously to inputs and 
conditional outputs.  
 
Preconditions specify things that must be true of the world in 
order for an agent to execute a service.  A precondition of every 
process is that the agent knows the input parameters of the 
process.  For example, one precondition for LocateBook is that 
the agent Knows(bookName). Stipulating knowledge 
preconditions pertaining to the input parameters is redundant with 
the input parameters and are only distinguished as knowledge 
preconditions in the semantics.  Many Web services that are 
embodied as programs on the Web only have these preconditions.  
At the level of abstraction we are modeling Web services, there 
are no physical preconditions to the execution of a piece of 
software on the Web.  In contrast, Web-accessible devices may 
have many physical preconditions such as bandwidth resources or 
battery power.   
 

                                                 
2 Observe that the range of many properties is currently stipulated 
as #Thing or #string.  Some of these ranges will be changed to 
well-formed formulae in first-order logic, as soon as that ontology 
is complete.  

<rdf:Property rdf:ID="precondition">   
<rdfs:domain rdf:resource="#Process"/> 
<rdfs:range   
   rdf:resource="http://www.daml.org/... #Thing"/> 
</rdf:Property> 
 
Conditional effects characterize the physical side-effects, 
execution of a Web-service has on the world.  An example of a 
conditional effect for a BuyBook service might be 
Own(bookName), when InStock(bookName).  Note that 
not all services have physical side-effects, in particular, services 
that are strictly information providing do not.  The DAML-S 
markup for conditional effects is analogous to that for conditional 
outputs. 
 
3.  THE SEMANTICS OF DAML-S 
The DAML-S DAML+OIL ontology provides a set of 
distinguished classes and properties for describing the content and 
capabilities of Web services.  The DAML+OIL language in which 
it is specified has a well-defined semantics, however the 
expressive power of DAML+OIL is not sufficient to restrict 
DAML-S to all and only the intended interpretations.  Our 
objective in this section is to describe a semantics for that portion 
of DAML-S that is relevant to our work on Web service 
composition.  In particular, we ascribe a semantics to the notion of 
atomic and composite processes. 
 
One compelling way to do this, as has been done with the 
semantics of DAML+OIL [13], is to describe DAML-S in a more 
expressive language, such as first-order logic, and to add a set of 
axioms to this theory that constrains the models of the theory to 
all and only the intended interpretations.  Since DAML-S is 
actually a process modeling language, and its relationship to other 
process modeling languages is important to interoperability, an 
even more compelling way to ascribe a semantics to DAML-S is 
to map it to the US National Institute of Standard’s (NIST) 
Process Specification Language (PSL) [29].  PSL is a process 
specification ontology described in the situation calculus, a 
(mostly) first-order logical language for reasoning about 
dynamical systems [28].  PSL’s role is to serve as the lingua 
franca for all business and manufacturing process specification 
languages. Once the DAML-S language is stabilized, we should 
easily be able to translate the situation calculus description in 
Section 3.1 into the PSL ontology [15].   
 
3.1  From DAML-S to Situation Calculus 
The situation calculus language we use [28] is a first-order logical 
language for representing dynamically changing worlds in which 
all of the changes are the direct result of named actions performed 
by some agent.  Situations are sequences of actions, evolving from 
an initial distinguished situation, designated by the constant S0.  If 
a(y)3 is an action and s, a situation, the result of performing a in s 
is the situation represented by the function do(a,s).  Functions and 
relations whose values vary from situation to situation, called 
fluents, are denoted by a predicate symbol taking a situation term 
as the last argument (e.g., Own(bookName,s)).  Finally, Poss(a,s) 
is a distinguished fluent expressing that action a is possible to 
perform in situation s.    
 

                                                 
3 Actions are parameterized a(y).  Where possible, we suppress 
the parameters for the sake of parsimony. 
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The dialect of the situation calculus that we use includes a means 
of representing knowledge.  In particular, there is a distinguished 
fluent K(s,s’) that describes the accessibility relation between 
situations. The notation Knows(φ,s) denotes that the formula φ is 
known in situation s (e.g., Knows(Owns(“On the Road”,s))). The 
notation Kwhether(φ,s) is an abbreviation for a formula indicating 
that the truth value of φ is known.  I.e., Kwhether(φ,s) = 
Knows(φ,s) ∨ Knows(¬φ,s).  Finally, the abbreviation Kref(ϕ,s) 
abbreviates a formula indicating that the functional value of ϕ is 
known.  The situation calculus is fully described in [28].  We 
dispense with further details and focus here on the salient features 
relevant to this paper. 
 
Atomic processes in DAML-S are actions a(y) in the situation 
calculus.  The input parameters of an atomic process are the 
parameters y of action a. E.g., the atomic process BuyBook is the 
parameterized action BuyBook(bookName) . 
 
Conditional effects and outputs:  The conditional effects of an 
atomic process are represented in the situation calculus as positive 
and negative effect axioms of the following form: 
     Poss(a,s) ∧ γF

+(x,a,s)  → F(x,do(a,s))  
     Poss(a,s) ∧ γF

-(x,a,s)  →  ¬ F(x,do(a,s)). 
 
