
1  

  

A Repository of Workflow Components for 
Cooperative e-Applications 

Massimo Mecella1, Barbara Pernici2, Monica Rossi1, Andrea Testi1 

1 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza” 
Via Salaria 113, 00198 Roma, Italy 
{mecella,rossi,testi}@dis.uniroma1.it 

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano 
Piazza Leonardo da Vinci 32, 20133 Milano, Italy 
barbara.pernici@polimi.it 

Abstract: Cooperation of processes in different organizations requires the definition of 
adequate interfaces among processes to model both data exchange and the 
cooperation logic. In modern e-Applications, in order to interconnect e-
Services of several organizations in a highly dynamic environment, the needs 
arises for a framework that allows a precise and rapid definition of cooperative 
processes, and for an infrastructure for change management both at design and 
at run-time. This work presents a framework for cooperative processes, by 
defining both a model to represent process interconnection and an architecture 
for development tools. The implementation of a repository for workflow 
components is discussed in detail. 

Key words: e-Service, Workflow Component, Repository 

1. INTRODUCTION 

The emergence of Internet allows the development of new interaction 
business paradigms, commonly referred to as e-Business. Besides the 
widespread e-Commerce paradigm, there are other contexts where the use of 
communication networks and of distributed applications can be taken into 
consideration in order to offer new added value services: for instance, some 
important initiatives for the definition of what is referred to as e-Government 
are undertaken in many countries (Elmagarmid and McIver 2001, CITU 
2000a). 



2 Mecella, Pernici, Rossi, Testi
  

In all these contexts, one of the major problems is to effectively share and 
integrate services across the Web; such services, commonly referred to as e-
Services or Web-Services (VLDB-TES 2000), are exported by different 
organizations as semantically well defined functionalities that allow users 
and applications to access and perform tasks offered by back-end business 
applications. The integration of different e-Services provided by different 
organizations allows them to form what is known as virtual enterprise (VE) 
(RIDE 1999). 

As regards the features of an e-Service, many definitions are proposed in 
the literature (VLDB-TES 2000). In this work we consider an e-Service as 
an application component, provided by an organization, which is (Mecella 
and Pernici 2001): 
– open, that is independent, as much as possible, of specific platforms and 

computing paradigms; 
– developed not only for intra-organization applications, but mainly for 

inter-organization applications, that is to be assembled and reused in a 
distributed, Internet-based environment; 

– easily composable; assembling and integrating the e-Service in an inter-
organization application does not require the development of complex 
adapters. 

An e-Application is a distributed application that integrates in a 
cooperative way the e-Services offered by different organizations. e-
Applications can be both Business-to-Business (B2B) and Business-to-
Consumer (B2C) applications, respectively Administration-to-
Administration (A2A) and Administration-to-Customer (A2C) applications 
in case of e-Government (Mecella and Batini 2001). 

The term Cooperative Information System (CIS) (Brodie 1998, 
Mylopoulos and Papazoglou 1997) is often used to define a large number of 
cooperating systems, distributed over large, complex computer and 
communication networks and working together cooperatively, requesting 
and sharing information, constraints, and goals. Therefore an e-Application 
is a particular instance of CIS, and e-Services are the basic building blocks 
for new Internet-based CISs. 

The integration of different e-Services to support centralized, federated 
and on-the-fly (Benatallah et al. 2000) virtual enterprises and cooperative e-
Applications requires the development of a complex framework in which the 
dynamic interchangeability of different e-Services is possible in a semi-
automatic way. In order to define such a framework, it is necessary to realize 
some basic elements, that is: 
– the definition of a common conceptual component model for e-Services, 

mappable on different technological component models. A component 
can be defined as “a unit of design (at any level), for which a structure is 



A Repository of Workflow Components 3
  

defined, a name identifying the component is associated, and for which 
design guidelines, in the form of design documentation, are provided in 
order to support the reuse of the component and to illustrate the context 
where it can be reused” (Casati et al. 2000b). Specifically a component 
has well-defined interfaces for the services it provides and for the 
services it expects from the others, can be composed with other 
components, perhaps customizing some of its properties, without 
modifying the component itself. The major obstacle to the establishment 
of component-based approaches is the need for a common framework, 
referred to as the component model, that is the definition of “the world in 
which the component will live in” (Fowler 1997); 

– the definition and development of a repository in which the conceptual 
specifications of different components can be stored. The repository 
should be accessible to all cooperating organizations; 

– the definition and development of interchangeability rules and 
algorithms for the discovery of relationships among components and 
their dynamic and adaptive substitution in complex e-Applications; 

– the development of a suite of tools for cooperative architects and 
designers, to be used for the management of the different cooperative 
components and their assembling. 

The emerging of different cooperative technologies and platforms, such 
as OMG Common Object Request Broker Architecture (CORBA, OMG 
1998), SUN Enterprise JavaBeans Architecture (EJB, Monson-Haefel 2000) 
and Microsoft Enterprise .NET Architecture (Trepper 2000), enables the 
effective development of such a framework, and its deployment on open 
architectures. Moreover, the widespread use of a standard modeling 
language for software artefacts, specifically the OMG Unified Modeling 
Language (UML, OMG 2000a) pushes towards its use for the definition of 
an open common conceptual component model. 

The aim of this work is to present an ongoing work towards the 
development of this complex framework. Specifically, in this paper we 
propose a common conceptual component model for e-Services based on a 
particular tailoring of the UML Class Diagrams and UML Statechart 
diagrams, to define software components for e-Services and e-Applications; 
and we describe the development of a repository of such component 
specifications, accessible through the CORBA technology. 

