Querying and Splicing of XML Workflows

Vassilis Christophides* Richard Hull! Akhil Kumart

*Institute of Computer Science, FORTH,
Vassilika Vouton, P.O.Box 1385, GR 711 10,
Heraklion, Greece
christop@ics.forth.gr

tBell Laboratories, Lucent Technologies
600 Mountain Avenue, Murray Hill, NJ, USA
{hull,akhil }@research.bell-labs.com

Abstract. In both industry and the research community it is now com-
mon to represent workflow schemas and enactments using XML. As a
matter of fact, more and more enterprise application integration plat-
forms (e.g., Excelon, Bea, iPlanet, etc.) are using XML to represent
workflows within or across enterprise boundaries. In this paper we ex-
plore the ability of modern XML query languages (specifically, the W3C
XML Algebra underlying the forthcoming XQuery) to query and manip-
ulate workflow schemas and enactments represented as XML data.

The paper focuses on a simple, yet expressive, model called Workflow
Query Model (WQM) offering four primary constructs: sequence, choice,
parallel, and loop. Then three classes of queries are considered against
WQM workflows: simple (e.g., to check the status of enactments), traver-
sal (e.g., to check the relationship between tasks, or check the expected
running time of a schema), and schema construction (e.g., to create new
schemas from a library of workflow components). This querying function-
ality is quite useful for specifying, enacting and supervising e-services in
various e-commerce application contexts and it can be easily specified
using the W3C XML Query Algebra.

1 Introduction

During recent years, workflow interoperation has received considerable attention.
Numerous research projects and prototypes have been proposed while basic in-
teroperability between various vendor WEFMSs has been a subject of standard-
ization efforts by the Object Management Group (see Workflow Management
Facility [OMG98]), and the Workflow Management Coalition (see the Xf-XML
binding of the WIMC Interface 4 [WMC99]). Recently, XML has become widely
accepted as the standard for exchanging not only business data but also infor-
mation about the enterprise process (e.g., e-services) operating on these data.
More and more enterprise application integration platforms (e.g., Excelon, BEA
systems, iPlanet, Vitria BusinessWare, icXpertFLOW! etc.) and research proto-
types [WSFL01,vdAK01,LO01,SGW00,MK00,TAKJ00] are using XML to rep-
resent workflow schemas and enactments, within or across enterprise boundaries.

! See www.exceloncorp.com, www.bea.com, www.iplanet.com, www.vitria.com and
www.icomxpress.com respectively.

The use of appropriate XML query languages to access information, about both
XML workflow schemas and their enactments, appears as the natural solution
for specifying, enacting and supervising e-services within or across organizations.
In this paper we show that modern XML query languages (in particular, the
W3C XML Algebra [FSW01,FFM*00] underlying the forthcoming XQuery) are
expressive enough to issue a variety of useful queries for a simple, but still expres-
sive, workflow model. Furthermore, we propose the incorporation of a number
of user-defined functions allowing us to easily navigate through the XML trees
representing workflow schemas and enactments.
In this paper we focus on three classes of queries:

Simple: These check on the status of a workflow enactment, i.e., an execution
that is in process.

Traversal: These check properties that are more global to workflow schemas
and enactments, including issues such as the relationship between tasks (par-
allel, sequential, exclusive), and the expected (min, max) running time of a
schema.

Schema Construction: These queries can be used to construct workflow sche-
mas, using components from a library of “templates” and “base templates”

These queries provide a basis for improving the design and efficiency of work-
flows, both at compile-time and run-time. For example, potential bottle-necks
and race conditions on data usage might be found at compile-time, and potential
delays might be detected and averted at run-time.

Given the plethora of models in existing WorkFlow Management Systems
(WFMS) we rely in this paper on a pragmatic workflow model allowing us to
illustrate concretely how XML query languages can used. This model, called
Workflow Query Model (WQM), involves flowchart constructs with parallelism.
More specifically, we focus on four key workflow constructs, namely sequence,
choice, parallel, and loop. We assume that in a workflow schema these constructs
are properly nested as per the notion of a structured workflow [KHBO0O]. Intu-
itively, this means that there are no go-to’s that point into a loop, or that point
out of a group of parallel activities. Properly nested workflow schemas can sim-
ulate all structured and some unstructured workflows as shown in [KHBO00]. As
a matter of fact, WQM captures the common features of several commercially
available WFMSs, (e.g., Fujitsu i-flow, IBM MQSeries, SAP Business Workflow,
FileNet Workflow, Ultimus Workflow?, or even UML activity diagrams). How-
ever, it does not directly address the issues that arise when querying flowchart
models based on Petri nets [vdA98] or state charts (e.g., Statemate MAGNUM?).