γF

(+/-)(x,a,s) contains all the different combinations of actions and 
conditions that would make fluent F (e.g., Own(bookName,s)) 
respectively true/false after execution of the action. The following 
is an example of a positive effect axiom for the BuyBook service 
with respect to its effect on Own(bookName).  In this example, 
γF

+(x,a,s) is a=BuyBook(bookName) ∧ Instock(bookName). 
      Poss(a,s) ∧  a=BuyBook(bookName)  ∧  Instock(bookmane,s)  
                                                              → Own(bookName,do(a,s)) 
 
In our example, we do not illustrate a service that has a negative 
effect on the fluent Own. To make it more interesting, we add the 
following. 
     Poss(a,s) ∧  a=SellBook(bookName)  
                                                        → ¬ Own(bookName,do(a,s))  
Although specified as outputs rather than effects in the DAML-S 
markup, the conditional outputs of an atomic process a are treated 
as knowledge effects semantically.  This is an important 
distinction captured in our semantics.  E.g.,  
    Poss(a,s)  ∧  
        a=LocateBook(bookName)   ∧  Incatalogue(bookName,s)  
                                                  →  Kref(Price(bookName),do(a,s))  

 
The output of a service is the information the agent is being told.  
Hence the effect will either be a Kref, Kwhether or Knows 
expression. 
 
To address the frame problem representationally [28], effect 
axioms are compiled into successor state axioms, by appealing to 
a causal completeness assumption – that the effect axioms for a 
fluent F characterize all and only actions that cause a change in 
the (truth) value of fluent F.  Successor state axioms express all 
the conditions underwhich a fluent value can change.  This 
ensures that the models of the situation calculus represent all and 
only the intended interpretations. 
 
Successor state axioms, one for each fluent in the language, are of 
the following form: 
     F(x,do(a,s)) ≡ γF

+(x,a,s) ∨ (F(x,s) ∧  ¬ γF
-(x,a,s)) 

I.e., the fluent F is true in do(a,s) iff an action made it true (i.e., 
γF

+(x,a,s)) or it was already true and an action did not make it 
false (i.e., (F(x,s) ∧  ¬ γF

-(x,a,s))). 
     Own(bookName,do(a,s)) ≡   

(a=BuyBook(bookName)  ∧ Instock(bookName,s))  
              ∨  (Own(bookName,s) ∧ a ≠ SellBook(bookName)) 
 
Successor state axioms for knowledge are discussed in [28]. 
 
Preconditions and inputs:  DAML-S preconditions for an atomic 
process are represented as well-formed formula in the situation 
calculus.  Each precondition of an atomic process is expressed as 
a necessary condition for actions in the situation calculus. 
     Poss(a,s)   → πi  
where πi  is a formula relativized to s.  E.g.,  
     Poss(CheckGPS(location),s) → Charged(GPSbattery,s)  
 
For multiple preconditions, this generalizes to: 
     Poss(a,s)   → π1 ∧ π2 ∧…∧ πn 
 
Just as outputs are treated as knowledge effects, so too are inputs 
treated as knowledge preconditions semantically.  The agent must 
know the value of the inputs to the service before it can execute 
the service. For example, in order to execute LocateBook, the 
agent must know the values of all the inputs.  Hence for every 
input ϕi, of an atomic process a, 
     Poss(a,s) →  Kref(ϕ1,s) ∧…∧ Kref(ϕn,s) 
 
Under the completeness assumption, that the preconditions encode 
all and only the preconditions for an atomic process, these 
necessary conditions for action are compiled into action 
precondition axioms of the following form: 
     Poss(a,s) ≡ π1 ∧ π2 ∧…∧ πn ∧ Kref(ϕ1,s) ∧…∧ Kref(ϕn,s) 
 
E.g.,  
     Poss(CheckGPS(location),s) ≡ 
                                      Charged(GPSbattery,s) ∧ Kref(location,s) 
 
The complete situation calculus axiomatization of a DAML-S 
description includes the sets of axioms described above, 

• successor state axioms, DSS, 
• action precondition axioms, Dap,, 

as well as the following axioms described in [28], namely 
• foundational axioms of the situation calculus, Σ, 
• axioms describing the initial situation, DS0,, 
• unique names for actions, Duna, 
• domain closure axioms for actions, Ddca. 

 
These axioms collectively capture the intended interpretation of 
the portion of DAML-S we have described here.  
 
Note that we have not described the translation of DAML-S 
composite processes into the situation calculus.  This translation 
follows nicely from the representation of complex actions in the 
situation calculus using Golog [14]. Further discussion of this 
point is beyond the scope of this paper. 
 
4.  AN OPERATIONAL SEMANTICS 
In the previous section we ascribed a semantics to a relevant 
subset of DAML-S.  With this semantics in hand, we can reason 
about the execution of Web services.  We use the situation 
calculus as a lingua franca and translate into a representation that 
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provides special-purpose machinery for the tasks we wish to 
address.  Specifically, we use the distributed operational 
semantics of processes provided by Petri Nets [26].  Several other 
options present themselves, including simple finite state automata, 
or process algebras such as the Pi-Calculus.  The latter provides 
the theoretical foundations for Microsoft’s XLANG.  However, 
most of these approaches do not offer techniques for quantitative 
analysis. We selected Petri Nets for its combination of compelling 
computational semantics, ease of implementation, and its ability 
to address both offline analysis tasks such as Web service 
composition and online execution tasks such as deadlock 
determination resource satisfaction, and quantitative performance 
analysis.  We also note the existence of several well-known 
techniques mapping from Petri Nets to process logics and vice 
versa [25,26]. 
 