The remainder of this paper is as following. In Section 2, we discuss the 
concept of cooperative process as the basis for the definition of the common 
conceptual component model. In Section 3, we introduce our framework, 
and in Section 4 and Section 5 we detail the component model for e-Services 
and the development of the repository respectively. Section 6 describes a 
real e-Government scenario that provides motivations for our work and the 



4 Mecella, Pernici, Rossi, Testi
  
test bed in which we will try our approach. Finally, Section 7 concludes the 
paper by remarking which other elements of the framework need to be 
realized. 

2. COOPERATIVE PROCESSES 

A cooperative process, also referred to as macro process (Mecella and 
Batini 2001) or multi-enterprise process (MEP, Schuster et al. 2000), is a 
complex business process involving different organizations. Unlike 
traditional workflow processes where all the activities concern the same 
enterprise, in a cooperative process the activities involve different 
organizations, either because they form together a VE or since they 
exchange services and information in a coordinated way. 

The problem of inter-organization processes has been studied in 
workflow literature (Grefen et al. 2000) to provide a technological 
infrastructure to support inter-organization process cooperation. However, 
recent widespread use of Internet technology produces frequent 
modifications in collaborations among organizations, specifically frequent 
changes of e-Service providers (Casati et al. 2000a). In such a framework, it 
is not possible to adopt a strictly coordinated system for inter-organization 
process cooperation. 

On the other hand, in cooperative processes involving several 
organizations, it is not necessary that all participants in the process have 
information about all the details of the process in other organizations. As a 
result, a more flexible way of interconnecting processes is needed, as well as 
the technological infrastructure that allow dynamic process reconfiguration. 

As outlined in the Introduction, the aim of this paper is to introduce a 
methodological and technological approach for dynamic e-Service 
configuration in an inter-organization process. The proposed approach is 
based on the concept of conceptual cooperative workflow specification. 

We define a reference schema for the inter-organization process. This 
reference schema is an abstract workflow description, which hides the details 
of process execution in each of the cooperating organizations. On the basis 
of this reference schema we define cooperative workflow components that 
can interact playing a role in the cooperative process. The workflow 
components define both the structure and semantics of data exchanged 
among the cooperating organizations, and the behavioural aspects that 
specify which interactions are allowed among components and possible 
sequences of interactions. In this way, single intra-organization activities are 
aggregated in a higher-level description, which offer the context for them. 



A Repository of Workflow Components 5
  

We argue that such workflow components are suitable for defining e-
Services, which are defined by organizations through the analysis of the 
overall processes they may be involved in. Specifically, the proposed 
approach can be adopted along two different lines: 
– to derive from the agreed schema the internal workflows in each 

organization providing e-Services, according to specific generation rules, 
such as the ones proposed in van der Aalst and Basten 1999; 

– to interface legacy workflow systems and/or legacy information systems, 
by building workflow components compliant with the static and dynamic 
specifications defined to interact in the cooperative process. 

Different issues need to be tackled in order to adopt the proposed 
approach; such problems can be divided into two different categories, related 
(i) to the definition of the framework and (ii) to the methodological and 
technological issues that each cooperating organization needs to solve when 
it develops its e-Services. 

As regards the first category, the issues to be solved are those ones 
described in the Introduction, that is the definition of the conceptual 
component model for workflow components and the development of a 
repository-based infrastructure for their design and management. 

As regards the latter category, the issues are both of methodological 
nature and of technical one; specifically, techniques have to be devised (i) to 
identify cooperative workflow components and their structure, (ii) to 
generate single organization workflows that are compliant with the 
specifications of the workflow components and (iii) to interface existing 
systems by building interfaces compliant with the inter-organization process 
specification. Moreover, from the technological point of view, adequate 
coordination mechanisms for message and data interchange must be 
developed, to guarantee a correct behaviour of the cooperative process in 
heterogeneous dynamically changing software environments; techniques and 
software tools for mapping conceptual workflow specifications to effective 
software components deployed according to different component models 
have to be provided. 

In the remainder of this paper, we will focus our attention on defining a 
conceptual component model for workflow components, by addressing the 
definition of a workflow component specification language based on UML. 
Then we describe the development of a repository, which is the basic 
element on which to develop the entire framework and the related 
methodologies. 

As an example, in Figure 1, we show a cooperative process for Goods 
Procurement (such the one currently set-up in our department). Each time 
some new goods (such as new workstations, books, etc.) need to be acquired 
by someone, a purchase order request is issued, and after the Acquisition 



6 Mecella, Pernici, Rossi, Testi
  
Department validates it, a confirmation or a denial is sent to the requester. In 
the meanwhile, a purchase order is sent to a Seller Organization (with which 
typically there is some business agreement), in order to have it satisfied. 
When the Seller Organization is ready with all the goods in the order, a 
Shipping Agency is involved for the effective shipment of the goods and an 
invoice is sent back to the Acquisition Department, which in turn issues a 
payment order. The Seller Organization concludes its process with the 
reception of the payment order. 

 

Figure 1. The conceptual specification of the Goods 
Procurement cooperative process, and the identified workflow 
components 

The two organizations have their own processes (such as the Purchase 
Order Management and the Invoice&Payment Management in the Buyer 
Organization), they are separate but a global description of their 
relationships is needed for a correct cooperation between them. Such a 
global description has not to consist only on the data (e.g. documents) 
exchanged, but also on the correct flow of such exchanges, in order to avoid, 
as an example, deadlock situations. 