In a nutshell, WQM schemas have a natural tree-based representation, mak-
ing them ideal for representation and manipulation in XML. With regards to
workflow enactments, we follow the same approach for representing them in XML
by annotating schema nodes with appropriate status information (e.g., running,

2 See www.i-flow.com, www.software.ibm.com/ts/mqseries/workflow, www.sap.com,
www.filenet.com, www.ultimusl.com, respectively.
3 See www.ilogix.com.

finished). It should be stressed that workflow querying has received surpris-
ingly little attention so far beyond analysis of workflow logs [KAD98,GT97]. In
addition, workflow querying using modern query languages for XML data (e.g.,
XPath[CD99], Quilt [DC00], XML Query Algebra [FSW01,FFM*00]) is not even
addressed in previous research work [WSFL01,LO01,SGW00,MK00,TAKJ0Q].

This paper is organized as follows. Section 2 provides background and prelim-
inary discussion of our WQM model. Then Section 3 presents how simple status
queries can be expressed against enactments created according to the WQM
model. Section 4 turns to more complex kinds of traversal queries against both
schemas and enactments. Later Section 5 focuses on a novel kind of queries for
on demand schema construction. Finally, Section 6 concludes the paper.

2 Background and Preliminaries

This section provides background and preliminary definitions for the rest of the
paper. In particular, we present (i) the workflow model we are using to abstract
commercial WEMSs, (ii) the variant of XRL [KZ98,vdAKO01] we are using to
represent in XML workflow schemas and enactments created according to our
model, and (iii) how the XML query processor we envision can be integrated
into the standard WfMC architecture.

2.1 A Workflow Query Model (WQM)

Figure 1 illustrates a representative workflow schema created using the WQM
model which will be used as a running example in the rest of the paper. Task
nodes are shown pictorially as rectangles, and the other kinds of nodes are
shown using ovals that are labeled with the node type. More precisely, nine
kinds of nodes are foreseen to model processes: start, end, task, split-choice
(with arbitrary out-degree > 1), join-choice (with arbitrary in-degree > 1),
split-parallel (with arbitrary out-degree > 1), join-parallel (with arbi-
trary in-degree > 1), start-while do, and end while do.

A split-choice permits branching in the workflow, where exactly one of the
out-edges is taken. The choice may be either deterministic or non-deterministic.
In the former case, a specific task out of several alternatives may be chosen
after checking a condition. For instance, if two managers can sign an expense
approval, the one whose workload is less may be chosen explicitly. On the other
hand, a non-deterministic choice may be made as follows. The expense claim
could be “offered” to both the managers, and once one of them has accepted
the task, it may be withdrawn from the other manager. The parallelism con-
struct is self-explanatory. The while do permits looping over a set of tasks, or
in general, over a group of nodes, multiple times. In a WQM workflow schema the
split-choiceand join-choice must be matched, as must the split-parallel
and join-parallel nodes, and also start-while do and end-while_do. This
restriction is primarily to simplify the structure of the workflow schemas that
are studied, and thus the queries that need to be expressed.

The WQM workflow model also supports specifications indicating which data
objects are manipulated by which tasks. In particular, included in a workflow

CrTTTTTrTrTrTrT oo Start While_do

(new order)/ existing order)
| Enter order | | Revise order |

=~

Split-parallel
Split-Choice

VP approval | | Mgr approval | | Technical check | | Budget check

Join-parallel
End While_do

Split-parallel

(order not okay)

Order card

Join-parallel

Order laptop

Fig.1. An example workflow schema using our model

schema is the list of a finite number of named data objects that can be cre-
ated, read, and/or written by the tasks of the workflow. These data objects can
essentially be viewed as global variables that an enactment of the schema can
access. For simplicity, we view the data objects as XML documents. Associated
with each task is a listing of three disjoint categories of the named data objects,
those that the task might create, those it might read, and those it might read
and write. Note that exception handling (e.g., out of stock situations, delays, or-
der changes, etc.) is not treated in this paper. For a more theoretical discussion
related to structured workflow models, the reader is referred to [KHBOO].

2.2 XML representation of a schema and an enactment state

This subsection describes how workflow schemas and enactments can be specified
in the WQM model using XML. For this purpose, we are using the type system
and syntax of the XML Query Algebra [FSWO01,FFM*00] which captures the
core semantics of XML Schema [TBMMO00,MMO00].