There are tradeoffs associated with any choice of computational 
machinery.  In the most general case, Petri Nets with inhibitory 
arcs are Turing equivalent.  Hence, the translation from situation 
calculus does not limit the systems we can analyze.  Nevertheless, 
the situation calculus is a more parsimonious for large theories.  
Petri Nets have a form of computational completion semantics 
that enables easy mapping from the situation calculus and that 
addresses the frame problem in a very nice way [27]. Their natural 
representation of change and concurrency allows us to construct a 
distributed and executable operational semantics of Web services. 
We are also able to bring to bear well established theories from 
the vast computer science literature on Petri Nets [26] to define 
subclasses of the DAML-S process model with respect to their 
computational complexity. Finally, Petri Nets also have the 
advantage of dealing with resources, something that will be 
important in reasoning about Web service devices.  
 
In the subsection to follow we describe our approach in detail.  
We introduce the notion of a Petri Net and describe the 
representation of our situation calculus theory in Petri Nets.  We 
then go on to describe computational analysis techniques to 
realize many Web service automation tasks.   
 
4.1  Petri Nets 
We have constructed an execution semantics for DAML-S based 
on Petri Nets. A Petri Net is a bipartite graph containing places 
(drawn as circles) and transitions (drawn as rectangles).  Places 
hold tokens and represent predicates about the world state or 
internal state. Transitions are the active component.  When all of 
the places pointing into a transition contain an adequate number of 
tokens (usually 1) the transition is enabled and may fire, removing 
its input tokens and depositing a new set of tokens in its output 
places.  The most relevant features of Petri Nets for our purposes 
are their ability to model events and states in a distributed system 
and to cleanly capture sequentiality, concurrency and event-based 
asynchronous control. Our extensions to the basic Petri Net 
formalism include typed arcs, hierarchical control, durative 
transitions, parameterization, typed (individual) tokens and 
stochasticity. For this paper, the crucial fact about our 
representation is that it is active with a well defined real-time 
execution semantics for service descriptions.  
 
The rest of this section details our mapping.  The section to follow 
describes our automatic model construction, simulation and 
analysis of DAML-S markups using the theory of Petri Nets. 
While we are aiming for this paper to be selfsufficient, we will 
borrow results from the well-developed theory of concurrent 
systems. For specific relevant results, we refer the reader to the 

appropriate citation. For a more general introduction to the theory 
and analysis of distributed and concurrent systems using Petri 
Nets, the reader is referred to one of several excellent surveys 
(e.g., [26, 5, 32,1]). 
 
Definition 1 (Petri Nets) A Petri Net (PN) is an algebraic 
structure (P, T, I, O) composed of:  

• finite set  of places, P = {p1, p2, ... pn}, 
• finite set of transitions, T = {t1, t2, ... tm},  
• Transition Input Function, I. I maps each transition ti to 

a multiset of P. 
• Transition Output Function, O. O maps each transition ti 

to a multiset of P. 4 
 
Definition 2 (Markings/Tokens/Initial marking) A marking in a 
Petri Net PN(P, T, I, O) is a function µ, that maps every place into 
a natural number. If for a given marking µ, µ(pi) = x, then it is 
said that the place pi holds x tokens at the marking µ. A special 
marking, denoted by µ0, will be called the initial marking.  
 
Definition 3 (Enabled/Fireable transitions at marking µ) At a 
given marking µ, if for any ti ε T, µ(p) ≥ #[p,I(ti)], ∀ p ε P, then ti 
is said to be enabled by the marking µ.  Here #[p,I(ti)] denotes the 
number of occurrences of place p in the multiset I(ti). Let us 
denote the set of all enabled transitions at a given marking µ by 
EN(µ).  In conventional Petri Nets every enabled transition may 
fire. This is not always true for other kind of Petri Nets, 
particularly the timed ones.  If we denote by F(µ) the set of all 
fireable transitions at a given marking µ, then for conventional 
Petri Nets F(µ) = EN(µ). 
 
Definition 4 (Transition firing/Occurrence sequence)  The 
firing of any enabled transition, ti, at marking µ, causes the 
change of the marking µ to a new marking µ' as follows: ∀ p ε P, 
µ'(p) = µ(p) - #[p,  I(ti)] + #[p, O(ti)].  Where: #[p, I(ti)] and #[p, 
O(ti)], denotes, the number of occurrences of place p in the 
multiset I(ti) and in the multiset O(ti) respectively. In other words, 
the new marking µ', for each place p, is equal to the old number of 
tokens in that place, minus the number of occurrences of p in the 
input.  A sequence of firings (t1 …tn) that take an initial marking 
µ0 to a new marking µN is called an occurrence sequence. 
 