: Purchase Order

: Invoice

: Payment

Receive PO

Validate Order

Send Invoice Shipping

Receive Shipping ConfirmationReceive Payment

Process PO

PO Approval

Receive PO Request

[PO Approval == yes]

[Else]

Notify Approval

Notify Denial

Send PO to Seller

Receive Invoice from Seller

Send Payment Order

Receive Shipment

Send Shipping Acknoweldgement Invoice Processing

“Buyer Purchase “Buyer Purchase 
Order” componentOrder” component

“Buyer Shipment” “Buyer Shipment” 
componentcomponent

“Buyer Payment” “Buyer Payment” 
ComponentComponent

“Seller Purchase Order” “Seller Purchase Order” 
ComponentComponent

“Seller Payment” “Seller Payment” 
ComponentComponent

“Seller Shipment” “Seller Shipment” 
ComponentComponent

: Purchase Order

: Invoice

: Payment

Receive PO

Validate Order

Send Invoice Shipping

Receive Shipping ConfirmationReceive Payment

Process PO

PO Approval

Receive PO Request

[PO Approval == yes]

[Else]

Notify Approval

Notify Denial

Send PO to Seller

Receive Invoice from Seller

Send Payment Order

Receive Shipment

Send Shipping Acknoweldgement Invoice Processing

: Purchase Order

: Invoice

: Payment

Receive PO

Validate Order

Send Invoice Shipping

Receive Shipping ConfirmationReceive Payment

Process PO

PO Approval

Receive PO Request

[PO Approval == yes]

[Else]

Notify Approval

Notify Denial

Send PO to Seller

Receive Invoice from Seller

Send Payment Order

Receive Shipment

Send Shipping Acknoweldgement Invoice Processing

“Buyer Purchase “Buyer Purchase 
Order” componentOrder” component

“Buyer Shipment” “Buyer Shipment” 
componentcomponent

“Buyer Payment” “Buyer Payment” 
ComponentComponent

“Seller Purchase Order” “Seller Purchase Order” 
ComponentComponent

“Seller Payment” “Seller Payment” 
ComponentComponent

“Seller Shipment” “Seller Shipment” 
ComponentComponent



A Repository of Workflow Components 7
  

As shown in Figure 1, our approach describes the conceptual 
specification of a cooperative process through a UML Activity Diagram. 
Activity diagrams can be used for modeling cooperative processes at a 
conceptual level. The purpose of this diagram is to focus on flows driven by 
internal processing (as opposed to external events, such as in UML 
Statechart Diagrams). 

 

 
Figure 2. The proposed framework for e-Services as workflow 
components 

 

The definition of the conceptual cooperative workflow specification is 
the first step of the joint development process, which aims at defining 
cooperative workflow components in each participating organization. The 
next step consists of identifying a set of cooperative workflow components, 

Cooperative gateway Cooperative gateway 

Information systemsInformation systems
(legacy)

Workflow Components
(deploying e-Services) 

Cooperative gateway Cooperative gateway 

Information systemsInformation systems
(legacy)

S
p

ec
if

ic
at

io
n

 
la

n
g

u
ag

e 
fo

r 
w

o
rk

fl
o

w
 

co
m

p
o

n
en

ts

Repository of 
workflow component 
specifications and 
instances

M
et

a 
–

m
o

d
el

in
g

 t
o

o
ls

T
o

o
ls fo

r C
o

o
p

erative 
A

rch
itects an

d
 

D
esig

n
ers

In
terch

an
g

eab
ility 

R
u

les an
d

 
A

lg
o

rith
m

s

T
o

o
ls fo

r D
yn

am
ic 

P
ro

cess 
R

eco
n

fig
u

ratio
n

Development 
environment

Run-time 
environment

implement

stored in
Conceptual Specifications

(specifying e-Services)

Repository 
generation step CORBA

e-Applications

based on

Cooperative gateway Cooperative gateway 

Information systemsInformation systems
(legacy)

Workflow Components
(deploying e-Services) 

Cooperative gateway Cooperative gateway 

Information systemsInformation systems
(legacy)

Information systemsInformation systems
(legacy)

S
p

ec
if

ic
at

io
n

 
la

n
g

u
ag

e 
fo

r 
w

o
rk

fl
o

w
 

co
m

p
o

n
en

ts

Repository of 
workflow component 
specifications and 
instances

M
et

a 
–

m
o

d
el

in
g

 t
o

o
ls

T
o

o
ls fo

r C
o

o
p

erative 
A

rch
itects an

d
 

D
esig

n
ers

In
terch

an
g

eab
ility 

R
u

les an
d

 
A

lg
o

rith
m

s

T
o

o
ls fo

r D
yn

am
ic 

P
ro

cess 
R

eco
n

fig
u

ratio
n

Development 
environment

Run-time 
environment

implement

stored in
Conceptual Specifications

(specifying e-Services)

Repository 
generation step CORBA

e-Applications

based on

S
p

ec
if

ic
at

io
n

 
la

n
g

u
ag

e 
fo

r 
w

o
rk

fl
o

w
 

co
m

p
o

n
en

ts

Repository of 
workflow component 
specifications and 
instances

M
et

a 
–

m
o

d
el

in
g

 t
o

o
ls

T
o

o
ls fo

r C
o

o
p

erative 
A

rch
itects an

d
 

D
esig

n
ers

In
terch

an
g

eab
ility 

R
u

les an
d

 
A

lg
o

rith
m

s

T
o

o
ls fo

r D
yn

am
ic 

P
ro

cess 
R

eco
n

fig
u

ratio
n

Development 
environment

T
o

o
ls fo

r C
o

o
p

erative 
A

rch
itects an

d
 

D
esig

n
ers

In
terch

an
g

eab
ility 

R
u

les an
d

 
A

lg
o

rith
m

s

T
o

o
ls fo

r D
yn

am
ic 

P
ro

cess 
R

eco
n

fig
u

ratio
n

Development 
environment

Run-time 
environment

implementimplement

stored in
Conceptual Specifications

(specifying e-Services)