let buy_pcl : WQMEnactment =
Route [
Data_list["order_form","engg_spec"],
Sequence[
while_do [@count ["0"], @condition ["new-order()? or review(not_okay)?"],
Sequence [
Choice[@condition ["new-order()?"]
Task [@name ["enter-order"], @status["finished"],
@d_create ["order_form","engg_spec" 1]
Task [Oname ["revise-order"], @status ["not_ready" 1,
@d_read ["engg_spec" 1, @d_update ["order_form"]]
1 (* end Choice *)
Parallel[
Choice[@condition ["manager(available)?", @branch ["1"],
Task [O@name ["manager-approval"], @status["running"],
@d_read ["engg_spec"],
@d_update ["order_form"]]
Task [@name ["vp-approval"],
@d_read ["engg_spec" 1],
@d_update ["order_form"]]
1 (* end Choice *)
Task [@name ["technical-approval"], @status ["ready" 1,
@d_update ["order_form","engg_spec"]]
Task [Oname ["check-budget"], @status ["finished"],
Q@d_read["engg_spec"],@d_update ["order_form"]]
] (* end Parallel *)
] (% end Sequence *)
] (* end while_do *)
Parallel[
Task [@name ["order-pc"], @status ["not_ready"],
0d_read["engg_spec"],@d_update ["order_form"]]
Task [@name ["order-card"], @status ["not_ready"],
0d_read["engg_spec"],@d_update ["order_form"]]
Task [Oname ["order-case"], @status ["not_ready" 1,
@d_read["engg_spec"],@d_update ["order_form"]]
] (* end Parallel x)
Task [@name ["receive-parts"], @status ["not_ready"],
@d_update ["order_form"]]
Task [Oname ["assemble-system"], @status ["not_ready" 1,
@d_read["engg_spec"],@d_update ["order_form"]]
Task [Oname ["deliver"], @status ["not_ready" 1],
@d_update ["order_form"]]
] (* end sequence *)
] (* end Route *)

Fig. 2. The workflow of Figure 1 in syntax of XML Query Algebra

First, observe that workflow schemas in the WQM model can be naturally
represented as XML trees. Each schema has a root (i.e., a starting element), and
may contain several routing elements such as sequence, parallel, choice,
task and slot, which may be properly nested. Due to space limitations, we are
giving in Figure 2 only an enactment example of the workflow schema of Figure
1 defined in WQM.

The WQM XML representation of an enactment essentially captures the in-
formation in the coresponding schema with minor variations. Speaking in broad
terms, this is achieved by annotating nodes of the tree that encode the work-
flow schema. In Figure 2 a WQM enactment called buy_pc1 is presented with a
Route element which consists of a Data_list and Sequence subelements. The
Data_list subelement consists of data object names that are used in this work-
flow instance. The sequence in turn consists of a While_do, a parallel and three
task subelements. In general subelements are nested inside their parent elements
as comma separated lists enclosed in square brackets. The attributes of an ele-

e licin
initi < Schema l¢——— Splicing
DeTﬁc?cl)lnson N Construction Queries
i i T Workflow
Admin. And Workflow l¢Request | XML / Al
Monitoring [¢ > Enactment Query Queries
Tools Service N Engine
Reply \
~. workflow
Queries
Wolkow Invoked froms
applications applications service

Fig. 3. Architecture for querying of workflows

ment are also enclosed inside the list associated with it and are preceded by the
@ symbol. The value of an attribute is given in square brackets immediately after
its name. Thus, in Figure 2, the While_do element has two attributes, count and
condition. The value of the count attribute is 0 and the condition attribute
has a string value that defines the condition to be checked before executing the
loop. Moreover, the While_ do has a Sequence subelement.

The tasks have several attributes, including the status of the task, which
takes one of the following values: not_ready, ready, running, finished. A
not_ready task is one which is not eligible to start immediately because of
precedence constraints. A task is in ready state when it becomes eligible to
start; however, it has not been assigned to a specific worker. Upon assignment,
to a worker, it moves into the running state and a completed task is in the
finished state. In this paper, we assume that all tasks initially have the status
not_ready, although other approaches can be taken. It is conceivable that sub-
tree nodes of a workflow enactment, like choice and parallel nodes, may also
be assigned status values. In our example, we can see that the enactment is cur-
rently running the manager-approval task. Moreover, the check-budget tasks
in the first parallel node has already finished, and the technical-approval
task is ready to start. Also, note that the attribute branch is associated with
a choice node and its value gives the index number of the branch that was
chosen. However, if this attribute is missing for a choice node, it means that
the enactment has not yet reached this node. Similarly, a While_do node has a
count attribute that stores the number of times the loop has been executed.

2.3 Architecture

This subsection briefly discusses how an XML query engine could fit into an over-
all workflow management system architecture. To this end, we can see in Figure
3 a slightly modified version of the Workflow Management Coalition (WIMC)
architecture. At the heart is an enactment service (also called workflow engine)
that runs workflow enactments or instances. Other components that interface
with this service are process definition tools, client applications and applications
that are invoked by the enactment service. The service also interacts with admin-
istration and monitoring tools. In Figure 3 we have singled out the XML query
processor as one of these tools. The processor will receive requests from an end
user applications regarding a workflow schema or the status of an enactment.
It will in turn ask the enactment service to send the corresponding instance(s)
to it. Then, the query processor will run the query against the enactment(s)

and return an answer to the user. The query processor may also be invoked by
another workflow enactment service.

