
 

 
 

Searching for Services on the Semantic Web 
Using Process Ontologies 

 
Mark Klein 

Center for Coordination Science 
Massachusetts Institute of Technology 

m_klein@mit.edu 

Abraham Bernstein 
Stern School of Business 

New York University 
bernstein@stern.nyu.edu 

Abstract. The ability to rapidly locate useful on-line services (e.g. software 
applications, software components, process models, or service organizations), as 
opposed to simply useful documents, is becoming increasingly critical in many 
domains. As the sheer number of such services increases it will become increasingly 
more important to provide tools that allow people (and software) to quickly find the 
services they need, while minimizing the burden for those who wish to list their 
services with these search engines. This can be viewed as a critical enabler of the 
‘friction-free’ markets of the ‘new economy’. Current service retrieval technology 
is, however, seriously deficient in this regard. The information retrieval community 
has focused on the retrieval of documents, not services per se, and has as a result 
emphasized keyword-based approaches. Those approaches achieve fairly high recall 
but low precision. The software agents and distributed computing communities have 
developed simple ‘frame-based’ approaches for ‘matchmaking’ between tasks and 
on-line services increasing precision at the substantial cost of requiring all services 
to be modeled as frames and only supporting perfect matches. This paper proposes a 
novel, ontology-based approach that employs the characteristics of a process-
taxonomy to increase recall without sacrificing precision and computational 
complexity of the service retrieval process. 

1 The Challenge 

Increasingly, the Semantic Web will be called upon to provide access not just to static 
documents that collect useful information, but also to services that provide useful behavior. 
Potential examples of such services abound: 
 
♦ Software applications (e.g. for engineering, finance, meeting planning, or word processing)  

that can invoked remotely by people or software 
♦ Software components that can be downloaded for use when creating new applications 
♦ Process models that describe how to achieve some goal (e.g. eCommerce business models, 

material transformation processes, etc) 
♦ Individuals or organizations who can perform particular functions, e.g. as currently brokered 

using such web sites as guru.com, elance.com and freeagent.com. 
 

As the sheer number of such services increase it will become increasingly important to 
provide tools that allow people (and software) to quickly find the services they need, while 



 

minimizing the burden for those who wish to list their services with these search engines [1]. 
This paper describes a set of ideas, based on the sophisticated use of process ontologies, for 
creating improved service retrieval technologies. 

2 Contributions and Limitations of Current Technology 

Current service retrieval approaches have serious limitations with respect to meeting the 
challenges described above. They either perform relatively poorly or make unrealistic demands 
of those who wish to index or retrieve services. We review these approaches below. 

Service retrieval technology has emerged from several communities. The information 
retrieval community has focused on the retrieval of documents, not services per se, and has as a 
result emphasized keyword-based approaches. The software agents and distributed computing 
communities have developed simple ‘frame-based’ approaches for ‘matchmaking’ between tasks 
and on-line services. The software engineering community has developed by far the richest set of 
techniques for service retrieval [2]. We can get a good idea of the relative merits of these 
approaches by placing them in a precision/recall space (Figure 1): 
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Figure 1: The state of the art in service retrieval. 

Recall is the extent to which a search engine retrieves all of the items that one is interested in 
(i.e. avoiding false negatives) while precision is the extent to which the tool retrieves only the 
items that one is interested in (i.e. avoiding false positives). 

Most search engines look for items (e.g. web pages) that contain the keywords in the query. 
More sophisticated variants (based on the technique known as TFIDF) look for items in which 
the searched-for keywords are more common than usual, thereby increasing precision [3]. 
Typically, no manual effort is needed to list items with such search engines, and queries can be 
specified without needing to know a specialized query language. Keyword-based approaches are, 
however, notoriously prone to both low precision and imperfect recall. Many completely 



 

irrelevant items may include the keywords in the query, leading to low precision. It is also 
possible that the query keywords are semantically equivalent but syntactically different from the 
words in the searched items, leading to reduced recall. Imagine , for example, that we are 
searching for a service that can offer a loan to cover a $100,000 house addition. Entering the 
keywords “loan house 100000” into google.com (a keyword-based search service), for example, 
returns 2,390 documents. While the first two results are promising (a loan calculator and a 
mortgage calculator somewhat connected to a loan granting organization), the third hit points to 
a report of a campaign against arms trade, and the fourth shows a junior high-school math-
project on how to calculate mortgages. If we enter the same query in altavista.com (which uses 
TFIDF) we get 24,168,519 ‘hits’. While the first few hits talk about loans, they do not all provide 
a loan service. Most of them point to classes that discuss loan calculation techniques and provide 
some sort of a mortgage calculator.  