Repository 
generation step CORBA

e-Applications

based on



8 Mecella, Pernici, Rossi, Testi
  
in order to consider the cooperative process as the exchange of messages 
among such components. This step identifies on the activity diagram some 
aggregations of activities, to be assembled and offered as components. Such 
components are described, in our approach, through UML Class Diagrams 
and UML Statechart Diagrams, as detailed in Section 4. As an example, in 
Figure 1 the decomposition in components for the Goods Procurement 
process is shown. After the cooperative workflow components have been 
described, each of the organizations needs to provide an implementation of 
them. This step consists of considering whether some of the activities 
necessary to carry out the business logic of the components are present in the 
information system of the organization, and possibly wrapping them 
according to the conceptual specification of the components, or developing 
new components according to the specifications. 

3. THE FRAMEWORK FOR WORKFLOW 
COMPONENTS 

In this section, we introduce our framework for e-Services as workflow 
components (see Figure 2). The core of the framework is the definition of 
the conceptual component model for workflow components. Such language 
is obtained by tailoring UML in a specific way, as illustrated in Section 4. 

Once this specification language has been defined, it is possible to 
develop a repository in which to store both workflow component 
specifications and instances. The development of such a repository leverages 
the meta-modeling architecture on which UML was designed and the 
availability of automatic tools which allow to generate a skeleton of the 
repository. The technology on which the repository is based is CORBA. 

The availability of a repository based on open standards allows an easy 
integration of different design and run-time management tools to be 
developed based on this framework. The development environment 
associated to the repository is based on algorithms for discovering 
interchangeability relationships among workflow components, and is 
composed of tools for dynamic process reconfiguration and tools for the 
specification of a cooperative workflow component, detecting, by accessing 
the repository, which components can be used to satisfy that specification. If 
later some components became unavailable, and others have been registered 
in the meanwhile, the designer can decide to interchange the unavailable 
ones with the new ones. Such notion can be applied also at run-time, 
possibly in a semi-automatic (interactive) way. 

In most of the approaches, components are considered interchangeable if 
their interfaces are related by an is_a relationship; several papers (Nierstrasz 



A Repository of Workflow Components 9
  
1995, Harel and Gery 1997, Harel and Kupferman 2000) have been devoted 
to define inheritance relationships among components based on behavioural 
aspects. Our interchangeability notion is based on behavioural aspects, and 
in particular on discovering particular relationships among the statechart 
diagrams of different component specifications. 

Several other tools can be developed or interfaced, based on the 
repository presented in this paper, in particular graphical CASE tools for the 
definition and development of new cooperative processes obtained by 
assembling available components. 

As regards the run-time environment, we refer to server organizations as 
the ones offering their e-Services as workflow components, and client 
organizations as the ones developing new e-Applications by assembling 
different e-Services, possibly provided by different server organizations. 
Each cooperating organization is represented as a domain; each domain 
exports its cooperative workflow components deploying and making them 
accessible through cooperative gateways. A cooperative gateway is the 
computing server platform that hosts the components; different technologies 
allow the deployment of such elements, and their analysis is out of the scope 
of the present paper. Specifically, the following layers compose the 
architecture of each organization: 
– Back-End layer (server organizations): where data and applications 

(possibly) reside. This layer is where the business logic of the workflow 
components effectively works. 

– e-Service layer (server organizations): e-Services are deployed as 
workflow components on the server cooperative gateways. 

– e-Application layer (client organizations): a cooperative process is 
realized through message exchanges among the workflow components 
exported by the different organizations. This layer consists of the logic 
needed to orchestrate such message exchanging. 

In the following sections, we detail the conceptual component model and 
the development of the repository; as regards the run-time cooperative 
architecture for the different organizations, we refer to previous work of 
Mecella and Batini 2000 and Mecella and Pernici 2001. 

4. WORKFLOW COMPONENT SPECIFICATION 

Each e-Service is described through the conceptual specification, which 
consists of diagrams; while the representation of the structural part is easily 
achieved through UML Class Diagrams, tailored in a specific manner, 
exporting the behavioural characteristics is more complex, and in the present 



10 Mecella, Pernici, Rossi, Testi
  
approach it is obtained through UML Statechart Diagrams. The conceptual 
specification of a cooperative workflow component consists of: 
– A UML Class Diagram. The classes represent the specification of both 

the data exchanged by the component and the services exported by it. 
These data are both the data the component needs as input and the ones it 
provides as output. The services it exports are described as events, 
including both the ones the component reacts to and the events it 
produces. Therefore the classes represented are of three different 
categories1: 
�� Flat class: it represents structured data. According to object-oriented 

terminology, it owns only properties/attributes; the type of each 
attribute must be either a basic type2 or a flat class. In the latter case 
the property is described as an association with the other flat class, 
and the association end on this side has the name of the property. If 
the multiplicity is higher than 1, the semantic is that of a multi-set, 
that is there is not any ordering of the linked flat objects and it is 
possible to have duplicates. A property/attribute can be optional 
(meaning that not each instance of the class has to present a value for 
it). 

�� Active class: it represents the main functionality provided by the 
cooperative workflow component. At least one active class needs to 
be defined in a component; sometimes a component can include the 
definition of several active classes. An active class has 
properties/attributes and events. 

�� Event class: it represents an event an active class reacts to/raises.  An 
event class has attributes/properties; the type of a property can be 
either a basic type or a flat class. The properties/attributes represent 
the parameters of the event. An event is linked to the related active 
classes by the dependency relationship (an active class depends upon 
an event class) labelled with the stereotype <<raises>> or 
<<reacts>>, and to the flat classes specifying its parameters by 
association relationships. 