Graphical representation:  The algebraic structure of a Petri Net 
PN(P, T, I, O) may be represented graphically. In this graphical 
representation, a Petri Net will be represented by a bipartite graph, 
where:  every place will be represented by a circle; every 
transition will be represented by a rectangle ; the function I will be 
represented by directed arcs linking every p ∈ I(ti) to the 
transition ti. These arcs are called input arcs to the transition ti; 
and the function O will be represented by directed arcs linking 
each transition ti to every p ∈ O(ti). Analogously with the input 
arcs, these arcs are called output arcs to the transition ti .  
 
Modeling discrete systems with Petri Nets:  When modeling a 
discrete system with a Petri Net, partial states of the system are 
represented by places. Whether the system is in a particular partial 
state or not is represented by the presence/absence of a token in 

                                                 
4 For ease of exposition, we leave out the case of typed or colored 
nets, which represent predicate transition nets. For finite domains 
(finite colors), such nets can be unfolded to the ordinary case 
considered here. The tool described in Section 6 handles both 
prepositional (ordinary) and predicate (with types) nets. 
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the place representing this partial state. Events are represented by 
the transitions. Conditions allowing an event to occur are 
represented by the input arcs to the associated transition of this 
event. These are normally called pre-conditions. The input places 
of these arcs represent the combination of the several partial 
states that must be valid in order that the event represented by the 
transition occurs. After the occurrence of an event (firing of an 
enabled transition) a new set of partial states will be valid. These 
are called the post conditions and are represented by the output 
arcs of the fired transition. 
 
4.2  A Petri Net Semantics for DAML-S 
Section 3 defined the semantics of DAML-S atomic processes in 
terms of a set of situation calculus axioms. We start by showing 
the mapping from the situation calculus axioms to the 
corresponding Petri Net structure. After describing the basic 
mapping, we describe the net structures for the various control 
constructs that define composite processes in DAML-S. 
 
4.2.1  DAML-S Atomic Processes as Petri Nets 
Recall, the basic set of axioms representing the DAML-S atomic 
process were the effect axioms, i.e., 
     Poss(a,s) ∧ γF

+(x,a,s)  → F(x,do(a,s))  
     Poss(a,s) ∧ γF

-(x,a,s)  → ¬F(x,do(a,s)), 
 
and the necessary conditions for actions.  The latter embody both 
the physical preconditions described in the DAML-S markup, and 
the knowledge preconditions reflecting the requirement that an 
agent know the values of the input parameters of the process.  We 
distinguish these by the subscript w (world) and k (knowledge) : 
     Possw (a,s) → π1 ∧ π2 ∧…∧ πn 
     Possk(a,s) →  Kref(ϕ1,s) ∧…∧ Kref(ϕn,s) 
     Poss(a,s) → π1 ∧ π2 ∧…∧ πn ∧ Kref(ϕ1,s) ∧…∧ Kref(ϕn,s) 
 
In the situation calculus, a completion assumption is made to 
reflect that 1) the effect axioms specify all and only the conditions 
underwhich a fluent can change, and 2) the necessary conditions 
for actions specify all and only the conditions under which an 
action a is possible to execute.  This completion assumption is 
captured axiomatically by translating effect axioms into successor 
state axioms and necessary conditions for actions into action 
precondition axioms.  Petri Nets provide a computational 
mechanism for achieving this completion.  The graph structure 
defines the completion and computation over the graph structure 
achieves the computational completion semantics.  Hence, the 
solution to the frame problem is captured in the computational 
semantics of Petri Nets. 
 
             

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Atomic DAML-S process 

Figure 1 illustrates the graphical Petri Net representation of a 
DAML-S atomic process.  With multiple conditional effects, there 
would be a transition for each possible conditional effect, with a 
preset of the specific condition(s) and a postset of the effect of 
excecuting that action under those conditions. To ease exposition 
in this paper, we will not consider multiple conditional effects. In 
the discussion to follow, the atomic process in Figure 1 will be 
represented as a single transition (in blue, where visible). 

4.2.2  DAML-S Composite Processes as Petri Nets 
Having illustrated the mapping from the situation calculus 
description of a DAML-S atomic process, we now turn to 
modeling composite processes as Petri Net structures.   DAML-S 
composite processes are compositions of sub-processes -- other 
composite or atomic processes. All composite processes bottom 
out in atomic processes.  The DAML-S composedOf property 
specifies the control flow and data flow of its sub-processes, 
yielding constraints on the ordering and conditional execution of 
these sub-processes.  
 
 
 
 
 
 
 
 
 

 
 
                Figure 2.  Canonical DAML-S composite process 
 
Figure 2 illustrates the canical graphical Petri Net representation 
of a DAML-S composite process, comprising start/finish, 
ready/done, and a control construct. We consider each construct 
of DAML-S version 0.6 [8] and provide the appropriate Net 
structure that captures a possible execution semantics of that 
construct. The basic control constructs we consider are the 
sequence, parallel, condition, choice, and the various iterate 
classes of DAML-S. Figure 3 depicts the Distributed OPErational 
(DOPE) semantics for the various DAML-S composite constructs. 
 