It is of course somewhat misleading to use web-search engines to assess the likely 
performance of a keyword-based service retrieval engine. The web contains much more then 
services. Many documents (like the loan calculation classes mentioned above) have nothing to do 
with the provision of services. Nevertheless we can take the poor precision of those queries as an 
indicator of what would happen in a system that relies solely on these techniques for retrieving 
services. A mortgage calculator is a useful instrument in itself. It does not, however, provide the 
service of creditworthiness analysis or loan provision. We can, therefore, assume that systems 
using these techniques would still show low precision. 

Several techniques have been developed to address these problems. One is to require that 
items and queries be described using the same, pre-enumerated, vocabulary [4]. This increases 
the probability that the same terms will be used in the query and desired items, thereby 
increasing recall. Another approach is to use semantic nets (e.g. WordNet [5]) that capture the 
semantic relationships between words (e.g. synonym, antonym, hypernym and hyponym) to 
increase the breadth of the query and thereby increase recall [6] but this potentially can reduce 
precision and can result in suboptimal recall because these networks focus on purely linguistic 
relationships. Search engines like google.com [7] prioritize retrieved documents according to 
whether they are linked to documents that also contain the searched-for keywords, as a way of 
increasing precision. Finally, most text-based search engines allow for imprecise matching (e.g. 
retrieving items that contain some but not all of the query keywords), potentially increasing 
recall but again at the cost of reduced precision. 

We can see then that keyword-based approaches can achieve fairly high recall but at the cost 
of low precision. The key underlying problem is that keywords are a poor way to capture the 
semantics of a query or item. If this semantics could be captured more accurately then precision 
would increase. Frame-based approaches [8] [9] [10] [11] [12] have emerged as a way of doing 
this. A frame consists of attribute value pairs describing the properties of an item. Figure 2 for 
example shows a frame for an integer averaging service: 

Both items and queries are described using frames: matches represent items whose (textual) 
property values match those in the query. All the commercial service search technologies we are 
aware of (e.g. Jini, eSpeak, Salutation, UDDI [13]) use the frame-based approach, typically with 
an at least partially pre-enumerated vocabulary of service types and properties. The more 
sophisticated search tools emerging from the research community (e.g. LARKS [14]) also make 
limited use of semantic nets, e.g. returning a match if the input type of a service is equal to or a 
generalization of the input type specified in the query. Frame-based approaches thus do increase 
precision at the (fairly modest) cost of requiring that all services be modeled as frames. 



 

 
Description a service to find the average of a list of integers 
Input integers 
Output real 
Execution Time number of inputs * 0.1 msec 

Figure 2: A frame-based description of an integer sorting service. 

The frame-based approach is taken one step further in the deductive retrieval approach [15] 
[16] [17] wherein service properties (e.g. inputs, outputs, function, and performance) are 
expressed formally using logic (Figure 3): 
 

Name: set-insert 
Syntax: set-insert(Elem, Old, New) 
Input-types: (Elem:Any), (Old:SET) 
Output-types: (New: SET) 
Semantics: 
 Precond: ),( OldElemmember¬  
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Figure 3: A service description for deductive retrieval [15] 

Retrieval then consists of finding the items that can be proved to achieve the functionality 
described in the query. If we assume a non-redundant pre-enumerated vocabulary of logical 
predicates and a complete formalization of all relevant service and query properties, then 
deductive retrieval can in theory achieve both perfect precision and perfect recall. This approach, 
however, faces two very serious practical difficulties. First of all, it can be prohibitively difficult 
to model the semantics of non-trivial queries and services using formal logic. Even the simple 
set-insert function shown above in Figure 3is non-trivial to formalize correctly: imagine trying to 
formally model the behavior of Microsoft Word or an accounting package! The second difficulty 
is that the proof process implicit in this kind of search can have a high computational 
complexity, making it extremely slow [15]. Our belief is that these limitations, especially the 
first one, make deductive retrieval unrealistic as a scalable general purpose service search 
approach. 