3 Simple Queries

This short section considers straightforward queries that are simple to express
against XML specifications of enactments. These queries are “local” in two ways:
in essence (i) they focus on individual nodes of an XML tree, and (ii) they focus
on a snapshot of an enactment. This contrasts with the queries of the following
sections, which consider relationships between different parts of an XML tree,
and the expected behavior of an enactment over time.
We focus here on some representative queries:
1) what is the status of a task?
2) list all tasks with a given status?
.3) what tasks are currently working with a data object?
4) what is the number of times a While_do loop has been executed in an en-
actment?
In addition to giving information about a single enactment, these queries can
be used against the set of all currently active enactments, to give a picture of
where the “hot spots” are.

All of the queries in this section can be expressed using XPath [CD99]. For
example, to answer queries of type S.1, i.e., find the status of task ‘shipping’,
the XPath query would be:

/Route//Task [@name="shipping"]/@status

The answer to this query would give information about the status of this task
as to whether it is not_ready, ready, finished, etc.

A query of type S.3 can also be expressed in a straightforward way in XPath.
For instance, to find the tasks that are currently running with a data object,
say invoice, the query would be written as:

/Route//Task[@status="running" and (@d_read = "invoice" or
@d_update="invoice" or @d_create="invoice)]

Queries S.2 and S.4 can also be expressed is a similar way using the XPath
constructs to get information about the status of the workflow.

4 Traversal Queries

This section considers richer queries, against both schemas and enactments, that
involve graph traversals. Some of the queries involve traversals of the XML tree
representing a schema or enactment, e.g., to determine the relationship between
two tasks. Other queries involve traversals of the (annotated) flowchart that
embodies the workflow schema (enactment). For both kinds of traversals, we
rely heavily on the ability of the XML Query Algebra to express structural
recursion, and also use a built-in function for parent®.
The following queries are considered here:
4 A built-in function for ancestor would provide even more succinctness.

T.1) what is the relationship of two tasks (parallel, sequential, disjoint)?

T.2) what is the set of tasks that may be touched by a currently active enactment?

T.3) what is the set of tasks that must be touched by a currently active enact-
ment?

T.4) what is the set of tasks that lie inside a While do?

T.5) among the tasks inside a While_do, what tasks will definitely be executed in
each iteration through it?

T.6) can a given data object be updated further?

T.7) what is the expected (average, maximum, minimum) estimated running time
for a schema/enactment (or a part of it)?

Each of these queries has a variety of uses. Query T.1 can be used to check
whether two tasks might compete for updating a data object, or whether two
related tasks might occur in Parallel (even though that should be prevented).
The remaining queries help with analyzing future resource usage of an enactment
(or group of enactments), in terms of processing or personnel required, the data
objects used, and the timing of when things will complete and when resources will
be needed. Queries T.2, through T.6 focus more on throughput, while query T.7
focuses on response-time. Queries T.2 through T.6 can give information about
bottlenecks and “hot spots” where further resources should be allocated over the
long term. There is subtle difference between T.2 and T.3 in that T.2 returns a
list of all tasks that may be done, while T.3 gives all tasks that will definitely be
done. Thus, T.3 returns a subset of T.2, and does not include the tasks inside
a Choice element. As a matter of fact, our example queries are approximate in
the sense that they do not examine the actual conditions residing at Choice or
While do nodes. In general, until a branch has been selected at a choice node,
it is not possible to predict which path the enactment may take. Thus, all the
branches of such a choice element of an enactment are treated as "may be’s”.
Queries T4 and T5 are variants of T2 and T.3, respectively, in that they pertain
to tasks that lie inside While_do loops. Query T.7 is focused on the short-term
and can be used to trigger exceptions if timing thresholds will be exceeded, help
re-schedule tasks to alleviate short-term bottlenecks, and to modify future time
commitments made about when existing or new enactments might be completed.

As we shall see shortly, to answer these workflow queries we need a structural
recursion capability as well as user-defined functions. Both these features are
lacking in XPath but they are supported by the XML Query Algebra. Then, the
five types of queries can be grouped into three categories and implemented in
the XML Algebra.

4.1 Relationship queries

A query of type T.1 to check the relationship between two tasks can be written
in XML Query Algebra, using a user-defined function called leastCommonAnc.
Depending upon whether the least common ancestor of two tasks is a Sequence,
Choice or Parallel, the relationship between these two tasks is accordingly
one of sequential, choice or parallel, respectively. We first write an ancestor
function anc to check if one task is an ancestor of another and then use it in the
leastCommonAnc function.

fun anc(tl:AnyTree;t2:AnyTree) :Boolean =
if (t1 == t2) then true
else
let p = parent(t2) do
if p = () then false
else anc(tl;p)

The above function takes two arguments, t1 and t2, and returns a boolean
answer (true, if t1 is an ancestor of t2). Note that the anc function uses the
parent function proposed in XML Query Algebra. The ancestor function can in
turn be used to write a leastCommonAnc function which determines the least
common ancestor of two tasks, or in general, of any two nodes in the XML tree.