 

 
1  In the class diagram it is possible to distinguish each category through the three 

stereotypes:  <<flat>>, <<active>>, <<event>>. Every class in the component 
class diagram needs to be labelled by one of these stereotypes. 

2  We consider as basic types those ones provided by the most common programming 
languages; specifically our basic types are Integer, Long, Single, Double, 
Boolean, String, Date, Currency, Any, respectively for numbers (integer, long 
integer, real in single and double precision), boolean values, strings, date, money and 
generic (unspecified) values. 



A Repository of Workflow Components 11
  

Figure 3. The “Buyer Payment” component specification: the 
class diagram and the statechart diagram of the only active 
class Payment Manager 

 
– A set of UML Statechart Diagrams, one for each active class, which 

describe how objects (instances of the different classes) evolve during the 
flow of the cooperative process they are components of. In this work, we 
use a simplified version of statechart diagrams, without H states, 
concurrency and nested states. 
 

PaymentManager
<<active>>

StatusInquiry
<<event>>

Invoice
ID : String
IssueDate : Date
BeforeTaxAmount : Currency
AfterTaxAmount : Currency
TaxPercentage : Integer

<<flat>>

InvoiceNotification
<<event>>

1+InvoiceInfo 1

Bank
#1_Code : String
#2_Code : String
Denomination : String

<<flat>>

Payment
ID : String
IssueDate : Date
ExpirationDate : Date

<<flat>>

1
+BankInfo
1

PaymentNotification
<<event>>

1+PaymentInfo 1
InvoiceAck
<<event>>

PaymentAck
<<event>>

StateChange
<<event>>

<<reacts>>

<<reacts>>

<<raises>>

<<reacts>>

<<raises>>

<<raises>>

<<reacts>>

StateChange / PaymentNotification

InvoiceNotification / InvoiceAck

StatusInquiry

StatusInquiry

PaymentAck

PaymentManager
<<active>>

StatusInquiry
<<event>>

Invoice
ID : String
IssueDate : Date
BeforeTaxAmount : Currency
AfterTaxAmount : Currency
TaxPercentage : Integer

<<flat>>

InvoiceNotification
<<event>>

1+InvoiceInfo 1

Bank
#1_Code : String
#2_Code : String
Denomination : String

<<flat>>

Payment
ID : String
IssueDate : Date
ExpirationDate : Date

<<flat>>

1
+BankInfo
1

PaymentNotification
<<event>>

1+PaymentInfo 1
InvoiceAck
<<event>>

PaymentAck
<<event>>

StateChange
<<event>>

<<reacts>>

<<reacts>>

<<raises>>

<<reacts>>

<<raises>>

<<raises>>

<<reacts>>

StateChange / PaymentNotification

InvoiceNotification / InvoiceAck

StatusInquiry

StatusInquiry

PaymentAck



12 Mecella, Pernici, Rossi, Testi
  

In Figure 3 the specification of the “Buyer Payment” component is 
shown. 

5. DESIGN AND IMPLEMENTATION OF THE 
REPOSITORY 

With the term repository we refer to an information system that stores, 
manages and manipulates application definitional information, such as 
designs, models, component specifications, and so on (Iyengar 1997). 
Specifically the repository described in this paper allows to store and access 
to cooperative workflow component specifications expressed according to 
the language proposed in the previous section. 

The repository has been realized using the OMG Meta Object Facility 
(MOF) conceptual tool (OMG 2000b) and the DSTC dMOF tool (Raymond 
2000), which automatizes many steps in the development of repositories. 

 

Figure 4. The 4-layer architecture 

The 4-layer meta-model architectural pattern (Kobryn 1999) has been 
adopted as the infrastructure for defining the semantics required by complex 
models that need to be reliably stored, shared, manipulated and exchanged 
among tools. The 4 layers, as shown in Figure 4, are the meta-meta-model 
layer, the meta-model layer, the model layer and the user objects layer. 
Meta-information is information that describes other information; as an 
example, a database schema or a class diagrams are meta-information, as 

User Objects 
Layer (M0)

Meta-metamodel 
Layer (M3)

Metamodel Layer 
(M2)

Model Layer (M1)

instance_of

instance_of

instance_of

User Objects 
Business Data

Business Models
Application Schemas

UML Core
WF_Comp language
Middleware Schema

MOF
Schema of Schema

“Buyer Payment” 
component 

specification

UML::Class

WF_Comp::EventClass

MOF::Class

MOF::Attribute

“Buyer Payment” 
component bp1

User Objects 
Layer (M0)

Meta-metamodel 
Layer (M3)

Metamodel Layer 
(M2)

Model Layer (M1)

instance_of

instance_of

instance_of

User Objects 
Layer (M0)

Meta-metamodel 
Layer (M3)

Metamodel Layer 
(M2)

Model Layer (M1)

instance_ofinstance_of

instance_ofinstance_of

instance_ofinstance_of

User Objects 
Business Data

Business Models
Application Schemas

UML Core
WF_Comp language
Middleware Schema

MOF
Schema of Schema

“Buyer Payment” 
component 

specification

UML::Class

WF_Comp::EventClass

MOF::Class

MOF::Attribute

“Buyer Payment” 
component bp1



A Repository of Workflow Components 13
  
they describe how the data items or the software objects are related among 
them. The universe of entities (“things”) in a given domain of interest is 
referred to as user objects (layer 0), and can be classified into types3. A type 
schema is a collection of types and relationships that jointly describe some 
“system” of interest according to the particular type language. A particular 
type schema for a particular system/application is referred to as a model 
(layer 1). The element in a type schema can be classified into the constructs 
of the type language (layer 2). Finally, different type languages can be 
described through a common and general language (layer 3). 