Other approaches do exist, but they apply only to specialized applications. One is execution-
based retrieval, wherein software components are selected by comparing their actual I/O 
behavior with the desired I/O behavior. This is approach is suitable only for contexts where 
observing a few selected samples of I/O behavior are sufficient to prune the service set [18] [19] 
[20].   



 

3 Our Approach: Exploiting Process Ontologies 

Our challenge, as we have seen, can be framed as being able to capture enough service and query 
semantics to substantively increase precision without reducing recall or making it unrealistically 
difficult for people to express these semantics. Our central claim is that these goals can be 
achieved through the sophisticated use of process ontologies. We begin by capturing the 
function(s) of a service as a process model. The service model is then indexed (to facilitate its 
subsequent retrieval) by placing it and all its components (subtasks and so on) into the 
appropriate sections of the ontology. Queries are also expressed as (partial) process models. The 
matching algorithm then finds all the services whose process models match that of the query, 
using the semantic relationships encoded in the process ontology. Our approach can thus be 
viewed as having the following functional architecture: 
 

index service

define 
process 
ontology

define query

find matches  

Figure 4: Functional architecture of our proposed service retrieval technology. 

We will consider each element of the functional architecture in the sections below. 

3.1 Define Process Ontology 

Our approach differs from previous efforts in that it is based on highly expressive process 
models arranged into a fully-typed process ontology. The key concepts underlying this ontology 
are an extension of those developed by the MIT Process Handbook project. The Handbook is a 
process knowledge repository which has been under development at the Center for Coordination 
Science (CCS) for the past eight years [21] [22]. The Handbook is under active use and 
development by a highly distributed group of more than 40 scientists, teachers, students and 
sponsors for such diverse purposes as adding new process descriptions, teaching classes, and 
business process re-design. We believe the current Handbook process ontology represents an 
excellent starting point for indexing on-line services because it is focused on business processes 
which is what a high proportion of on-line services are likely to address. 

The Handbook takes advantage of several simple but powerful concepts to capture and 
organize process knowledge: attributes, ports, decomposition, dependencies, exceptions and 
specialization. 
 

Process Attributes: Like most process modeling techniques, the Handbook allows 
processes to be annotated with attributes that capture such information as a textual 



 

description, typical performance values (e.g. how long a process takes to execute), as 
well as pre-, post- and during- conditions. 
 
Decomposition: Also like most process modeling techniques, the Handbook uses the 
notion of decomposition: a process is modeled as a collection of activities that can in turn 
be broken down (“decomposed”) into subactivities. 
 
Ports: Ports describe the I/O-behavior of an activity. They describe the types of resources 
the activity uses and produces, and are as a result important for assessing the match 
between a service specification and a query. 
 
Dependencies: Another key concept we use is that coordination can be viewed as the 
management of dependencies between activities [21]. Every dependency can include an 
associated coordination mechanism, which is simply the process that manages the 
resource flow and thereby coordinates the activities connected by the dependency. Task 
inputs and outputs are represented as ports on those tasks. A key advantage of 
representing processes using these concepts is that they allow us to highlight the ‘core’ 
activities of a process and abstract away details about how they coordinate with each 
other, allowing more compact service descriptions without sacrificing significant content. 
 
Exceptions: Processes typically have characteristic ways they can fail and, in at least 
some cases, associated schemes for anticipating and avoiding or detecting and resolving 
them. This is captured in our approach by annotating processes with their characteristic 
‘exceptions’, and mapping these exceptions to processes describing how these exceptions 
can be handled [23]. 
 
Specialization: The final key concept is that processes and all their key elements (ports, 
resources, attributes, and exceptions) appear in type taxonomies, with very generic 
classes at one extreme and increasingly specialized ones at the other, so process models 
are fully typed. The taxonomies place items with similar semantics (e.g. processes with 
similar purposes) close to each other, the way books with similar subjects appear close to 
each other in a library: Processes that vary along some identifiable dimension can be 
grouped into bundles; where processes can appear in more than one bundle. Bundles 
subsume the notion of ‘faceted’ classification [4], well-known in the software component 
retrieval community, because bundles, unlike facets, can include a whole ontology branch 
as opposed to simply a flat set of keywords, allowing varying abstraction levels and the 
use of synonyms. 
 