fun leastCommonAnc(tl:AnyTree;t2:AnyTree) : AnyTree =
if anc(t1;t2) then
t1
else
(if anc(t2;t1) then t2
else leastCommonAnc(parent (t1) ;parent(t2)))

This algorithm also takes two arguments and returns a tree rooted at the
least common ancestor node. It works by checking if one of the two nodes is an
ancestor of the other; if so, that is the answer. On the other hand, it considers
the parents of each of the nodes and checks again for the ancestor relationship
between them. Since both the nodes belong to the same tree, a least common
ancestor is eventually found. Finally, the next function finds the relationship
between two distinct tasks. It calls the leastCommonAnc function and prints out
the results, i.e., the type of the node which is a least common ancestor. Note
that two distinct tasks cannot have a least common ancestor of type Route or
While do, since those node types have a single child.

fun PrintRelation(t1:Task;t2:Task):String{0,*} =
match leastCommonAnc(tl;t2)
case v:Parallel do "Parallel"
case v:Choice do "Choice"
case v:Sequence do "Sequence"
else()

4.2 Status queries

The next three types of queries relate to the status of a running enactment with
regards to unfinished tasks and pattern of data object usage. One useful query
of type T.2 is to list all the tasks that may still be performed on an enactment.
This query can be performed by function maybe-tasks.

The full text of this function is omitted for lack of space; however, a brief
description follows. maybe-tasks takes a starting or root node of an enactment as
input and walks recursively, depth-first, through the tree, listing the ” unfinished”
tasks that it encounters. This is accomplished by recursively calling the child

10

nodes of a given node (using the nodes function) until all nodes are exhausted.
In the case of a choice node, the branch attribute is checked first. In a running
enactment, the value of this attribute is set to the index of the path that is
taken after a choice is made. However, an empty value in this variable means
that this node has not been reached yet. Hence, all the branches should be
listed since any one of them may be selected. On the other hand, if a value for
the branch attribute is known, then only that branch is pursued. This function
may be modified slightly to produce a list of nodes that must be traversed to
handle a query of type T.3. For this query, the case of a choice node would
simply be ignored in the above function. For brevity, we omit the listing of the
mustbe-tasks function. Moreover, since queries T.4 and T.5 are similar in flavor
to T.2 and T.3, respectively, they are left as an exercise for the reader.

Next, we give an example of a query of type T.6 to check if a data object, say
d1, will be updated by a subsequent task in the enactment after, say, task t2.
The following function more-updates takes two input parameters, a tree name
corresponding to a running enactment, and a data object name (as a string).

fun more-updates(tl:AnyTree; d1:String):Boolean =
let listl = maybe-tasks(t1l) do
not (empty (
for t in listl do
match t
case t’:Task do
where contains(t’/@d_update/data(),dl) do t’

else ()

))

The above function calls the maybe-tasks function to make a list of tasks
that may still follow further in a running enactment. Then for each task in the
list, it checks if the task writes to the data object of interest. If a match is found
then a true value is returned, else the answer is false.

4.3 Time computation queries

Lastly, as an example of a type T.7 query, consider the computation of the
expected flow time for an enactment. The following flow_time_left function,
also expressed in the XML Query Algebra, computes the expected time for the
completion of an enactment, starting from a given enactment state®.

fun flow_time_left(tl:AnyTree):Float =
match t1
case p:Parallel do max(for cl in nodes(p) do flow_time_left(cl))
case c:Choice do dot_product(c/@probs/data(); c)
case s:Sequence do sum(for cl in nodes(s) do flow_time_left(cl))
case t:Task do if t/@status/data() != "finished" do t/@time/data() else do 0
w:While_do do w/Q@repeat_factor/data() * flow_time_left(nodes(w))
(

)

® Variations of this function for minimum and maximum expected time can easily be
constructed.

case
else

11

We assume that an attribute time giving the expected time has been assigned
for each task. For a Parallel step, function flow_time left includes the max-
imum expected flow time for its children elements; for a choice element, the
weighted average is computed using a function dot_product. This function (not
specified here) takes two lists as argument, computes the product of correspond-
ing pairs, and takes the sum of those products. Here we apply dot_product
on a list of probabilities for the children of the choice (stored in choice node
attribute @prob) and the flow_time_left values for the children of the choice.
With a While_do node, we compute the flow_time_left for its child, and then
multiply by a repeat _factor, which gives the expected number of times the
While_do iterates. If none of the tasks have finished status, then this function
will give the total expected flow time for a schema from start to finish.