The Meta Object Facility (MOF) is a conceptual tool for meta-
information management (Raymond 2000); specifically the MOF Model is a 
semantically well-defined model (layer 3) for describing meta-models (type 
languages). MOF has been used to describe UML (Kobryn 1999), which is a 
particular type language. 

Our approach consists of using MOF to describe the workflow 
component specification language introduced in Section 4, which is a 
particular type language, based on a specific tailoring of UML; a given 
conceptual specification of a specific workflow component (as the one 
shown in Figure 3) is actually a type schema. 

The DSTC dMOF tool (Raymond 2000) is an implementation of the 
MOF conceptual tool. In particular it allows the description of a type 
language, and through an automatic process supported by the tool and shown 
in Figure 5, to generate a running repository core, deployed as a set of 
CORBA objects (currently in Java). Such a repository core needs to be 
extended (by adding specific code in specific plug points) in case that 
particular operations need to be offered by the repository. 

In the dMOF jargon, a MOFlet is the description of a type language, to be 
expressed in a Meta Object Definition Language (MODL). The modl2mof 
compiler, thus producing an intermediate internal representation, compiles 
this MODL definition of the type language. From this intermediate output 
both the IDL interfaces (through the program mof2idl) to be successively 
compiled by a standard CORBA ORB IDL compiler, and CORBA software 
components (through the program mof2moflet) for the type language are 
produced. 

In order to generate such software components, the designer has only to 
describe the type language in the MODL, as the different dMOF programs 
automatically do all the generation. This set of CORBA objects constitutes 
the server side of the repository, that is all the logic for inserting specific 
workflow component specifications and retrieving them need to be coded as 
client software invoking the primitives offered by such objects. Moreover 

 
3  This is the term used in the MOF jargon to refer to classes, entities, software 

specifications, etc. (Crawley et al. 1997). 



14 Mecella, Pernici, Rossi, Testi
  
the CORBA software objects generated by the tool need to be extended, 
through specific code to be realized by the designer, if complex access and 
navigation operations are required. 

 

Figure 5. The process for generating the repository core 
through the dMOF tool (from Raymond 2000) 

In the case of the type language proposed in this paper, the MOFlet 
consists of the definition of the specific form of statechart diagram and class 
diagram described in Section 4. In Figure 6, a portion of the MOFlet is 
shown; this detail shows the definition of the constructs State, 
Transition, Event and Guard. The Figure 6 is depicted in a graphical 
notation (derived from the one informally introduced in Raymond 2000) that 
uses the two basic MOF constructors of class and association4. Conversely in 
Figure 7 the exact MODL specification of the same portion is depicted. 

6. AN E-GOVERNMENT APPLICATION 
SCENARIO 

The approach presented in this paper is going to be validated in a 
particular scenario, the Italian e-Government initiative (Mecella and Batini 
2001). 

 
4  The other two MOF constructor are data type and package. 

Describe the type 
language (meta-

model)

IDL and Code 
Generation

Generated Server 
(CORBA server 

objects)

Specific Type 
Repository

Meta-Object 
Definition Language 

(MODL)

IDL Generator 
(mof2idl)

Code Generator 
(mof2moflet)

MODL compiler 
(modl2mof)

dMOF tool libraries

CORBA ORB IDL 
compiler (to Java)

Describe the type 
language (meta-

model)

IDL and Code 
Generation

Generated Server 
(CORBA server 

objects)

Specific Type 
Repository

Meta-Object 
Definition Language 

(MODL)

IDL Generator 
(mof2idl)

Code Generator 
(mof2moflet)

MODL compiler 
(modl2mof)

dMOF tool libraries

CORBA ORB IDL 
compiler (to Java)



A Repository of Workflow Components 15
  

 

Figure 6. A detail of the MOFlet specification of the type 
language proposed for workflow component specification: 
graphical notation 

 
In Italy, the need for a better coordination of efforts and investments in 

the area of government information systems has pushed, in 1993, the Italian 
Parliament to create the Authority for IT in the Public Administration 
(Autorità per l’Informatica nella Pubblica Amministrazione, AIPA) with the 
aim of promoting technological progress, by defining criteria for planning, 
implementation, management and maintenance of information systems of the 
Italian Public Administration (see AIPA’s web site for details). 

Among the various initiatives undertaken by AIPA since its constitution, 
the Unitary Network project is the most important and challenging one. The 
project has the purpose of implementing a “secure Intranet” able to 
interconnect public administrations. Besides the essential interconnection 
services (e-mail, file transfer, and so on) which are currently provided to 
public administrations as basic services, the more ambitious objectives of the 
Unitary Network will be obtained by promoting cooperation at the 
application level. By defining a common application architecture, the 
Cooperative Architecture, it will be possible to consider the set of 
distributed, yet independent systems of public administrations as a Unitary 
Information System of Italian Public Administration (as a whole) in which 