We have implemented a DAML-S interpreter that translates 
DAML-S markups to the Petri Net based simulation and modeling 
environment KarmaSIM [27]. The KarmaSIM tool allows for 
interactive simulation and supports the various verification and 
performance analysis techniques. In Figure 3, the thickened (red, 
where visible) arcs correspond to the result of transition firing and 
token transfer as the system moves from state to state. The 
thickened (brown filled) transitions depict the enabled transitions. 
As is clear from the state shown in Figure 3, the overall system 
has a distributed operational semantics.  I.e., each transition fires 
based on its local input conditions, and transition firings 
correspond to system evolution.  
 
We now describe the various DAML-S composite constructs and 
their DOPE semantics. Note that in Figure 3, DAML-S atomic 
processes correspond to transition and embedded composite 
processes are recursively built up from their ground atomic 
processes.  In Section 6, we illustrate a book buying example [8] 
that utilizes and illustrates many of these constructs.   
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The sequence construct:  In DAML-S, Sequence has a list of 
component sub-processes that specify the body. As shown in 
Figure 3 (Seq(P1,P2)), the semantics of sequence is a total 
ordering on the process list, where Process1 (P1) and Process2 
(P2) are executed in sequence.  Assuming its preconditions are 
satisfied, P2 can execute  upon the completion of P1. 
 
The split construct:  A split composite process consists of 
concurrent execution of a bag of sub-processes.  No further 
specification about waiting, synchronization, etc. is made at this 
level of the DAML-S ontology. Our model of the Split construct 
assumes a process that initiates a set of concurrent processes and 
terminates. We use special constructs to model the 
synchronization aspects, both local and barrier types. Thus, in the 
situation shown in Figure 3 (Split(P1,P2)), the two split processes 
Process1 and Process2 are initiated, and the composite process is 
ready to transition to a FINISHed state. 
 
The split and join (concurrent) construct:  A split-and-join 
composite process consists of concurrent execution of a bag of 
sub-processes. The default assumes barrier synchronization. With 
Split and Split and Join, we can define processes which have 
partial synchronization (e.g., split all and join some subset). In the 
example network shown in Figure 3 (Conc(P1,P2)), both 
processes are concurrently enabled and the overall composite 
process waits until both processes are completed. One can 
analogously construct cases of Split n join m (m <= n), etc.  

The choice construct: A choice composite process selects a 
process for execution from among a bag of processes. The choose 
property, takes a choice bag and returns a chosen bag. The 
cardinality of the bag can be specified through a restriction to get 
choose(n)  (0<n<=|bag|). DAML-S does not distinguish choice 
from alternative.  As shown in Figure 3 (Choice(P1,P2)), the 
DAML-S specification corresponds to both Process1 and Process2 
being possible choices; selecting and completing either choice 
would allow the composite process to finish.  The semantic 
framework supports probabilistic choice, but DAML-S has not 
(yet) been augmented with probabilities. 
 
The if-then-else construct:  An if-then-else composite process is 
a simple construct that has a relation whose domain is a process 
and whose range is a binary value. This internal process usually  
corresponds to one or more test actions, but it may alternatively be 
some evaluation of world state, resource levels, timeouts or other 
conditions that affect the evolution of processes.  DAML-S 
conditions have a property conditionValue which is a boolean. 
The specific execution branch (i.e., which process/action to 
execute) depends on the value of this property.  In the example 
shown in Figure 3 (If-Then-Else), the Condition value is TRUE 
and the Then branch of the If-Then-Else is enabled. If the 
Condition value were FALSE, the Else process bag would be 
active. 
 

 
 

 
 

Figure 3.  Distributed OPErational (DOPE) Semantics for the DAML-S Composite Process Constructs 
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The repeat-condition construct: DAML-S has both repeat-while 
and repeat-until composite processes.  Repeat-while specializes 
the ControlConstruct class with properties whileCondition (whose 
DAML-S range is of type Condition) and whileProcess (range is 
of type Repeat).  No commitments are made about whether this is 
asynchronous (w/o prioritized interrupts) or synchronous (with 
specific polling/busy-wait strategies), etc.  This is left for the 
particular execution model to specify.  Similarly, repeat-until 
specializes the ControlConstruct class with properties 
untilCondition (range is of type Condition) and untilProcess 
(range is of type Repeat).  Figure 3 (repeat-until) shows the 
execution semantics of the Repeat-until construct. The Repeat-
while semantics is analogous except that input places for the 
DAML-S conditionValue (the Condtion=true and 
Condition=False nodes in Figure 3) are reversed. 

5.  ANALYSIS OF WEB SERVICES TASKS 
Whether created manually by Web service providers, value-
adding 3rd party Web service providers, or by some automated 
tool, the semantic Web will be replete with composite services.  
Assessing the correctness, effectiveness, safety and efficiency of 
composite services is vital to safe and reliable automation of Web 
services.  In this section we provide a set of computational 
analysis tools, based on our Petri Net representation, that enable 
us to automate Web service tasks such as: 
Simulation – simulate the evolution of a Web service under 
different conditions. 
Validation – test whether a Web service behaves as expected. 
Verification – establish the upholding of certain properties of a 
Web service (e.g., that it maintains certain properties, that it 
ensures safety, etc.) 
Composition – generate a composition of Web services that 
achieves a specified goal. 
Performance Analysis – evaluate the ability of a service to meet 
requirements with respect to throughput times, service levels, and 
resource utilization. 
 