5 Schema Construction

This section illustrates a novel application of query processing to workflow
schemas. In particular, we show how the representation of workflow schemas
in XML along with emerging XML query languages can be used to help sup-
port the automated construction of workflow schemas. The central idea of the
approach is based on a form of hierarchical planning [EHN94], in which work-
flow schema templates of differing granularity are selected from a repository and
then expanded by filling in the slots of those templates appropriately, using ad-
ditional templates (some of which have no slots), also from the repository. This
approach can be used for the on-demand, automated production of specialized
workflow schemas, as illustrated in this section. It can also be generalized for
use in connection with e-services composition, that is, combining e-services that
are provided over the internet and/or the telephony and wireless networks.

To summarize, this section describes how to specify queries of the form:

(C.1) Build a workflow schema from a template and a set of other templates that
have been selected for the slots of that template

The overall approach to building workflow schemas was introduced in [CHKS01].
Here we focus almost exclusively on how the XML Query Algebra is used to sup-
port the approach.

5.1 Overview of approach and example application

We view workflow schema construction as a form of workflow mediation, because
of its analogy with database mediation [Wie92]. However, in our context media-
tion focuses primarily on enterprise processes, rather than on enterprise data. A
workflow mediator can be used to help insulate one organization from the intrica-
cies of interacting with multiple other organizations that together provide some
coherent family of e-services. For example, a representative (workflow) mediator
might be used by an organization such as Lucent to substantially automate the
selection and purchase of PCs (including outsourced assembly and shipping).
Workflow mediators include three main modules, for Planning, Execution,
and Data Transformation. The Planning module builds workflow schemas based

12

WQMTemplate [
@name ["PC_purchasel”],
Route [
Data_list ["pc_model", "assembler_address", "pc_invoice", ...],
Sequence [
Parallel_sync [
Slot [filler_name ["buy_pc_template"]],
Slot [filler_name ["buy_modem_template"]],

1, (* end Parallel_sync *)
Slot [filler_name ["assembly_template"] 1,
] (* end Sequence *)
] (* end Route *)
] (* end Template *)

(a) PC_purchasel, example template with slots for purchasing and assembling a PC

WQMTemplate [
@name ["buy_from_Microni"],
Gparams ["model", "ship_to", "invoice"]
Route [
Sequence [
Task [@name ["send_order_to_Micron"],
Q@address ["buy_Micronl.exe"],
@d_read ["model", "ship_to"],
@d_update ["invoice"]
1, (* end Task *)
(* more Tasks *)
] (* end Sequence *)
] (* end Route *)
] (* end Template *)

(b) buy Microni, an example base template for purchasing a PC from Micron
Fig. 4. Example templates from a repository mytemplatedb

on goals to be achieved (e.g., investigate possible PCs to be purchased; execute
the purchase and assembly of selected PCs). The outputs of the Planning process
are workflow schemas expressed in XML (and in our current context, in WQM);
these are executed by the Ezecution module. The Data Transformation module
is essentially an XML query processor, which is used by the other two modules.

5.2 Workflow templates

This and the next subsection together provide an illustration of how the Planning
module creates workflow schemas, using the technique of schema splicing. This
subsection illustrates the pieces of workflow schema that are used, and the next
one illustrates how they are spliced together.

In WQM, workflow schemas can be completely specified, or might be tem-
plates which provide the high-level specification of a workflow but include Slot
elements where selected other templates can be inserted. Templates without
slot elements are called base templates. Figure 4(a) shows PC_purchasel, an ex-
tremely simplified template that might be used for purchasing PCs. Figure 4(b)
shows buy_from Micronl, a simplified base template that might be used to fill
the buy_pc_template slot of PC_purchasel. In PC_purchasel, a sequence of two
activities will occur. The first activity involves the parallel execution of two in-
serted tasks (which will involve ordering items from a PC vendor and a modem
vendor, respectively, and having them shipped to an appropriate location). The

13

second activity consists in executing an inserted task, which asks an assembler
to assemble the PC and modem, and ship to another location.

The base template buy_from Micronl may be used to purchase a PC from
vendor Micron. The schema for this template includes a task which is to send the
pc-model and ship_to address to Micron, and receive an invoice in return. The
attribute params permit parameter passing in and out of the template; in general
these refer to the XML data that a workflow enactment will manipulate. The
attribute address of the task gives the executable file containing the program
required to perform the task. This program might invoke a wrapper or other
functionalities that are resident in the mediator, or provided by external systems.
In practice, this schema should include actions to be taken if Micron doesn’t
respond in a timely fashion, or if the PC model is not available, and actions to
ensure that the receiving party eventually receives the PC in good condition.

5.3 Schema splicing

In general, “schema splicing” refers to the creation of new workflow schemas
from existing workflow schemas and templates. Figure 5(a) illustrates a map-
ping (with type Mapping, not specified here) that provides the correspondence
between the parameters appearing in PC_purchasel and either scalar values (e.g.,
"Millennia MAX XP") or selected elements (e.g., buy_from_Micronl) of a tem-
plate repository. We assume that the Planning module has selected PC_purchasel
and constructed mymapping assigning the parameters of PC_purchasel.