KDVBJXDUG

WUDQV JXDUG

KDVBWRS

WRS VW0DFKLQH

KDVBWUDQV

RZQHUWUDQV

LQJRLQJ

LQJWDUJHW

RXWJRLQJ

VRXUFH RXWJ

ILUHV

WUDQV WULJJHU

H[SUHVVLRQ��ERROHDQ
�UHI�WR�WUDQV

RS�ILQGB7UDQVLWLRQV��

:I&RPSB*XDUG

����

�UHI�WR�WRS
�UHI�WR�WUDQV

RS�ILQGB7RS��

RS�ILQGB7UDQVLWLRQV��

:I&RPSB6WDWH0DFKLQH

�

�

�UHI�WR�JXDUG
�UHI�WR�WDUJHW
�UHI�WR�VRXUFH
�UHI�WR�RZQHU
�UHI�WR�WULJJHU
���

RS�ILQGB*XDUG��

RS�ILQGB7DUJHW��

RS�ILQGB6RXUFH��

RS�ILQGB6WDWH0DFKLQH��

RS�ILQGB(YHQW��

���

:I&RPSB7UDQVLWLRQ

���


���


���


�

���


�UHI�WR�LQJ
�UHI�WR�RXWJ

RS�ILQGBLQ7UDQV��

RS�ILQGBRXW7UDQV��

:I&RPSB6WDWH9HUWH[

�

�

�UHI�WR�VW0DFKLQH
���

RS�ILQGB6WDWH0DFKLQH��

���

:I&RPSB6WDWH

NLQG��(YHQW.LQG

�UHI�WR�WUDQV
���

RS�ILQGB7UDQVLWLRQV��

���

:I&RPSB(YHQW

���




16 Mecella, Pernici, Rossi, Testi
  
each subject can participate by providing services (e-Services) to other 
subjects (Mecella and Batini 2000, Mecella and Batini 2001). 
 
 

// WfComp.modl 

package WfComp 

{ 

//-- Classes ---------------------------------------- 

abstract class WfComp_Element  

 { 

  attribute NameType name; 

 }; 

 

 class WfComp_Transition: WfComp_Element 

 { 

  reference gua to guard of has_guard; 

  reference tar to target of ingoing; 

  reference sou to source of outgoing; 

  reference own to owner of has_trans; 

  reference tri to trigger of fires; 

   

  set [0..1] of WfComp_Guard find_Guard (); 

  single WfComp_StateVertex find_Target (); 

  single WfComp_StateVertex find_Source (); 

  single WfComp_StateMachine find_StateMachine (); 

  set [0..1] of WfComp_Event find_Event (); 

 }; 

... 

//-- Associations ----------------------------------- 

  

 association has_guard 

 { 

  end single WfComp_Transition trans; 

  end set [0..1] of WfComp_Guard guard; 

 };  

}; 

Figure 7. A detail of the MOFlet specification of the type 
language proposed for workflow component specification: 
MODL specification to be compiled by the dMOF tool 

The Unitary Network and the related Cooperative Architecture are an 
example of CIS; specifically all the new inter-administration applications 



A Repository of Workflow Components 17
  
that will be developed on top of the Cooperative Architecture can be 
considered as e-Applications. It is fundamental to establish an overall 
architecture, yet respecting the autonomy of the single administrations; such 
autonomy concerns not only the reengineering of the technological systems 
according to each administration’s schedule, but also the reengineering of 
the various administrative processes providing services to customers. Thus 
the flexibility of composing e-Services of different administrations in order 
to create new e-Applications (supporting complex cooperative processes) 
must be as high as possible. 

Similar initiatives are currently undertaken in the United Kingdom, 
where the e-Government Interoperability Framework (e-GIF) sets out the 
government’s technical policies and standards for achieving interoperability 
and information systems coherence across the UK public sector. To achieve 
this the government has launched the UK GovTalk initiative (CITU 2000b), 
that is a joint government and industry forum for generating and agreeing 
standards, through the definition of XML schemas to be used for information 
exchange and the development of public portals. 

However, the emphasis of these approaches is set on data exchanges, and 
therefore is focused on document formats (as structural class definitions). In 
the present approach, the behaviour of workflow components is also 
represented in the specifications, providing a way to interface process 
preserving their semantics. 

7. CONCLUDING REMARKS AND FUTURE WORK 

In the present paper a representation based on UML for describing 
interchangeable workflow components providing e-Services has been 
presented. A framework to support the definition of workflow components 
has been discussed. 

The framework has a repository of software components as its core 
element. The realization of the first version of such a repository based on 
MOF and CORBA technology, using the DSTC dMOF tool, has been 
presented. The repository will be further developed adding personalization 
software to add features to manage relationships among component 
specifications, and between component specifications and their compliant 
implementations available in the network. 

Further research work is ongoing on the basis of the present realization. 
Theoretical work to define the concept of interchangeability between 
software components is being developed, with reference to additional 
services provided by components, and compatibility of parameters between 
events. 



18 Mecella, Pernici, Rossi, Testi
  

Application interfaces to design tools available on the market to insert 
components in the repository through graphical user interfaces are being 
developed. Tools to interface the development tools to run-time 
environments in different platforms are also being studied, the ultimate goal 
of the proposed framework being that of providing a repository for workflow 
components that provides services to organizations working in a 
heterogeneous distributed environment. 

ACKNOWLEDGMENTS 

The authors would like to thank Carlo Batini (AIPA), Paola Bertolazzi 
(IASI-CNR) and Monica Scannapieco (DIS, Università di Roma “La 
Sapienza”) for important discussions about the work presented in this paper. 

The authors would like to thank the Distributed Systems Technology 
Centre (DSTC), University of Queensland, Australia, and Stephen Crawley 
for providing the dMOF tool. 

Massimo Mecella, Monica Rossi and Andrea Testi would like to thank 
Microsoft Italia (Area Centro Sud), Roma, Italy, for providing some 
software needed to carry out the development effort. 

REFERENCES 

van der Aalst, W.M.P., Basten T.: Inheritance of Workflows: An Approach to Tackling 
Problems Related to Change. Computing Science Reports 99/06, Eindhoven University of 
Technology, Eindhoven, 1999. 