As shown in Figure 5, an activity is thus defined by specifying its decomposition (i.e., the 
activities it contains), its interface (as defined by the ports it contains), the dependencies between 
its sub-activities, and the attributes defined for each of those entities (not shown). Each activity 
can be linked to the kinds of exceptions it can face, and these exceptions can be linked in turn to 
the processes if any used to handle (anticipate and avoid, or detect and resolve) them. 
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Figure 5: Partial meta-model for our process ontology (attributes not shown). 

Every type of entity has its own specialization hierarchy into which it can be placed, making 
this a fully-typed process description approach. There is thus a specialization hierarchy for 
processes, resources, exceptions and so on. The “Sell loan” process, for example, is a 
specialization of the more general “Sell financial service” process. It, furthermore, specializes 
into more specific processes such as “Sell reserve credit,” “Sell Credit Card,” and “Sell 
mortgage” (Figure 6): 

Sell Financial Service
Sell Payroll Management

Sell Account Management Services
Sell Escrow Management

Sell IOLTA Management

Sell Foreign Exchange Services

Sell Merchant Credit Card Services

Sell ATM-Access

Sell Telephone Acess

Sell Online/Computer Access

Sell Night Deposit

Sell Loan

Sell Savings and Investment Service

Sell Management Service

Sell Account Access Services

Activity

specialization

Sell Account

Sell Certificate of Deposit

Sell Retirement Plan

Sell Mutual Funds

Sell Credit Card

Sell Installment Loan

Sell Letter of Credit

Sell Mortgage

Sell Credit Line

Sell Reserve Credit

 

Figure 6: Specialization hierarchy for grant loan 

Each of the elements of the “Sell loan” process is also a member of the overall specialization 
hierarchy. “Analyze credit-worthiness,” for example, is a specialization of the more general 



 

“Perform financial analysis” and specializes to more specific processes such as “Analyze 
creditworthiness using scoring” and “Analyze creditworthiness using PE-ratio,” etc. 

This process representation has equal or greater formal expressiveness than other full-fledged 
process modeling languages (e.g. IDEF [24], PIF [25], PSL [26] or CIMOSA [27]) as well as 
greater expressiveness than the frame-based languages used in previous service retrieval efforts, 
by virtue of adding such important concepts as full typing, resource dependencies, ports, task 
decompositions, and exceptions. 

The growing Handbook database currently includes over 5000 process descriptions ranging 
from specific (e.g. for a university purchasing department) to generic (e.g. for resource allocation 
and multi-criteria decision making). A subset of this database (containing a representative 
selection of process models but no exception-related information) is accessible over the Web at 
http://ccs.mit.edu/eph/ 

3.2 Index Services  

Services are indexed into the process ontology so that they may be retrieved readily later on. 
Indexing a service in our approach comes down to placing the associated process model, and all 
of its components (attributes, ports, dependencies, subtasks and exceptions) in the appropriate 
place in the ontology. The fact that a substantial process ontology exists in the Process Handbook 
means that parties wishing to index a service can construct their service specification from 
already existing elements in the ontology, and then customizing them as necessary. 

Imagine for example that we want to index a service that sells mortgages. The Handbook 
ontology already includes a general ‘sell loan’ process (Figure 7): 
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Figure 7: The loan selling service process model. 

The ‘sell loan’ process model includes most of the requisite elements, including key sub-
activities such as analyzing creditworthiness, establishing the loan’s conditions, obtaining the 
commitments, and “executing” the loan contract. It also includes ports describing the process 
inputs (e.g. the size of the loan (“amount”), the collateral provided for the loan, information 
about the customer) and outputs (the loan itself).1 The mortgage provider, therefore, need only 
create a specialization of the ‘sell loan’ process and make the few changes specific to mortgage 
loans, e.g. further specifying the types of customer information it wishes and type of 
creditworthiness analysis performed, elements that can also be defined by specializing existing 
elements in the process ontology.  (Figure 8): 

                                                
1 To simplify this example we omitted dependencies and exceptions. 
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Figure 8: The mortgage selling service process model. 