Figure 5(b) shows an XML Algebra function that can be used to replace slots
of a template with other templates, choosing the other templates according to
a mapping such as mymapping. Figure 5(c) shows a query that will fill in the
template PC_purchasel using mymapping. We now describe the operation of this
function and query in some detail®.

The function £ill_slots of Figure 5(b) takes in a WQMtemplate and “instruc-
tions” for how to fill the Slots, and produces a WQM workflow schema that has
no Slots, i.e., a fully grounded WQM workflow schema. As with some of our
previous queries, £ill_slots involves structural recursion at the outer layer.
Speaking intuitively, the function £ill _slots performs a depth-first traversal of
input x (of type WQMTemplate), and produces a new, somewhat modified “copy”
of x. For each element of type Slot (i.e., in the first case of the case expression)
it chooses an appropriate base template from templatedb and places it in the
output XML object. In the opposite, (i.e., in the else part of the case expres-
sion), the function copies the high-level structure into the output XML object,
and recursively calls fill slots on the inner parts of that element.

We now give more detail on function £ill_slots. Given a Slot element
x’, we first find the element m in mapping that matches with x’ (i.e., such that
m/filler name = x’/filler name). For that element m we next find the match-
ing template t in templatedb (i.e., such that t/@name = m/value). Finally, we

8 We assume for now that each slot of the input template will be filled with base
templates. That is, we do not have to recursively fill in the slots of templates used
to fill other slots.

14

let mymapping : Mapping =
map [filler_name ["pc_model"],
value_name ["Millennia MAX XP"]],
map [filler_name ["buy_pc_template" 1,
value_name ["buy_from_Microni"],
param_assign ["pc_model", "assembler_address", "pc_invoice" 1],

(a) Part of example mapping used for schema splicing

fun fill_slots(x:WQMTemplate;
mapping:Mapping;
templatedb: TemplateDB) : WQMTemplate =
match x
case x’:Slot do
for m in mapping do
where m/filler_name = x’/filler_name do
for t in templatedb do
where t/@name = m/value_name do

fill_params(t/route/*; m/param_assign)

else ~“(name(x)) [for v in nodes(x) do

£ill_slots(v; mapping; templatedb)]

(b) Recursive function used to splice templates together

query
for x in mytemplatedb do
where x/@name/data() = "PC_purchasel" do
£ill_slots(x/*; mymapping; mytemplatedb)

(c) Query used to construct a particular schema

Fig. 5. Data, function, and query for constructing a workflow schema

generate from template t the content needed for the output XML object. This
content is basically the routing part of t, namely t/route/*. However, we apply
a substitution function £ill params (not defined here), that replaces all occur-
rences of the parameters of t listed in the @params attribute by the parameter
values indicated in the £ill params element of map m. For example, this would
replace parameters "model", "ship to", and "invoice" in buy from Micronl
by the parameter values "pc_model", "assembler_address", and "pc_invoice"
in the first slot of PC_purchasel.

The else clause of £i11 slots involves some aspects of XML Algebra that
we haven’t seen before. Intuitively, as function £i11_slots performs the traversal
of input x, when it comes to a non-Slot node n then it produces a node in
the output XML object that has the same name as n (this is achieved by the
construct ~ (name (x))). The contents of the replacement of node n are specified
within the square brackets. To produce this content, fill slots is called on
each of the children of the original n.

The query of Figure 5 invokes 111 _slots on the template from mytemplatedb
whose name is PC_purchasel, i.e., the template of Figure 4(a). The output of
this query will be a (ground) workflow schema for buying a PC from Micron. The
mapping mymapping should be used when enacting this schema, so that the input
data objects for the enactment (e.g., pc_model) will be initialized appropriately.

15

In the above example just a single layer of hierarchical planning was used, i.e.,
slots in the top-level template (PC_purchasel) were filled with base templates.
In general, multiple layers can be used, such that slots of the top-level template
are in turn filled with successive lower-level templates, and finally with base
templates at the lowest level of the hierarchy. In terms of the XML Query Algebra
function £ill_slots, this recursion is achieved by having a call to £ill slots
embedded within the function £ill params.

6 Conclusions

We believe that using XML to represent and query workflow schemas and enact-
ments opens new perspectives in workflow management within or across organi-
zations. In particular, it permits improving the design and efficiency of workflows,
both at compile-time and run-time. For example, potential bottle-necks and race
conditions on data usage might be found at compile-time using analysis queries,
and potential delays might be detected and averted at run-time by using status
queries. This functionality is required for specifying, enacting and supervising
e-services in various e-commerce application contexts.