While our tools provide for sophisticated performance analysis, 
detailed discussion of these techniques is outside the scope of this 
paper. In Section 6, we discuss the implementation of these 
analysis tools together with their application to DAML-S 
described Web services. 

5.1 Simulation, Validation, Verification and 
Composition  
Simulation of a PN is straightforward.  Similarly, validation can 
be done by interactive simulation: hypothetical cases, in many 
cases a predefined test suite, are fed to the system to see whether 
they generate the expected output and the expected effects relative 
to the PN representation. For verification, composition and 
performance analysis more advanced analysis techniques are 
needed. Fortunately, many powerful analysis techniques have 
been developed for Petri Nets [5,11,26]. Linear algebraic 
techniques can be used to verify many properties, e.g., place 
invariants, transition invariants, and (non-)reachability. 
Coverability graph analysis, model checking, and reduction 
techniques can be used to analyze the dynamic behavior of a Petri 
Net. Simulation and Markov-chain analysis can be used for 
performance evaluation.  
 
Three of the most important verification problems are: 
reachability, liveness and existence of deadlocks.  With the 
proliferation of embedded devices, the issue of safe operation is 

becoming central to device verification. In the context of Web 
services, verification that a composite service upholds a safety 
constraint (e.g., ensuring that a credit card is only debited once per 
transaction, or not executing the order to send the merchandise 
until the goods are paid for) is critical.  In what follows, we show 
that the verification of safety constraints, the detection of 
deadlock, and the automated composition of Web services can be 
characterized in terms of the notion of reachability.5 
 
Definition 5 (Reachability)  A marking M is reachable if it is the 
marking reached by some occurrence sequence (Definition 4). 
Given a marking M of N, the set of reachable markings of the net 
(P; T; F; M) (i.e., the net obtained by replacing the initial marking 
M0 by M) is denoted by [M >. 
 
Notice that the empty sequence is an occurrence sequence and that 
it reaches the initial marking M0. The reachability problem for a 
net N is the problem of deciding for a given marking M of N if it 
is reachable.   
 
Safety of a distributed system is defined as lack of reachabilility 
to an unsafe state. 
 
Definition 6 (Safety of Web Service Compositions) Let S be a 
Web service composition with associated net (P;T;F;M).  Let φ be 
a safety constraint, and let marking M’ encode the negation (i.e., 
the violation) of the safety constraint φ.  Then a Web service 
composition S is safe with respect to φ  iff there is no occurrence 
sequence of the net of S that reaches M’. 
 
Analogously we define the task of generating a composition of 
Web services to achieve a goal as the problem of finding an 
occurrence sequence that reaches the marking depicting the user’s 
desired goal state.  The occurrence sequence dictates the sequence 
of Web services whose execution leads to the goal.  Sequential 
composition of atomic services to achieve a goal state can be 
realized using DAML-S and reachability analysis as described 
here.  We may automatically compose composite services using 
the same technique by compiling composite processes into macros 
following [22]. 
 
Definition 7 (Automated Composition of Web Services) Let A 
be a set of atomic Web services and let N=(P;T;F;M) be the net 
that depicts the behavior of all the services in A.  Further, let ϕ 
represent the user’s goal, and let M’ be the marking that depicts 
this goal in N.  Then a1;a2,…;an is a sequential composition of 
atomic services that achieves user goal ϕ iff a1;a2,…;an is an 
occurrence sequence in the reachability analysis of  M’ in N. 
Note, that the case of Web service composition is one of service 
input-output composition where an individual service is treated as 
atomic. This is in contrast to general process composition, where 
all possible interleavings should be considered.6 Of course, given 
some agent goal, a service description and our process semantics, 
a smart agent with sufficient computational resources could 

                                                 
5 Note that we are mainly interested in the analysis of the control 
compositions. For instance, we assume finite domains. It is well 
known that in infinite domains (nets with infinite colors), many 
verification problems become undecidable [27]. Also, the 
reachability analysis relies on an interleaving semantics which 
corresponds to a total ordering on tasks. This is consistent with 
results in AI planning [2]. 
6 Thanks to an anonymous referee for pointing this out. 
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compute optimal compositions by combining partial service 
executions.7  
 
This notion of automated composition of Web services with 
macros is analogous to AI planning in systems such as Blackbox 
[19]  or Graphplan [6] where we have complete information about 
the initial situation [22].  In contrast, however, these planners look 
for plans of a bounded length, hence reducing the complexity of 
search as we will see below.  It is important to observe in the 
general case that the search space for most practical Web service 
compositions is very branchy (there are many services to choose 
from).  Fortunately, the resulting composition tends to be short.  
 
In addition to the verification of safety constraints, another 
important analysis to perform is the determination of deadlock.  
Deadlock is obviously an important property to consider in the 
composition of services, since one wishes to avoid compositions, 
which lead to reachable states where the service hangs and no 
further interaction is possible. 
  
Definition 8 (Deadlock) A marking of a net is a deadlock if it 
enables no transitions. The deadlock problem for a net is the 
problem of deciding if any of its reachable markings is a 
deadlock. 
 