The Handbook project has developed sophisticated Windows-based tools for process 
indexing, based on this define-by-specialization principle, that have been refined over nearly 
eight years of daily use. Using these tools, most process models can indexed in a matter of 
minutes. 

Note that when modeling a service, one needs in theory to account for all the possible uses the 
service may be put to. What to some users may be a side effect of a service may be a key 
attribute for others. To pick a homely example, a dog-walking service may be desired as a way to 
provide the dog exercise, or simply as a way to make sure the dog is cared for while the owner is 
out on an errand. This would suggest that a process model needs to be indexed under 
specializations representing all of its possible uses, which is difficult at best. As we shall see 
below, however, we can define query algorithms that, using query mutation operators, can 
potentially retrieve processes not explicitly indexed as serving a given purpose, thereby reducing 
the service-indexing burden. 

We can, however, take the manual indexing approach described above one important step 
further. A key criterion for a successful service retrieval approach is minimizing the manual 
effort involved in listing new services with the search engine. Ideally services can be classified 
automatically. Automatic classification is predicated on having a similarity metric so one can 
place a process under the class it is most similar to. Previous efforts for automatic service 
classification have used similarity metrics based on either: 
 
♦ Automatically calculated word frequency statistics for the natural language documentation of 

the service [28] [29] [30] 
♦ Manually developed frame-based models of the service [9] 
 

The first approach is more scalable because no manual effort is needed, but the latter 
approach results in higher retrieval precision because frame-based models, as we have seen, 
better capture service semantics. We can use a ontology-based approach to improve on these 
approaches by developing tools for [semi-] automated classification of process models. Process 
models, in the form of flowcharts for example, are typically created as part of standard 
programming practice, so in many if not most cases the services we want to index will already 
have process models defined for them. These models may even in some cases already be 
classified into some kind of process ontology. The greater expressiveness of process models as 
compared to standard frame-based service models (process models often include task 
decomposition information, for example, but frame-based models do not) means that we can 



 

define similarity metrics that are more accurate than those that have been used previously. These 
metrics can use word frequency statistics augmented with semantic networks to compute 
similarity of natural language elements, combined with taxonomic reasoning and graph-theoretic 
similarity measures to assess structural and type similarities. At the least, we believe that this 
technique should greatly speed manual service indexing by providing the human user with a 
short list of possible locations for a service. Ideally, it will allow a human user to be taken out of 
the loop entirely. If fully automated indexing turns out to be feasible, then we can imagine on-
line services being indexed using Internet “worms” analogous to those currently used by 
keyword-based search tools. 

3.3 Define Queries 

It is of course possible that we can do without query definition entirely once services have 
been indexed into a process ontology. In theory one can simply browse the ontology to find the 
services that one is interested in, as in [31]. Our own experience with the Process Handbook 
suggests however that browsing can be slow and difficult for all except the most experienced 
human users, because of the size of the process ontology. This problem is likely to be 
exacerbated when, as with online services, the space of services is large and dynamic.  

To address this challenge we have begun to define a query language called PQL (the Process 
Query Language) designed specifically for retrieving full-fledged process models from a process 
ontology [32]. Process models can be straightforwardly viewed as entity-relationship diagrams 
made up of entities like tasks connected by relationships like ‘has-subtask’. PQL queries are built 
up as combinations of two types of clauses that check for given entities and relationships: 
 

Entity <entity> isa <entity type>  :test <predicate>  
Relationship <source entity> <relationship type>  <target entity>  :test <predicate>  

 
The first clause type matches any entity of a given type. The second primitive matches any 

relationship of a given type between two entities. Any bracketed item <> can be replaced by  a 
variable (with the format ?<string>) that is bound to the matching entity and passed to 
subsequent query clauses. The predicates do further pruning of what constitutes a match. 