Autorità per l'Informatica nella Pubblica Amministrazione (AIPA): 
http://www.aipa.it/english[4/ (link checked January, 1st 2001). 

Benatallah, B., Medjahed, B., Bouguettaya, A., Elmagarmid, A.K., Beard, J.: Composing and 
Maintaining Web-based Virtual Enterprises. In VLDB-TES 2000. 

Brodie, M.L.: The Cooperative Computing Initiative. A Contribution to the Middleware and 
Software Technologies. GTE Laboratories Technical Publication, 1998. Available on-line: 
http://info.gte.com/pubs/PITAC3.pdf (link checked January, 1st 2001). 

Casati, F., Ilnicki, S., Krishnamoorthy, V., Shan, M.C.: Adaptive and Dynamic Service 
Composition in eFlow. Proceedings of the 12th International Conference on Advanced 
Information Systems Engineering (CAISE 2000), Stockholm, Sweden, 2000. 

Casati, F., Castano, S., Fugini, M.G., Mirbel-Sanchez, I., Pernici, B.: Using Patterns to design 
rules in workflows. IEEE Transactions on Software Engineering, vol. 26, no. 8}, August 
2000. 

Central IT Unit (CITU) of the Cabinet Office: Information Age Government. Benchmarking 
Electronic Service Delivery. CITU Report, London, July 2000. 

Central IT Unit (CITU) of the Cabinet Office: The GovTalk initiative. 
http://www.govtalk.gov.uk/ (link checked January, 1st 2001). 



A Repository of Workflow Components 19
  
Crawley, S., Davis, S., Indulska, J., McBride, S., Raymond, K.: Meta-meta is Better-better!. 

Proceedings of the 1st IFIP Working Conference on Distributed Applications and 
Interoperable Systems (DAIS’97), Cottbus, Germany, 1997. 

Elmagarmid, A.K., McIver Jr, W.J. (eds.): Digital Government. IEEE Computer, vol. 34, no. 
2, February 2001. 

Fowler, M.: Analysis Patterns. Reusable Object Models. Addison Wesley, 1997. 
Grefen, P., Aberer, K., Hoffner, Y., Ludwig H.: CrossFlow: Cross-Organizational Workflow 

Management in Dynamic Virtual Enterprises. International Journal of Computer Systems 
Science & Engineering, vol. 15, no. 5, 2000. 

Harel, D., Gery, E.: Executable Object Modeling with Statecharts. IEEE Computer, July 1997 
(also, Proceedings of 18th International Conference on Software Engineering (ICSE ’96), 
Berlin, Germany, 1996). 

Harel, D., Kupferman, O.: On the Behavioral Inheritance of State-Based Objects. Proceedings 
of the 34th International Conference on Component and Object Technology, Santa 
Barbara, CA, 2000. 

Iyengar, S.: Distributed Object Repositories: Concepts and Standards. Proceedings of the 16th 
International Conference on Conceptual Modeling (ER'97), Los Angeles, CA, 1997. 

Kobryn, C.: UML 2001: A Standardization Odyssey. Communications of the ACM, vol. 42, 
no. 10, October 1999. 

Mecella, M., Batini, C.: Cooperation of Heterogeneous Legacy Information Systems: a 
Methodological Framework. Proceedings of the 4th International Enterprise Distributed 
Object Computing Conference (EDOC 2000), Makuhari, Japan, 2000. 

Mecella, M., Batini, C.: Enabling Italian e-Government Through a Cooperative Architecture. 
In Elmagarmid and McIver 2001. 

Mecella, M., Pernici, B.: Designing Wrapper Components for e-Services in Integrating 
Heterogeneous Systems. To appear in VLDB Journal, Special Issue on e-Services, 2001. 

Monson-Haefel, R.: Enterprise JavaBeans (2nd Edition). O'Reilly 2000. 
Mylopoulos, J., Papazoglou, M. (eds.): Cooperative Information Systems. IEEE Expert 

Intelligent Systems & Their Applications, vol. 12, no. 5, September/October 1997. 
Nierstrasz, O.: Regular Types for Active Objects. In Nierstrasz O., Tsichritzis D. (eds.): 

Object-Oriented Software Composition. Prentice Hall, 1995. 
Object Management Group: The Common Object Request Broker Architecture and 

Specifications. Revision 2.3. Object Management Group, Document formal/98-12-01, 
Framingham, MA, 1998. 

Object Management Group: OMG Unified Modeling Language Specification. Version 1.3. 
Object Management Group, Document formal/2000-03-01, Framingham, MA, 2000. 

Object Management Group: Meta Object Facility (MOF) Specification. Version 1.3. Object 
Management Group, Document formal/2000-04-03, Framingham, MA, 2000. 

Raymond, K.: MOF/XMI Exposed. Keynote and Tutorial Notes of the 4th International 
Enterprise Distributed Object Computing Conference (EDOC 2000), Makuhari, Japan, 
2000. 

RIDE 1999: Proceedings of the 9th International Workshop on Research Issues on Data 
Engineering: Information Technology for Virtual Enterprises (RIDE'99), Sydney, 
Australia, 1999. 

Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and Composing 
Service-based and Reference Process-based Multi-enterprise Processes. Proceedings of the 
12th International Conference on Advanced Information Systems Engineering (CAISE 
2000), Stockholm, Sweden, 2000. 

Trepper, C.: E-Commerce Strategies. Microsoft Press, 2000. 



20 Mecella, Pernici, Rossi, Testi
  
VLDB-TES 2000: Proceedings of the 1st VLDB Workshop on Technologies for E-Services 

(VLDB-TES 2000), Cairo, Egypt, 2000. 