5.2 Complexity of DAML-S Services Tasks 
In this subsection, we relate the complexity of various Web 
service task to the expressiveness of DAML-S. 
 
Theorem 1  The reachability problem for process models built on 
DAML-S (0.5) service descriptions is PSPACE-complete. 
 
Proof Sketch (Theorem 1)  The proof relies on the results of [7] 
which showed P-Space completeness of  a specific subclass of 
Petri Nets which are 1-safe nets. Their proof was based on a  
polynomial reduction from reachability for 1-safe nets to the 
LINEAR BOUNDED AUTOMATON ACCEPTANCE problem, 
which is known to be PSPACE-complete. 
 
Definition 9 (1-Safe Nets)  A marking M of a net N is 1-safe if 
for every place p of the net M(p) ≤ 1. We identify a 1-safe 
marking M with the set of places p such that M(p) = 1. A net N is 
1-safe if all its reachable markings are 1-safe. 
 
Lemma 1 DAML-S 0.5 service descriptions result in 1-safe nets. 
 
The proof can be found in an extended version of this paper, now 
at http://www.icsi.berkeley.edu/~snarayan/www11.html. 
 
Proposition 1 (Complexity of Verification and Composition) 
From Theorem 1, we can conclude that the complexity of Web 
service safety verification and automated sequential composition 
of atomic services is P-SPACE in the general case.  Note however 
that in the case of safety verification, the net is simply the net of 
the individual composite service being verified, which will in 
general be extremely small.  In contrast, the net used for Web 
service composition is the net characterizing the behavior of all 
atomic Web services under consideration for composition.  It will 

                                                 
7 Consider the case where an agent (fictitious, of course) may go 
to Congo.com to browse reviews of books and then buy them 
from a cheaper rival. This is possible if Congo.com includes the 
browse review process in its service description. 

be large, though the resulting occurrence sequence will in general 
be short.  These results are consistent with the complexity results 
for AI planning [2].  From Theorems 2 and 3 below we can draw 
similar conclusions about the complexity of our Web service 
automation tasks. 
 
Theorem 2 Without the iterate constructs (iterate, repeat-until, 
repeat-while) the reachability problem for a DAML-S 0.5 process 
model is NP-Complete.   
 
The proof makes use of the following fact. 
 
Proposition 2  DAML-S 0.5 without the iterate constructs results 
in an acyclic network.  
 
Proof Sketch (Theorem 2)  For acyclic networks, there is a well 
known polynomial-time reduction to INTEGER LINEAR 
PROGRAMMING [7], because in an acyclic net N with initial 
marking M0 a marking M is reachable iff the system of equations 
corresponding to the state equation M = M0+C( X), where C is the 
incidence matrix of N, has an integer vector solution X.  (For the 
definitions of incidence matrix and state equation, see, for 
instance, [26].) Since INTEGER LINEAR PROGRAMMING is 
in NP [7], so is the reachability problem for DAML-S 0.5 without 
the iterate constructs. 
 
Proposition 3 (Complexity of Restricted Verification and 
Composition) From Theorem 2 we can conclude that Web 
Service Safety Verification is NP-Complete for composite 
services without the iterate constructs.  Theorem 2 is not relevant 
to automated composition since the net used to generate the 
composition does not represent a single process.  Theorems 3 and 
4 below define classes of composite Web services where safety 
verification is polynomial. 
 
Theorem 3 Without the choice and iterate constructs, DAML-S 
0.5 forms a sub-language with polynomial algorithms for 
reachability and deadlock of a DAML-S process. 
 
Proof Sketch (Theorem 3) The proof makes use of the theory of 
conflict-free nets. 
 
Definition 7 (Conflict-Free Nets) Conflict-free nets are a 
subclass in which conflicts are structurally ruled out.  A net N = 
(P; T; F; M0) is conflict-free if for every place p, if |p•| > 1, then  
p•⊆ •p. Howell and Rosier show [18] that the reachability, 
liveness, and deadlock problems for 1-safe conflict-free nets are 
solvable in polynomial time. 
Proposition 4 In DAML-S,  a) both iterate and choice introduce 
conflict constructs (iterate introduces a conflict between the 
repeat and finish transitions, while choice is by definition a 
structural conflict) and b) no other control construct introduces 
structural conflicts. 
 
Theorem 4 Without the iterate and condition constructs, DAML-
S forms a sublanguage with polynomial algorithms for 
reachability and deadlock of a DAML-S process. 
 
Proof Sketch (Theorem 4) The proof makes use of the theory of  
free-choice nets. 
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Definition 8 (Free-Choice Nets) A net N = (P; T; F; M0) is free-
choice if for any pair (p; t) ∈ F ∩ (T  X P), it is the case that p•.= 
{t} or •p = {t}. In a free-choice net, if some transitions share an 
input place p, then p is their unique input place. It follows that if 
any of them is enabled, then all of them are enabled. Therefore, it 
is always possible to freely choose which of them occurs. The 
reachability problem is still PSPACE-complete for 1-safe free-
choice nets. 
 
Proposition 5  In DAML-S,  a) both iterate and condition 
introduce nonfree constructs and b) no other control construct 
introduces nonfree constructs. 
 
Proposition 6 DAML-S modulo the iterate and condition 
constructs results in a free-choice net. 
 