Let us consider some simple examples. Imagine we are searching for a loan service that 
accepts real estate as collateral (which includes mortgages), as follows: 
 



 

Entity ?proc isa sell-loan // finds a specialization of “Sell loan” 
 
Relationship ?proc has-port ?port1 // looks for a port that accepts real- 
Entity ?port1 isa input-port // estate as a collateral 
Relationship ?port1 propagates-resource ?res1 
Entity ?res1 isa real-estate 
Entity ?port1 has-attribute ?attr1 
Entity ?attr1 isa name 
Relationship ?attr1 has-value ?val :test (= ?val “collateral”) 
 
Relationship ?proc has-port ?port2 // looks for a port that “produces” 
Entity ?port2 isa output-port // money 
Relationship ?port2 propagates-resource ?res2 
Entity ?res2 isa money 

Query 1: A query for mortgage services. 

This type of query is imaginably within the capabilities of frame-based query languages, 
especially if enhanced with a semantic network such as WordNet [5], since it references only the 
type and I/O for a service. Existing linguistically-oriented semantic networks do not, however, 
include a service-oriented process taxonomy like that incorporated in the Handbook, so we can 
expect that recall will be less than optimal using this approach. 

We can go substantially further, however, using an ontology-based approach. Query 2 below, 
for example, retrieves a financing solution that has at least one internet-based step: 

 
Entity ?proc isa sell-loan // finds a specialization of “Sell loan” 
 
Relationship ?proc has-subtask ?sub // has sub-process that is internet 
Entity ?sub isa internet-process // based 
 
Relationship ?proc has-port ?port1 // looks for a port that accepts real- 
Entity ?port1 isa input-port // estate as a collateral 
Relationship ?port1 propagates-resource ?res1 
Entity ?res1 isa real-estate 
Entity ?port1 has-attribute ?attr1 
Entity ?attr1 isa name 
Relationship ?attr1 has-value ?val :test(= ?val “collateral”) 
 
Relationship ?proc has-port ?port2 // looks for a port that “produces” 
Entity ?port2 isa output-port // money 
Relationship ?port2 propagates-resource ?res2 
Entity ?res2 isa money 

Query 2: A query for internet-based financing services. 

This useful capability – searching for services based on how they achieve their purpose – can not 
be achieved using frame-based languages since they do not capture process decompositions. 



 

Another novel and powerful feature of the ontology-based approach is the ability to search 
based on how the service handles exceptions. Query 2 could be refined, for example, by adding a 
clause that searches for loan processes that provide insurance for handling payment defaults: 

 
Entity ?proc isa sell-loan 
…  
Relationship ?proc has-exception ?exc 
Entity ?exc isa payment-default 
Relationship ?exc is-handled-by ?proc2 
Entity ?proc2 isa insurance-process 

Query 3: A query refinement that searches for payment default insurance. 

Searching based on a services’ exception handling processes is also not well-supported by frame-
based techniques. We can see, in short, that an ontology-based approach offers substantively 
greater query expressiveness than keyword or frame-based approaches, by virtue of having a 
substantive process taxonomy, and by being able to represent process decompositions and 
exception handling. 

PQL, like any query language, is fairly verbose and requires that users be familiar with its 
syntax. More intuitive interfaces suitable for human users are possible. One approach exploits 
the process ontology. It is straightforward to translate any process model into a PQL query that 
looks for a service with that function. Users can thus use the Handbook process modeling tools 
to express a query as a combination and refinement of existing elements in the process ontology, 
in much the same way new services are indexed. An advantage of specifying a query in this way 
is that the elements in the process ontology can give the user additional ideas concerning what to 
look for. Someone looking for a mortgage service, for example, might not initially think to check 
for whether or not that service provides mortgage insurance. If they define the query as a 
specialization of the generic ‘sell loan’ process, however, they may note that that process has a 
possible ‘payment default’ exception, and they mya as a result be inspired to search for mortgage 
services that handle that exception in a way the user prefers. 

Other possibilities exist. One can reduce the query definition burden by allowing users to 
enter queries using a restricted subset of English (an approach that has been applied successfully 
to traditional database access). Substantial progress has also been made in defining graphical 
metaphors for query definition (e.g. see [33]). These approaches can of course be combined, so 
that for example a simple natural language query returns some candidates classes that are 
selected from and refined to define the final, more complete, query. 