To this end, we have introduced a simple yet expressive workflow model,
called WQM, that uses flowchart-based constructs that are “properly nested”.
Properly nested schemas are particularly convenient for querying with XML
query languages. Indeed, we have demonstrated the power of the XML Query
Algebra (offering structural recursion and user-defined functions for travers-
ing workflow schemas) to express a broad range of queries against properly
nested workflow schemas and enactments, and to dynamically construct workflow
schemas. It should be finally stressed that WQM abstracts several commercially
available WFMSs, based on procedural or associative task-based models. There
is ongoing work on WQM in order to enable a generic wrapping in XML of het-
erogeneous workflow models. It remains open how our techniques can be applied
in the context of flowchart-based workflow models that are not properly nested,
or those based on Petri nets or state charts.

Acknowledgements

The authors thank Jéréme Siméon and Geliang Tong for help in specifying many
of the queries in this paper in the latest version of the W3C XML Query Algebra.
The third author is currently on leave from the University of Colorado, Boulder.

References

[CD99] J. Clark and S. DeRose. XML Path Language (XPath). Technical report,
World Wide Web Consortium, 1999. W3C Recommendation 16 November 1999.

[CHKSO01] V. Christophides, R. Hull, A. Kumar, and J. Siméon. Workflow mediation
using VorteXML. IEEE Data Engineering Bulletin, 24(1), March 2001.

[DCO0] D. Florescu D. Chamberlin, J. Robie. Quilt: An xml query language for het-
erogeneous data sources. In WebDB’2000, pages 53-62, Dallas, US., May 2000.

[EHN94] K. Erol, J. Hendler, and D.S. Nau. Semantics for hierarchical task-network
planning. Technical Report CS-TR-3239, Computer Science Department, University
of Maryland, 1994.

16

[FFM*00] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J. Siméon, and
P. Wadler. The XML query algebra. W3C Working Draft 07 June 2001. Avail-
able at http://www.w3.org/TR/query-algebra/.

[FSWO01] M. Fernandez, J. Siméon, and P. Wadler. A semi-monad for semi-structured
data. In Proc. of Intl. Conf. on Database Theory, 2001.

[GT97] A. Geppert and D. Tombros. Logging and post-mortem analysis of workflow
executions based on event histories. In Proc. 8rd Intl. Workshop on Rules in Database
Systems, Skoevde, Sweden, June 1997.

[KHB00] B. Kiepuszewski, A. ter Hofstede and C. Bussler On Structured Workflow
Modelling In Proc. CAISE ’00, Stockholm, Sweden, 2000.

[KAD98] P. Koksal, S. Arpinar, and A. Dogac. Workflow history management. SIG-
MOD Record (ACM Special Interest Group on Management of Data), 27(1), 1998.
[KZ98] A. Kumar and L. Zhao. XRL: An extensible routing language for electronic
applications. In Intl. Conf. on Telecommunications and Electronic Commerce, 1998.
[LO01] K. Lenz and A. Oberweis. Modeling Interorganizational Workflows
with XML Nets In Proc. of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34), January 2001. Available at

http://dlib.computer.org/conferen/hicss/0981/pdf/09817052.pdf.

[MMO00] M. Maloney and A. Malhotra. XML schema part 2: Datatypes. W3C Recom-
mendation, October 2000. Available at http://wuw.w3.org/TR/xmlschema-2/.

[MKO00] , M. zur Miihlen and F. Klein. AFRICA: Workflow interoperability based
on XML-messages In Proc. of CAiSE*00 Workshop on Infrastructures for Dynamic
Business-to-Business Service Qutsourcing (IDS0’00), Stockholm, June 2000.

[OMG98] Object Management Group. Workflow management facility, joint submission
bom/98-06-07, revised, July 1998. Available at ftp://ftp.omg.org/pub/docs/bom/~
98-06-07 . pdf.

[SGWO00] G. Shegalov, M. Gillmann, and G. Weikum. Xml-enabled workflow manage-
ment for e-services across heterogeneous platforms. In 1st Workshop on Technologies
for E-Services (TES), Cairo, Egypt, September 2000.

[TBMMOO0] H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
schema part 1: Structures. W3C Recommendation, October 2000. Available at
http://www.w3.org/TR/xmlschema-1/.

[TAKJOO] A. Tripathi and T. Ahmed and V. Kakani and S. Jaman., Imple-
menting Distributed Workflow Systems from XML Specifications, Available at
http://www.cs.umn.edu/Ajanta/papers/asa-ma.ps.

[vdA98] W. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

[vdAKO1] W. van der Aalst and A. Kumar. XML based schema definition for support
of inter-organizational workflow. Technical Report in review, CU Boulder, 2001.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems.
IEEE Computer, 25(3):38-49, March 1992.

[WMC99] Workflow Management Coalition. Workflow standard - interoperability Wi-
XML binding document number wfmec-tc-1023, April 1999.

[WSFL01] Web Services Flow Language (WSFL), IBM Corporation. Available at
http://wuw-4.ibm. com/software/solutions/webservices/pdf/WSFL.pdf.