The principal verification tractability results are shown in Table 1. 
We have not discussed the issue of resources in this paper.  
Resources are not common with Web-accessible programs, but 
they are common with devices.  With resources, the DAML-S 
language becomes equivalent to general place transition nets, for 
which reachability and deadlock detection is known to be 
exponential in both space and time.  This result is included for 
completeness since the DAML-S coalition plans to introduce 
resources in a future release. 
 
6.  IMPLEMENTATION 
We have implemented a DAML-S interpreter that translates 
DAML-S markups to the simulation  and modeling environment 
KarmaSIM [27]. The KarmaSIM tool allows for interactive 
simulation and supports the various verification and performance 
analysis techniques outlined earlier.   
 
The DAML-S interpreter is a Java program that reads in DAML-S 
files and outputs a network description. The network is 
constructed recursively. Atomic processes are created as shown in 
Figure 1. For each control construct specified in the file, a 
template net is created as described in Section 4. The recursive 
procedure bottoms out when all the transitions correspond to 
atomic processes. The network thus constructed can then be 
visualized graphically using the KarmaSIM simulation 
environment. Once created, a variety of analysis techniques 
including reachability analysis, deadlock detection, invariant 
computations (T and S invariants) can be performed for different 
intial states. The service provider can also perform interactive 
simulations to validate various hypothetical interaction scenarios, 
as well as to enact the canonical usage of the service. Built into 
the framework are also quantitative analysis techniques that can 
compute throughputs, as well as most-likely paths using a variety 

of Markov Chain analysis techniques. A more complete 
description of the KarmaSIM framework can be found at 
http://www.ai.sri.com/daml/services/. 
 
We have already used our implementation to model a variety of 
the existing DAML-S service ontologies. An example network, 
constructed from the DAML-S Congo.daml book-buying Web 
service, is illustrated in Figure 4 of the paper and can be found at 
http://www.daml.org/services/daml-s/2001/05/Congo.daml.  The 
thick (red) arrow indicates the stage of the interactive simulation 
(here the customer is ready to finish the buy transaction)8. The 
network here has a variety of non-free constructs as well as loops 
and exercises the full functionality of DAML-S. An earlier 
version of the system had a deadlock in that it does not allow a 
user to create a new account if there is already one known. This 
has since been corrected. 
 
7.  CONCLUSION 
The Semantic Web is an exciting vision for the evolution of the 
World Wide Web. Adding semantics enables structured 
information to be interpreted unambiguously. Precise 
interpretation is a necessary prerequisite for automatic Web 
search, discovery and use. Services are a particularly important 
component of the Semantic Web. A semantic service description 
language can enable a qualitative advance in the quality and 
quantity of e-commerce transactions on the Web [16,23]. The 
DAML Services Coalition, under the guise of DAML-S [9], has 
taken some important first steps in this direction. This paper is the 
first attempt to provide a model-theoretic semantics as well as a 
distributed operational semantics that can be used for simulation, 
validation, verification, automated composition and enactment of 
DAML-S-described Web services. The benefits of our approach 
include: 
Formal executable semantics: a service description is fully 
represented using the machinery of situation calculus and its 
execution behavior unambiguously described using Petri Nets. 
Analysis techniques and tools:  mapping DAML-S onto situation 
calculus and Petri Nets allows us to tap into a rich repository of 
analysis techniques and tools. 
Service implementation tool: we mapped the DAML-S service 
description to an existing process model which was able to 
perform simulation, enactment and analysis of composite service 
descriptions. 

                                                 
8 Colors of the gif in Figure 2 are not faithfully reproduced in 
some pdf files. http://www.ai.sri.com/daml/services/ and also 
http://www.icsi.berkeley.edu/~snarayan/www11.html show a set 
of the screen dumps for different stages of the interactive 
simulation. 

Table 1: Tractability results for DAML-S subsets 
 

DAML-S subset Reachability Deadlock 

DAML-S \ Iterate & Choice Polynomial Polynomial 
DAML-S \ Iterate & Condition NP-Complete Constant time 

DAML-S \ Iterate NP-Complete Polynomial time 
DAML-S 0.5 P-Space Complete P-Space Complete 

DAML-S + Resources Exp- Space-Time-hard [21] Exp-Space-Time-hard[21] 
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Complexity and reasoning: the expressive power of the DAML-S 
process model compares to ordinary Petri Nets.  We identified 
more tractable subsets of DAML-S which trade expressiveness for 
more efficient analysis for verification, composition and model 
checking. 
 
We described an implemented system that is able to read in 
DAML-S service descriptions and perform simulation, enactment 
and analysis that can a) aid the service provider to test the 
functional correctness and tune the performance of her service,  
and b) enable service composition agents to automatically 
configure a sequence of atomic services to achieve a specific goal.  
Furthermore, our model provides guidelines for important future  
extensions to DAML-S in the direction of richer execution 
monitoring constructs and more expressive resource-based 
reasoning constructs. While this paper outlined our computational  
 
 
 
 
 

model and implementation with respect to the DAML-S markup 
language, we believe that the tools and techniques described are 
broadly applicable and necessary for realizing the vision of a 
Semantic Web. 
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