3.4 Find Matches 

The algorithm for retrieving matches given a PQL query is straightforward. The clauses in the 
PQL query are tried in order, each clause executed in the variable binding environment 
accumulated from the previous clauses. The sets of bindings that survive to the end represent the 
matching services. There is one key problem, however, that has to be accounted for; what we can 
call modeling differences. It is likely that in at least some cases a service may be modeled in a 
way that is semantically equivalent to but nevertheless does not syntactically match a given PQL 
query. The service model may, for example, include a given subtask several levels down the 
process decomposition, while in the query that subtask may be just one level down. The service 



 

model may express using several resource flows what is captured in the query as a single more 
abstract resource flow. The service model may simply be missing some type or resource flow 
information tested for in the query. This problem is exacerbated by the possibility of multiple 
service ontologies. As has been pointed out in [34], while we can expect the increasing 
prevalence of on-line ontologies to structure all kinds of knowledge including service 
descriptions, there will almost certainly be many partially-mapped ontologies as opposed to a 
single universally adopted one. This will likely increase the potential for modeling differences, 
e.g. if queries and services are defined using different ontologies. In order to avoid false 
negatives we must therefore provide a retrieval scheme that is tolerant of such modeling 
differences.  

We can explore for this purpose the use of semantics-preserving query mutation operators. 
Imagine we have a library of operators that can syntactically mutate a given PQL query in a way 
that (largely) preserves its semantics. Some examples of such operators include: 
 
(a) allow a type specification to be more general 
(b) allow a subtask to be any number of levels down the task decomposition hierarchy 
(c) allow ‘siblings’ or ‘cousins’ of a task to constitute a match 
(d) relax the constraints on a parameter value 
(e) remove a subtask 
 

One can use mutation operators to broaden a search to allow for the discovery of novel 
alternatives. One could for example apply mutation operator (a) to Query 4 above so that it 
searches for “Sell” processes, not just “Sell loan” processes. This would result in additional hits 
like “Sell real-estate,” a service which would sell the property to raise money, or “Sell real-estate 
lease,” which would lease the property to generate funds. Assuming a homeowner would want to 
raise money for an extension, the first of those two additional options would not be desirable, as 
the property would be sold off. The second option, though, is often used. The key point to be 
made here is that the mutation operation broadened the search in a way that was semantically 
motivated, thereby avoiding the precipitous decline in precision typical of other imprecise 
matching techniques. 

A second important potential use of mutation operators is to address the incomplete indexing 
issue described in section 3.2. It will often be the case that a user may be searching for all 
processes that serve a purpose not represented by any single element in the process ontology. For 
example, one may be searching for all the ways to raise money, but the different options may not 
all share a single generalization. One can address this issue by using mutation operators to define 
a query that searches for processes with similar substeps, regardless of what part of the process 
ontology they are indexed in. So we can, for example, search for all processes that offer money 
given some kind of collateral. This would return such options as services for getting a mortgage, 
raising money on the stock market, and so on. 

4 Contributions of this Work 

This paper has described a set of ideas that exploit the use of process model representations of 
service semantics, plus process ontologies, to improve service retrieval. These ideas offer the 
potential for the following important benefits: 

 



 

Increased Precision: Our approach differs from previous efforts in that it models service 
semantics more fully than keyword or frame-based approaches, without imposing the 
unrealistic modeling burden implied by deductive retrieval approaches. This translates 
into greater retrieval precision. 
 
Increased Recall: Modeling differences between queries and service descriptions can 
reduce recall, but this can be addressed in a novel way through the use of semantics-
preserving query mutation operators. 

 
While query definition and service indexing using process models is potentially more 

burdensome than simply entering a few keywords, we believe that existing “define-by-
specialization” process modeling techniques developed in the Handbook project, coupled with 
our proposed advances in search algorithms and automated process model classification, should 
result in an acceptable increase in the query definition and service indexing burden when traded 
off against the increase in retrieval precision and recall. 

To date we have developed an initial version of a PQL interpreter as well as a small set of 
semantics-preserving query mutation operators [31], which has demonstrated the viability of the 
query-by-process-model concept. While we have not yet evaluated PQL’s performance in detail 
yet, it is clear that its primitive query elements have low computational complexity. Query 
performance can in addition be increased by using such well-known techniques as query clause 
re-ordering. Our future efforts will involve comparing the precision and recall of our approach 
with other search engines, refining the query definition and mutation schemes, and implementing 
and evaluating automated process classification techniques. 
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